

Jan 16, 2023 – 04:50 pm GMT

| PDB ID       | : | 8AC4                                                   |
|--------------|---|--------------------------------------------------------|
| EMDB ID      | : | EMD-15333                                              |
| Title        | : | Complex III2 from Yarrowia lipolytica, apo, c-position |
| Authors      | : | Wieferig, J.P.; Kuhlbrandt, W.                         |
| Deposited on | : | 2022-07-05                                             |
| Resolution   | : | 2.70  Å(reported)                                      |
|              |   |                                                        |

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| EMDB validation analysis       | : | 0.0.1. dev 43                                                      |
|--------------------------------|---|--------------------------------------------------------------------|
| Mogul                          | : | 1.8.4, CSD as541be (2020)                                          |
| MolProbity                     | : | 4.02b-467                                                          |
| buster-report                  | : | 1.1.7(2018)                                                        |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| MapQ                           | : | 1.9.9                                                              |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.31.3                                                             |

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $ELECTRON\ MICROSCOPY$ 

The reported resolution of this entry is 2.70 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Metric                | Whole archive $(\#Entries)$ | ${f EM} {f structures} \ (\#{f Entries})$ |  |  |
|-----------------------|-----------------------------|-------------------------------------------|--|--|
| Clashscore            | 158937                      | 4297                                      |  |  |
| Ramachandran outliers | 154571                      | 4023                                      |  |  |
| Sidechain outliers    | 154315                      | 3826                                      |  |  |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for  $\geq=3, 2, 1$  and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions  $\leq=5\%$  The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

| Mol | Chain | Length | Quality of chain   | Quality of chain |  |  |  |  |  |  |  |  |
|-----|-------|--------|--------------------|------------------|--|--|--|--|--|--|--|--|
| 1   | С     | 385    | 92%                | 7% ••            |  |  |  |  |  |  |  |  |
| 1   | N     | 385    | 91%                | 8% ••            |  |  |  |  |  |  |  |  |
| 2   | Е     | 225    | <b>24%</b> • 73%   |                  |  |  |  |  |  |  |  |  |
| 2   | Р     | 225    | 11%<br>62% 18% •   | 17%              |  |  |  |  |  |  |  |  |
| 3   | G     | 128    | 89%                | 7% • •           |  |  |  |  |  |  |  |  |
| 3   | R     | 128    | 91%                | 5% • •           |  |  |  |  |  |  |  |  |
| 4   | F     | 137    | <b>49%</b> • 48%   |                  |  |  |  |  |  |  |  |  |
| 4   | Q     | 137    | <b>•</b> 50% • 48% |                  |  |  |  |  |  |  |  |  |



| Mol | Chain | Length | Quality of chain |         |   |
|-----|-------|--------|------------------|---------|---|
| 5   | А     | 474    | 86%              | 6% • 8% | - |
| 5   | L     | 474    | 87%              | 5% 8%   |   |
| 6   | В     | 417    | 87%              | 9% •    |   |
| 6   | М     | 417    | 87%              | 9% •    |   |
| 7   | D     | 330    | 68% 5%           | 26%     |   |
| 7   | 0     | 330    | 69% 5%           | 26%     |   |
| 8   | Н     | 93     | 86%              | • • 9%  |   |
| 8   | S     | 93     | 86%              | 9%      |   |
| 0   | I     | 60     | 700/             | 220/    |   |
| 5   | 1     | 05     | 12% 0%           | 22%     |   |
| 9   | Т     | 69     | 74% •            | 22%     |   |
| 10  | J     | 82     | 83%              | 7%•9%   |   |
| 10  | U     | 82     | 83%              | 9% 9%   | - |



# 2 Entry composition (i)

There are 18 unique types of molecules in this entry. The entry contains 32540 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

| Mol | Chain | Residues |      | At   | AltConf | Trace        |    |   |
|-----|-------|----------|------|------|---------|--------------|----|---|
| 1 C | 383   | Total    | С    | Ν    | 0       | $\mathbf{S}$ | 0  | 0 |
|     | 000   | 3052     | 2064 | 474  | 496     | 18           |    |   |
| 1 N | 383   | Total    | С    | Ν    | Ο       | $\mathbf{S}$ | 0  | 0 |
|     | IN    | 303      | 3052 | 2064 | 474     | 496          | 18 | 0 |

• Molecule 1 is a protein called Cytochrome b.

• Molecule 2 is a protein called Cytochrome b-c1 complex subunit Rieske, mitochondrial.

| Mol | Chain | Residues | Atoms                                                                                                      | AltConf | Trace |
|-----|-------|----------|------------------------------------------------------------------------------------------------------------|---------|-------|
| 2   | Р     | 186      | Total         C         N         O         S           1445         920         248         268         9 | 0       | 0     |
| 2   | Е     | 61       | Total         C         N         O         S           465         297         76         89         3    | 0       | 0     |

• Molecule 3 is a protein called Cytochrome b-c1 complex subunit 7.

| Mol | Chain | Residues | Atoms |     |     |     |              | AltConf | Trace |
|-----|-------|----------|-------|-----|-----|-----|--------------|---------|-------|
| 3   | C     | 124      | Total | С   | Ν   | 0   | $\mathbf{S}$ | 0       | 0     |
| 3 G | 124   | 994      | 640   | 162 | 190 | 2   | 0            | 0       |       |
| 2   | 2 D   | 194      | Total | С   | Ν   | Ο   | $\mathbf{S}$ | 0       | 0     |
| o n | n     | 124      | 994   | 640 | 162 | 190 | 2            | 0       |       |

• Molecule 4 is a protein called YALI0F24673p.

| Mol  | Chain | Residues | Atoms |     |    |     |   | AltConf | Trace |
|------|-------|----------|-------|-----|----|-----|---|---------|-------|
| 4    | F     | 71       | Total | С   | Ν  | 0   | S | 0       | 0     |
| 4 I' | I.    | 11       | 579   | 361 | 99 | 115 | 4 | 0       | 0     |
| 4    | 0     | 71       | Total | С   | Ν  | 0   | S | 0       | 0     |
| 4    | Q     | Q /1     | 579   | 361 | 99 | 115 | 4 | U       |       |

• Molecule 5 is a protein called YALI0A14806p.



| Mol | Chain | Residues | Atoms         |           |          |          |            | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|------------|---------|-------|
| 5   | А     | 438      | Total<br>3446 | C<br>2154 | N<br>603 | O<br>682 | ${ m S} 7$ | 0       | 0     |
| 5   | L     | 438      | Total<br>3446 | C<br>2154 | N<br>603 | O<br>682 | S<br>7     | 0       | 0     |

• Molecule 6 is a protein called Cytochrome b-c1 complex subunit 2, mitochondrial.

| Mol | Chain | Residues | Atoms |      |     |     |   | AltConf | Trace |
|-----|-------|----------|-------|------|-----|-----|---|---------|-------|
| 6   | В     | 402      | Total | С    | Ν   | 0   | S | 0       | 0     |
| 0 D | 402   | 3008     | 1907  | 516  | 583 | 2   | 0 | 0       |       |
| 6   | м     | 402      | Total | С    | Ν   | 0   | S | 0       | 0     |
| O M | 111   | 402      | 3008  | 1907 | 516 | 583 | 2 | 0       | 0     |

• Molecule 7 is a protein called YALI0A17468p.

| Mol | Chain | Residues |               | At        | AltConf  | Trace    |        |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|--------|---|---|
| 7   | D     | 244      | Total<br>1893 | C<br>1210 | N<br>323 | O<br>352 | S<br>8 | 0 | 0 |
| 7   | О     | 244      | Total<br>1893 | C<br>1210 | N<br>323 | O<br>352 | S<br>8 | 0 | 0 |

• Molecule 8 is a protein called Cytochrome b-c1 complex subunit 8.

| Mol | Chain | Residues |       | At  | oms |     |              | AltConf | Trace |
|-----|-------|----------|-------|-----|-----|-----|--------------|---------|-------|
| 8   | Н     | 85       | Total | С   | Ν   | 0   | $\mathbf{S}$ | 0       | 0     |
|     |       | 00       | 690   | 459 | 118 | 111 | 2            | Ŭ       | Ŭ     |
| 0   | C     | 95       | Total | С   | Ν   | 0   | $\mathbf{S}$ | 0       | 0     |
| 0   | S     | - 65     | 690   | 459 | 118 | 111 | 2            | U       |       |

• Molecule 9 is a protein called Complex III subunit 9.

| Mol | Chain | Residues |       | Ato | $\mathbf{ms}$ |    |              | AltConf | Trace |
|-----|-------|----------|-------|-----|---------------|----|--------------|---------|-------|
| 0   | Т     | 54       | Total | С   | Ν             | Ο  | $\mathbf{S}$ | 0       | 0     |
| 9   | 1     | 04       | 452   | 297 | 76            | 78 | 1            | 0       | 0     |
| 0   | Т     | 54       | Total | С   | Ν             | Ο  | $\mathbf{S}$ | 0       | 0     |
| 9   | L     | 54       | 452   | 297 | 76            | 78 | 1            |         | 0     |

• Molecule 10 is a protein called YALI0C12210p.

| Mol | Chain | Residues |              | Aton     | ns      |         | AltConf | Trace |
|-----|-------|----------|--------------|----------|---------|---------|---------|-------|
| 10  | J     | 75       | Total<br>598 | C<br>403 | N<br>99 | O<br>96 | 0       | 0     |



| Mol | Chain | Residues |              | Aton     | ns      |         | AltConf | Trace |
|-----|-------|----------|--------------|----------|---------|---------|---------|-------|
| 10  | U     | 75       | Total<br>598 | C<br>403 | N<br>99 | O<br>96 | 0       | 0     |

• Molecule 11 is PROTOPORPHYRIN IX CONTAINING FE (three-letter code: HEM) (formula:  $C_{34}H_{32}FeN_4O_4$ ) (labeled as "Ligand of Interest" by depositor).



| Mol | Chain | Residues |       | Atoms |    |   |   |   |
|-----|-------|----------|-------|-------|----|---|---|---|
| 11  | С     | 1        | Total | С     | Fe | Ν | Ο | 0 |
| 11  | U     | T        | 86    | 68    | 2  | 8 | 8 | 0 |
| 11  | С     | 1        | Total | С     | Fe | Ν | Ο | 0 |
| 11  | U     | L        | 86    | 68    | 2  | 8 | 8 | 0 |
| 11  | N     | 1        | Total | С     | Fe | Ν | 0 | 0 |
|     | IN    | L        | 86    | 68    | 2  | 8 | 8 | 0 |
| 11  | N     | 1        | Total | С     | Fe | Ν | 0 | 0 |
| 11  | IN    | L        | 86    | 68    | 2  | 8 | 8 | 0 |

• Molecule 12 is 1,2-DIACYL-SN-GLYCERO-3-PHOSPHOCHOLINE (three-letter code: PC1) (formula:  $C_{44}H_{88}NO_8P$ ).





| Mol | Chain | Residues |       | Ato | oms |   |   | AltConf |
|-----|-------|----------|-------|-----|-----|---|---|---------|
| 19  | C     | 1        | Total | С   | Ν   | 0 | Р | 0       |
|     | U     | L        | 38    | 28  | 1   | 8 | 1 | 0       |
| 19  | т     | 1        | Total | С   | Ν   | 0 | Р | 0       |
|     | 1     | L        | 32    | 22  | 1   | 8 | 1 | 0       |
| 19  | N     | 1        | Total | С   | Ν   | 0 | Р | 0       |
|     | IN    | L        | 38    | 28  | 1   | 8 | 1 | 0       |
| 19  | Т     | 1        | Total | С   | Ν   | Ο | Р | 0       |
|     |       | L        | 32    | 22  | 1   | 8 | 1 | U       |

• Molecule 13 is PHOSPHATIDYLETHANOLAMINE (three-letter code: PTY) (formula:  $C_{40}H_{80}NO_8P$ ).





| Mol | Chain | Residues |       | Atoms |   |   |   |   |
|-----|-------|----------|-------|-------|---|---|---|---|
| 19  | С     | 1        | Total | С     | Ν | Ο | Р | 0 |
| 10  | C     | 1        | 41    | 31    | 1 | 8 | 1 | 0 |
| 19  | D     | 1        | Total | С     | Ν | Ο | Р | 0 |
| 10  | Г     | 1        | 41    | 31    | 1 | 8 | 1 | 0 |
| 19  | N     | 1        | Total | С     | Ν | Ο | Р | 0 |
| 10  | IN    | 1        | 41    | 31    | 1 | 8 | 1 | 0 |
| 19  | Б     | 1        | Total | С     | Ν | Ο | Р | 0 |
| 15  | E     | 1        | 41    | 31    | 1 | 8 | 1 | 0 |

 $\bullet\,$  Molecule 14 is CARDIOLIPIN (three-letter code: CDL) (formula:  $C_{81}H_{156}O_{17}P_2).$ 



| Mol | Chain | Residues | ŀ     | 4ton | ns |   | AltConf |
|-----|-------|----------|-------|------|----|---|---------|
| 14  | С     | 1        | Total | С    | 0  | Р | 0       |
| 14  | U     | 1        | 48    | 29   | 17 | 2 | 0       |
| 14  | Λ     | 1        | Total | С    | Ο  | Р | 0       |
| 14  | Л     | 1        | 89    | 55   | 30 | 4 | 0       |
| 14  | Δ     | 1        | Total | С    | Ο  | Р | 0       |
| 14  | A     | 1        | 89    | 55   | 30 | 4 | 0       |
| 14  | Ц     | 1        | Total | С    | Ο  | Р | 0       |
| 14  | 11    | 1        | 89    | 51   | 34 | 4 | 0       |
| 14  | Ц     | 1        | Total | С    | Ο  | Р | 0       |
| 14  | 11    | 1        | 89    | 51   | 34 | 4 | 0       |
| 14  | Ν     | 1        | Total | С    | Ο  | Р | 0       |
| 14  | IN    | T        | 98    | 60   | 34 | 4 | 0       |
| 14  | Ν     | 1        | Total | С    | Ο  | Р | 0       |
| 14  | 11    | 1        | 98    | 60   | 34 | 4 | 0       |
| 14  | T.    | 1        | Total | С    | Ο  | Р | 0       |
| 14  | Ц     | I        | 89    | 55   | 30 | 4 | 0       |



| Mol | Chain | Residues | Atoms |    |    |   | AltConf |
|-----|-------|----------|-------|----|----|---|---------|
| 14  | т     | 1        | Total | С  | Ο  | Р | 0       |
| 14  | L     | 1        | 89    | 55 | 30 | 4 | 0       |
| 14  | C     | 1        | Total | С  | Ο  | Р | 0       |
| 14  | a     | 1        | 39    | 20 | 17 | 2 | 0       |

• Molecule 15 is DODECYL-BETA-D-MALTOSIDE (three-letter code: LMT) (formula:  $C_{24}H_{46}O_{11}$ ).



| Mol | Chain | Residues | Atoms      | AltConf |
|-----|-------|----------|------------|---------|
| 15  | С     | 1        | Total C O  | 0       |
|     |       |          | 35 24 11   |         |
| 15  | Р     | 1        | Total C O  | 0       |
| 10  | 1     | Ŧ        | 35  24  11 | 0       |
| 15  | т     | 1        | Total C O  | 0       |
| 10  | J     | 1        | 35  24  11 | 0       |
| 15  | N     | 1        | Total C O  | 0       |
| 10  | IN    | 1        | 35 24 11   | 0       |

• Molecule 16 is FE2/S2 (INORGANIC) CLUSTER (three-letter code: FES) (formula:  $Fe_2S_2$ ) (labeled as "Ligand of Interest" by depositor).





| Mol | Chain | Residues | Atoms               | AltConf |
|-----|-------|----------|---------------------|---------|
| 16  | Р     | 1        | Total Fe S<br>4 2 2 | 0       |

• Molecule 17 is 1,2-DIMYRISTOYL-SN-GLYCERO-3-PHOSPHATE (three-letter code: XP4) (formula:  $C_{31}H_{60}O_8P$ ).



| Mol | Chain | Residues | A     | AltConf |   |   |   |
|-----|-------|----------|-------|---------|---|---|---|
| 17  | Λ     | 1        | Total | С       | 0 | Р | 0 |
| 11  | Л     | 1        | 24    | 15      | 8 | 1 | 0 |
| 17  | II    | 1        | Total | С       | Ο | Р | 0 |
| 11  | U     |          | 24    | 15      | 8 | 1 | U |



