

wwPDB EM Validation Summary Report (i)

Dec 18, 2022 - 08:49 am GMT

PDB ID	:	7ABI
EMDB ID	:	EMD-11697
Title	:	Human pre-Bact-2 spliceosome
Authors	:	Townsend, C.; Kastner, B.; Leelaram, M.N.; Bertram, K.; Stark, H.;
		Luehrmann, R.
Deposited on	:	2020-09-07
Resolution	:	8.00 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 43
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.31.3

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 8.00 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	D	357	7% 82%	• 15%
2	Е	1217	• 89%	8% •
3	b	86	5% 85%	15%
3	i	86	• 84%	16%
4	W	255	15% 62%	36%
5	W	424	• 18% 82%	
6	d	76	91%	9%

Continue contraction Continue contraction Continue contraction C	nued fron	n previous	page				
Mol	Chain	Length		Quality of	' chain		
6	k	76		96%			·
7	U	1485	52%	84%		5%	6 • 11%
8	х	86		91%			• 8%
9	6	106	31%	25%	25%	6%	14%
10	В	225	40%	70%	•	25	%
11	Z	125		86%			14%
12	q	73	0%	100%			
13	S	2136	9.70	81%			19%
14	V	536	38%		62%		
15	3	619	• 7% •	91	%		
16	0	396	•	·	62%		
17	Q	144	•	87%			8% • •
18	1	322	34%	••	62%		
19	L	802	14%		86%		
20	Ν	199	26% ·		72%		
21	S	563	6.	1%	·	37%	
22	r	972	60/	91%			• 8%
23	R	229	19%		81%		
24	Y	904	10% •	8	9%		
25	7	393	59	%	·	40%	
26	М	855	42 %	76%		6%	17%
27	Κ	439	28%		72%		
28	О	848	28%		71%		
29	У	110	2404	88%			• 9%
30	2	188	41%	3	30%	15% •	13%

Chain Length Quality of chain Mol G 31 51455% 6% 38% i. 32118 \mathbf{a} 66% 34% 13% 32h 11881% 19% 33% 330 301 74% 24% • 20% 34520t 48% 51% 35f 24073% 27% 35240m 34% 66% Ζ 36 3245% 82% 8% 5% 37126е 62% 38% 8% 1 3712666% 34% 38А 2335• • 7% 80% 9% 398 57997% . • 4092 \mathbf{c} 85% 15% i 92 40 j 88% 12% Ι 31241 54% 44% • 8% 42119g 78% 22% 29% 42119n 67% 33% 5% Р 420 4354% 44% 44 511628% 51% 19% • 9% 79345р 15% 84% 10% F 4646433% 64% 49% 501474 81% 16% . 1304 4872% 28% u i Т 49895 18% 80% •

Continued from previous page...

2 Entry composition (i)

There are 52 unique types of molecules in this entry. The entry contains 85564 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called U5 small nuclear ribonucleoprotein 40 kDa protein.

Mol	Chain	Residues	Atoms				AltConf	Trace
1	D	302	Total 1506	C 902	N 302	O 302	0	0

• Molecule 2 is a protein called Splicing factor 3B subunit 3.

Mol	Chain	Residues	Atoms				AltConf	Trace
2	Е	1177	Total 5926	$\begin{array}{c} \mathrm{C} \\ 3572 \end{array}$	N 1177	O 1177	0	0

• Molecule 3 is a protein called Small nuclear ribonucleoprotein F.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
2	h	72	Total	С	Ν	0	0	0
5	D	15	364	218	73	73	0	0
2	;	79	Total	С	Ν	0	0	0
3	1	12	359	215	72	72	0	0

• Molecule 4 is a protein called U2 small nuclear ribonucleoprotein A'.

Mol	Chain	Residues	Atoms				AltConf	Trace
4	W	162	Total 816	C 492	N 162	O 162	0	0

• Molecule 5 is a protein called Splicing factor 3B subunit 4.

Mol	Chain	Residues	Atoms				AltConf	Trace
5	W	78	Total 391	C 235	N 78	O 78	0	0

• Molecule 6 is a protein called Small nuclear ribonucleoprotein G.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
6	d	60	Total	С	Ν	0	0	0
0 a	u	09	344	206	69	69	0	0
6	ŀ	72	Total	С	Ν	0	0	0
0	K	15	364	218	73	73	0	0

• Molecule 7 is a protein called Intron-binding protein aquarius.

Mol	Chain	Residues		Ato	AltConf	Trace		
7	U	1329	Total 6730	C 4072	N 1329	O 1329	0	0

• Molecule 8 is a protein called Splicing factor 3B subunit 5.

Mol	Chain	Residues	Atoms				AltConf	Trace
8	х	79	Total 397	C 239	N 79	O 79	0	0

• Molecule 9 is a RNA chain called U6 snRNA.

Mol	Chain	Residues		\mathbf{A}	AltConf	Trace			
9	6	91	Total 1947	C 871	N 359	O 626	Р 91	0	0

• Molecule 10 is a protein called U2 small nuclear ribonucleoprotein B".

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
10	В	169	Total 851	C 513	N 169	O 169	0	0

• Molecule 11 is a protein called Splicing factor 3B subunit 6.

Mol	Chain	Residues	Atoms				AltConf	Trace
11	\mathbf{Z}	108	Total 544	C 328	N 108	O 108	0	0

• Molecule 12 is a protein called Ubiquitin-like protein 5.

Mol	Chain	Residues	Atoms				AltConf	Trace
12	q	73	Total 360	C 214	N 73	O 73	0	0

• Molecule 13 is a protein called U5 small nuclear ribonucleoprotein 200 kDa helicase.

Mol	Chain	Residues		Ato	AltConf	Trace		
13	s	1722	Total 8688	C 5244	N 1722	O 1722	0	0

• Molecule 14 is a protein called SNW domain-containing protein 1.

