

wwPDB X-ray Structure Validation Summary Report (i)

Jan 2, 2024 – 12:20 pm GMT

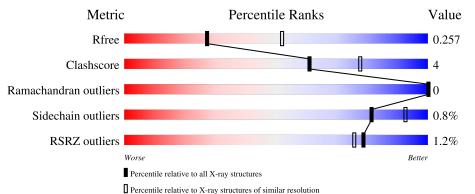
PDB ID	:	5AAO
Title	:	Crystal structure of fluorogen-activating designed ankyrin repeat protein
		(DARPin) dimer in complex with malachite green
Authors	:	Batyuk, A.; Schuetz, M.; Kummer, L.; Wu, Y.; Mittl, P.; Plueckthun, A.
Deposited on	:	2015-07-27
Resolution	:	2.60 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:


MolProbity	:	4.02b-467
Mogul	:	1.8.4, CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.60 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$\begin{array}{c} \textbf{Whole archive} \\ (\#\textbf{Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R_{free}	130704	3163 (2.60-2.60)
Clashscore	141614	3518 (2.60-2.60)
Ramachandran outliers	138981	3455 (2.60-2.60)
Sidechain outliers	138945	3455 (2.60-2.60)
RSRZ outliers	127900	3104 (2.60-2.60)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	169	85%	7% • 8%
1	В	169	81%	10% 9%
1	С	169	80%	11% • 8%
1	D	169	% 82%	9% 9%
1	Е	169	% • 85%	7% • 7%

Mol	nuea fron Chain	-	Quality of chain	
1	F	169	2% 80%	10% • 9%
			% •	
1	G	169	<u> </u>	10% • 8%
1	Н	169	83%	8% • 9%
1	Ι	169	83%	10% 7%
1	J	169	.% • 80%	12% • 7%
1	K	169	3% 79 %	11% • 9%
1	L	169	.% 8 2%	9% • 8%

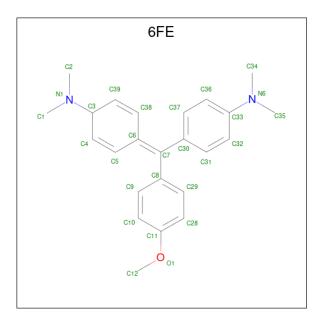
Continued from previous page...

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
2	6FE	А	1168	Х	-	-	-
2	6FE	С	1169	Х	-	-	-
2	6FE	Е	1169	Х	-	-	-
2	6FE	G	1169	Х	-	-	-
2	6FE	J	1169	Х	-	-	-
2	6FE	Κ	1167	Х	-	-	-

2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 14860 atoms, of which 0 are hydrogens and 0 are deuteriums.


In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	Δ	156	Total	С	Ν	0	S	0	0	0
	А	100	1201	766	201	233	1	0	0	0
1	В	154	Total	С	Ν	0	S	0	0	0
	D	104	1186	757	198	230	1	0	0	0
1	С	156	Total	С	Ν	0	S	0	0	0
		150	1203	769	201	232	1	0	0	0
1	D	154	Total	С	Ν	0	S	0	0	0
		104	1186	757	198	230	1	0	0	0
1	Е	157	Total	С	Ν	0	S	0	0	0
	Ľ	157	1209	772	202	234	1	0	0	
1	F	154	Total	С	Ν	Ο	S	0	0	0
	Г	104	1186	757	198	230	1	0		U
1	G	156	Total	С	Ν	Ο	\mathbf{S}	0	0	0
	G	150	1203	769	201	232	1	0		
1	Н	154	Total	С	Ν	Ο	\mathbf{S}	0	0	0
	11	104	1186	757	198	230	1	0	0	0
1	Ι	157	Total	С	Ν	Ο	S	0	0	0
	1	157	1209	772	202	234	1	0	0	0
1	J	157	Total	С	Ν	Ο	S	0	0	0
	1	157	1209	772	202	234	1	0	0	0
1	K	154	Total	С	Ν	Ο	S	0	0	0
		104	1186	757	198	230	1		U	U
1	L	155	Total	С	Ν	Ο	S	0	0	0
		100	1195	763	200	231	1	U		U

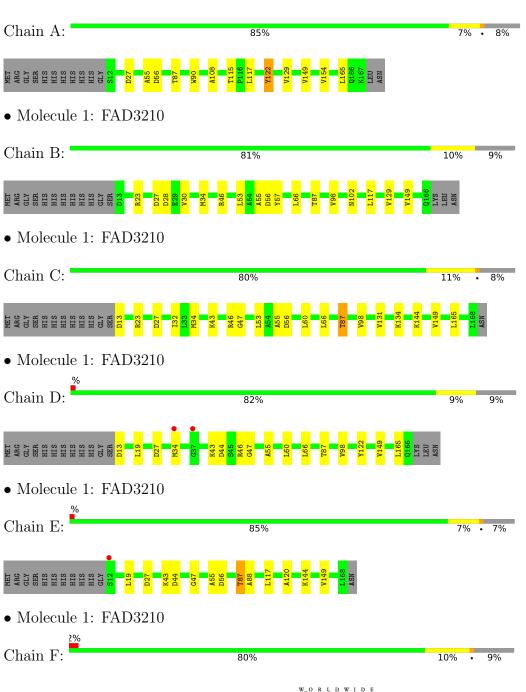
• Molecule 1 is a protein called FAD3210.