• Molecule 18 is HEME C (three-letter code: HEC) (formula:  $C_{34}H_{34}FeN_4O_4$ ) (labeled as "Ligand of Interest" by depositor).



| Mol  | Chain | Residues |       | At | $\mathbf{oms}$ |   |   | AltConf |
|------|-------|----------|-------|----|----------------|---|---|---------|
| 18 D | 1     | Total    | С     | Fe | Ν              | Ο | 0 |         |
|      | D     |          | 43    | 34 | 1              | 4 | 4 | 0       |
| 18   | 3 O   | 1        | Total | С  | Fe             | Ν | Ο | 0       |
| 10   |       | L        | 43    | 34 | 1              | 4 | 4 |         |



## 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Cytochrome b





#### VAL LEDY GLY GLY GLY CLPYS GLY CLPYS GLY VAL LLYS CLEEU CLEU

#### 

# GLΥ

• Molecule 3: Cytochrome b-c1 complex subunit 7

| Chain G:                                                                                                                                                               | 89%                                                                                                   |                                                                           |                                               | 7% ••                                  |                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------|---------------------------------|
| MET<br>A2<br>81<br>81<br>81<br>81<br>81<br>82<br>81<br>82<br>82<br>82<br>82<br>120<br>120<br>120<br>123<br>123<br>123<br>123<br>123<br>123<br>123<br>123<br>123<br>123 | LTS<br>L124<br>V124<br>V125<br>LYS<br>ARG<br>LYS<br>LYS                                               |                                                                           |                                               |                                        |                                 |
| • Molecule 3: Cytochron                                                                                                                                                | ne b-c1 complex                                                                                       | subunit 7                                                                 |                                               |                                        |                                 |
| Chain R:                                                                                                                                                               | 91%                                                                                                   | 6                                                                         |                                               | 5% • •                                 |                                 |
| MET<br>A2<br>817<br>817<br>821<br>821<br>821<br>821<br>128<br>128<br>128<br>128<br>128<br>128                                                                          |                                                                                                       |                                                                           |                                               |                                        |                                 |
| • Molecule 4: YALI0F24                                                                                                                                                 | 4673p                                                                                                 |                                                                           |                                               |                                        |                                 |
| Chain F:                                                                                                                                                               | 49%                                                                                                   | •                                                                         | 48%                                           |                                        |                                 |
| MET<br>TYRB<br>PHE<br>LEU<br>THR<br>LEU<br>ALA<br>VAL<br>VAL<br>CLU<br>VAL<br>LEU<br>SER<br>CLU<br>SER<br>CLU<br>VAL                                                   | VAL<br>ALA<br>ALA<br>ALA<br>ALA<br>CLU<br>GLU<br>GLU<br>GLU<br>GLU<br>GLU<br>ASP                      | GLU<br>PRO<br>VAL<br>GLU<br>VAL<br>GLU<br>SER<br>ASP<br>ASP<br>GLU<br>GLU | SER<br>GLU<br>GLU<br>LYS<br>GLU<br>ASP<br>ASP | GLU<br>GLU<br>GLU<br>GLU<br>GLU<br>ASP | ASP<br>ASP<br>ASP<br>ASP<br>ASP |
| ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>H96<br>H96<br>E100<br>E100<br>E100<br>H116                                                                            | N135<br>L146<br>LYS                                                                                   |                                                                           |                                               |                                        |                                 |
| • Molecule 4: YALI0F24                                                                                                                                                 | 4673p                                                                                                 |                                                                           |                                               |                                        |                                 |
| Chain Q:                                                                                                                                                               | 50%                                                                                                   | ·                                                                         | 48%                                           |                                        |                                 |
| MET<br>TYR<br>TYR<br>PHE<br>LEU<br>LEU<br>LLU<br>ALA<br>ALA<br>ALA<br>ALA<br>CLU<br>CLU<br>CLU<br>SER<br>CLU<br>SER<br>THU<br>TRU<br>TRU<br>TRU                        | VAL<br>VAL<br>ALA<br>ALA<br>ALA<br>SER<br>GLU<br>GLU<br>GLU<br>GLU<br>GLU<br>GLU<br>ASP               | GLU<br>PRO<br>VAL<br>GLU<br>GLU<br>SER<br>ASP<br>ASP<br>ASP<br>GLU<br>GLU | SER<br>GLU<br>GLU<br>LYS<br>GLU<br>ASP<br>ASP | GLU<br>GLU<br>ASP<br>GLU<br>ASP        | ASP<br>ASP<br>ASP<br>ASP<br>ASP |
| ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>H16<br>B113<br>B113<br>B1135<br>H116<br>H116<br>H116<br>H116<br>H116<br>H116<br>H116<br>H11                    | SXI                                                                                                   |                                                                           |                                               |                                        |                                 |
| • Molecule 5: YALI0A1                                                                                                                                                  | 4806p                                                                                                 |                                                                           |                                               |                                        |                                 |
| Chain A:                                                                                                                                                               | 86%                                                                                                   |                                                                           |                                               | 6% • 8%                                | •                               |
| MET<br>ASN<br>SER<br>SER<br>SER<br>LEU<br>LEU<br>ARG<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALY<br>STR<br>ART<br>SER<br>SER                               | LYS<br>ARG<br>GLY<br>LEU<br>LEU<br>THR<br>THR<br>THR<br>THR<br>THR<br>THR<br>THR<br>THR<br>THR<br>THR | L79<br>L79<br>K82<br>R87<br>L94<br>L94<br>L965<br>L965<br>L965<br>E97     | L103<br>F119<br>S137<br>E156                  | K160<br>R188<br>T197                   | M212<br>H222                    |





• Molecule 7: YALI0A17468p



| Chain O:                                                                                                                         | 69%                                                                                                                                                           | 5%                                            | 26%                                                   |                                 |
|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------|---------------------------------|
| MET<br>ARG<br>ARG<br>ARG<br>ARG<br>ILF<br>CU<br>CU<br>CU<br>CU<br>CU<br>CU<br>CU<br>CU<br>CU<br>CU<br>CU<br>CU<br>CU             | SER<br>PRO<br>ARG<br>SER<br>SER<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>THR<br>THR<br>THR<br>ASN<br>ASN<br>ASN<br>ASN<br>THO<br>THO<br>THO<br>THO<br>THO<br>THO | ASN<br>ASN<br>HIS<br>HIS<br>THR<br>PRO<br>ILE | LLEU<br>THR<br>GLN<br>MET<br>PHE<br>LYS<br>ALA<br>TLE | PRU<br>LEU<br>ARG<br>GLN<br>ALA |
| LEU<br>CLEU<br>GLY<br>TLEU<br>GLY<br>SER<br>SER<br>SER<br>SER<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>TTRR<br>TTRR   | ALU<br>ALI<br>ALI<br>ALI<br>ALI<br>AB5<br>A95<br>C124<br>C124<br>C124<br>C127<br>C127<br>C127<br>C127<br>C127<br>C127<br>C127<br>C127                         | M248<br>T251<br>E283<br>E283<br>E285          | R289<br>M303<br>W315<br>S316<br>P317                  | <mark>P328</mark><br>LYS<br>ASN |
| • Molecule 8: Cytochrome b-c                                                                                                     | 1 complex subunit 8                                                                                                                                           |                                               |                                                       |                                 |
| Chain H:                                                                                                                         | 86%                                                                                                                                                           |                                               | •• 9%                                                 |                                 |
| MET<br>GLY<br>GLY<br>ASN<br>451<br>451<br>793<br>161<br>161<br>161<br>161<br>161<br>161<br>161<br>161<br>161<br>16               |                                                                                                                                                               |                                               |                                                       |                                 |
| • Molecule 8: Cytochrome b-c                                                                                                     | 1 complex subunit 8                                                                                                                                           |                                               |                                                       |                                 |
| Chain S:                                                                                                                         | 86%                                                                                                                                                           |                                               | •• 9%                                                 |                                 |
| MET<br>GLY<br>GLY<br>GLY<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ALA<br>ALA<br>GLU                                                 |                                                                                                                                                               |                                               |                                                       |                                 |
| • Molecule 9: Complex III sub                                                                                                    | ounit 9                                                                                                                                                       |                                               |                                                       |                                 |
| Chain I:                                                                                                                         | 72%                                                                                                                                                           | 6%                                            | 22%                                                   |                                 |
| MET<br>ARA<br>TARA<br>TARA<br>TARA<br>A4<br>A4<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1     | dsp<br>glu                                                                                                                                                    |                                               |                                                       |                                 |
| • Molecule 9: Complex III sub                                                                                                    | ounit 9                                                                                                                                                       |                                               |                                                       |                                 |
| Chain T:                                                                                                                         | 74%                                                                                                                                                           | ·                                             | 22%                                                   |                                 |
| MET<br>ARA<br>TRA<br>TRA<br>TRA<br>TRA<br>A4<br>A4<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1 |                                                                                                                                                               |                                               |                                                       |                                 |
| • Molecule 10: YALI0C12210                                                                                                       | )                                                                                                                                                             |                                               |                                                       |                                 |
| Chain J:                                                                                                                         | 83%                                                                                                                                                           |                                               | 7%•9%                                                 |                                 |
| MET<br>ILE<br>CVS<br>CUY<br>GUY<br>GUV<br>GUV<br>GUV<br>GIV<br>CIV<br>CIV<br>CIV<br>CIV<br>CIV<br>CIV<br>CIV<br>CIV<br>CIV<br>C  |                                                                                                                                                               |                                               |                                                       |                                 |
| • Molecule 10: YALI0C12210                                                                                                       | )                                                                                                                                                             |                                               |                                                       |                                 |
| Chain U:                                                                                                                         | 83%                                                                                                                                                           |                                               | 9% 9%                                                 | 1                               |
| MET<br>ILE<br>CVY<br>CUY<br>GUY<br>GUY<br>GU<br>GU<br>CU<br>CU<br>CU<br>CU<br>CU<br>CU<br>CU<br>CU<br>CU<br>CU<br>CU<br>CU<br>CU |                                                                                                                                                               |                                               |                                                       |                                 |



# 4 Experimental information (i)

| Property                           | Value                         | Source    |
|------------------------------------|-------------------------------|-----------|
| EM reconstruction method           | SINGLE PARTICLE               | Depositor |
| Imposed symmetry                   | POINT, C1                     | Depositor |
| Number of particles used           | 192544                        | Depositor |
| Resolution determination method    | FSC 0.143 CUT-OFF             | Depositor |
| CTF correction method              | PHASE FLIPPING AND AMPLITUDE  | Depositor |
|                                    | CORRECTION                    |           |
| Microscope                         | TFS KRIOS                     | Depositor |
| Voltage (kV)                       | 300                           | Depositor |
| Electron dose $(e^-/\text{\AA}^2)$ | 55                            | Depositor |
| Minimum defocus (nm)               | 800                           | Depositor |
| Maximum defocus (nm)               | 2500                          | Depositor |
| Magnification                      | Not provided                  |           |
| Image detector                     | GATAN K3 BIOQUANTUM (6k x 4k) | Depositor |
| Maximum map value                  | 0.062                         | Depositor |
| Minimum map value                  | -0.016                        | Depositor |
| Average map value                  | 0.000                         | Depositor |
| Map value standard deviation       | 0.002                         | Depositor |
| Recommended contour level          | 0.01                          | Depositor |
| Map size (Å)                       | 301.32, 301.32, 301.32        | wwPDB     |
| Map dimensions                     | 360, 360, 360                 | wwPDB     |
| Map angles (°)                     | 90.0, 90.0, 90.0              | wwPDB     |
| Pixel spacing (Å)                  | 0.837, 0.837, 0.837           | Depositor |



# 5 Model quality (i)

## 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: HEC, PC1, PTY, LMT, FES, XP4, HEM, CDL

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol Chain |       | Bo   | ond lengths    | Bond angles |                 |  |
|-----------|-------|------|----------------|-------------|-----------------|--|
|           | Unain | RMSZ | # Z  > 5       | RMSZ        | # Z  > 5        |  |
| 1         | С     | 0.45 | 0/3153         | 0.78        | 1/4305~(0.0%)   |  |
| 1         | Ν     | 0.44 | 0/3153         | 0.77        | 1/4305~(0.0%)   |  |
| 2         | Е     | 0.45 | 0/474          | 0.75        | 1/637~(0.2%)    |  |
| 2         | Р     | 0.38 | 0/1479         | 0.80        | 1/2003~(0.0%)   |  |
| 3         | G     | 0.41 | 0/1012         | 0.73        | 0/1373          |  |
| 3         | R     | 0.42 | 1/1012~(0.1%)  | 0.74        | 0/1373          |  |
| 4         | F     | 0.29 | 0/595          | 0.66        | 0/805           |  |
| 4         | Q     | 0.30 | 0/595          | 0.67        | 0/805           |  |
| 5         | А     | 0.38 | 0/3510         | 0.76        | 2/4768~(0.0%)   |  |
| 5         | L     | 0.38 | 0/3510         | 0.78        | 4/4768~(0.1%)   |  |
| 6         | В     | 0.35 | 0/3069         | 0.76        | 3/4178~(0.1%)   |  |
| 6         | М     | 0.35 | 0/3069         | 0.76        | 3/4178~(0.1%)   |  |
| 7         | D     | 0.39 | 0/1950         | 0.78        | 3/2656~(0.1%)   |  |
| 7         | 0     | 0.40 | 0/1950         | 0.77        | 2/2656~(0.1%)   |  |
| 8         | Н     | 0.40 | 1/717~(0.1%)   | 0.71        | 0/975           |  |
| 8         | S     | 0.40 | 0/717          | 0.72        | 0/975           |  |
| 9         | Ι     | 0.46 | 1/465~(0.2%)   | 0.65        | 0/629           |  |
| 9         | Т     | 0.45 | 1/465~(0.2%)   | 0.65        | 0/629           |  |
| 10        | J     | 0.37 | 0/620          | 0.66        | 0/846           |  |
| 10        | U     | 0.37 | 0/620          | 0.66        | 0/846           |  |
| All       | All   | 0.39 | 4/32135~(0.0%) | 0.76        | 21/43710~(0.0%) |  |

All (4) bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms | Z    | Observed(Å) | $\mathrm{Ideal}(\mathrm{\AA})$ |
|-----|-------|-----|------|-------|------|-------------|--------------------------------|
| 9   | Т     | 4   | ALA  | N-CA  | 5.65 | 1.57        | 1.46                           |
| 9   | Ι     | 4   | ALA  | N-CA  | 5.60 | 1.57        | 1.46                           |
| 3   | R     | 2   | ALA  | N-CA  | 5.22 | 1.56        | 1.46                           |
| 8   | Н     | 9   | TYR  | N-CA  | 5.11 | 1.56        | 1.46                           |

All (21) bond angle outliers are listed below:



| Mol | Chain | Res | Type | Atoms     | Ζ     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-----------|-------|------------------|---------------|
| 6   | В     | 90  | ARG  | CG-CD-NE  | -7.67 | 95.69            | 111.80        |
| 6   | М     | 90  | ARG  | CG-CD-NE  | -7.65 | 95.74            | 111.80        |
| 5   | L     | 269 | ARG  | NE-CZ-NH2 | -7.61 | 116.49           | 120.30        |
| 6   | В     | 215 | GLN  | CB-CA-C   | -7.46 | 95.49            | 110.40        |
| 6   | М     | 215 | GLN  | CB-CA-C   | -7.38 | 95.64            | 110.40        |
| 5   | А     | 269 | ARG  | CG-CD-NE  | -6.93 | 97.25            | 111.80        |
| 7   | 0     | 283 | GLU  | CB-CA-C   | -6.42 | 97.55            | 110.40        |
| 5   | А     | 309 | ARG  | CG-CD-NE  | -6.37 | 98.43            | 111.80        |
| 2   | Р     | 100 | MET  | C-N-CA    | -6.34 | 105.84           | 121.70        |
| 5   | L     | 269 | ARG  | NE-CZ-NH1 | 6.34  | 123.47           | 120.30        |
| 5   | L     | 309 | ARG  | CG-CD-NE  | -6.29 | 98.58            | 111.80        |
| 7   | D     | 283 | GLU  | CB-CA-C   | -5.66 | 99.09            | 110.40        |
| 6   | В     | 158 | ARG  | CG-CD-NE  | -5.61 | 100.02           | 111.80        |
| 2   | Е     | 62  | ARG  | CB-CG-CD  | -5.49 | 97.33            | 111.60        |
| 7   | D     | 283 | GLU  | CB-CG-CD  | -5.49 | 99.39            | 114.20        |
| 6   | М     | 158 | ARG  | CG-CD-NE  | -5.46 | 100.33           | 111.80        |
| 5   | L     | 269 | ARG  | CG-CD-NE  | -5.41 | 100.45           | 111.80        |
| 1   | N     | 4   | ARG  | CG-CD-NE  | -5.18 | 100.93           | 111.80        |
| 1   | С     | 4   | ARG  | CG-CD-NE  | -5.13 | 101.03           | 111.80        |
| 7   | 0     | 289 | ARG  | CG-CD-NE  | -5.04 | 101.21           | 111.80        |
| 7   | D     | 289 | ARG  | CG-CD-NE  | -5.03 | 101.23           | 111.80        |

There are no chirality outliers.