Mol	Chain	Residues	Atoms				AltConf	Trace
14	v	206	Total 1053	C 641	N 206	O 206	0	0

• Molecule 15 is a protein called BUD13 homolog.

Mol	Chain	Residues	Atoms				AltConf	Trace
15	3	55	Total 283	C 173	N 55	O 55	0	0

• Molecule 16 is a protein called Smad nuclear-interacting protein 1.

Mol	Chain	Residues	Atoms				AltConf	Trace
16	0	150	Total 761	C 461	N 150	O 150	0	0

• Molecule 17 is a protein called Protein BUD31 homolog.

Mol	Chain	Residues	Atoms				AltConf	Trace
17	Q	138	Total 695	C 419	N 138	O 138	0	0

• Molecule 18 is a protein called RNA-binding motif protein, X-linked 2.

Mol	Chain	Residues	Atoms				AltConf	Trace
18	1	122	Total 607	C 363	N 122	O 122	0	0

• Molecule 19 is a protein called Cell division cycle 5-like protein.

Mol	Chain	Residues	Atoms				AltConf	Trace
19	L	116	Total 582	C 350	N 116	O 116	0	0

• Molecule 20 is a protein called Zinc finger matrin-type protein 2.

Mol	Chain	Residues	Atoms				AltConf	Trace
20	Ν	56	Total 277	C 165	N 56	O 56	0	0

• Molecule 21 is a protein called Beta-catenin-like protein 1.

Mol	Chain	Residues		Ator	AltConf	Trace		
21	S	355	Total 1771	C 1061	N 355	O 355	0	0

• Molecule 22 is a protein called 116 kDa U5 small nuclear ribonucleoprotein component.

Mol	Chain	Residues		Ator	AltConf	Trace		
22	r	895	Total 4531	С 2741	N 895	O 895	0	0

• Molecule 23 is a protein called Spliceosome-associated protein CWC15 homolog.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
23	R	44	Total 219	C 131	N 44	0 44	0	0

• Molecule 24 is a protein called Serine/arginine repetitive matrix protein 1.

Mol	Chain	Residues		Aton	ns	AltConf	Trace	
24	Y	95	Total 478	C 288	N 95	O 95	0	0

• Molecule 25 is a protein called DNA/RNA-binding protein KIN17.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
25	7	236	Total 1178	C 706	N 236	O 236	0	0

• Molecule 26 is a protein called Pre-mRNA-splicing factor SYF1.

Mol	Chain	Residues		Ator	AltConf	Trace		
26	М	706	Total 3553	C 2141	N 706	O 706	0	0

• Molecule 27 is a protein called Microfibrillar-associated protein 1.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
27	K	123	Total 614	C 368	N 123	O 123	0	0

• Molecule 28 is a protein called Crooked neck-like protein 1.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
28	О	248	Total 1243	С 747	N 248	O 248	0	0

• Molecule 29 is a protein called PHD finger-like domain-containing protein 5A.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
29	У	100	Total 498	C 298	N 100	O 100	0	0

• Molecule 30 is a RNA chain called U2 snRNA.

Mol	Chain	Residues		А	AltConf	Trace			
30	2	164	Total 3479	C 1554	N 600	0 1161	Р 164	0	0

• Molecule 31 is a protein called Pleiotropic regulator 1.

Mol	Chain	Residues	Atoms				AltConf	Trace
31	G	320	Total 1604	C 964	N 320	O 320	0	0

• Molecule 32 is a protein called Small nuclear ribonucleoprotein Sm D2.

Mol	Chain	Residues	Atoms				AltConf	Trace	
20	h	05	Total	С	Ν	0	0	0	
32	11	90	482	292	95	95	0	U	
20	0	79	Total	С	Ν	0	0	0	
32	a	18	393	237	78	78	0	0	

• Molecule 33 is a protein called Peptidyl-prolyl cis-trans isomerase E.

Mol	Chain	Residues	Atoms				AltConf	Trace
33	О	229	Total 1135	C 677	N 229	O 229	0	0

• Molecule 34 is a protein called RING-type E3 ubiquitin-protein ligase PPIL2.

Mol	Chain	Residues	Atoms				AltConf	Trace
34	t	253	Total 1272	C 766	N 253	O 253	0	0

• Molecule 35 is a protein called Small nuclear ribonucleoprotein-associated proteins B and B'.

Mol	Chain	Residues	Atoms				AltConf	Trace
35	m	82	Total	С	Ν	0	0	0
- 55	111	02	413	249	82	82	0	0
25	f	64	Total	С	Ν	0	0	0
99	1	04	319	191	64	64	0	0

• Molecule 36 is a RNA chain called MINX M3 pre-mRNA.

Mol	Chain	Residues		A	AltConf	Trace			
36	Z	57	Total 1201	C 538	N 203	O 403	Р 57	0	0

• Molecule 37 is a protein called Small nuclear ribonucleoprotein Sm D3.

Mol	Chain	Residues	Atoms				AltConf	Trace
37	1	83	Total	С	Ν	0	0	0
57	1	00	415	249	83	83	0	0
27	0	78	Total	С	Ν	0	0	0
37	е	10	390	234	78	78	0	0

• Molecule 38 is a protein called Pre-mRNA-processing-splicing factor 8.

Mol	Chain	Residues	Atoms				AltConf	Trace
38	А	2163	Total 10968	C 6642	N 2163	O 2163	0	0

• Molecule 39 is a protein called Pre-mRNA-processing factor 17.

Mol	Chain	Residues	Atoms				AltConf	Trace
39	8	18	Total 92	C 56	N 18	0 18	0	0

• Molecule 40 is a protein called Small nuclear ribonucleoprotein E.

Mol	Chain	Residues	Atoms				AltConf	Trace	
40	i	81	Total	С	Ν	0	0	0	
40	J	01	403	241	81	81	0	0	
40	0	78	Total	С	Ν	0	0	0	
40	С	18	388	232	78	78		0	

• Molecule 41 is a protein called Pre-mRNA-splicing factor 38A.