• Molecule 2 is 4-[[4-(dimethylamino)cyclohexa-2,5-dien-1-ylidene]-(4-methoxyphenyl)methyl] -N,N-dimethyl-aniline (three-letter code: 6FE) (formula: C₂₄H₂₈N₂O).

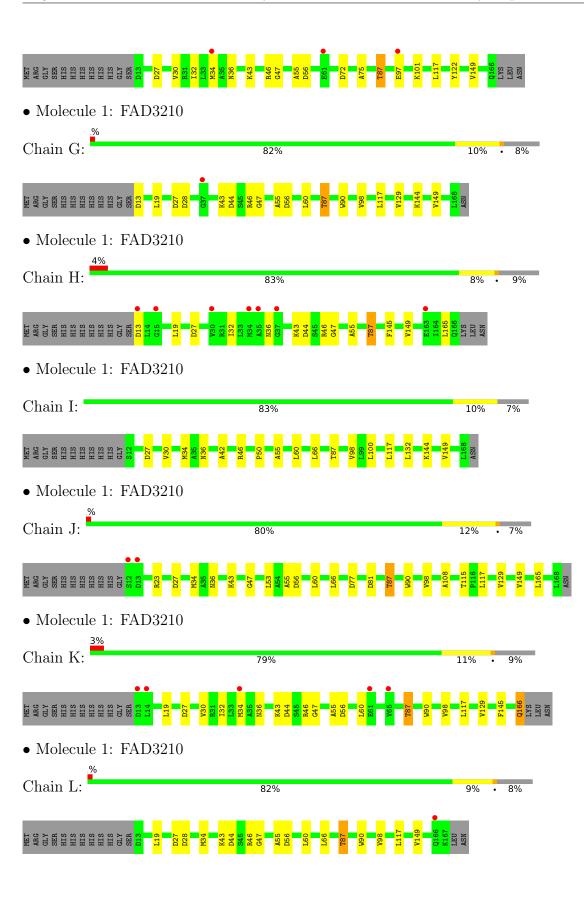
Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	1	Total C N O 27 24 2 1	0	0
2	С	1	Total C N O 27 24 2 1	0	0
2	Е	1	Total C N O 27 24 2 1	0	0
2	G	1	Total C N O 27 24 2 1	0	0
2	J	1	Total C N O 27 24 2 1	0	0
2	K	1	Total C N O 27 24 2 1	0	0

• Molecule 3 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	65	$\begin{array}{cc} \text{Total} & \text{O} \\ 65 & 65 \end{array}$	0	0
3	В	48	Total O 48 48	0	0
3	С	33	Total O 33 33	0	0
3	D	18	Total O 18 18	0	0
3	Е	30	Total O 30 30	0	0
3	F	19	Total O 19 19	0	0


Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	G	21	Total O 21 21	0	0
3	Н	15	Total O 15 15	0	0
3	Ι	33	Total O 33 33	0	0
3	J	23	TotalO2323	0	0
3	K	14	Total O 14 14	0	0
3	L	20	TotalO2020	0	0


3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: FAD3210

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	93.51Å 109.75Å 100.30Å	Depositor
a, b, c, α , β , γ	90.00° 94.35° 90.00°	Depositor
Resolution (Å)	19.95 - 2.60	Depositor
Resolution (A)	48.11 - 2.60	EDS
% Data completeness	99.8 (19.95-2.60)	Depositor
(in resolution range)	99.8 (48.11-2.60)	EDS
R _{merge}	0.27	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.55 (at 2.61 \text{\AA})$	Xtriage
Refinement program	PHENIX (PHENIX.REFINE)	Depositor
D D.	0.213 , 0.262	Depositor
R, R_{free}	0.208 , 0.257	DCC
R_{free} test set	3106 reflections $(5.00%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	38.4	Xtriage
Anisotropy	0.037	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.33 , 45.3	EDS
L-test for twinning ²	$ \langle L \rangle = 0.49, \langle L^2 \rangle = 0.32$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.94	EDS
Total number of atoms	14860	wwPDB-VP
Average B, all atoms $(Å^2)$	51.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 34.66 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 6.5930e-04. The detected translational NCS is most likely also responsible for the elevated intensity ratio.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: $6\mathrm{FE}$

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bond angles	
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.23	0/1225	0.37	0/1664
1	В	0.23	0/1210	0.37	0/1645
1	С	0.23	0/1227	0.37	0/1667
1	D	0.23	0/1210	0.36	0/1645
1	Е	0.23	0/1233	0.37	0/1675
1	F	0.23	0/1210	0.36	0/1645
1	G	0.23	0/1227	0.36	0/1667
1	Н	0.23	0/1210	0.37	0/1645
1	Ι	0.23	0/1233	0.36	0/1675
1	J	0.23	0/1233	0.36	0/1675
1	Κ	0.23	0/1210	0.36	0/1645
1	L	0.23	0/1219	0.36	0/1656
All	All	0.23	0/14647	0.37	0/19904