There are no planarity outliers.

## 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | С     | 3052  | 0        | 3113     | 20      | 0            |
| 1   | N     | 3052  | 0        | 3113     | 19      | 0            |
| 2   | Е     | 465   | 0        | 459      | 2       | 0            |
| 2   | Р     | 1445  | 0        | 1426     | 30      | 0            |
| 3   | G     | 994   | 0        | 1022     | 3       | 0            |
| 3   | R     | 994   | 0        | 1022     | 3       | 0            |
| 4   | F     | 579   | 0        | 511      | 1       | 0            |
| 4   | Q     | 579   | 0        | 511      | 1       | 0            |
| 5   | А     | 3446  | 0        | 3369     | 20      | 0            |



| Continuea from previous page |       |       |          |          |         |              |  |  |
|------------------------------|-------|-------|----------|----------|---------|--------------|--|--|
| Mol                          | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |  |  |
| 5                            | L     | 3446  | 0        | 3369     | 9       | 0            |  |  |
| 6                            | В     | 3008  | 0        | 2991     | 21      | 0            |  |  |
| 6                            | М     | 3008  | 0        | 2991     | 20      | 0            |  |  |
| 7                            | D     | 1893  | 0        | 1834     | 24      | 0            |  |  |
| 7                            | 0     | 1893  | 0        | 1834     | 20      | 0            |  |  |
| 8                            | Н     | 690   | 0        | 673      | 4       | 0            |  |  |
| 8                            | S     | 690   | 0        | 673      | 5       | 0            |  |  |
| 9                            | Ι     | 452   | 0        | 435      | 2       | 0            |  |  |
| 9                            | Т     | 452   | 0        | 435      | 1       | 0            |  |  |
| 10                           | J     | 598   | 0        | 615      | 4       | 0            |  |  |
| 10                           | U     | 598   | 0        | 615      | 4       | 0            |  |  |
| 11                           | С     | 86    | 0        | 60       | 8       | 0            |  |  |
| 11                           | Ν     | 86    | 0        | 60       | 8       | 0            |  |  |
| 12                           | С     | 38    | 0        | 50       | 1       | 0            |  |  |
| 12                           | Ι     | 32    | 0        | 38       | 0       | 0            |  |  |
| 12                           | Ν     | 38    | 0        | 50       | 1       | 0            |  |  |
| 12                           | Т     | 32    | 0        | 38       | 2       | 0            |  |  |
| 13                           | С     | 41    | 0        | 58       | 3       | 0            |  |  |
| 13                           | Е     | 41    | 0        | 58       | 1       | 0            |  |  |
| 13                           | Ν     | 41    | 0        | 58       | 9       | 0            |  |  |
| 13                           | Р     | 41    | 0        | 58       | 10      | 0            |  |  |
| 14                           | А     | 89    | 0        | 85       | 3       | 0            |  |  |
| 14                           | С     | 48    | 0        | 40       | 2       | 0            |  |  |
| 14                           | Н     | 89    | 0        | 66       | 3       | 0            |  |  |
| 14                           | L     | 89    | 0        | 85       | 1       | 0            |  |  |
| 14                           | Ν     | 98    | 0        | 84       | 5       | 0            |  |  |
| 14                           | S     | 39    | 0        | 22       | 2       | 0            |  |  |
| 15                           | С     | 35    | 0        | 46       | 1       | 0            |  |  |
| 15                           | J     | 35    | 0        | 46       | 1       | 0            |  |  |
| 15                           | N     | 35    | 0        | 46       | 0       | 0            |  |  |
| 15                           | Р     | 35    | 0        | 46       | 0       | 0            |  |  |
| 16                           | Р     | 4     | 0        | 0        | 0       | 0            |  |  |
| 17                           | A     | 24    | 0        | 22       | 1       | 0            |  |  |
| 17                           | U     | 24    | 0        | 22       | 1       | 0            |  |  |
| 18                           | D     | 43    | 0        | 32       | 12      | 0            |  |  |
| 18                           | 0     | 43    | 0        | 32       | 13      | 0            |  |  |
| All                          | All   | 32540 | 0        | 32213    | 209     | 0            |  |  |

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 3.

All (209) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.



| Atom_1            | Atom_2            | Interatomic  | Clash       |  |
|-------------------|-------------------|--------------|-------------|--|
| Atom-1            | Atom-2            | distance (Å) | overlap (Å) |  |
| 7:0:124:CYS:SG    | 18:O:401:HEC:HBB3 | 1.62         | 1.39        |  |
| 7:D:124:CYS:SG    | 18:D:401:HEC:HBB3 | 1.62         | 1.38        |  |
| 2:P:189:CYS:O     | 7:D:235:MET:CE    | 1.68         | 1.38        |  |
| 2:P:84:VAL:CG2    | 13:P:303:PTY:H441 | 1.54         | 1.35        |  |
| 2:P:189:CYS:O     | 7:D:235:MET:HE1   | 1.11         | 1.23        |  |
| 2:P:84:VAL:HG23   | 13:P:303:PTY:C44  | 1.66         | 1.23        |  |
| 7:0:124:CYS:SG    | 18:O:401:HEC:CBB  | 2.34         | 1.15        |  |
| 7:D:124:CYS:SG    | 18:D:401:HEC:CBB  | 2.33         | 1.15        |  |
| 7:D:127:CYS:SG    | 18:D:401:HEC:CAC  | 2.37         | 1.12        |  |
| 7:0:127:CYS:SG    | 18:O:401:HEC:CAC  | 2.39         | 1.09        |  |
| 7:0:127:CYS:SG    | 18:O:401:HEC:HBC3 | 1.95         | 1.06        |  |
| 7:D:127:CYS:SG    | 18:D:401:HEC:HBC3 | 1.96         | 1.05        |  |
| 7:D:127:CYS:SG    | 18:D:401:HEC:CBC  | 2.48         | 1.01        |  |
| 7:0:127:CYS:SG    | 18:O:401:HEC:CBC  | 2.48         | 1.01        |  |
| 7:D:124:CYS:SG    | 18:D:401:HEC:CAB  | 2.51         | 0.98        |  |
| 7:0:124:CYS:SG    | 18:O:401:HEC:CAB  | 2.52         | 0.97        |  |
| 2:P:189:CYS:O     | 7:D:235:MET:HE3   | 1.66         | 0.94        |  |
| 1:C:330:ILE:HD12  | 12:C:503:PC1:H2A1 | 1.51         | 0.93        |  |
| 1:N:330:ILE:HD12  | 12:N:503:PC1:H2A1 | 1.51         | 0.91        |  |
| 5:A:156:GLU:OE2   | 5:A:188:ARG:NH1   | 2.09         | 0.84        |  |
| 5:A:395:LEU:HD23  | 6:B:34:ILE:HD12   | 1.61         | 0.81        |  |
| 10:U:11:LYS:HG2   | 10:U:12:PRO:HD2   | 1.64         | 0.79        |  |
| 1:C:264:VAL:HA    | 2:P:171:LEU:O     | 1.83         | 0.78        |  |
| 1:C:58:ALA:H      | 1:C:173:ASN:HD22  | 1.28         | 0.77        |  |
| 6:B:41:LEU:CD2    | 6:B:191:VAL:HG22  | 2.20         | 0.71        |  |
| 11:C:502:HEM:HBC2 | 11:C:502:HEM:HMC2 | 1.72         | 0.71        |  |
| 6:M:41:LEU:CD2    | 6:M:191:VAL:HG22  | 2.21         | 0.71        |  |
| 5:A:395:LEU:HD22  | 6:B:98:GLN:HG2    | 1.72         | 0.70        |  |
| 7:O:251:THR:HG21  | 18:O:401:HEC:HMC2 | 1.74         | 0.69        |  |
| 6:M:41:LEU:HD23   | 6:M:191:VAL:HG22  | 1.75         | 0.68        |  |
| 13:C:504:PTY:H112 | 13:C:504:PTY:HC12 | 1.77         | 0.67        |  |
| 6:B:236:ARG:HD3   | 6:M:170:TYR:CE1   | 2.29         | 0.67        |  |
| 2:P:84:VAL:HG23   | 13:P:303:PTY:H441 | 0.74         | 0.67        |  |
| 14:A:3001:CDL:OB9 | 14:A:3001:CDL:HB4 | 1.92         | 0.67        |  |
| 7:D:127:CYS:SG    | 18:D:401:HEC:C3C  | 2.84         | 0.66        |  |
| 3:G:17:SER:HB2    | 3:G:20:LEU:HB2    | 1.77         | 0.65        |  |
| 3:R:17:SER:HB2    | 3:R:20:LEU:HB2    | 1.77         | 0.64        |  |
| 6:B:41:LEU:HD23   | 6:B:191:VAL:HG22  | 1.80         | 0.64        |  |
| 7:0:127:CYS:SG    | 18:O:401:HEC:C3C  | 2.86         | 0.64        |  |
| 6:M:91:GLU:HG2    | 6:M:364:MET:HE2   | 1.80         | 0.63        |  |
| 5:A:395:LEU:CD2   | 6:B:34:ILE:HD12   | 2.27         | 0.63        |  |
| 8:S:47:ASN:O      | 8:S:51:ARG:HG2    | 1.99         | 0.62        |  |



| Atom 1            | Atom 2            | Interatomic    | Clash       |  |
|-------------------|-------------------|----------------|-------------|--|
| Atom-1            | Atom-2            | distance $(Å)$ | overlap (Å) |  |
| 7:D:251:THR:HG21  | 18:D:401:HEC:HMC2 | 1.80           | 0.62        |  |
| 7:O:124:CYS:SG    | 18:O:401:HEC:C3B  | 2.88           | 0.62        |  |
| 4:Q:135:ASN:HB3   | 7:O:95:ALA:HB2    | 1.82           | 0.61        |  |
| 2:P:84:VAL:CG2    | 13:P:303:PTY:C44  | 2.45           | 0.61        |  |
| 11:N:502:HEM:HBC2 | 11:N:502:HEM:HMC2 | 1.83           | 0.61        |  |
| 11:N:501:HEM:HBC2 | 11:N:501:HEM:HHD  | 1.83           | 0.61        |  |
| 6:B:84:LEU:HD12   | 6:B:97:THR:HG22   | 1.83           | 0.60        |  |
| 8:H:47:ASN:O      | 8:H:51:ARG:HG2    | 2.01           | 0.60        |  |
| 6:M:318:ALA:O     | 6:M:322:VAL:HG23  | 2.01           | 0.60        |  |
| 7:D:124:CYS:SG    | 18:D:401:HEC:C3B  | 2.88           | 0.60        |  |
| 4:F:135:ASN:HB3   | 7:D:95:ALA:HB2    | 1.82           | 0.60        |  |
| 11:N:501:HEM:HBB2 | 11:N:501:HEM:CMB  | 2.30           | 0.59        |  |
| 11:C:501:HEM:HBC2 | 11:C:501:HEM:HHD  | 1.82           | 0.59        |  |
| 5:A:395:LEU:HD23  | 6:B:34:ILE:CD1    | 2.32           | 0.59        |  |
| 5:L:382:VAL:HG21  | 5:L:432:GLU:HA    | 1.83           | 0.59        |  |
| 5:A:382:VAL:HG21  | 5:A:432:GLU:HA    | 1.84           | 0.59        |  |
| 1:N:76:TRP:CZ3    | 7:O:289:ARG:HG3   | 2.39           | 0.58        |  |
| 1:C:58:ALA:H      | 1:C:173:ASN:ND2   | 2.01           | 0.57        |  |
| 11:C:501:HEM:HBC2 | 11:C:501:HEM:CHD  | 2.34           | 0.57        |  |
| 5:A:43:SER:CB     | 5:A:222:HIS:HD2   | 2.18           | 0.57        |  |
| 5:A:43:SER:HB3    | 5:A:222:HIS:HD2   | 1.70           | 0.56        |  |
| 6:M:36:ASP:OD1    | 6:M:98:GLN:HG3    | 2.04           | 0.56        |  |
| 8:H:51:ARG:HH21   | 14:H:701:CDL:HA22 | 1.70           | 0.56        |  |
| 11:N:501:HEM:HBC2 | 11:N:501:HEM:CHD  | 2.35           | 0.56        |  |
| 7:O:203:ILE:HG12  | 18:O:401:HEC:HMA3 | 1.86           | 0.56        |  |
| 11:N:501:HEM:HBB2 | 11:N:501:HEM:HMB1 | 1.88           | 0.56        |  |
| 7:D:203:ILE:HG12  | 18:D:401:HEC:HMA3 | 1.88           | 0.55        |  |
| 5:A:378:SER:HA    | 5:A:432:GLU:OE1   | 2.06           | 0.55        |  |
| 1:C:76:TRP:CZ3    | 7:D:289:ARG:HG3   | 2.41           | 0.55        |  |
| 2:P:155:ARG:NH1   | 2:P:197:SER:O     | 2.39           | 0.54        |  |
| 11:C:501:HEM:CMB  | 11:C:501:HEM:HBB2 | 2.38           | 0.54        |  |
| 1:C:320:PRO:HD2   | 3:G:31:TYR:CE1    | 2.43           | 0.54        |  |
| 6:B:24:LYS:HB3    | 6:B:366:LEU:HD22  | 1.91           | 0.53        |  |
| 6:M:91:GLU:HG2    | 6:M:364:MET:CE    | 2.40           | 0.52        |  |
| 7:D:317:PRO:HG3   | 8:H:31:PRO:HD3    | 1.91           | 0.52        |  |
| 2:P:191:GLY:HA3   | 7:D:232:ALA:HB1   | 1.91           | 0.52        |  |
| 14:A:3001:CDL:H1  | 14:A:3002:CDL:HA4 | 1.92           | 0.52        |  |
| 1:C:3:LEU:HD11    | 14:N:506:CDL:HB32 | 1.91           | 0.52        |  |
| 2:E:49:THR:N      | 2:E:50:PRO:HD2    | 2.25           | 0.51        |  |
| 5:L:395:LEU:HD12  | 6:M:34:ILE:CG2    | 2.39           | 0.51        |  |
| 2:P:103:VAL:HG22  | 2:P:120:TRP:CD1   | 2.45           | 0.51        |  |