Mol	Chain	Residues	Atoms				AltConf	Trace
41	Ι	176	Total 883	C 531	N 176	O 176	0	0

• Molecule 42 is a protein called Small nuclear ribonucleoprotein Sm D1.

Mol	Chain	Residues	Atoms				AltConf	Trace
42	n	80	Total 402	C 242	N 80	O 80	0	0
42	g	93	Total 469	C 283	N 93	O 93	0	0

• Molecule 43 is a protein called Pre-mRNA-splicing factor RBM22.

Mol	Chain	Residues	Atoms				AltConf	Trace
43	Р	237	Total 1194	C 720	N 237	O 237	0	0

• Molecule 44 is a RNA chain called U5 snRNA.

Mol	Chain	Residues	Atoms				AltConf	Trace	
44	5	114	Total 2397	C 1074	N 399	0 810	Р 114	0	0

• Molecule 45 is a protein called Splicing factor 3A subunit 1.

Mol	Chain	Residues		Ato	\mathbf{ms}		AltConf	Trace
45	р	124	Total 631	C 383	N 124	O 124	0	0

• Molecule 46 is a protein called Splicing factor 3A subunit 2.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
46	F	165	Total 835	${ m C} 505$	N 165	O 165	0	0

• Molecule 47 is a protein called Splicing factor 3A subunit 3.

Mol	Chain	Residues		Ator	ns		AltConf	Trace
47	4	421	Total 2110	C 1268	N 421	O 421	0	0

• Molecule 48 is a protein called Splicing factor 3B subunit 1.

Mol	Chain	Residues		Ator	ns		AltConf	Trace
48	u	941	Total 4748	C 2866	N 941	0 941	0	0

• Molecule 49 is a protein called Splicing factor 3B subunit 2.

Mol	Chain	Residues	Atoms			AltConf	Trace	
49	Т	183	Total 942	C 576	N 183	0 183	0	0

• Molecule 50 is GUANOSINE-5'-TRIPHOSPHATE (three-letter code: GTP) (formula: $C_{10}H_{16}N_5O_{14}P_3$).

Mol	Chain	Residues		Ate	oms			AltConf
50		1	Total	С	Ν	Ο	Р	0
- 50		1	32	10	5	14	3	U

• Molecule 51 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
51	r	1	Total Mg 1 1	0

• Molecule 52 is INOSITOL HEXAKISPHOSPHATE (three-letter code: IHP) (formula: $C_6H_{18}O_{24}P_6$).

Mol	Chain	Residues	Atoms			AltConf	
50	Δ	1	Total	С	Ο	Р	0
52	A	1	36	6	24	6	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: U5 small nuclear ribonucleoprotein 40 kDa protein

• Molecule 6: Small nuclear ribonucleoprotein G

Chain d:

91%

• Molecule 6: Small nuclear ribonucleoprotein G

• Molecule 8: Splicing factor 3B subunit 5

40%

70%

Chain B:

Chain x: 91% • 8% ALA ASP LYS LYS PRO GLU GLU GLU ASN • Molecule 9: U6 snRNA Chain 6: 31% 25% 25% 6% 14% 436 037 138 439 140 441 242 242 443 344 447 448 349 • Molecule 10: U2 small nuclear ribonucleoprotein B"

25%

MET ASP R4 R4 R4 M13 M13 M13 M13 M13 M13 M13 M13 M14 M15 M15 M15 M15 M15 M15 M15 M15 M15 M15	LILN PHE ALA ASP LYS GLU
LYS LYS LYS LYS LYS CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	
L1 67 S1 68 M1 69 P1 75 C1 76 P1 75 C1 76 P1 75 C1 76 P1 75 C1 76 P1 75 C1 76 P1 75 C1 76 P1 75 P1	
• Molecule 11: Splicing factor 3B subunit 6	
Chain z: 86% 14%	
MET ALA ALA ALA ALA ALA ALA ASN ASN PRO PRO PRO PRO	
• Molecule 12: Ubiquitin-like protein 5	
Chain q:	
• Molecule 13: U5 small nuclear ribonucleoprotein 200 kDa helicase	
Chain s: 81% 19%	
MET ALA ALA ALA ALA ARA ARA ARA ARA ARA ARA	
PR0 GLN GLN GLN GLN GLN GLN GLN GLN ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	
GLN ALA ALA ALA ALA ALA CLEU CLEU CLEU CLEU CLEU CLEU ASP CLEU CLEU CLEU CLEU CLEU CLEU CLEU CLEU	
ASP TYR GLY GLY GLY GLY ASP ASP ASP ASP ASP ASP CLU ASP CLU ASP ASP ASP ASP CLU ASP ASP ASP ASP CLU ASP CLU ASP CLU CLU ASP CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	
SER ALA ALA ALA ALA ALA ALA ALA BER BER ALA CLU CVS CVS CLV CVS CVS CVS CVS CVS CVS CVS CVS CVS CV	
GLU CYS CYS CYS CYS CYS CYS CYS CYS CYS CYS	
TYR CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	

• Molecule 18: RNA-binding motif protein, X-linked 2

• Molecule 20: Zinc finger matrin-type protein 2

26%

• Molecule 24: Serine/arginine repetitive matrix protein 1 Chain Y: 10% 89% LYS LYS GLU GLU GLU GLU GLU CLU CLU CLU CLU CLU ANAXA GLU LIYSS ASNN CLIVE GLU CLYSS SC ARG SC ARG SER A PROPERTIGATION OF A DESCRIPTION OF A DES actor university of the second second actor of a second actor of a second actor of a second actor of a second second actor of a second actor of act PRODUCT CONTRACT CONT HIS SEGNER SECONDENCIONAL SECONDENCIONAL SECONDENCIONAL SECONDENCION SECONDENCIONAL SECONDENCIONOL SECONDENCIONAL SECONDENCIONOL SECONDENCIONOL SECONDENCIONOL SECONDENCIONOLI SECONDENCIONOLI SECONDENCIONOLI SECONDENCIONOLI SECONDENCIONDENCIONDENC PRIO VALL VALL VALL ALA ALA ALA ALA CLUY CLUYS CLU CLUYS CLU CLUYS CLU CLUU CLUYS CLU CLUV CLUYS CLU CLU CLUYS CLU CLUYS CLU CLUYS CLU CLUYS CLU