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1201	0	1169	10	0

Continued from previous page Mol Chain Non-H H(model) H(added) Clashes Symm-Clashes Symm-Clashes									
Mol	Chain		· · · ·	H(added)	Clashes	Symm-Clashes			
1	В	1186	0	1151	12	0			
1	С	1203	0	1175	16	0			
1	D	1186	0	1151	10	0			
1	Ε	1209	0	1180	8	0			
1	F	1186	0	1151	12	0			
1	G	1203	0	1175	13	0			
1	Н	1186	0	1151	9	0			
1	Ι	1209	0	1180	10	0			
1	J	1209	0	1180	12	0			
1	Κ	1186	0	1151	13	0			
1	L	1195	0	1164	11	0			
2	А	27	0	27	1	0			
2	С	27	0	27	2	0			
2	Е	27	0	27	2	0			
2	G	27	0	27	3	0			
2	J	27	0	27	2	0			
2	K	27	0	27	2	0			
3	А	65	0	0	0	0			
3	В	48	0	0	0	0			
3	С	33	0	0	1	0			
3	D	18	0	0	0	0			
3	Е	30	0	0	0	0			
3	F	19	0	0	0	0			
3	G	21	0	0	1	0			
3	Н	15	0	0	1	0			
3	Ι	33	0	0	0	0			
3	J	23	0	0	0	0			
3	K	14	0	0	1	0			
3	L	20	0	0	0	0			
All	All	14860	0	14140	129	0			

Continued from previous page...

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 4.

The worst 5 of 129 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:C:34:MET:HE1	1:C:66:LEU:HD23	1.71	0.72
1:C:144:LYS:HE3	1:G:144:LYS:HE2	1.74	0.69
1:I:34:MET:HE1	1:I:66:LEU:HD23	1.75	0.68
1:B:56:ASP:O	1:C:46:ARG:NH2	2.28	0.66

$\alpha \cdot \cdot \cdot$	C		
Continued	trom	previous	page
	J	1	r J

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)	
1:F:55:ALA:HB1	1:F:87:THR:HG23	1.81	0.61	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	154/169~(91%)	152 (99%)	2(1%)	0	100	100
1	В	152/169~(90%)	148 (97%)	4 (3%)	0	100	100
1	С	154/169~(91%)	152 (99%)	2 (1%)	0	100	100
1	D	152/169~(90%)	149 (98%)	3 (2%)	0	100	100
1	Ε	155/169~(92%)	152 (98%)	3 (2%)	0	100	100
1	F	152/169~(90%)	150 (99%)	2 (1%)	0	100	100
1	G	154/169~(91%)	152 (99%)	2 (1%)	0	100	100
1	Η	152/169~(90%)	150 (99%)	2(1%)	0	100	100
1	Ι	155/169~(92%)	152 (98%)	3 (2%)	0	100	100
1	J	155/169~(92%)	152 (98%)	3(2%)	0	100	100
1	K	152/169~(90%)	148 (97%)	4 (3%)	0	100	100
1	L	153/169~(90%)	150 (98%)	3 (2%)	0	100	100
All	All	1840/2028~(91%)	1807 (98%)	33 (2%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar

resolution.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	122/133~(92%)	121~(99%)	1 (1%)	81 92
1	В	120/133~(90%)	120 (100%)	0	100 100
1	С	122/133~(92%)	121~(99%)	1 (1%)	81 92
1	D	120/133~(90%)	120 (100%)	0	100 100
1	Ε	123/133~(92%)	122~(99%)	1 (1%)	81 92
1	F	120/133~(90%)	119~(99%)	1 (1%)	81 92
1	G	122/133~(92%)	121~(99%)	1 (1%)	81 92
1	Н	120/133~(90%)	119~(99%)	1 (1%)	81 92
1	Ι	123/133~(92%)	122~(99%)	1 (1%)	81 92
1	J	123/133 (92%)	121 (98%)	2(2%)	62 82
1	К	120/133~(90%)	118 (98%)	2(2%)	60 81
1	L	121/133 (91%)	120 (99%)	1 (1%)	81 92
All	All	1456/1596~(91%)	1444 (99%)	12 (1%)	81 92

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

5 of 12 residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
1	J	36	ASN
1	J	87	THR
1	L	87	THR
1	Κ	87	THR
1	F	87	THR

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (2) such sidechains are listed below:

Mol	Chain	Res	Type
1	В	69	HIS
1	Н	92	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