| Atom-1             | Atom-2             | Interatomic  | Clash       |
|--------------------|--------------------|--------------|-------------|
|                    | 2100HI 2           | distance (Å) | overlap (Å) |
| 1:N:229:ASP:HB2    | 13:N:505:PTY:H382  | 1.92         | 0.51        |
| 1:N:320:PRO:HD2    | 3:R:31:TYR:CE1     | 2.45         | 0.51        |
| 6:M:59:LYS:HB3     | 6:M:129:VAL:HG13   | 1.91         | 0.51        |
| 11:N:502:HEM:CMB   | 11:N:502:HEM:HBB2  | 2.41         | 0.51        |
| 2:P:186:PHE:CE1    | 2:P:191:GLY:HA2    | 2.45         | 0.50        |
| 7:O:317:PRO:HG3    | 8:S:31:PRO:HD3     | 1.94         | 0.50        |
| 7:D:218:LEU:HD11   | 18:D:401:HEC:HMB2  | 1.94         | 0.50        |
| 7:O:218:LEU:HD11   | 18:O:401:HEC:HMB2  | 1.93         | 0.50        |
| 2:P:83:THR:HA      | 13:P:303:PTY:H121  | 1.94         | 0.49        |
| 1:N:49:THR:HG21    | 1:N:78:ILE:HD13    | 1.94         | 0.49        |
| 11:C:501:HEM:HBB2  | 11:C:501:HEM:HMB1  | 1.94         | 0.49        |
| 14:N:504:CDL:HA21  | 8:S:51:ARG:HH21    | 1.77         | 0.49        |
| 2:P:84:VAL:HG23    | 13:P:303:PTY:C43   | 2.40         | 0.49        |
| 14:A:3002:CDL:H132 | 14:A:3002:CDL:H522 | 1.94         | 0.48        |
| 14:H:701:CDL:OB3   | 14:H:702:CDL:O1    | 2.30         | 0.48        |
| 13:P:303:PTY:H141  | 13:P:303:PTY:H311  | 1.94         | 0.48        |
| 14:C:505:CDL:HB32  | 1:N:3:LEU:HD11     | 1.96         | 0.48        |
| 14:N:504:CDL:OB3   | 14:S:101:CDL:O1    | 2.31         | 0.48        |
| 2:P:49:THR:N       | 2:P:50:PRO:HD2     | 2.29         | 0.48        |
| 1:N:184:TYR:CD2    | 11:N:501:HEM:HBC1  | 2.50         | 0.47        |
| 10:U:35:PHE:HE1    | 17:U:101:XP4:H8    | 1.80         | 0.47        |
| 13:C:504:PTY:H132  | 2:E:72:PHE:CD2     | 2.49         | 0.47        |
| 5:A:82:LYS:HA      | 5:A:82:LYS:HD3     | 1.64         | 0.47        |
| 1:C:49:THR:HG21    | 1:C:78:ILE:HD13    | 1.95         | 0.47        |
| 17:A:3003:XP4:H8   | 10:J:35:PHE:HE1    | 1.80         | 0.47        |
| 5:L:267:GLU:HG3    | 8:S:28:THR:HG22    | 1.97         | 0.47        |
| 1:N:156:TRP:CE3    | 1:N:157:LEU:HG     | 2.50         | 0.46        |
| 13:P:303:PTY:H331  | 13:P:303:PTY:H361  | 1.72         | 0.46        |
| 7:D:248:MET:HB2    | 18:D:401:HEC:C1D   | 2.45         | 0.46        |
| 11:C:502:HEM:HBC2  | 11:C:502:HEM:CMC   | 2.43         | 0.46        |
| 2:P:180:GLY:HA2    | 2:P:186:PHE:HB2    | 1.97         | 0.46        |
| 2:P:103:VAL:HG22   | 2:P:120:TRP:HD1    | 1.81         | 0.46        |
| 6:M:47:TYR:HB3     | 6:M:220:VAL:CG1    | 2.45         | 0.46        |
| 13:N:505:PTY:H372  | 13:N:505:PTY:H402  | 1.70         | 0.46        |
| 13:N:505:PTY:H112  | 13:N:505:PTY:HC12  | 1.98         | 0.45        |
| 13:N:505:PTY:H331  | 13:N:505:PTY:H362  | 1.51         | 0.45        |
| 1:C:180:PHE:HE2    | 1:N:180:PHE:HE2    | 1.65         | 0.45        |
| 15:J:101:LMT:H71   | 15:J:101:LMT:H41   | 1.75         | 0.45        |
| 1:C:202:HIS:HD2    | 15:C:506:LMT:O3'   | 2.00         | 0.45        |
| 1:N:226:SER:HB3    | 13:N:505:PTY:H321  | 2.00         | 0.44        |
| 13:N:505:PTY:H111  | 12:T:201:PC1:O31   | 2.17         | 0.44        |



| Atom_1            | Atom-2            | Interatomic  | Clash       |
|-------------------|-------------------|--------------|-------------|
|                   | Atom-2            | distance (Å) | overlap (Å) |
| 2:P:171:LEU:HD12  | 2:P:190:HIS:CE1   | 2.52         | 0.44        |
| 14:H:702:CDL:HA62 | 14:H:702:CDL:H311 | 1.58         | 0.44        |
| 6:M:249:ILE:HD11  | 6:M:393:LEU:HD21  | 2.00         | 0.44        |
| 7:O:248:MET:HB2   | 18:O:401:HEC:C1D  | 2.48         | 0.44        |
| 2:P:193:HIS:O     | 2:P:200:ILE:HD12  | 2.18         | 0.44        |
| 6:B:47:TYR:HB3    | 6:B:220:VAL:CG1   | 2.47         | 0.44        |
| 5:L:375:THR:C     | 5:L:436:ARG:HH12  | 2.22         | 0.43        |
| 1:C:305:LEU:N     | 1:C:306:PRO:CD    | 2.81         | 0.43        |
| 13:C:504:PTY:HC31 | 5:A:467:ASN:CG    | 2.38         | 0.43        |
| 1:N:305:LEU:N     | 1:N:306:PRO:CD    | 2.82         | 0.43        |
| 5:A:375:THR:C     | 5:A:436:ARG:HH12  | 2.22         | 0.43        |
| 1:N:27:ASN:HB2    | 14:N:504:CDL:OB4  | 2.18         | 0.43        |
| 1:N:108:THR:HA    | 14:N:506:CDL:OA4  | 2.18         | 0.43        |
| 10:J:69:GLU:HA    | 10:J:72:ILE:HD12  | 2.00         | 0.43        |
| 10:U:32:ILE:HB    | 10:U:33:PRO:HD3   | 2.01         | 0.43        |
| 10:U:69:GLU:HA    | 10:U:72:ILE:HD12  | 2.00         | 0.43        |
| 2:P:106:LYS:HA    | 2:P:221:THR:HG22  | 2.01         | 0.43        |
| 6:B:48:ALA:HB1    | 6:B:53:VAL:HG12   | 2.01         | 0.43        |
| 2:P:147:ARG:HE    | 2:P:147:ARG:HB2   | 1.29         | 0.43        |
| 5:A:119:PHE:HE1   | 6:B:349:ALA:HB2   | 1.84         | 0.43        |
| 6:B:34:ILE:HD13   | 6:B:100:LEU:HD23  | 2.01         | 0.42        |
| 6:B:236:ARG:HD3   | 6:M:170:TYR:CD1   | 2.54         | 0.42        |
| 1:C:184:TYR:CD2   | 11:C:501:HEM:HBC1 | 2.54         | 0.42        |
| 1:C:320:PRO:HD2   | 3:G:31:TYR:CZ     | 2.55         | 0.42        |
| 2:P:196:ILE:H     | 2:P:196:ILE:HG12  | 1.55         | 0.42        |
| 2:P:210:GLU:H     | 2:P:210:GLU:HG2   | 1.69         | 0.42        |
| 7:O:316:SER:N     | 7:O:317:PRO:CD    | 2.83         | 0.42        |
| 13:P:303:PTY:H161 | 13:P:303:PTY:H132 | 1.81         | 0.42        |
| 6:B:249:ILE:HD11  | 6:B:302:PHE:HB2   | 2.02         | 0.42        |
| 10:J:11:LYS:HD2   | 10:J:12:PRO:HD2   | 2.01         | 0.42        |
| 6:M:53:VAL:HG12   | 6:M:173:VAL:HG13  | 2.02         | 0.42        |
| 2:P:84:VAL:HG22   | 13:P:303:PTY:H441 | 1.78         | 0.42        |
| 7:D:316:SER:N     | 7:D:317:PRO:CD    | 2.82         | 0.42        |
| 1:N:227:PHE:HZ    | 13:N:505:PTY:HC6  | 1.85         | 0.42        |
| 11:C:501:HEM:HHD  | 11:C:501:HEM:CBC  | 2.49         | 0.42        |
| 5:L:395:LEU:HD12  | 6:M:34:ILE:HG22   | 2.01         | 0.42        |
| 5:A:79:LEU:HD12   | 5:A:79:LEU:HA     | 1.89         | 0.42        |
| 6:M:175:LEU:HA    | 6:M:178:VAL:HG12  | 2.01         | 0.42        |
| 6:M:249:ILE:CD1   | 6:M:393:LEU:HD21  | 2.50         | 0.42        |
| 14:S:101:CDL:HA62 | 14:S:101:CDL:H311 | 1.65         | 0.42        |
| 1:N:76:TRP:CG     | 7:O:285:GLU:HG3   | 2.54         | 0.42        |



| Atom 1            | Atom 2            | Interatomic             | Clash       |
|-------------------|-------------------|-------------------------|-------------|
| Atom-1            | Atom-2            | distance $(\text{\AA})$ | overlap (Å) |
| 1:C:76:TRP:CG     | 7:D:285:GLU:HG3   | 2.54                    | 0.42        |
| 1:C:108:THR:HA    | 14:C:505:CDL:OA4  | 2.19                    | 0.42        |
| 1:C:178:ARG:HE    | 1:C:178:ARG:HB3   | 1.54                    | 0.42        |
| 2:P:192:SER:HB3   | 2:P:204:PRO:HD2   | 2.02                    | 0.42        |
| 7:D:105:LEU:HB3   | 9:I:44:ILE:HD12   | 2.02                    | 0.42        |
| 2:P:177:GLY:HA2   | 2:P:185:TRP:CD1   | 2.54                    | 0.42        |
| 6:B:247:LEU:HD13  | 6:B:393:LEU:HB3   | 2.01                    | 0.41        |
| 9:T:19:VAL:HG22   | 12:T:201:PC1:H332 | 2.02                    | 0.41        |
| 3:R:71:VAL:HG11   | 8:S:21:GLN:HG2    | 2.02                    | 0.41        |
| 5:L:97:GLU:HB3    | 6:M:339:ARG:HD3   | 2.02                    | 0.41        |
| 14:L:3001:CDL:H1  | 14:L:3002:CDL:HA4 | 2.02                    | 0.41        |
| 6:B:29:ASP:HB2    | 6:B:200:PRO:HD3   | 2.02                    | 0.41        |
| 5:L:119:PHE:HE1   | 6:M:349:ALA:HB2   | 1.85                    | 0.41        |
| 5:A:265:GLY:HA3   | 5:A:447:ASP:HB3   | 2.01                    | 0.41        |
| 6:B:175:LEU:HA    | 6:B:178:VAL:HG12  | 2.01                    | 0.41        |
| 10:J:32:ILE:HB    | 10:J:33:PRO:HD3   | 2.02                    | 0.41        |
| 1:N:224:TYR:HB3   | 7:O:315:TRP:CZ2   | 2.56                    | 0.41        |
| 1:N:234:PHE:CZ    | 7:O:303:MET:HE2   | 2.56                    | 0.41        |
| 2:P:156:VAL:HG21  | 2:P:159:PRO:HA    | 2.03                    | 0.41        |
| 5:A:58:ILE:HG12   | 5:A:212:MET:HG2   | 2.02                    | 0.41        |
| 5:A:97:GLU:HG3    | 6:B:343:LYS:HE2   | 2.01                    | 0.41        |
| 5:A:97:GLU:HB3    | 6:B:339:ARG:HD2   | 2.03                    | 0.41        |
| 8:H:61:LEU:HD23   | 8:H:61:LEU:HA     | 1.95                    | 0.41        |
| 13:E:401:PTY:H141 | 13:E:401:PTY:H311 | 2.02                    | 0.41        |
| 6:M:29:ASP:HB2    | 6:M:200:PRO:HD3   | 2.03                    | 0.41        |
| 5:A:96:ILE:HG12   | 5:A:103:LEU:HD13  | 2.02                    | 0.41        |
| 11:N:502:HEM:HBB2 | 11:N:502:HEM:HMB1 | 2.03                    | 0.41        |
| 13:N:505:PTY:H311 | 13:N:505:PTY:H342 | 1.30                    | 0.41        |
| 1:C:238:LEU:HD13  | 7:D:300:ILE:HG22  | 2.02                    | 0.41        |
| 5:A:160:LYS:HD2   | 5:A:160:LYS:HA    | 1.91                    | 0.41        |
| 5:L:58:ILE:HG12   | 5:L:212:MET:HG2   | 2.03                    | 0.41        |
| 1:N:178:ARG:HE    | 1:N:178:ARG:HB3   | 1.50                    | 0.40        |
| 2:P:116:VAL:HG23  | 2:P:127:ILE:O     | 2.21                    | 0.40        |
| 2:P:147:ARG:HD2   | 2:P:206:PRO:HA    | 2.03                    | 0.40        |
| 9:I:37:ILE:HD13   | 9:I:37:ILE:HA     | 1.97                    | 0.40        |
| 1:N:10:LEU:HD23   | 1:N:10:LEU:HA     | 1.89                    | 0.40        |
| 1:C:208:ASN:HB2   | 1:C:209:PRO:HD2   | 2.03                    | 0.40        |
| 2:P:72:PHE:HE2    | 13:N:505:PTY:H152 | 1.86                    | 0.40        |
| 6:B:241:ASN:HB3   | 6:B:314:ILE:HD12  | 2.03                    | 0.40        |
| 6:M:332:VAL:HG23  | 6:M:383:PRO:HB3   | 2.03                    | 0.40        |
| 1:C:224:TYR:HB3   | 7:D:315:TRP:CZ2   | 2.57                    | 0.40        |



| Atom-1           | Atom-2            | $\begin{array}{c} {\rm Interatomic}\\ {\rm distance}~({\rm \AA}) \end{array}$ | Clash<br>overlap (Å) |  |  |
|------------------|-------------------|-------------------------------------------------------------------------------|----------------------|--|--|
| 5:L:265:GLY:HA3  | 5:L:447:ASP:HB3   | 2.03                                                                          | 0.40                 |  |  |
| 1:C:230:LEU:HD23 | 1:C:230:LEU:HA    | 1.89                                                                          | 0.40                 |  |  |
| 7:O:197:PRO:HG3  | 18:O:401:HEC:HMD3 | 2.03                                                                          | 0.40                 |  |  |

There are no symmetry-related clashes.

## 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed                  | Favoured   | Allowed | Outliers | Perce | entiles |
|-----|-------|---------------------------|------------|---------|----------|-------|---------|
| 1   | С     | 381/385~(99%)             | 373~(98%)  | 8 (2%)  | 0        | 100   | 100     |
| 1   | Ν     | 381/385~(99%)             | 373 (98%)  | 8 (2%)  | 0        | 100   | 100     |
| 2   | Ε     | 59/225~(26%)              | 58 (98%)   | 1 (2%)  | 0        | 100   | 100     |
| 2   | Р     | 184/225~(82%)             | 171 (93%)  | 12 (6%) | 1 (0%)   | 29    | 54      |
| 3   | G     | 122/128~(95%)             | 122 (100%) | 0       | 0        | 100   | 100     |
| 3   | R     | 122/128~(95%)             | 122 (100%) | 0       | 0        | 100   | 100     |
| 4   | F     | 69/137~(50%)              | 66 (96%)   | 3 (4%)  | 0        | 100   | 100     |
| 4   | Q     | 69/137~(50%)              | 66 (96%)   | 3 (4%)  | 0        | 100   | 100     |
| 5   | А     | 434/474~(92%)             | 423 (98%)  | 11 (2%) | 0        | 100   | 100     |
| 5   | L     | 434/474~(92%)             | 422 (97%)  | 12 (3%) | 0        | 100   | 100     |
| 6   | В     | 400/417~(96%)             | 383 (96%)  | 16 (4%) | 1 (0%)   | 41    | 66      |
| 6   | М     | 400/417~(96%)             | 386 (96%)  | 14 (4%) | 0        | 100   | 100     |
| 7   | D     | 242/330~(73%)             | 239 (99%)  | 3 (1%)  | 0        | 100   | 100     |
| 7   | Ο     | 242/330~(73%)             | 239 (99%)  | 3 (1%)  | 0        | 100   | 100     |
| 8   | Н     | $8\overline{3}/93~(89\%)$ | 82 (99%)   | 1 (1%)  | 0        | 100   | 100     |
| 8   | S     | 83/93~(89%)               | 82 (99%)   | 1 (1%)  | 0        | 100   | 100     |
| 9   | Ι     | 52/69~(75%)               | 51 (98%)   | 1 (2%)  | 0        | 100   | 100     |



| 00.000 | contract from protocol pagem |                 |            |          |          |       |        |
|--------|------------------------------|-----------------|------------|----------|----------|-------|--------|
| Mol    | Chain                        | Analysed        | Favoured   | Allowed  | Outliers | Perce | ntiles |
| 9      | Т                            | 52/69~(75%)     | 51 (98%)   | 1 (2%)   | 0        | 100   | 100    |
| 10     | J                            | 73/82~(89%)     | 71 (97%)   | 2(3%)    | 0        | 100   | 100    |
| 10     | U                            | 73/82~(89%)     | 71 (97%)   | 2(3%)    | 0        | 100   | 100    |
| All    | All                          | 3955/4680~(84%) | 3851 (97%) | 102 (3%) | 2~(0%)   | 54    | 78     |