 \bullet Molecule 25: DNA/RNA-binding protein KIN17

0 D D O 4 0 0 4 0 4 4	< < V > V > D V 0 V 0 0 0 0 > V > D V V < 0 > 0 0 0 0 0 < 0 > 0 0 0 < 0 > 0 0 0 0	D
0 D 4 0 0 4 0 0 D 4 0	0 0 0 0 4 5 0 0 0 5 4 0 4 0 0 4 5 0 4 0 0 5 4 0 0	< º > < º > < º < > ° > ° < > ° < > ° < > ° < > ° < > ° < > ° < ° ° < > ° < ° ° < > ° < ° ° < > ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° < ° ° ° < ° ° < ° ° ° < ° ° < ° ° < ° ° ° < ° ° ° < ° ° ° < ° ° ° < ° ° ° < ° ° ° < ° ° ° ° < ° ° ° ° ° < ° ° ° ° ° < ° ° ° ° ° ° < ° ° ° ° ° < °
< 0 0 0 D A 0 0 0 A <	C D D D D D D D D D D D D D D D D D D D	
• Molecule 37:	Small nuclear ribonucleoprotein Sm	n D3
Chain l:	66%	34%
MET 82 13 E12 615 M76	NTP A80 P81 A80 P81 M82 K84 M82 LVS K84 A81 LVS K84 A1A A1A A1A A1A A1A A1A A1A A1A A1A A1	LEU LEU ALA ALA ALA ALA ALA ALA ALA ALA ALA ARG GLY ARG GLY ARG GLY ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG
• Molecule 37:	Small nuclear ribonucleoprotein Sm	n D3
Chain e:	62%	38%
MET SER ILE G4 P81 LEU LEU SER MET MET MET	LYS LYS ASN ASN CUN CUN CUN CUN CUN ALA ALA ALA ALA ALA ALA ARG ANG ANG ANG	CLY CLY CLY MET MET ARG CLY CLN CLN CLN ARG ARG ARG
• Molecule 38:	Pre-mRNA-processing-splicing fact	or 8
Chain A:	80%	9% •• 7%
MET ALA GLY CLY PHE PRO PRO TYR GLY CLY	ASN PRO PRO GLY PRO GLY PRO LLU PRO PRO PRO PRO PRO CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	GLN GLN LEUN CLN CLN CLN CLN CLN ARG CLV CLN CLN CLN CLN CLU CLN CLU CN CLU CN CLU
MET PRO FRO FRO FRO FRO FRO FRO FRO FRO FRO F	TT7 TT7 NT8 V99 V99 E111 T113 F113 F113 F113 F113 F113 F113 F	E173 P174 L176 L176 L177 D180 N181 1182 L181 L182 L183 L182 L181 P197 P197 P200 P200 V203
Y208 1209 1210 1211 1224 1224 1224 1223 1234	Y239 A242 N270 N270 N270 P274 P277 P277 P277 P281 P281 P281 P284 P281 P285 P285 P285 P285 P285 P285 P285 P285	1334 1334 1335 13345 13345 13345 13347 1336 1336 1371 1371 1371 1371 1371 137
V384 E385 E385 F386 F386 T393 T395 T395 A407	R400 P411 P425 P411 P425 P426 P426 P426 P436 P436 P440 P469 P469 R460 R465 R465 R465 R465 R465 R465 R465 R465	K480 F481 N512 N512 N512 N556 V564 V564 V566 K597 N617
6622 6624 9625 9634 9634 1638 1638 1638	P646 L647 L647 W651 PHE CALU CALU CLYS CLU CLYS CLU CLYS CLY CLYS CLYS CLYS CLYS CLYS CLYS	M697 P698 P698 N704 N704 N705 N726 V726 V728 V728 V728 V728 V728 V730 T730 T733 T733 T735 T735 T735
G764 4765 1766 1767 0797 0798 7799 7799 7799	P825 F826 F827 P8238 P8238 P823 P823 P823 P823 P823 F874 F875 P937 P937 P937 P937 P937 P933 P937 P937	2346 P949 P949 P949 L950 V1015 V1015 V1015 Q1054 P1066 Q1066 Q1066 P1068 P1084 P1085 P1119 P1120
N1121 N1124 P1135 R1136 P1162 P1162 N1184	P1198 M1214 M1214 C1228 G1252 G1252 S1365 M1307 P1314 P1315 P1315 P1316 P1316 P1317 P1318 P1319	U1342 T1346 F1385 F1385 F1385 V1348 V1348 V1386 V
11419 11451 11455 11455 11455 11458 11458 11458	L1 467 N1 468 N1 468 N1 468 N1 476 L1 476 C1 476 C1 476 C1 478 C1 478 C1 478 C1 478 C1 489 C1 480 C1	GLU SER MET IVS TRP IVS IVS IVS IVS ALA ASN ALA ASN ALA ASN ALA ASN ALA ASN ALA ASN ASS ANG ASS ASS ASS ASS ASS ASS ASS ASS ASS AS
		A BANK