6 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type Chain Res		Link	Bond lengths			Bond angles			
	Type	Chain	nam Res		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
2	6FE	J	1169	-	28,29,29	2.76	9 (32%)	35,40,40	1.32	4 (11%)
2	6FE	G	1169	-	28,29,29	2.76	9 (32%)	35,40,40	1.48	6 (17%)
2	6FE	С	1169	-	28,29,29	2.76	8 (28%)	35,40,40	1.32	4 (11%)
2	6FE	А	1168	-	28,29,29	2.77	9 (32%)	35,40,40	1.35	5 (14%)
2	6FE	Е	1169	-	28,29,29	2.77	9 (32%)	35,40,40	1.44	6 (17%)
2	6FE	К	1167	-	28,29,29	2.76	10 (35%)	35,40,40	1.33	4 (11%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	6FE	J	1169	-	1/1/5/9	11/22/32/32	0/3/3/3
2	6FE	G	1169	-	1/1/5/9	10/22/32/32	0/3/3/3
2	6FE	С	1169	-	1/1/5/9	5/22/32/32	0/3/3/3
2	6FE	А	1168	-	1/1/5/9	8/22/32/32	0/3/3/3
2	6FE	Е	1169	-	1/1/5/9	6/22/32/32	0/3/3/3
2	6FE	Κ	1167	-	1/1/5/9	10/22/32/32	0/3/3/3

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
2	G	1169	6FE	C3-C39	-8.80	1.38	1.50
2	А	1168	6FE	C3-C39	-8.80	1.38	1.50
2	Е	1169	6FE	C3-C39	-8.80	1.38	1.50
2	С	1169	6FE	C3-C39	-8.76	1.38	1.50
2	Κ	1167	6FE	C3-C39	-8.73	1.38	1.50

The worst 5 of 54 bond length outliers are listed below:

The worst 5 of 29 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	G	1169	6FE	C8-C7-C6	-3.69	115.41	121.71
2	А	1168	6FE	C2-N1-C1	3.45	120.56	110.38
2	Е	1169	6FE	C2-N1-C1	3.41	120.42	110.38
2	Κ	1167	6FE	C2-N1-C1	3.36	120.29	110.38
2	J	1169	6FE	C2-N1-C1	3.35	120.27	110.38

5 of 6 chirality outliers are listed below:

Mol	Chain	Res	Type	Atom
2	А	1168	6FE	C6
2	С	1169	6FE	C6
2	Ε	1169	6FE	C6
2	G	1169	6FE	C6
2	J	1169	6FE	C6

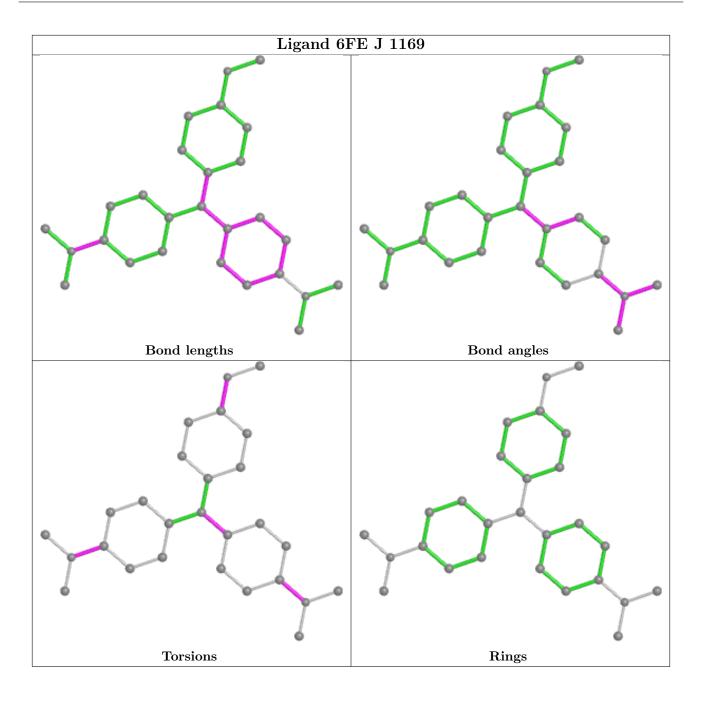
5 of 50 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
2	А	1168	6FE	C4-C3-N1-C1
2	А	1168	6FE	C39-C3-N1-C2
2	А	1168	6FE	C38-C6-C7-C8
2	С	1169	6FE	C4-C3-N1-C1
2	С	1169	6FE	C39-C3-N1-C2

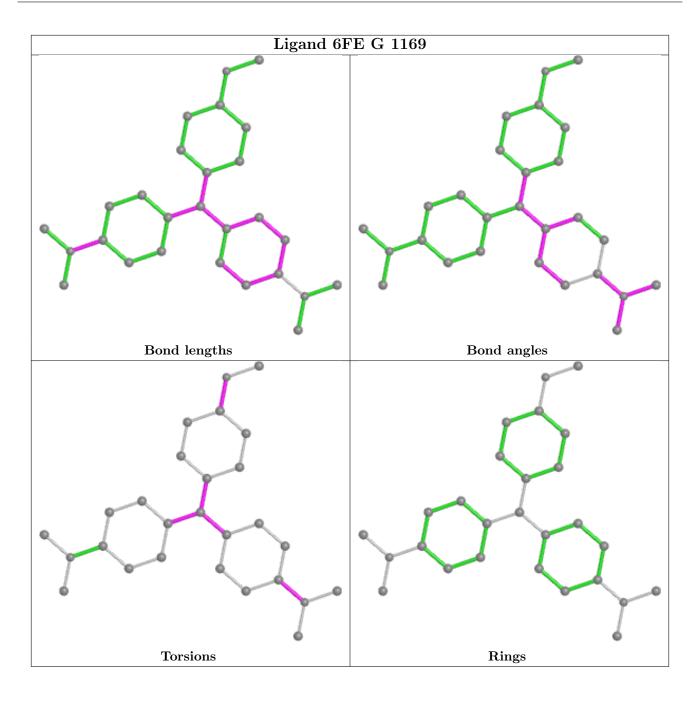
There are no ring outliers.