All (2) Ramachandran outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 6   | В     | 368 | SER  |
| 2   | Р     | 172 | GLY  |

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

| Mol | Chain        | Analysed                    | Rotameric  | Outliers | Perce | entiles |
|-----|--------------|-----------------------------|------------|----------|-------|---------|
| 1   | $\mathbf{C}$ | 331/333~(99%)               | 322~(97%)  | 9~(3%)   | 44    | 74      |
| 1   | Ν            | 331/333~(99%)               | 320~(97%)  | 11 (3%)  | 38    | 67      |
| 2   | Ε            | 49/182~(27%)                | 44 (90%)   | 5 (10%)  | 7     | 17      |
| 2   | Р            | 154/182~(85%)               | 136~(88%)  | 18 (12%) | 5     | 12      |
| 3   | G            | 113/117~(97%)               | 105~(93%)  | 8 (7%)   | 14    | 34      |
| 3   | R            | 113/117~(97%)               | 110~(97%)  | 3~(3%)   | 44    | 74      |
| 4   | F            | 61/123~(50%)                | 58~(95%)   | 3~(5%)   | 25    | 52      |
| 4   | Q            | 61/123~(50%)                | 60~(98%)   | 1 (2%)   | 62    | 85      |
| 5   | А            | 377/407~(93%)               | 366~(97%)  | 11 (3%)  | 42    | 71      |
| 5   | L            | 377/407~(93%)               | 366~(97%)  | 11 (3%)  | 42    | 71      |
| 6   | В            | 311/322~(97%)               | 301~(97%)  | 10 (3%)  | 39    | 68      |
| 6   | М            | 311/322~(97%)               | 302~(97%)  | 9(3%)    | 42    | 71      |
| 7   | D            | 192/268~(72%)               | 191 (100%) | 1 (0%)   | 88    | 96      |
| 7   | Ο            | 192/268~(72%)               | 191 (100%) | 1 (0%)   | 88    | 96      |
| 8   | Н            | $\overline{67/71} \ (94\%)$ | 66 (98%)   | 1 (2%)   | 65    | 86      |



| Mol | Chain | Analysed        | Rotameric | Outliers | Percentiles |
|-----|-------|-----------------|-----------|----------|-------------|
| 8   | S     | 67/71~(94%)     | 66~(98%)  | 1 (2%)   | 65 86       |
| 9   | Ι     | 46/57~(81%)     | 45~(98%)  | 1 (2%)   | 52 79       |
| 9   | Т     | 46/57~(81%)     | 45~(98%)  | 1 (2%)   | 52 79       |
| 10  | J     | 63/68~(93%)     | 62~(98%)  | 1 (2%)   | 62 85       |
| 10  | U     | 63/68~(93%)     | 63~(100%) | 0        | 100 100     |
| All | All   | 3325/3896~(85%) | 3219(97%) | 106 (3%) | 42 68       |

Continued from previous page...

All (106) residues with a non-rotameric side chain are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | С     | 79  | ARG  |
| 1   | С     | 89  | PHE  |
| 1   | С     | 136 | PHE  |
| 1   | С     | 178 | ARG  |
| 1   | С     | 184 | TYR  |
| 1   | С     | 197 | HIS  |
| 1   | С     | 250 | LYS  |
| 1   | С     | 288 | LYS  |
| 1   | С     | 369 | MET  |
| 2   | Р     | 54  | LYS  |
| 2   | Р     | 62  | ARG  |
| 2   | Р     | 90  | ASN  |
| 2   | Р     | 100 | MET  |
| 2   | Р     | 102 | LYS  |
| 2   | Р     | 106 | LYS  |
| 2   | Р     | 115 | ASN  |
| 2   | Р     | 116 | VAL  |
| 2   | Р     | 117 | ILE  |
| 2   | Р     | 119 | LYS  |
| 2   | Р     | 143 | VAL  |
| 2   | Р     | 146 | LEU  |
| 2   | Р     | 147 | ARG  |
| 2   | Р     | 158 | LYS  |
| 2   | Р     | 176 | ILE  |
| 2   | Р     | 195 | ASP  |
| 2   | Р     | 196 | ILE  |
| 2   | Р     | 213 | GLU  |
| 3   | G     | 3   | SER  |
| 3   | G     | 6   | SER  |
| 3   | G     | 17  | SER  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 3   | G     | 22  | LYS  |
| 3   | G     | 23  | ILE  |
| 3   | G     | 40  | LEU  |
| 3   | G     | 50  | GLU  |
| 3   | G     | 123 | GLU  |
| 4   | F     | 83  | HIS  |
| 4   | F     | 96  | HIS  |
| 4   | F     | 100 | GLU  |
| 5   | А     | 79  | LEU  |
| 5   | А     | 82  | LYS  |
| 5   | А     | 87  | ARG  |
| 5   | А     | 94  | LEU  |
| 5   | А     | 97  | GLU  |
| 5   | А     | 137 | SER  |
| 5   | А     | 197 | THR  |
| 5   | А     | 230 | GLU  |
| 5   | А     | 267 | GLU  |
| 5   | А     | 397 | LEU  |
| 5   | А     | 466 | ARG  |
| 6   | В     | 45  | SER  |
| 6   | В     | 60  | PHE  |
| 6   | В     | 79  | LEU  |
| 6   | В     | 102 | GLN  |
| 6   | В     | 119 | LYS  |
| 6   | В     | 247 | LEU  |
| 6   | В     | 249 | ILE  |
| 6   | В     | 261 | SER  |
| 6   | В     | 345 | LYS  |
| 6   | В     | 376 | GLU  |
| 7   | D     | 193 | GLN  |
| 8   | Н     | 51  | ARG  |
| 9   | Ι     | 27  | PHE  |
| 10  | J     | 11  | LYS  |
| 1   | Ν     | 79  | ARG  |
| 1   | N     | 89  | PHE  |
| 1   | N     | 136 | PHE  |
| 1   | N     | 178 | ARG  |
| 1   | N     | 184 | TYR  |
| 1   | Ν     | 187 | PRO  |
| 1   | N     | 197 | HIS  |
| 1   | N     | 250 | LYS  |
| 1   | N     | 255 | ASP  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | N     | 288 | LYS  |
| 1   | N     | 369 | MET  |
| 2   | Е     | 54  | LYS  |
| 2   | Е     | 55  | ASP  |
| 2   | Е     | 62  | ARG  |
| 2   | Е     | 65  | SER  |
| 2   | Е     | 90  | ASN  |
| 3   | R     | 17  | SER  |
| 3   | R     | 22  | LYS  |
| 3   | R     | 23  | ILE  |
| 4   | Q     | 83  | HIS  |
| 5   | L     | 29  | LYS  |
| 5   | L     | 48  | LEU  |
| 5   | L     | 51  | THR  |
| 5   | L     | 87  | ARG  |
| 5   | L     | 97  | GLU  |
| 5   | L     | 99  | MET  |
| 5   | L     | 137 | SER  |
| 5   | L     | 185 | LEU  |
| 5   | L     | 378 | SER  |
| 5   | L     | 441 | LYS  |
| 5   | L     | 466 | ARG  |
| 6   | М     | 19  | GLU  |
| 6   | М     | 32  | SER  |
| 6   | М     | 60  | PHE  |
| 6   | М     | 101 | LYS  |
| 6   | М     | 119 | LYS  |
| 6   | М     | 272 | SER  |
| 6   | М     | 273 | VAL  |
| 6   | М     | 331 | GLU  |
| 6   | М     | 376 | GLU  |
| 7   | 0     | 193 | GLN  |
| 8   | S     | 51  | ARG  |
| 9   | Т     | 27  | PHE  |

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (23) such sidechains are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | С     | 11  | ASN  |
| 1   | С     | 14  | ASN  |
| 1   | С     | 173 | ASN  |
| 1   | С     | 202 | HIS  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | С     | 332 | ASN  |
| 2   | Р     | 90  | ASN  |
| 3   | G     | 54  | ASN  |
| 4   | F     | 132 | HIS  |
| 5   | А     | 74  | HIS  |
| 5   | А     | 222 | HIS  |
| 6   | В     | 87  | HIS  |
| 6   | В     | 215 | GLN  |
| 10  | J     | 70  | HIS  |
| 1   | Ν     | 14  | ASN  |
| 1   | Ν     | 202 | HIS  |
| 1   | N     | 332 | ASN  |
| 2   | Е     | 90  | ASN  |
| 4   | Q     | 132 | HIS  |
| 6   | М     | 87  | HIS  |
| 6   | М     | 92  | HIS  |
| 6   | М     | 184 | GLN  |
| 6   | М     | 215 | GLN  |
| 10  | U     | 70  | HIS  |

#### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

### 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

## 5.6 Ligand geometry (i)

31 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the



| Mal   | <b>T</b> | Chain | Dag  | T in la | Bond lengths   |      | Bond angles |                |      |          |
|-------|----------|-------|------|---------|----------------|------|-------------|----------------|------|----------|
| IVIOI | Type     | Chain | Res  | LINK    | Counts         | RMSZ | # Z >2      | Counts         | RMSZ | # Z >2   |
| 11    | HEM      | С     | 502  | 1       | 41,50,50       | 1.39 | 6 (14%)     | 45,82,82       | 2.45 | 22 (48%) |
| 14    | CDL      | Н     | 701  | -       | 49,49,99       | 0.38 | 0           | 55,61,111      | 0.72 | 0        |
| 13    | PTY      | Ν     | 505  | -       | 40,40,49       | 0.39 | 0           | $43,\!45,\!54$ | 0.75 | 2 (4%)   |
| 14    | CDL      | С     | 505  | -       | 47,47,99       | 0.49 | 0           | 53,59,111      | 0.92 | 3 (5%)   |
| 11    | HEM      | С     | 501  | 1       | 41,50,50       | 1.48 | 6 (14%)     | 45,82,82       | 2.39 | 15 (33%) |
| 14    | CDL      | L     | 3001 | -       | 41,41,99       | 0.43 | 0           | 45,51,111      | 0.75 | 1 (2%)   |
| 14    | CDL      | L     | 3002 | -       | 46,46,99       | 0.39 | 0           | 51,56,111      | 0.87 | 3(5%)    |
| 14    | CDL      | N     | 506  | _       | 47,47,99       | 0.51 | 0           | 53,59,111      | 0.91 | 3 (5%)   |
| 18    | HEC      | Ο     | 401  | 7       | 32,50,50       | 1.82 | 10 (31%)    | 24,82,82       | 2.90 | 8 (33%)  |
| 17    | XP4      | U     | 101  | -       | 23,23,39       | 1.47 | 2 (8%)      | 27,28,44       | 2.41 | 7 (25%)  |
| 14    | CDL      | S     | 101  | -       | 38,38,99       | 0.49 | 0           | 44,50,111      | 1.25 | 5 (11%)  |
| 16    | FES      | Р     | 301  | 2       | 0,4,4          | -    | _           | _              |      |          |
| 14    | CDL      | А     | 3002 | -       | 46,46,99       | 0.40 | 0           | 51,56,111      | 0.83 | 2 (3%)   |
| 15    | LMT      | Р     | 302  | -       | 36,36,36       | 0.53 | 0           | 47,47,47       | 1.02 | 5 (10%)  |
| 11    | HEM      | N     | 501  | 1       | 41,50,50       | 1.52 | 7 (17%)     | 45,82,82       | 2.28 | 15 (33%) |
| 11    | HEM      | N     | 502  | 1       | 41,50,50       | 1.38 | 6 (14%)     | 45,82,82       | 2.33 | 21 (46%) |
| 14    | CDL      | Ν     | 504  | -       | 49,49,99       | 0.48 | 1 (2%)      | 55,61,111      | 0.58 | 0        |
| 18    | HEC      | D     | 401  | 7       | 32,50,50       | 1.77 | 9 (28%)     | 24,82,82       | 3.00 | 6 (25%)  |
| 15    | LMT      | С     | 506  | -       | 36,36,36       | 0.56 | 0           | 47,47,47       | 1.42 | 10 (21%) |
| 13    | PTY      | Е     | 401  | -       | 40,40,49       | 0.44 | 0           | 43,45,54       | 0.49 | 0        |
| 13    | PTY      | С     | 504  | -       | 40,40,49       | 0.37 | 0           | 43,45,54       | 0.58 | 0        |
| 15    | LMT      | Ν     | 507  | -       | 36,36,36       | 0.51 | 0           | 47,47,47       | 1.14 | 4 (8%)   |
| 12    | PC1      | Ι     | 201  | -       | 31,31,53       | 0.41 | 0           | 37,39,61       | 0.67 | 0        |
| 12    | PC1      | Т     | 201  | -       | 31,31,53       | 0.40 | 0           | 37,39,61       | 0.61 | 0        |
| 17    | XP4      | А     | 3003 | -       | $23,\!23,\!39$ | 1.50 | 2 (8%)      | $27,\!28,\!44$ | 2.60 | 9 (33%)  |
| 13    | PTY      | Р     | 303  | -       | 40,40,49       | 0.50 | 0           | 43,45,54       | 0.63 | 0        |
| 12    | PC1      | С     | 503  | -       | $37,\!37,\!53$ | 0.79 | 1 (2%)      | $43,\!45,\!61$ | 1.01 | 3 (6%)   |
| 12    | PC1      | Ν     | 503  | -       | 37,37,53       | 0.72 | 0           | 43,45,61       | 0.85 | 1 (2%)   |
| 15    | LMT      | J     | 101  | -       | 36,36,36       | 0.55 | 0           | 47,47,47       | 1.20 | 5 (10%)  |
| 14    | CDL      | А     | 3001 | -       | 41,41,99       | 0.56 | 0           | 45,51,111      | 0.69 | 1 (2%)   |
| 14    | CDL      | Н     | 702  | -       | 38,38,99       | 0.45 | 0           | 44,50,111      | 1.20 | 4 (9%)   |

expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns.