• Molecule 40: Small nuclear ribonucleoprotein E

Chain j:	88%	12%	
MET ALA ALA ALA ARG CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	ASN		
• Molecule 40: Sm	all nuclear ribonucleoprotein	ı E	
Chain c:	85%	15%	_
MET ALA ALA ARG GLY GLN GLN GLN CLN CLN CLN CLN CLN MET			
• Molecule 41: Pre	e-mRNA-splicing factor 38A		
Chain I:	54% .	44%	_
M1 811 811 811 812 967 8129 8129 8129 8129 8129	4176 LEU CLU CLU CLU CLU PRO PRO ARG CLU ASP ASP ASP ASP ASP ASP ASP CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	ARG SER TYR ARG ASP LEU LEU ASP
LYS PRO ARG SER SER PRO THR LEU ARG ARG ARG SER	SER SER ARG ARG ARG ARG ARG SER ARG SER ARG SER ARG SER ARG SER ARG ARG ARG ARG ARG ARG ARG ARG ARG AR	CLU ARG ARG ARG ARG SER PRO PRO ARG ARG SER ARG SER ARG SER ARG	HIS ARG SER ARG SER SER SER SER
PRO GLY HIS HIS ARG SER HIS ARG HIS SER SER SER SER	SER SER ARC ARC LLY SER LYS SER LYS SER ARC ARC ARC ARC ARC ARC ARC ARC ARC AR		
• Molecule 42: Sm	all nuclear ribonucleoprotein	ı Sm D1	
Chain n:	9%	33%	_
M1 K9 K11 K12 E13 T14 C24 V25	H26 427 128 128 129 441 441 442 443 442 443 443 443 443 443 443 443	40% 1555 1555 1557 1557 158 158 173 173 178 178 178 178 178 178	ASP VAL CLU CLU CLVS LVS VAL LVS SER LVS CLU ALA ALA CLU ARG CLV
GLY ARG GLY GLY GLY GLY GLY GLY GLY GLY GLY GL	GLY ARG CLY CLY PRO ARG ARG		
• Molecule 42: Sm	all nuclear ribonucleoprotein	ı Sm D1	
Chain g:	78%	22%	_
MET K2 K2 S35 MET N37 S73 C84 C84 C84	K91 K91 K91 K91 K91 K91 A94 A12 A12 A12 A12 A12 A12 A12 A12 A12 A12	ARG GLY ARG GLY ARG GLY ARG GLY PRO ARG ARG ARG	
• Molecule 43: Pre	e-mRNA-splicing factor RBN	М22	
Chain P:	54% .	44%	_
MET ALA THR SER LEU SER ASN THR TYR ASN ARG GLN ASN AGN	WIS WIS C C C C C C C C C C C C C	TYR TYR THR GLN GLN ASN GLU GLU CLU CLU CLU CLU CLU CLU CLU CLU CLU C	GLY MET LEU GLY GLY THR THR

• Molecule 47: Splicing factor 3A subunit 3

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	39336	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	2.27	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	FEI FALCON III $(4k \ge 4k)$	Depositor
Maximum map value	0.055	Depositor
Minimum map value	-0.015	Depositor
Average map value	0.001	Depositor
Map value standard deviation	0.004	Depositor
Recommended contour level	0.013	Depositor
Map size (Å)	445.44, 445.44, 445.44	wwPDB
Map dimensions	384, 384, 384	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.16, 1.16, 1.16	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MG, IHP, GTP

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	ond lengths	E	Bond angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	D	0.25	0/1515	0.48	0/2113
2	Е	0.31	0/5980	0.49	0/8363
3	b	0.26	0/367	0.52	0/509
3	i	0.36	0/362	0.55	0/502
4	W	0.27	0/821	0.53	0/1149
5	W	0.65	0/394	0.68	0/549
6	d	0.27	0/346	0.54	0/481
6	k	0.39	0/366	0.60	0/509
7	U	0.29	1/6796~(0.0%)	0.47	3/9527~(0.0%)
8	Х	0.49	0/399	0.54	0/557
9	6	0.44	1/2178~(0.0%)	0.91	7/3388~(0.2%)
10	В	0.67	0/857	0.82	1/1196~(0.1%)
11	Z	0.26	0/548	0.49	0/766
12	q	0.37	0/359	0.57	0/498
13	s	0.24	0/8766	0.44	0/12286
14	V	0.23	0/1064	0.44	0/1491
15	3	0.25	0/288	0.46	0/404
16	0	0.27	0/770	0.50	0/1079
17	Q	0.44	1/700~(0.1%)	0.52	0/979
18	1	0.30	0/609	0.48	0/848
19	L	0.25	0/583	0.47	0/813
20	Ν	0.22	0/276	0.42	0/383
21	S	0.28	0/1778	0.40	0/2482
22	r	0.31	0/4585	0.53	3/6429~(0.0%)
23	R	0.24	0/218	0.48	0/303
24	Y	0.23	0/481	0.77	2/672~(0.3%)
25	7	0.86	0/1181	1.04	0/1645
26	М	0.28	0/3576	0.46	$\overline{2/5009}\ (0.0\%)$
27	K	0.24	0/615	0.42	0/858
28	0	0.23	0/1245	0.45	0/1742
29	У	0.26	0/501	0.60	1/697~(0.1%)
30	2	0.44	5/3882~(0.1%)	1.04	28/6040 $(0.5%)$

Mal	Chain	Bo	ond lengths	I	Bond angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
31	G	0.32	0/1616	0.61	3/2258~(0.1%)
32	a	0.24	0/394	0.46	0/548
32	h	0.33	0/485	0.54	0/677
33	0	0.48	0/1139	0.61	0/1578
34	t	0.51	0/1283	0.88	3/1790~(0.2%)
35	f	0.25	0/319	0.46	0/442
35	m	0.36	0/416	0.55	0/581
36	Ζ	0.46	1/1338~(0.1%)	0.87	0/2077
37	е	0.25	0/392	0.50	0/546
37	l	0.39	0/417	0.60	0/581
38	А	0.51	3/11086~(0.0%)	0.82	83/15554~(0.5%)
39	8	0.31	0/92	0.52	0/128
40	с	0.23	0/388	0.50	0/540
40	j	0.36	0/403	0.55	0/561
41	Ι	0.24	0/888	0.43	0/1241
42	g	0.24	0/471	0.48	0/657
42	n	0.34	0/404	0.55	0/564
43	Р	0.43	1/1203~(0.1%)	0.67	0/1680
44	5	0.23	0/2672	0.79	5/4154~(0.1%)
45	р	0.43	0/636	0.82	0/890
46	F	0.43	0/840	0.79	1/1174~(0.1%)
47	4	0.52	0/2119	1.02	2/2960~(0.1%)
48	u	0.32	0/4792	0.50	0/6707
49	Т	0.56	3/957~(0.3%)	0.64	2/1341~(0.1%)
All	All	0.38	16/87156~(0.0%)	0.66	146/123496~(0.1%)