6 monomers are involved in 12 short contacts:

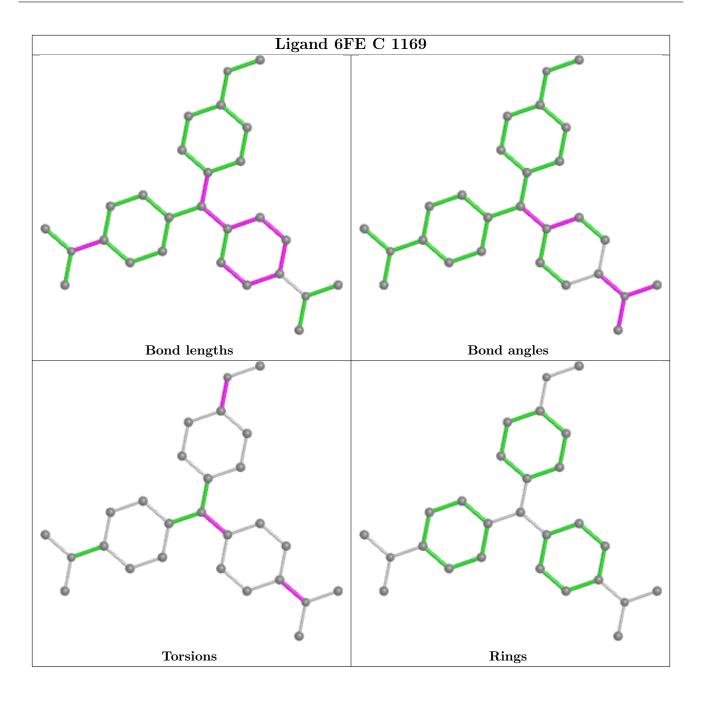
Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	J	1169	6FE	2	0
2	G	1169	6FE	3	0
2	С	1169	6FE	2	0
2	А	1168	6FE	1	0