'-' means no outliers of that kind were identified.

| Mol | Type | Chain | Res  | Link | Chirals | Torsions     | Rings   |
|-----|------|-------|------|------|---------|--------------|---------|
| 11  | HEM  | С     | 502  | 1    | -       | 4/12/54/54   | -       |
| 14  | CDL  | Н     | 701  | -    | -       | 34/59/59/110 | -       |
| 13  | PTY  | N     | 505  | -    | -       | 30/44/44/53  | -       |
| 14  | CDL  | С     | 505  | -    | -       | 30/57/57/110 | -       |
| 11  | HEM  | С     | 501  | 1    | -       | 5/12/54/54   | -       |
| 14  | CDL  | L     | 3001 | -    | -       | 20/48/48/110 | -       |
| 14  | CDL  | L     | 3002 | -    | _       | 27/54/54/110 | -       |
| 14  | CDL  | N     | 506  | -    | -       | 28/57/57/110 | -       |
| 18  | HEC  | 0     | 401  | 7    | -       | 2/10/54/54   | -       |
| 17  | XP4  | U     | 101  | -    | -       | 3/24/24/41   | -       |
| 14  | CDL  | S     | 101  | -    | -       | 29/48/48/110 | -       |
| 16  | FES  | Р     | 301  | 2    | -       | -            | 0/1/1/1 |
| 14  | CDL  | A     | 3002 | -    | -       | 30/54/54/110 | -       |
| 15  | LMT  | Р     | 302  | -    | -       | 6/21/61/61   | 0/2/2/2 |
| 11  | HEM  | N     | 501  | 1    | -       | 5/12/54/54   | -       |
| 11  | HEM  | N     | 502  | 1    | -       | 4/12/54/54   | -       |
| 14  | CDL  | N     | 504  | -    | -       | 35/59/59/110 | -       |
| 18  | HEC  | D     | 401  | 7    | -       | 2/10/54/54   | -       |
| 15  | LMT  | С     | 506  | -    | -       | 15/21/61/61  | 0/2/2/2 |
| 13  | PTY  | Е     | 401  | -    | -       | 26/44/44/53  | -       |
| 13  | PTY  | С     | 504  | -    | -       | 29/44/44/53  | -       |
| 15  | LMT  | N     | 507  | -    | -       | 13/21/61/61  | 0/2/2/2 |
| 12  | PC1  | Ι     | 201  | -    | -       | 15/35/35/57  | -       |
| 12  | PC1  | Т     | 201  | -    | -       | 13/35/35/57  | -       |
| 17  | XP4  | А     | 3003 | -    | -       | 1/24/24/41   | -       |
| 13  | PTY  | Р     | 303  | -    | -       | 25/44/44/53  | -       |
| 12  | PC1  | С     | 503  | -    | -       | 13/41/41/57  | -       |
| 12  | PC1  | N     | 503  | -    | -       | 13/41/41/57  | -       |
| 15  | LMT  | J     | 101  | -    | -       | 14/21/61/61  | 0/2/2/2 |
| 14  | CDL  | А     | 3001 | -    | -       | 15/48/48/110 | -       |
| 14  | CDL  | Н     | 702  | -    | -       | 29/48/48/110 | -       |

All (50) bond length outliers are listed below:



| Mol | Chain        | Res  | Type | Atoms   | Z     | Observed(Å) | Ideal(Å) |
|-----|--------------|------|------|---------|-------|-------------|----------|
| 17  | U            | 101  | XP4  | O7-C18  | 5.28  | 1.47        | 1.35     |
| 17  | А            | 3003 | XP4  | O7-C18  | 5.22  | 1.47        | 1.35     |
| 18  | D            | 401  | HEC  | C2B-C3B | 4.48  | 1.45        | 1.40     |
| 18  | 0            | 401  | HEC  | C3C-C2C | 4.12  | 1.45        | 1.40     |
| 11  | Ν            | 501  | HEM  | C3C-C2C | -4.09 | 1.34        | 1.40     |
| 11  | Ν            | 502  | HEM  | C1B-NB  | -3.91 | 1.33        | 1.40     |
| 17  | А            | 3003 | XP4  | O5-C4   | 3.91  | 1.44        | 1.33     |
| 11  | С            | 501  | HEM  | C3C-C2C | -3.85 | 1.35        | 1.40     |
| 11  | С            | 502  | HEM  | C1B-NB  | -3.84 | 1.33        | 1.40     |
| 18  | 0            | 401  | HEC  | C2B-C3B | 3.83  | 1.44        | 1.40     |
| 18  | D            | 401  | HEC  | C3C-C2C | 3.71  | 1.44        | 1.40     |
| 11  | Ν            | 501  | HEM  | C4B-NB  | -3.58 | 1.31        | 1.38     |
| 17  | U            | 101  | XP4  | O5-C4   | 3.54  | 1.43        | 1.33     |
| 11  | Ν            | 501  | HEM  | C1B-NB  | -3.41 | 1.34        | 1.40     |
| 11  | $\mathbf{C}$ | 501  | HEM  | C4B-NB  | -3.35 | 1.31        | 1.38     |
| 11  | С            | 501  | HEM  | C4D-ND  | -3.30 | 1.34        | 1.40     |
| 11  | С            | 501  | HEM  | C1B-NB  | -3.28 | 1.34        | 1.40     |
| 11  | Ν            | 501  | HEM  | C4D-ND  | -3.07 | 1.35        | 1.40     |
| 11  | Ν            | 502  | HEM  | C4B-NB  | -3.02 | 1.32        | 1.38     |
| 11  | $\mathbf{C}$ | 502  | HEM  | C1D-ND  | -2.78 | 1.33        | 1.38     |
| 18  | 0            | 401  | HEC  | C3D-C2D | 2.71  | 1.45        | 1.37     |
| 18  | 0            | 401  | HEC  | C2A-C3A | 2.70  | 1.45        | 1.37     |
| 11  | С            | 502  | HEM  | FE-NB   | 2.66  | 2.10        | 1.96     |
| 11  | Ν            | 501  | HEM  | FE-NB   | 2.58  | 2.09        | 1.96     |
| 12  | С            | 503  | PC1  | C22-C21 | 2.52  | 1.58        | 1.50     |
| 18  | D            | 401  | HEC  | C3D-C2D | 2.52  | 1.45        | 1.37     |
| 18  | Ο            | 401  | HEC  | CAA-C2A | -2.47 | 1.47        | 1.52     |
| 18  | D            | 401  | HEC  | C2A-C3A | 2.46  | 1.45        | 1.37     |
| 11  | С            | 501  | HEM  | FE-NB   | 2.44  | 2.08        | 1.96     |
| 18  | 0            | 401  | HEC  | CAD-C3D | -2.42 | 1.48        | 1.52     |
| 18  | D            | 401  | HEC  | C1B-NB  | -2.40 | 1.31        | 1.36     |
| 11  | С            | 502  | HEM  | C4B-NB  | -2.33 | 1.34        | 1.38     |
| 18  | D            | 401  | HEC  | C2A-C1A | 2.33  | 1.47        | 1.42     |
| 11  | N            | 502  | HEM  | C1D-ND  | -2.31 | 1.34        | 1.38     |
| 11  | С            | 502  | HEM  | CAA-C2A | -2.30 | 1.48        | 1.52     |
| 18  | 0            | 401  | HEC  | C4D-ND  | -2.29 | 1.31        | 1.36     |
| 11  | Ν            | 501  | HEM  | CHB-C1B | 2.27  | 1.40        | 1.35     |
| 11  | С            | 502  | HEM  | CHA-C4D | 2.27  | 1.40        | 1.35     |
| 11  | N            | 502  | HEM  | C4D-ND  | -2.26 | 1.36        | 1.40     |
| 18  | D            | 401  | HEC  | C4D-ND  | -2.25 | 1.31        | 1.36     |
| 18  | D            | 401  | HEC  | C1C-NC  | -2.21 | 1.31        | 1.36     |
| 11  | N            | 501  | HEM  | O2D-CGD | -2.16 | 1.23        | 1.30     |
| 18  | 0            | 401  | HEC  | C4D-CHA | 2.15  | 1.47        | 1.41     |



| Mol | Chain | Res | Type | Atoms   | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|---------|-------|-------------|----------|
| 11  | С     | 501 | HEM  | O2D-CGD | -2.13 | 1.23        | 1.30     |
| 18  | D     | 401 | HEC  | CAD-C3D | -2.10 | 1.49        | 1.52     |
| 14  | N     | 504 | CDL  | C15-C14 | 2.09  | 1.67        | 1.49     |
| 11  | N     | 502 | HEM  | FE-NB   | 2.08  | 2.07        | 1.96     |
| 18  | 0     | 401 | HEC  | C1B-NB  | -2.06 | 1.31        | 1.36     |
| 11  | N     | 502 | HEM  | CAA-C2A | -2.02 | 1.49        | 1.52     |
| 18  | 0     | 401 | HEC  | C3A-C4A | 2.02  | 1.47        | 1.42     |

All (155) bond angle outliers are listed below:

| Mol | Chain | Res  | Type | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------|------|-------------|-------|------------------|---------------|
| 17  | А     | 3003 | XP4  | O7-C18-C19  | 8.28  | 126.32           | 111.09        |
| 18  | D     | 401  | HEC  | CMB-C2B-C3B | 8.01  | 135.23           | 125.82        |
| 17  | U     | 101  | XP4  | O7-C18-C19  | 7.97  | 125.75           | 111.09        |
| 18  | D     | 401  | HEC  | C1D-C2D-C3D | -7.59 | 101.72           | 107.00        |
| 18  | 0     | 401  | HEC  | C1D-C2D-C3D | -7.32 | 101.91           | 107.00        |
| 11  | N     | 502  | HEM  | CHC-C4B-NB  | 7.29  | 132.35           | 124.43        |
| 18  | 0     | 401  | HEC  | CMB-C2B-C3B | 7.14  | 134.21           | 125.82        |
| 11  | С     | 502  | HEM  | CHC-C4B-NB  | 6.48  | 131.47           | 124.43        |
| 11  | С     | 501  | HEM  | CHC-C4B-NB  | 6.46  | 131.44           | 124.43        |
| 11  | Ν     | 501  | HEM  | CBA-CAA-C2A | -6.22 | 102.01           | 112.62        |
| 11  | С     | 501  | HEM  | CBA-CAA-C2A | -6.05 | 102.30           | 112.62        |
| 11  | N     | 501  | HEM  | CHA-C4D-ND  | 5.90  | 131.67           | 124.38        |
| 17  | А     | 3003 | XP4  | O7-C18-O8   | -5.71 | 111.61           | 122.96        |
| 17  | U     | 101  | XP4  | O7-C18-O8   | -5.67 | 111.70           | 122.96        |
| 11  | С     | 501  | HEM  | CHA-C4D-ND  | 5.32  | 130.95           | 124.38        |
| 11  | N     | 501  | HEM  | CHC-C4B-NB  | 5.24  | 130.13           | 124.43        |
| 18  | D     | 401  | HEC  | CAA-CBA-CGA | -5.10 | 99.46            | 113.76        |
| 11  | N     | 501  | HEM  | CHD-C1D-ND  | 4.88  | 129.73           | 124.43        |
| 18  | 0     | 401  | HEC  | CMC-C2C-C3C | 4.79  | 131.45           | 125.82        |
| 18  | 0     | 401  | HEC  | CAA-CBA-CGA | -4.64 | 100.76           | 113.76        |
| 11  | С     | 501  | HEM  | CHD-C1D-ND  | 4.57  | 129.40           | 124.43        |
| 18  | D     | 401  | HEC  | CMC-C2C-C3C | 4.56  | 131.19           | 125.82        |
| 18  | 0     | 401  | HEC  | CBD-CAD-C3D | -4.52 | 104.91           | 112.62        |
| 11  | С     | 502  | HEM  | C1B-NB-C4B  | 4.51  | 109.73           | 105.07        |
| 15  | С     | 506  | LMT  | C1'-O5'-C5' | 4.43  | 122.39           | 113.69        |
| 11  | С     | 501  | HEM  | C1B-NB-C4B  | 4.33  | 109.55           | 105.07        |
| 11  | N     | 502  | HEM  | C1B-NB-C4B  | 4.23  | 109.44           | 105.07        |
| 11  | С     | 502  | HEM  | C4C-CHD-C1D | -4.17 | 117.06           | 122.56        |
| 11  | С     | 502  | HEM  | CHA-C4D-ND  | 4.14  | 129.49           | 124.38        |
| 11  | С     | 501  | HEM  | CAD-CBD-CGD | -4.12 | 104.74           | 113.60        |
| 18  | D     | 401  | HEC  | CBD-CAD-C3D | -4.11 | 105.60           | 112.62        |



| and in a  | £    |          |      |
|-----------|------|----------|------|
| Continuea | jrom | previous | page |

| Mol | Chain | $\mathbf{Res}$ | Type | Atoms       |       | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|----------------|------|-------------|-------|------------------|---------------|
| 11  | Ν     | 502            | HEM  | C4B-CHC-C1C | -3.91 | 117.39           | 122.56        |
| 17  | А     | 3003           | XP4  | P1-O4-C1    | 3.90  | 129.05           | 118.30        |
| 11  | С     | 502            | HEM  | CMA-C3A-C4A | -3.85 | 122.54           | 128.46        |
| 15  | J     | 101            | LMT  | C1-O1'-C1'  | -3.75 | 107.62           | 113.84        |
| 11  | Ν     | 501            | HEM  | CHA-C4D-C3D | -3.70 | 118.39           | 125.33        |
| 11  | N     | 501            | HEM  | C1B-NB-C4B  | 3.66  | 108.86           | 105.07        |
| 11  | С     | 502            | HEM  | CHD-C1D-ND  | 3.66  | 128.41           | 124.43        |
| 14  | S     | 101            | CDL  | CB4-OB6-CB5 | 3.63  | 124.67           | 117.90        |
| 11  | N     | 502            | HEM  | CHB-C1B-NB  | 3.60  | 128.82           | 124.38        |
| 17  | А     | 3003           | XP4  | O4-P1-O2    | -3.58 | 96.43            | 106.47        |
| 11  | С     | 502            | HEM  | CHA-C4D-C3D | -3.54 | 118.68           | 125.33        |
| 14  | Н     | 702            | CDL  | CB4-OB6-CB5 | 3.54  | 124.49           | 117.90        |
| 17  | U     | 101            | XP4  | O5-C4-O6    | -3.49 | 114.78           | 123.59        |
| 11  | С     | 501            | HEM  | CHA-C4D-C3D | -3.48 | 118.80           | 125.33        |
| 14  | L     | 3001           | CDL  | OB6-CB4-CB3 | -3.42 | 97.57            | 109.56        |
| 11  | Ν     | 502            | HEM  | C4C-CHD-C1D | -3.38 | 118.09           | 122.56        |
| 11  | С     | 502            | HEM  | CHD-C1D-C2D | -3.31 | 119.80           | 124.98        |
| 11  | Ν     | 502            | HEM  | CHD-C1D-C2D | -3.28 | 119.85           | 124.98        |
| 11  | Ν     | 501            | HEM  | CAD-CBD-CGD | -3.27 | 106.57           | 113.60        |
| 11  | Ν     | 502            | HEM  | CHC-C4B-C3B | -3.26 | 119.57           | 124.57        |
| 11  | С     | 501            | HEM  | CHD-C1D-C2D | -3.24 | 119.92           | 124.98        |
| 14  | С     | 505            | CDL  | OB6-CB4-CB3 | 3.24  | 120.12           | 108.40        |
| 17  | А     | 3003           | XP4  | O5-C4-O6    | -3.21 | 115.50           | 123.59        |
| 17  | U     | 101            | XP4  | P1-O4-C1    | 3.18  | 127.06           | 118.30        |
| 15  | J     | 101            | LMT  | O5'-C1'-O1' | -3.18 | 102.44           | 109.97        |
| 11  | С     | 502            | HEM  | CHB-C1B-NB  | 3.16  | 128.29           | 124.38        |
| 11  | С     | 502            | HEM  | C2C-C3C-C4C | 3.09  | 109.05           | 106.90        |
| 11  | Ν     | 502            | HEM  | CHD-C1D-ND  | 3.08  | 127.78           | 124.43        |
| 11  | С     | 501            | HEM  | CMA-C3A-C4A | -3.08 | 123.73           | 128.46        |
| 11  | С     | 502            | HEM  | C3C-C4C-NC  | -3.07 | 105.15           | 110.94        |
| 17  | А     | 3003           | XP4  | O5-C4-C5    | 3.06  | 121.52           | 111.91        |
| 17  | U     | 101            | XP4  | O5-C4-C5    | 3.04  | 121.44           | 111.91        |
| 12  | С     | 503            | PC1  | O22-C21-C22 | 3.02  | 135.53           | 123.73        |
| 17  | А     | 3003           | XP4  | O1-P1-O4    | 2.93  | 114.54           | 106.73        |
| 11  | N     | 502            | HEM  | CBA-CAA-C2A | -2.90 | 107.68           | 112.62        |
| 14  | N     | 506            | CDL  | OB6-CB4-CB3 | 2.89  | 118.88           | 108.40        |
| 14  | Н     | 702            | CDL  | OB6-CB4-CB6 | 2.87  | 118.79           | 108.40        |
| 14  | Н     | 702            | CDL  | OA5-PA1-OA3 | -2.87 | 97.86            | 109.07        |
| 11  | N     | 501            | HEM  | CHD-C1D-C2D | -2.86 | 120.51           | 124.98        |
| 11  | С     | 502            | HEM  | CBA-CAA-C2A | -2.84 | 107.77           | 112.62        |
| 14  | A     | 3002           | CDL  | OA6-CA4-CA6 | 2.84  | 118.68           | 108.40        |
| 11  | С     | 502            | HEM  | CHC-C4B-C3B | -2.81 | 120.26           | 124.57        |



| $\alpha \cdot \cdot \cdot \cdot$ | C    |          |      |
|----------------------------------|------|----------|------|
| Continued                        | from | previous | page |