The worst 5 of 16 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
38	А	1366	PRO	N-CA	13.70	1.70	1.47
43	Р	188	ASP	C-N	8.60	1.50	1.34
49	Т	605	LYS	C-N	8.48	1.50	1.34
38	А	1416	ILE	C-N	8.47	1.50	1.34
7	U	493	LYS	C-N	8.46	1.50	1.34

The worst 5 of 146 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
47	4	472	GLN	C-N-CD	-16.12	85.13	120.60
47	4	422	PHE	N-CA-CB	-15.71	82.32	110.60
24	Y	75	LEU	N-CA-CB	-14.01	82.37	110.40
9	6	52	U	C2'-C3'-O3'	10.62	132.86	109.50

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
38	А	372	PRO	CA-N-CD	-9.45	98.27	111.50

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	D	1506	0	737	5	0
2	Е	5926	0	2964	82	0
3	b	364	0	181	0	0
3	i	359	0	179	0	0
4	W	816	0	386	2	0
5	W	391	0	197	0	0
6	d	344	0	168	0	0
6	k	364	0	176	0	0
7	U	6730	0	3268	110	0
8	Х	397	0	191	0	0
9	6	1947	0	984	173	0
10	В	851	0	423	9	0
11	Z	544	0	264	0	0
12	q	360	0	159	0	0
13	s	8688	0	4221	0	0
14	V	1053	0	550	0	0
15	3	283	0	158	23	0
16	0	761	0	375	13	0
17	Q	695	0	327	31	0
18	1	607	0	277	21	0
19	L	582	0	288	6	0
20	N	277	0	114	3	0
21	S	1771	0	820	8	0
22	r	4531	0	2256	0	0
23	R	219	0	91	3	0
24	Y	478	0	226	9	0
25	7	1178	0	537	8	0
26	М	3553	0	1739	40	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
27	Κ	614	0	284	5	0
28	0	1243	0	570	12	0
29	У	498	0	241	0	0
30	2	3479	0	1754	97	0
31	G	1604	0	795	37	0
32	a	393	0	176	0	0
32	h	482	0	220	0	0
33	0	1135	0	572	0	0
34	t	1272	0	618	0	0
35	f	319	0	144	0	0
35	m	413	0	193	0	0
36	Ζ	1201	0	607	111	0
37	е	390	0	188	0	0
37	1	415	0	198	0	0
38	А	10968	0	5356	428	0
39	8	92	0	46	1	0
40	с	388	0	167	0	0
40	j	403	0	173	0	0
41	Ι	883	0	414	3	0
42	g	469	0	214	0	0
42	n	402	0	184	0	0
43	Р	1194	0	589	12	0
44	5	2397	0	1214	107	0
45	р	631	0	309	0	0
46	F	835	0	412	14	0
47	4	2110	0	987	25	0
48	u	4748	0	2402	0	0
49	Т	942	0	490	18	0
50	r	32	0	12	0	0
51	r	1	0	0	0	0
52	А	36	0	6	0	0
All	All	85564	0	41791	1196	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 13.

The worst 5 of 1196 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
38:A:270:ASN:CB	38:A:282:LEU:HA	1.33	1.57
9:6:28:A:H5"	17:Q:41:ARG:CA	1.36	1.54

j	r g		
Atom-1	Atom-2	$\begin{array}{c} {\rm Interatomic}\\ {\rm distance}~({\rm \AA}) \end{array}$	Clash overlap (Å)
2:E:407:ILE:CB	2:E:1122:LEU:CB	1.81	1.53
38:A:466:ALA:CB	44:5:20:G:C6	1.93	1.50
38:A:948:PRO:HD2	38:A:949:PRO:CD	1.40	1.50