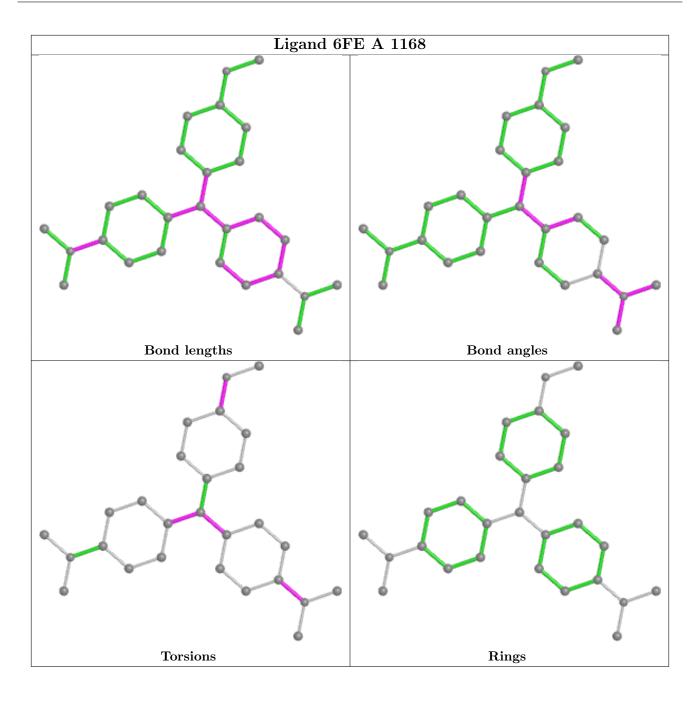


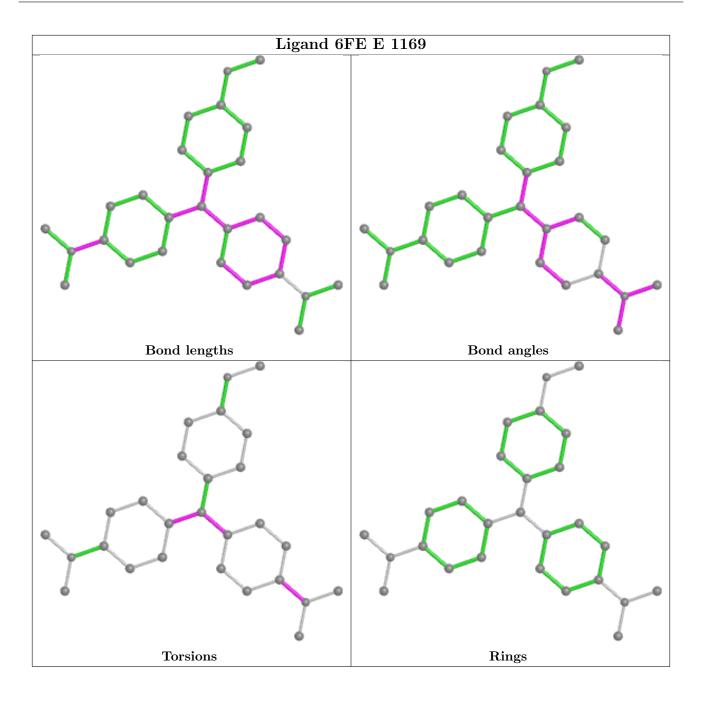
Continued from previous page...

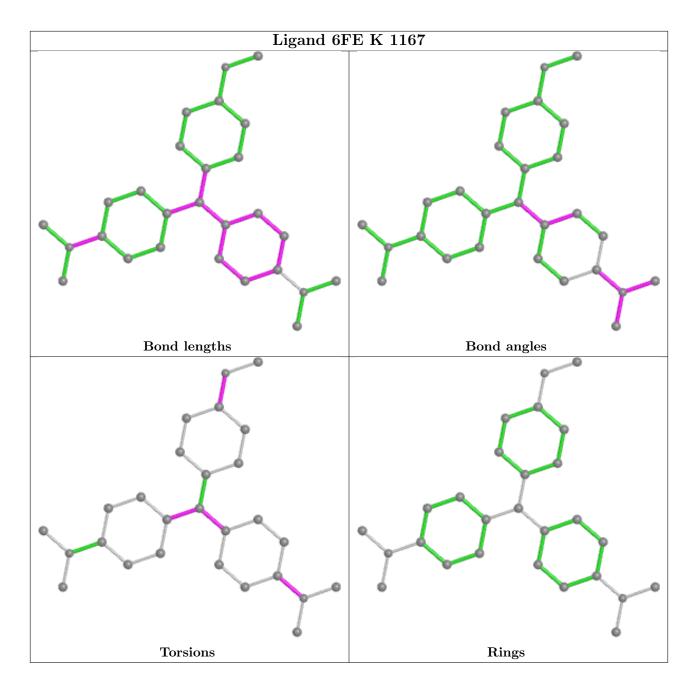

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	Е	1169	6FE	2	0
2	K	1167	6FE	2	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient the outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.









5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$<$ RSRZ $>$	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	156/169~(92%)	-0.34	0 100 100	15, 33, 58, 82	0
1	В	154/169~(91%)	-0.25	0 100 100	22, 38, 67, 96	0
1	С	156/169~(92%)	-0.24	0 100 100	26, 42, 72, 93	0
1	D	154/169~(91%)	-0.02	2 (1%) 77 73	31, 53, 92, 117	0
1	Е	157/169~(92%)	-0.19	1 (0%) 89 88	26, 40, 68, 102	0
1	F	154/169~(91%)	0.07	3 (1%) 66 62	33, 54, 82, 96	0
1	G	156/169~(92%)	-0.08	1 (0%) 89 88	28, 48, 76, 90	0
1	Н	154/169~(91%)	0.16	7 (4%) 33 26	36, 56, 103, 119	0
1	Ι	157/169~(92%)	-0.12	0 100 100	25, 46, 97, 129	0
1	J	157/169~(92%)	0.02	2 (1%) 77 73	25, 47, 90, 128	0
1	K	154/169~(91%)	0.26	5 (3%) 47 40	34, 64, 111, 129	0
1	L	155/169~(91%)	0.05	1 (0%) 89 88	27, 54, 97, 114	0
All	All	1864/2028~(91%)	-0.06	22 (1%) 79 76	15, 48, 90, 129	0

The worst 5 of 22 RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	Н	37	GLY	4.1
1	L	166	GLN	3.5
1	Κ	14	LEU	3.3
1	J	12	SER	3.2
1	Н	34	MET	3.1