| Mol | Chain | Res  | Type | Atoms       | Z     | $Observed(^{o})$    | $Ideal(^{o})$ |
|-----|-------|------|------|-------------|-------|---------------------|---------------|
| 14  | S     | 101  | CDL  | OB6-CB5-C51 | 2.77  | 116.19              | 111.09        |
| 12  | С     | 503  | PC1  | O21-C21-C22 | -2.77 | 105.52              | 111.50        |
| 11  | С     | 501  | HEM  | C4A-C3A-C2A | 2.76  | 108.92              | 107.00        |
| 11  | N     | 501  | HEM  | C4A-C3A-C2A | 2.73  | 108.90              | 107.00        |
| 18  | 0     | 401  | HEC  | CMD-C2D-C3D | 2.73  | 130.09              | 124.94        |
| 14  | S     | 101  | CDL  | OB6-CB4-CB6 | 2.71  | 118.23              | 108.40        |
| 15  | Р     | 302  | LMT  | C4-C3-C2    | -2.71 | 100.67              | 114.42        |
| 11  | Ν     | 502  | HEM  | O2D-CGD-CBD | 2.71  | 122.73              | 114.03        |
| 15  | N     | 507  | LMT  | C3B-C4B-C5B | 2.70  | 115.06              | 110.24        |
| 14  | С     | 505  | CDL  | CB4-OB6-CB5 | 2.69  | 124.42              | 117.79        |
| 15  | С     | 506  | LMT  | O5'-C5'-C4' | 2.69  | 115.42              | 109.75        |
| 11  | Ν     | 502  | HEM  | C3C-C4C-NC  | -2.67 | 105.91              | 110.94        |
| 11  | Ν     | 502  | HEM  | CAD-C3D-C4D | 2.67  | 129.32              | 124.66        |
| 11  | С     | 502  | HEM  | C4B-CHC-C1C | -2.66 | 119.05              | 122.56        |
| 11  | Ν     | 502  | HEM  | CHA-C4D-ND  | 2.64  | 127.64              | 124.38        |
| 11  | С     | 501  | HEM  | CHC-C4B-C3B | -2.63 | 120.55              | 124.57        |
| 15  | Ν     | 507  | LMT  | C1B-O5B-C5B | 2.60  | 118.80              | 113.69        |
| 11  | С     | 502  | HEM  | O2D-CGD-CBD | 2.60  | 122.39              | 114.03        |
| 14  | L     | 3002 | CDL  | OA6-CA4-CA6 | 2.59  | 117.80              | 108.40        |
| 15  | С     | 506  | LMT  | C1B-O5B-C5B | 2.58  | 118.75              | 113.69        |
| 15  | С     | 506  | LMT  | O5'-C1'-C2' | 2.55  | 115.75              | 110.35        |
| 15  | Ν     | 507  | LMT  | O5B-C5B-C4B | 2.51  | 114.25              | 109.69        |
| 11  | С     | 502  | HEM  | CBD-CAD-C3D | -2.51 | 105.65              | 112.63        |
| 14  | S     | 101  | CDL  | OA5-PA1-OA3 | -2.50 | 99.30               | 109.07        |
| 14  | Ν     | 506  | CDL  | CB4-OB6-CB5 | 2.50  | 123.93              | 117.79        |
| 14  | L     | 3002 | CDL  | OA2-PA1-OA3 | 2.48  | 118.77              | 109.07        |
| 11  | С     | 502  | HEM  | CAD-C3D-C4D | 2.47  | 128.97              | 124.66        |
| 14  | А     | 3001 | CDL  | OB8-CB6-CB4 | 2.46  | 117.65              | 105.77        |
| 15  | С     | 506  | LMT  | C3B-C4B-C5B | 2.40  | 114.53              | 110.24        |
| 13  | Ν     | 505  | PTY  | O7-C8-C11   | 2.40  | 116.67              | 111.50        |
| 14  | А     | 3002 | CDL  | OA2-PA1-OA3 | 2.39  | 118.39              | 109.07        |
| 14  | L     | 3002 | CDL  | OA5-PA1-OA3 | -2.38 | 99.75               | 109.07        |
| 15  | J     | 101  | LMT  | C1'-O5'-C5' | -2.38 | 109.01              | 113.69        |
| 15  | Ν     | 507  | LMT  | C1'-O5'-C5' | 2.35  | 118.31              | 113.69        |
| 15  | С     | 506  | LMT  | O1'-C1'-C2' | -2.35 | 104.63              | 108.30        |
| 11  | N     | 501  | HEM  | CHC-C4B-C3B | -2.35 | 120.98              | 124.57        |
| 15  | С     | 506  | LMT  | O5B-C5B-C4B | 2.34  | 113.95              | 109.69        |
| 17  | U     | 101  | XP4  | O3-P1-O4    | -2.32 | 100.57              | 106.73        |
| 11  | N     | 502  | HEM  | CBD-CAD-C3D | -2.30 | 106.22              | 112.63        |
| 11  | N     | 502  | HEM  | CMA-C3A-C4A | -2.30 | 124.94              | 128.46        |
| 11  | С     | 501  | HEM  | CHB-C1B-NB  | 2.30  | 127.22              | 124.38        |
| 11  | С     | 501  | HEM  | CMD-C2D-C1D | 2.29  | $1\overline{28.53}$ | 125.04        |


| Mol | Chain | Res  | Type | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------|------|-------------|-------|------------------|---------------|
| 11  | N     | 502  | HEM  | CHA-C4D-C3D | -2.28 | 121.06           | 125.33        |
| 17  | А     | 3003 | XP4  | O5-C3-C2    | -2.27 | 101.84           | 108.43        |
| 14  | S     | 101  | CDL  | OB6-CB4-CB3 | 2.26  | 116.58           | 108.40        |
| 12  | С     | 503  | PC1  | C23-C22-C21 | 2.25  | 121.81           | 113.62        |
| 11  | N     | 501  | HEM  | CHB-C1B-NB  | 2.23  | 127.13           | 124.38        |
| 11  | С     | 502  | HEM  | C4A-C3A-C2A | 2.22  | 108.54           | 107.00        |
| 11  | С     | 502  | HEM  | O2A-CGA-O1A | -2.21 | 117.79           | 123.30        |
| 15  | Р     | 302  | LMT  | C2'-C3'-C4' | 2.20  | 114.72           | 109.68        |
| 11  | Ν     | 502  | HEM  | CHB-C1B-C2B | -2.19 | 120.67           | 126.72        |
| 14  | С     | 505  | CDL  | OA6-CA5-C11 | 2.19  | 116.22           | 111.50        |
| 11  | Ν     | 502  | HEM  | CMD-C2D-C1D | 2.19  | 128.37           | 125.04        |
| 11  | С     | 502  | HEM  | O2A-CGA-CBA | 2.19  | 121.05           | 114.03        |
| 11  | С     | 501  | HEM  | C3B-C2B-C1B | -2.19 | 104.86           | 106.49        |
| 11  | Ν     | 501  | HEM  | CMC-C2C-C3C | -2.18 | 120.60           | 124.68        |
| 15  | Р     | 302  | LMT  | O5'-C1'-O1' | -2.17 | 104.84           | 109.97        |
| 14  | Ν     | 506  | CDL  | OB6-CB4-CB6 | 2.16  | 116.22           | 108.40        |
| 18  | 0     | 401  | HEC  | O1D-CGD-CBD | -2.14 | 116.20           | 123.08        |
| 18  | 0     | 401  | HEC  | O2A-CGA-CBA | 2.13  | 120.89           | 114.03        |
| 12  | Ν     | 503  | PC1  | O22-C21-C22 | 2.13  | 132.05           | 123.73        |
| 15  | Р     | 302  | LMT  | O1'-C1'-C2' | 2.12  | 111.62           | 108.30        |
| 13  | Ν     | 505  | PTY  | O7-C6-C5    | 2.12  | 116.09           | 108.40        |
| 15  | С     | 506  | LMT  | C6-C5-C4    | -2.12 | 103.66           | 114.42        |
| 14  | Н     | 702  | CDL  | OB6-CB5-C51 | 2.12  | 114.99           | 111.09        |
| 15  | J     | 101  | LMT  | O1'-C1'-C2' | 2.11  | 111.59           | 108.30        |
| 11  | С     | 502  | HEM  | CMA-C3A-C2A | 2.10  | 128.90           | 124.94        |
| 17  | U     | 101  | XP4  | O5-C3-C2    | -2.09 | 102.34           | 108.43        |
| 11  | С     | 501  | HEM  | CBB-CAB-C3B | -2.08 | 117.28           | 127.62        |
| 18  | D     | 401  | HEC  | CMA-C3A-C2A | 2.08  | 128.86           | 124.94        |
| 11  | N     | 501  | HEM  | CBB-CAB-C3B | -2.07 | 117.32           | 127.62        |
| 15  | С     | 506  | LMT  | O2'-C2'-C1' | -2.07 | 105.02           | 110.05        |
| 11  | N     | 502  | HEM  | O1D-CGD-CBD | -2.06 | 116.45           | 123.08        |
| 11  | N     | 502  | HEM  | C2D-C1D-ND  | 2.05  | 112.34           | 109.88        |
| 11  | N     | 502  | HEM  | O2A-CGA-O1A | -2.04 | 118.21           | 123.30        |
| 17  | A     | 3003 | XP4  | O3-P1-O4    | -2.04 | 101.30           | 106.73        |
| 11  | N     | 501  | HEM  | C4D-ND-C1D  | 2.03  | 107.17           | 105.07        |
| 15  | Р     | 302  | LMT  | C1-O1'-C1'  | -2.02 | 110.49           | 113.84        |
| 11  | С     | 502  | HEM  | CBB-CAB-C3B | -2.02 | 117.56           | 127.62        |
| 15  | J     | 101  | LMT  | C3-C2-C1    | -2.02 | 104.53           | 113.49        |
| 15  | С     | 506  | LMT  | C7-C6-C5    | -2.01 | 104.24           | 114.42        |
| 11  | N     | 501  | HEM  | CMD-C2D-C1D | 2.00  | 128.09           | 125.04        |

Continued from previous page...

There are no chirality outliers.



| Mol | Chain | Res  | Type | Atoms           |
|-----|-------|------|------|-----------------|
| 12  | Ι     | 201  | PC1  | C11-O13-P-O12   |
| 12  | Ι     | 201  | PC1  | C11-O13-P-O11   |
| 12  | Т     | 201  | PC1  | C11-O13-P-O12   |
| 12  | Т     | 201  | PC1  | O21-C2-C3-O31   |
| 13  | С     | 504  | PTY  | N1-C2-C3-O11    |
| 13  | С     | 504  | PTY  | C11-C8-O7-C6    |
| 13  | С     | 504  | PTY  | C3-O11-P1-O13   |
| 13  | Р     | 303  | PTY  | C5-O14-P1-O11   |
| 13  | Р     | 303  | PTY  | C5-O14-P1-O12   |
| 13  | Ν     | 505  | PTY  | C11-C8-O7-C6    |
| 13  | Ν     | 505  | PTY  | C3-O11-P1-O12   |
| 13  | Ν     | 505  | PTY  | C3-O11-P1-O13   |
| 13  | Ν     | 505  | PTY  | C5-O14-P1-O13   |
| 13  | Ε     | 401  | PTY  | N1-C2-C3-O11    |
| 13  | Ε     | 401  | PTY  | C3-O11-P1-O13   |
| 13  | Ε     | 401  | PTY  | C5-O14-P1-O12   |
| 14  | С     | 505  | CDL  | O1-C1-CA2-OA2   |
| 14  | С     | 505  | CDL  | CA3-OA5-PA1-OA3 |
| 14  | С     | 505  | CDL  | C11-CA5-OA6-CA4 |
| 14  | С     | 505  | CDL  | CB2-OB2-PB2-OB3 |
| 14  | С     | 505  | CDL  | CB2-OB2-PB2-OB4 |
| 14  | С     | 505  | CDL  | CB2-OB2-PB2-OB5 |
| 14  | С     | 505  | CDL  | CB3-OB5-PB2-OB3 |
| 14  | С     | 505  | CDL  | CB3-OB5-PB2-OB4 |
| 14  | А     | 3001 | CDL  | OA5-CA3-CA4-OA6 |
| 14  | А     | 3001 | CDL  | CB3-CB4-CB6-OB8 |
| 14  | А     | 3002 | CDL  | CA2-C1-CB2-OB2  |
| 14  | А     | 3002 | CDL  | CA2-OA2-PA1-OA3 |
| 14  | А     | 3002 | CDL  | CA2-OA2-PA1-OA4 |
| 14  | А     | 3002 | CDL  | CA2-OA2-PA1-OA5 |
| 14  | А     | 3002 | CDL  | CB3-OB5-PB2-OB3 |
| 14  | A     | 3002 | CDL  | OB5-CB3-CB4-OB6 |
| 14  | Н     | 701  | CDL  | CB3-OB5-PB2-OB3 |
| 14  | Н     | 702  | CDL  | CA2-OA2-PA1-OA4 |
| 14  | Н     | 702  | CDL  | OA9-CA7-OA8-CA6 |
| 14  | Н     | 702  | CDL  | C31-CA7-OA8-CA6 |
| 14  | Н     | 702  | CDL  | CB3-OB5-PB2-OB2 |
| 14  | H     | 702  | CDL  | CB3-OB5-PB2-OB4 |
| 14  | N     | 504  | CDL  | CA2-OA2-PA1-OA3 |
| 14  | Ν     | 504  | CDL  | CA2-OA2-PA1-OA4 |
| 14  | Ν     | 506  | CDL  | CB2-C1-CA2-OA2  |
| 14  | Ν     | 506  | CDL  | CA3-OA5-PA1-OA3 |

All (515) torsion outliers are listed below:



| Mol | Chain | Res  | Type | Atoms           |
|-----|-------|------|------|-----------------|
| 14  | N     | 506  | CDL  | C11-CA5-OA6-CA4 |
| 14  | N     | 506  | CDL  | CB2-OB2-PB2-OB3 |
| 14  | N     | 506  | CDL  | CB2-OB2-PB2-OB4 |
| 14  | N     | 506  | CDL  | CB3-OB5-PB2-OB2 |
| 14  | N     | 506  | CDL  | CB3-OB5-PB2-OB3 |
| 14  | N     | 506  | CDL  | CB3-OB5-PB2-OB4 |
| 14  | L     | 3001 | CDL  | OB5-CB3-CB4-CB6 |
| 14  | L     | 3001 | CDL  | CB3-CB4-CB6-OB8 |
| 14  | L     | 3002 | CDL  | CA2-C1-CB2-OB2  |
| 14  | L     | 3002 | CDL  | CA2-OA2-PA1-OA3 |
| 14  | L     | 3002 | CDL  | CA2-OA2-PA1-OA4 |
| 14  | L     | 3002 | CDL  | CA2-OA2-PA1-OA5 |
| 14  | L     | 3002 | CDL  | OB5-CB3-CB4-OB6 |
| 14  | S     | 101  | CDL  | CA2-OA2-PA1-OA4 |
| 14  | S     | 101  | CDL  | OA9-CA7-OA8-CA6 |
| 14  | S     | 101  | CDL  | C31-CA7-OA8-CA6 |
| 14  | S     | 101  | CDL  | CB3-OB5-PB2-OB2 |
| 14  | S     | 101  | CDL  | CB3-OB5-PB2-OB4 |
| 14  | S     | 101  | CDL  | C51-CB5-OB6-CB4 |
| 15  | J     | 101  | LMT  | C2-C1-O1'-C1'   |
| 17  | U     | 101  | XP4  | C1-O4-P1-O3     |
| 14  | Н     | 702  | CDL  | C51-CB5-OB6-CB4 |
| 14  | Н     | 702  | CDL  | OB9-CB7-OB8-CB6 |
| 14  | S     | 101  | CDL  | OB9-CB7-OB8-CB6 |
| 14  | А     | 3001 | CDL  | CB4-CB6-OB8-CB7 |
| 12  | Т     | 201  | PC1  | C32-C31-O31-C3  |
| 14  | Н     | 702  | CDL  | C71-CB7-OB8-CB6 |
| 14  | S     | 101  | CDL  | C71-CB7-OB8-CB6 |
| 14  | Н     | 702  | CDL  | OB7-CB5-OB6-CB4 |
| 12  | Т     | 201  | PC1  | O32-C31-O31-C3  |
| 14  | А     | 3001 | CDL  | OA9-CA7-OA8-CA6 |
| 14  | Н     | 701  | CDL  | OB9-CB7-OB8-CB6 |
| 14  | N     | 504  | CDL  | OB9-CB7-OB8-CB6 |
| 14  | S     | 101  | CDL  | OB7-CB5-OB6-CB4 |
| 13  | С     | 504  | PTY  | O10-C8-O7-C6    |
| 13  | N     | 505  | PTY  | O10-C8-O7-C6    |
| 14  | N     | 506  | CDL  | OA7-CA5-OA6-CA4 |
| 14  | Н     | 701  | CDL  | C71-CB7-OB8-CB6 |
| 14  | N     | 504  | CDL  | C71-CB7-OB8-CB6 |
| 14  | Н     | 701  | CDL  | OA9-CA7-OA8-CA6 |
| 15  | J     | 101  | LMT  | O5'-C5'-C6'-O6' |
| 14  | А     | 3001 | CDL  | C31-CA7-OA8-CA6 |