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	D	300/357~(84%)	292~(97%)	8(3%)	0	100	100
2	Е	1165/1217~(96%)	1126 (97%)	27~(2%)	12 (1%)	15	55
3	b	71/86~(83%)	71 (100%)	0	0	100	100
3	i	70/86~(81%)	69~(99%)	1 (1%)	0	100	100
4	W	160/255~(63%)	147 (92%)	13 (8%)	0	100	100
5	W	76/424~(18%)	68~(90%)	7 (9%)	1 (1%)	12	48
6	d	67/76~(88%)	65~(97%)	2(3%)	0	100	100
6	k	71/76~(93%)	69~(97%)	2 (3%)	0	100	100
7	U	1319/1485~(89%)	1273~(96%)	36~(3%)	10 (1%)	19	60
8	х	77/86~(90%)	66~(86%)	10 (13%)	1 (1%)	12	48
10	В	165/225~(73%)	158 (96%)	4 (2%)	3~(2%)	8	40
11	Z	106/125~(85%)	90~(85%)	16 (15%)	0	100	100
12	q	71/73~(97%)	64 (90%)	7 (10%)	0	100	100
13	s	1720/2136~(80%)	1691 (98%)	29 (2%)	0	100	100
14	v	198/536~(37%)	181 (91%)	17 (9%)	0	100	100
15	3	53/619~(9%)	48 (91%)	5 (9%)	0	100	100
16	0	148/396~(37%)	145 (98%)	3 (2%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
17	Q	136/144~(94%)	127 (93%)	8 (6%)	1 (1%)	22	63
18	1	120/322~(37%)	111 (92%)	6 (5%)	3~(2%)	5	32
19	L	112/802~(14%)	108 (96%)	4 (4%)	0	100	100
20	Ν	54/199~(27%)	47 (87%)	7 (13%)	0	100	100
21	S	353/563~(63%)	344 (98%)	8 (2%)	1 (0%)	41	77
22	r	893/972~(92%)	813 (91%)	76 (8%)	4 (0%)	34	72
23	R	42/229~(18%)	38 (90%)	4 (10%)	0	100	100
24	Y	93/904~(10%)	92 (99%)	1 (1%)	0	100	100
25	7	230/393~(58%)	225 (98%)	4 (2%)	1 (0%)	34	72
26	М	704/855~(82%)	597 (85%)	96 (14%)	11 (2%)	9	44
27	К	121/439~(28%)	96 (79%)	25 (21%)	0	100	100
28	Ο	246/848~(29%)	234 (95%)	12 (5%)	0	100	100
29	У	98/110~(89%)	93 (95%)	3 (3%)	2(2%)	7	38
31	G	318/514~(62%)	292 (92%)	21 (7%)	5(2%)	9	44
32	a	74/118~(63%)	73 (99%)	1 (1%)	0	100	100
32	h	91/118~(77%)	86 (94%)	5 (6%)	0	100	100
33	О	221/301~(73%)	196 (89%)	19 (9%)	6 (3%)	5	31
34	\mathbf{t}	247/520~(48%)	234 (95%)	12 (5%)	1 (0%)	34	72
35	f	60/240~(25%)	60 (100%)	0	0	100	100
35	m	80/240~(33%)	74 (92%)	6 (8%)	0	100	100
37	е	76/126~(60%)	76 (100%)	0	0	100	100
37	1	81/126~(64%)	76 (94%)	5 (6%)	0	100	100
38	А	2153/2335~(92%)	1791 (83%)	296 (14%)	66~(3%)	4	27
39	8	16/579~(3%)	15 (94%)	1 (6%)	0	100	100
40	с	76/92~(83%)	75 (99%)	1 (1%)	0	100	100
40	j	79/92~(86%)	77 (98%)	2 (2%)	0	100	100
41	Ι	174/312~(56%)	166 (95%)	8 (5%)	0	100	100
42	g	89/119~(75%)	88 (99%)	1 (1%)	0	100	100
42	n	78/119~(66%)	75 (96%)	3 (4%)	0	100	100
43	Р	$231/\overline{420}~(\overline{55\%})$	191 (83%)	39 (17%)	1 (0%)	34	72
45	р	$120/79\overline{3}\ (15\%)$	115 (96%)	3 (2%)	2(2%)	9	42

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Ρ	erce	entiles
46	F	159/464~(34%)	145 (91%)	10 (6%)	4(2%)		5	32
47	4	415/501~(83%)	370~(89%)	36~(9%)	9~(2%)		6	35
48	u	931/1304~(71%)	822 (88%)	103 (11%)	6 (1%)		25	66
49	Т	175/895~(20%)	159 (91%)	15 (9%)	1 (1%)		25	66
All	All	14983/25366~(59%)	13804 (92%)	1028 (7%)	151 (1%)		20	55

5 of 151 Ramachandran outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
2	Ε	405	SER
2	Е	914	ILE
7	U	744	ILE
7	U	980	PRO
7	U	1338	PHE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	D	10/300~(3%)	10 (100%)	0	100	100
2	Ε	60/1051~(6%)	60~(100%)	0	100	100
3	b	4/74~(5%)	4 (100%)	0	100	100
3	i	4/74~(5%)	4 (100%)	0	100	100
4	W	6/218~(3%)	6 (100%)	0	100	100
5	W	4/336~(1%)	4 (100%)	0	100	100
6	d	3/66~(4%)	3~(100%)	0	100	100
6	k	3/66~(4%)	3~(100%)	0	100	100
7	U	71/1336~(5%)	70~(99%)	1 (1%)	67	80
8	х	3/77~(4%)	3~(100%)	0	100	100
10	В	8/195~(4%)	8 (100%)	0	100	100
11	Z	5/109~(5%)	5 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Percei	ntiles
13	\mathbf{S}	79/1908~(4%)	79~(100%)	0	100	100
14	v	15/459~(3%)	15 (100%)	0	100	100
15	3	6/545~(1%)	6~(100%)	0	100	100
16	0	10/349~(3%)	10 (100%)	0	100	100
17	Q	6/130~(5%)	6 (100%)	0	100	100
18	1	3/291~(1%)	3~(100%)	0	100	100
19	L	3/709~(0%)	3~(100%)	0	100	100
21	S	8/510~(2%)	8 (100%)	0	100	100
22	r	55/866~(6%)	55 (100%)	0	100	100
24	Y	4/831~(0%)	4 (100%)	0	100	100
25	7	6/354~(2%)	6 (100%)	0	100	100
26	М	24/749~(3%)	24 (100%)	0	100	100
27	К	2/395~(0%)	2 (100%)	0	100	100
28	О	3/751~(0%)	3 (100%)	0	100	100
29	У	4/95~(4%)	4 (100%)	0	100	100
31	G	$13/441 \ (3\%)$	13 (100%)	0	100	100
32	a	3/110 (3%)	3 (100%)	0	100	100
32	h	5/110~(4%)	5(100%)	0	100	100
33	О	8/252~(3%)	8 (100%)	0	100	100
34	t	14/456~(3%)	14 (100%)	0	100	100
35	f	2/177~(1%)	2 (100%)	0	100	100
35	m	4/177~(2%)	4 (100%)	0	100	100
37	е	3/101 (3%)	3 (100%)	0	100	100
37	1	3/101 (3%)	3 (100%)	0	100	100
38	А	123/2108~(6%)	123 (100%)	0	100	100
39	8	1/502~(0%)	1 (100%)	0	100	100
40	с	1/84 (1%)	1 (100%)	0	100	100
40	j	1/84 (1%)	1 (100%)	0	100	100
41	Ι	6/293~(2%)	6 (100%)	0	100	100
42	g	4/101 (4%)	4 (100%)	0	100	100
42	n	3/101 (3%)	3 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Rotameric Outliers		Percentiles		
43	Р	12/361~(3%)	12~(100%)	0	100	100		
45	р	7/709~(1%)	7~(100%)	0	100	100		
46	F	8/382~(2%)	8 (100%)	0	100	100		
47	4	12/446~(3%)	11 (92%)	1 (8%)	11	34		
48	u	49/1104~(4%)	49 (100%)	0	100	100		
49	Т	19/776~(2%)	19 (100%)	0	100	100		
All	All	710/21820 (3%)	708 (100%)	2(0%)	92	95		