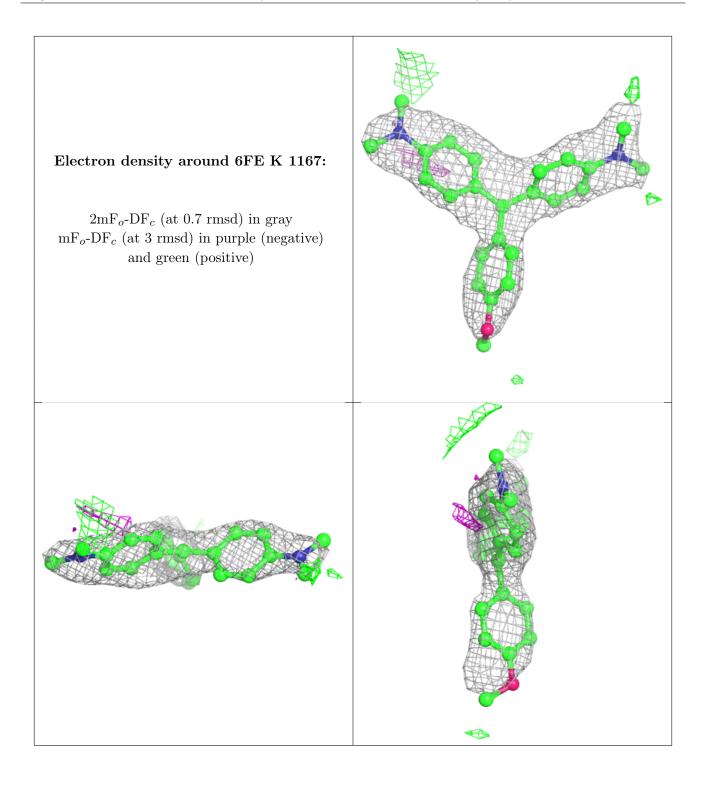
6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

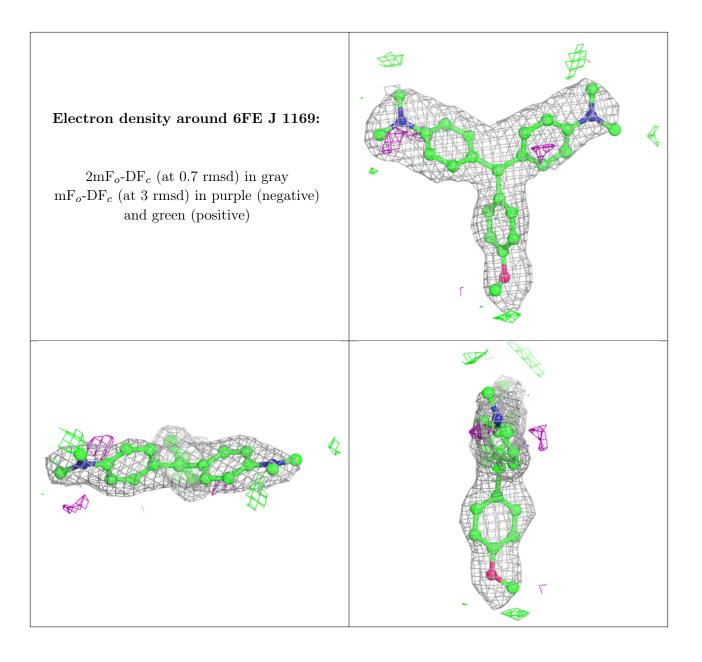
5AAO

6.3 Carbohydrates (i)

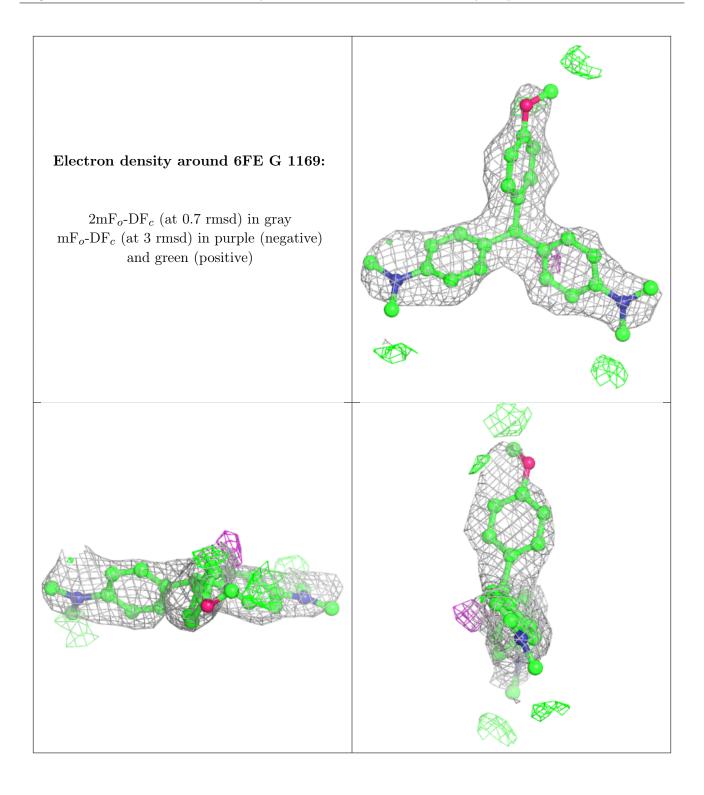
There are no monosaccharides in this entry.