All (2) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
7	U	980	PRO
47	4	78	PRO

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. There are no such side chains identified.

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
30	2	161/188~(85%)	40 (24%)	3 (1%)
36	Ζ	55/324~(16%)	26 (47%)	5 (9%)
44	5	113/116~(97%)	39 (34%)	3 (2%)
9	6	88/106 (83%)	38 (43%)	13 (14%)
All	All	417/734~(56%)	143 (34%)	24~(5%)

5 of 143 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
9	6	6	С
9	6	7	G
9	6	8	С
9	6	10	U
9	6	12	G

 $5~{\rm of}~24$ RNA pucker outliers are listed below:

Mol	Chain	Res	Type
30	2	46	U
36	Ζ	74	G
36	Ζ	70	G
36	Ζ	160	G
9	6	46	G

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 3 ligands modelled in this entry, 1 is monoatomic - leaving 2 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Type	Chain	Dec	Tinle	Bo	ond leng	$_{\rm ths}$	B	ond ang	les
IVIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
52	IHP	А	3001	-	36,36,36	1.53	6 (16%)	54,60,60	0.70	1 (1%)
50	GTP	r	1500	22,51	26,34,34	1.10	1 (3%)	32,54,54	1.86	7 (21%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
52	IHP	А	3001	-	-	7/30/54/54	0/1/1/1
50	GTP	r	1500	22,51	-	6/18/38/38	0/3/3/3

The worst 5 of 7 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	$\operatorname{Ideal}(\operatorname{\AA})$
52	А	3001	IHP	P2-O12	3.61	1.66	1.59
50	r	1500	GTP	C6-N1	-3.56	1.32	1.37
52	А	3001	IHP	P3-O13	3.30	1.65	1.59
52	А	3001	IHP	P1-011	3.24	1.65	1.59
52	А	3001	IHP	P5-O15	3.14	1.65	1.59

The worst 5 of 8 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
50	r	1500	GTP	C5-C6-N1	4.18	121.33	113.95
50	r	1500	GTP	O6-C6-C5	-4.10	116.36	124.37
50	r	1500	GTP	PA-O3A-PB	-3.91	119.43	132.83
50	r	1500	GTP	PB-O3B-PG	-3.62	120.40	132.83
50	r	1500	GTP	C2-N1-C6	-2.99	119.59	125.10

There are no chirality outliers.

5 of 13 torsion outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms
50	r	1500	GTP	C5'-O5'-PA-O3A
50	r	1500	GTP	C5'-O5'-PA-O1A
50	r	1500	GTP	C5'-O5'-PA-O2A
50	r	1500	GTP	O4'-C4'-C5'-O5'
52	А	3001	IHP	C1-C2-O12-P2

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-11697. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 192

Y Index: 192

Z Index: 192

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 198

Y Index: 195

Z Index: 175

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.013. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 2441 nm^3 ; this corresponds to an approximate mass of 2205 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.125 \AA^{-1}

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-11697 and PDB model 7ABI. Per-residue inclusion information can be found in section 3 on page 14.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.013 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.013).

9.4 Atom inclusion (i)

At the recommended contour level, 83% of all backbone atoms, 83% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.013) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.8250	0.1520
0	0.9750	0.1750
1	0.9918	0.2300
2	0.6789	0.0990
3	0.9081	0.2390
4	0.4118	0.0810
5	0.9791	0.1700
6	0.9183	0.1750
7	0.7708	0.1220
8	0.9565	0.1530
А	0.9545	0.2510
В	0.4536	0.0970
D	0.8997	0.0580
E	0.9593	0.1460
F	0.7329	0.1450
G	0.9813	0.2200
Ι	0.9943	0.2500
K	0.9788	0.2720
L	0.9759	0.2470
М	0.4827	0.0430
N	0.9639	0.2250
0	0.8721	0.1650
Р	0.9037	0.1410
Q	0.9914	0.2330
R	0.7169	0.2070
S	0.6126	0.0610
Т	0.9437	0.2090
U	0.4184	0.0250
W	0.7451	0.0360
Y	0.9958	0.2410
Z	0.9784	0.2070
a	0.9822	0.1340
b	0.9423	0.1000
с	0.9459	0.1440
d	0.9738	0.1730

Chain	Atom inclusion	Q-score
е	1.0000	0.2160
f	0.9969	0.1840
g	0.8934	0.1490
h	0.8174	0.0190
i	0.9694	0.0310
j	0.9752	0.0390
k	0.9643	0.0070
1	0.8554	0.0330
m	0.9298	0.0350
n	0.5423	-0.0150
0	0.5374	0.0480
р	0.3946	0.0320
q	0.9861	0.2730
r	0.9888	0.2430
s	0.8771	0.1020
t	0.5621	0.1020
u	0.9802	0.2790
V	0.8917	0.2330
W	0.8798	0.1230
x	1.0000	0.2590
У	0.9960	0.2310
Z	0.9853	0.2420