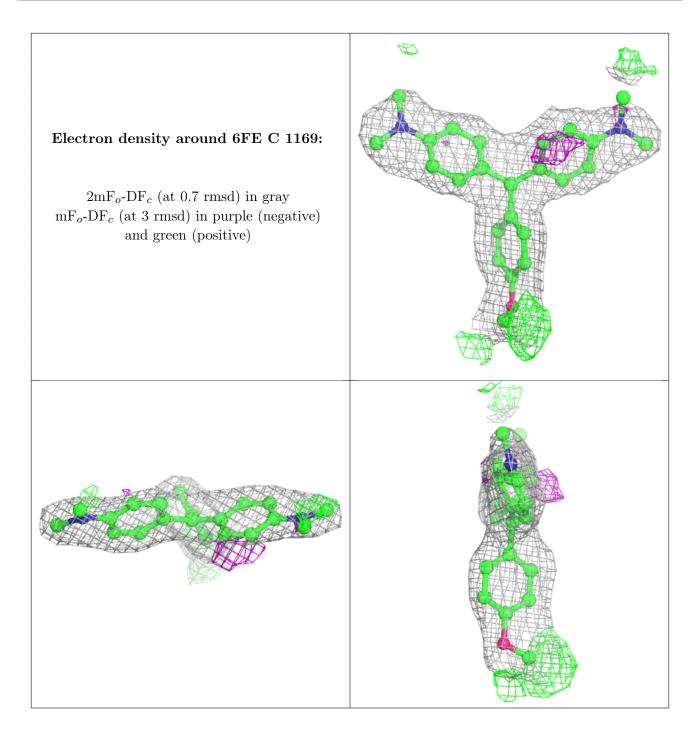

6.4 Ligands (i)

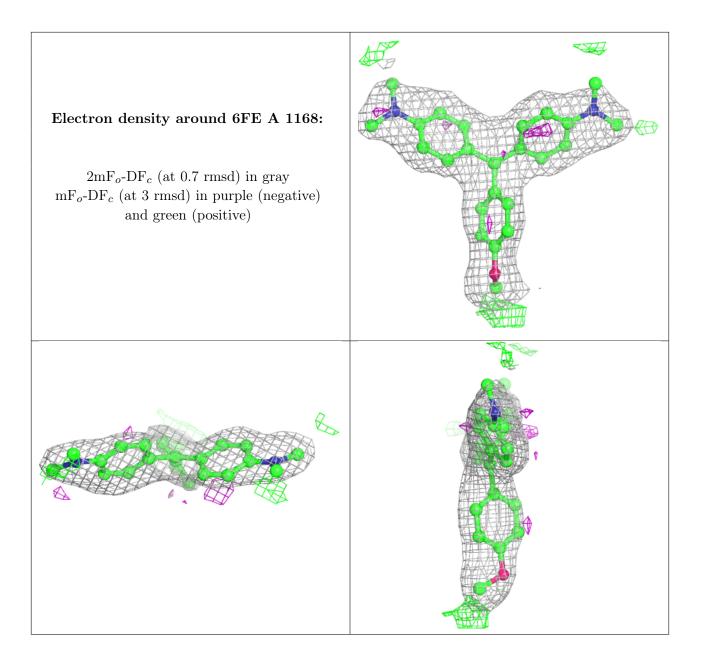
In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

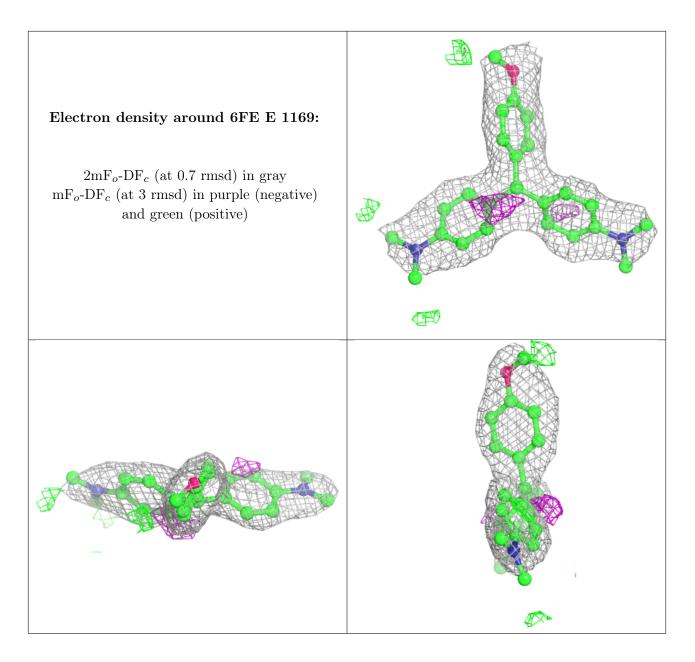

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B-factors(Å ²)	Q<0.9
2	6FE	K	1167	27/27	0.86	0.28	52,73,89,93	0
2	6FE	J	1169	27/27	0.89	0.22	33,47,55,59	0
2	6FE	G	1169	27/27	0.89	0.25	51,63,75,77	0
2	6FE	С	1169	27/27	0.91	0.18	26, 36, 48, 55	0
2	6FE	А	1168	27/27	0.91	0.20	21,29,53,60	0
2	6FE	Е	1169	27/27	0.93	0.19	34,47,56,66	0

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.









6.5 Other polymers (i)

There are no such residues in this entry.