Continued from previous page...



| EMD-15333, | 8AC4 |
|------------|------|
|------------|------|

| Mol | Chain | Res  | Type | Atoms           |
|-----|-------|------|------|-----------------|
| 14  | L     | 3001 | CDL  | C31-CA7-OA8-CA6 |
| 14  | L     | 3001 | CDL  | C71-CB7-OB8-CB6 |
| 14  | Н     | 701  | CDL  | C31-CA7-OA8-CA6 |
| 14  | С     | 505  | CDL  | OA7-CA5-OA6-CA4 |
| 14  | L     | 3001 | CDL  | OA9-CA7-OA8-CA6 |
| 14  | L     | 3001 | CDL  | OB9-CB7-OB8-CB6 |
| 15  | J     | 101  | LMT  | C4-C5-C6-C7     |
| 13  | N     | 505  | PTY  | C31-C32-C33-C34 |
| 14  | А     | 3002 | CDL  | O1-C1-CB2-OB2   |
| 14  | N     | 504  | CDL  | O1-C1-CA2-OA2   |
| 14  | N     | 506  | CDL  | O1-C1-CA2-OA2   |
| 14  | L     | 3001 | CDL  | OA5-CA3-CA4-OA6 |
| 14  | L     | 3002 | CDL  | O1-C1-CB2-OB2   |
| 13  | Е     | 401  | PTY  | C35-C36-C37-C38 |
| 14  | А     | 3001 | CDL  | OB6-CB4-CB6-OB8 |
| 14  | А     | 3002 | CDL  | C11-CA5-OA6-CA4 |
| 14  | L     | 3002 | CDL  | C11-CA5-OA6-CA4 |
| 13  | С     | 504  | PTY  | C31-C32-C33-C34 |
| 13  | С     | 504  | PTY  | C35-C36-C37-C38 |
| 13  | Р     | 303  | PTY  | C37-C38-C39-C40 |
| 13  | N     | 505  | PTY  | C33-C34-C35-C36 |
| 15  | N     | 507  | LMT  | O5'-C5'-C6'-O6' |
| 14  | N     | 504  | CDL  | OA9-CA7-OA8-CA6 |
| 15  | С     | 506  | LMT  | O5'-C5'-C6'-O6' |
| 15  | N     | 507  | LMT  | O5B-C5B-C6B-O6B |
| 15  | J     | 101  | LMT  | C4'-C5'-C6'-O6' |
| 15  | Р     | 302  | LMT  | C11-C10-C9-C8   |
| 15  | С     | 506  | LMT  | O5B-C5B-C6B-O6B |
| 13  | N     | 505  | PTY  | C37-C38-C39-C40 |
| 13  | Р     | 303  | PTY  | C35-C36-C37-C38 |
| 15  | J     | 101  | LMT  | C2-C3-C4-C5     |
| 14  | С     | 505  | CDL  | CA2-C1-CB2-OB2  |
| 14  | Н     | 702  | CDL  | CB2-C1-CA2-OA2  |
| 14  | Ν     | 504  | CDL  | CB2-C1-CA2-OA2  |
| 14  | N     | 504  | CDL  | CA2-C1-CB2-OB2  |
| 14  | L     | 3001 | CDL  | OA5-CA3-CA4-CA6 |
| 14  | S     | 101  | CDL  | CA2-C1-CB2-OB2  |
| 14  | A     | 3002 | CDL  | OA7-CA5-OA6-CA4 |
| 14  | L     | 3002 | CDL  | OA7-CA5-OA6-CA4 |
| 15  | N     | 507  | LMT  | C4'-C5'-C6'-O6' |
| 12  | С     | 503  | PC1  | C32-C31-O31-C3  |
| 12  | Ι     | 201  | PC1  | C32-C31-O31-C3  |

Continued from previous page...



| EMD-15333, | 8AC4 |
|------------|------|
|------------|------|

| Mol | Chain | Res  | Type | Atoms           |
|-----|-------|------|------|-----------------|
| 13  | Р     | 303  | PTY  | C31-C30-O4-C1   |
| 14  | L     | 3002 | CDL  | CA7-C31-C32-C33 |
| 14  | N     | 504  | CDL  | C31-CA7-OA8-CA6 |
| 14  | Н     | 702  | CDL  | O1-C1-CA2-OA2   |
| 14  | L     | 3001 | CDL  | OB5-CB3-CB4-OB6 |
| 14  | S     | 101  | CDL  | O1-C1-CA2-OA2   |
| 15  | С     | 506  | LMT  | C4'-C5'-C6'-O6' |
| 14  | L     | 3001 | CDL  | OB6-CB4-CB6-OB8 |
| 14  | N     | 504  | CDL  | C51-CB5-OB6-CB4 |
| 13  | N     | 505  | PTY  | C8-C11-C12-C13  |
| 12  | Ι     | 201  | PC1  | C31-C32-C33-C34 |
| 14  | Н     | 701  | CDL  | CB7-C71-C72-C73 |
| 13  | Е     | 401  | PTY  | C40-C41-C42-C43 |
| 14  | С     | 505  | CDL  | CA7-C31-C32-C33 |
| 14  | А     | 3001 | CDL  | CB7-C71-C72-C73 |
| 14  | А     | 3002 | CDL  | CA7-C31-C32-C33 |
| 14  | Н     | 701  | CDL  | CA5-C11-C12-C13 |
| 14  | Ν     | 504  | CDL  | CA5-C11-C12-C13 |
| 14  | Ν     | 504  | CDL  | CB7-C71-C72-C73 |
| 15  | J     | 101  | LMT  | O5B-C5B-C6B-O6B |
| 12  | Ι     | 201  | PC1  | C21-C22-C23-C24 |
| 12  | Т     | 201  | PC1  | C21-C22-C23-C24 |
| 14  | Ν     | 506  | CDL  | CA7-C31-C32-C33 |
| 12  | С     | 503  | PC1  | O32-C31-O31-C3  |
| 13  | Р     | 303  | PTY  | C33-C34-C35-C36 |
| 15  | С     | 506  | LMT  | O1'-C1-C2-C3    |
| 12  | Т     | 201  | PC1  | C31-C32-C33-C34 |
| 14  | Н     | 702  | CDL  | O1-C1-CB2-OB2   |
| 14  | Ν     | 504  | CDL  | O1-C1-CB2-OB2   |
| 14  | L     | 3001 | CDL  | O1-C1-CB2-OB2   |
| 14  | S     | 101  | CDL  | O1-C1-CB2-OB2   |
| 14  | Ν     | 504  | CDL  | OB7-CB5-OB6-CB4 |
| 12  | Ι     | 201  | PC1  | O32-C31-O31-C3  |
| 13  | Р     | 303  | PTY  | O30-C30-O4-C1   |
| 13  | Ε     | 401  | PTY  | C8-C11-C12-C13  |
| 15  | C     | 506  | LMT  | C4B-C5B-C6B-O6B |
| 12  | Т     | 201  | PC1  | C11-O13-P-O11   |
| 13  | N     | 505  | PTY  | C3-O11-P1-O14   |
| 13  | N     | 505  | PTT  | C5-O14-P1-O11   |
| 13  | Е     | 401  | PTY  | C5-O14-P1-O11   |
| 14  | C     | 505  | CDL  | CB3-OB5-PB2-OB2 |
| 14  | Н     | 702  | CDL  | CA2-OA2-PA1-OA5 |

Continued from previous page...



| EMD-15333, | 8AC4 |
|------------|------|
|------------|------|

| Mol | Chain | Res  | Type | Atoms           |
|-----|-------|------|------|-----------------|
| 14  | N     | 504  | CDL  | CA2-OA2-PA1-OA5 |
| 14  | N     | 506  | CDL  | CB2-OB2-PB2-OB5 |
| 14  | S     | 101  | CDL  | CA2-OA2-PA1-OA5 |
| 12  | N     | 503  | PC1  | C32-C31-O31-C3  |
| 14  | A     | 3002 | CDL  | C51-CB5-OB6-CB4 |
| 15  | N     | 507  | LMT  | C4B-C5B-C6B-O6B |
| 13  | Р     | 303  | PTY  | C30-C31-C32-C33 |
| 14  | A     | 3001 | CDL  | OA5-CA3-CA4-CA6 |
| 14  | Н     | 702  | CDL  | CA2-C1-CB2-OB2  |
| 14  | L     | 3001 | CDL  | CA2-C1-CB2-OB2  |
| 14  | S     | 101  | CDL  | CB2-C1-CA2-OA2  |
| 14  | L     | 3001 | CDL  | CB7-C71-C72-C73 |
| 13  | Е     | 401  | PTY  | C30-C31-C32-C33 |
| 13  | С     | 504  | PTY  | C16-C17-C18-C19 |
| 15  | N     | 507  | LMT  | C7-C8-C9-C10    |
| 13  | Р     | 303  | PTY  | C16-C17-C18-C19 |
| 13  | N     | 505  | PTY  | C32-C33-C34-C35 |
| 14  | А     | 3001 | CDL  | C71-C72-C73-C74 |
| 14  | Ν     | 504  | CDL  | C74-C75-C76-C77 |
| 15  | С     | 506  | LMT  | C4-C5-C6-C7     |
| 13  | Е     | 401  | PTY  | C13-C14-C15-C16 |
| 14  | С     | 505  | CDL  | O1-C1-CB2-OB2   |
| 14  | А     | 3002 | CDL  | O1-C1-CA2-OA2   |
| 14  | L     | 3002 | CDL  | O1-C1-CA2-OA2   |
| 13  | Е     | 401  | PTY  | C16-C17-C18-C19 |
| 13  | Е     | 401  | PTY  | C38-C39-C40-C41 |
| 14  | Н     | 701  | CDL  | C71-C72-C73-C74 |
| 13  | Р     | 303  | PTY  | C34-C35-C36-C37 |
| 14  | Н     | 701  | CDL  | C73-C74-C75-C76 |
| 15  | С     | 506  | LMT  | C3-C4-C5-C6     |
| 15  | Р     | 302  | LMT  | C4-C5-C6-C7     |
| 12  | N     | 503  | PC1  | O32-C31-O31-C3  |
| 15  | С     | 506  | LMT  | C5-C6-C7-C8     |
| 14  | N     | 506  | CDL  | OB7-CB5-OB6-CB4 |
| 15  | С     | 506  | LMT  | C6-C7-C8-C9     |
| 13  | С     | 504  | PTY  | C8-C11-C12-C13  |
| 14  | A     | 3002 | CDL  | C33-C34-C35-C36 |
| 12  | С     | 503  | PC1  | C28-C29-C2A-C2B |
| 14  | N     | 504  | CDL  | C71-C72-C73-C74 |
| 14  | L     | 3002 | CDL  | C12-C13-C14-C15 |
| 14  | L     | 3002 | CDL  | C33-C34-C35-C36 |
| 13  | Ε     | 401  | PTY  | C31-C32-C33-C34 |

Continued from previous page...



| EMD-15333, | 8AC4 |
|------------|------|
|------------|------|

| N/L-1 | Chain | Daa  | Trans | <b>A t</b> a a  |
|-------|-------|------|-------|-----------------|
|       | Unain | Kes  | Type  | Atoms           |
| 14    |       | 3001 | CDL   | C31-C32-C33-C34 |
| 14    | H     | 701  | CDL   | CB5-C51-C52-C53 |
| 14    | H     | 701  | CDL   | C74-C75-C76-C77 |
| 15    | Р     | 302  | LMT   | C7-C8-C9-C10    |
| 13    | Р     | 303  | PTY   | C31-C32-C33-C34 |
| 13    | N     | 505  | PTY   | C16-C17-C18-C19 |
| 14    | Н     | 701  | CDL   | C11-C12-C13-C14 |
| 15    | С     | 506  | LMT   | C2-C3-C4-C5     |
| 14    | А     | 3002 | CDL   | OB7-CB5-OB6-CB4 |
| 13    | С     | 504  | PTY   | C38-C39-C40-C41 |
| 12    | Т     | 201  | PC1   | C33-C34-C35-C36 |
| 13    | С     | 504  | PTY   | C37-C38-C39-C40 |
| 13    | Е     | 401  | PTY   | C32-C33-C34-C35 |
| 14    | А     | 3001 | CDL   | C73-C74-C75-C76 |
| 13    | Е     | 401  | PTY   | C31-C30-O4-C1   |
| 14    | N     | 506  | CDL   | C51-CB5-OB6-CB4 |
| 13    | Р     | 303  | PTY   | C11-C12-C13-C14 |
| 14    | N     | 504  | CDL   | C73-C74-C75-C76 |
| 14    | L     | 3001 | CDL   | CA7-C31-C32-C33 |
| 14    | N     | 506  | CDL   | CA2-C1-CB2-OB2  |
| 12    | N     | 503  | PC1   | C28-C29-C2A-C2B |
| 14    | С     | 505  | CDL   | OB7-CB5-OB6-CB4 |
| 15    | J     | 101  | LMT   | C1-C2-C3-C4     |
| 13    | N     | 505  | PTY   | C34-C35-C36-C37 |
| 15    | N     | 507  | LMT   | C2-C3-C4-C5     |
| 14    | А     | 3002 | CDL   | C12-C13-C14-C15 |
| 13    | Р     | 303  | PTY   | C13-C14-C15-C16 |
| 13    | Р     | 303  | PTY   | C40-C41-C42-C43 |
| 15    | N     | 507  | LMT   | C1-C2-C3-C4     |
| 13    | Р     | 303  | PTY   | C8-C11-C12-C13  |
| 14    | L     | 3002 | CDL   | CA5-C11-C12-C13 |
| 14    | С     | 505  | CDL   | C51-CB5-OB6-CB4 |
| 14    | Н     | 701  | CDL   | C51-CB5-OB6-CB4 |
| 13    | Е     | 401  | PTY   | O14-C5-C6-O7    |
| 14    | N     | 504  | CDL   | C11-C12-C13-C14 |
| 15    | J     | 101  | LMT   | C6-C7-C8-C9     |
| 14    | Н     | 701  | CDL   | OB7-CB5-OB6-CB4 |
| 12    | C     | 503  | PC1   | O21-C2-C3-O31   |
| 12    | Ň     | 503  | PC1   | 021-C2-C3-O31   |
| 12    | C     | 503  | PC1   | C22-C23-C24-C25 |
| 13    | Ň     | 505  | PTY   | C12-C13-C14-C15 |
| 14    | L     | 3001 | CDL   | C71-C72-C73-C74 |

Continued from previous page...



| EMD-15333, | 8AC4 |
|------------|------|
|------------|------|

| Mol | Chain | Res  | Type | Atoms           |
|-----|-------|------|------|-----------------|
| 12  | N     | 503  | PC1  | C22-C23-C24-C25 |
| 13  | Е     | 401  | PTY  | O30-C30-O4-C1   |
| 13  | С     | 504  | PTY  | C5-O14-P1-O11   |
| 14  | H     | 701  | CDL  | CB3-OB5-PB2-OB2 |
| 14  | N     | 506  | CDL  | CA3-OA5-PA1-OA2 |
| 14  | N     | 506  | CDL  | C31-C32-C33-C34 |
| 13  | N     | 505  | PTY  | O14-C5-C6-C1    |
| 14  | А     | 3002 | CDL  | OA5-CA3-CA4-CA6 |
| 14  | L     | 3002 | CDL  | OA5-CA3-CA4-CA6 |
| 13  | Р     | 303  | PTY  | C41-C42-C43-C44 |
| 13  | N     | 505  | PTY  | C30-C31-C32-C33 |
| 13  | N     | 505  | PTY  | C36-C37-C38-C39 |
| 13  | Е     | 401  | PTY  | C14-C15-C16-C17 |
| 14  | L     | 3002 | CDL  | C31-C32-C33-C34 |
| 12  | С     | 503  | PC1  | C27-C28-C29-C2A |
| 15  | Ν     | 507  | LMT  | C3-C4-C5-C6     |
| 14  | С     | 505  | CDL  | CB2-C1-CA2-OA2  |
| 14  | А     | 3002 | CDL  | CB2-C1-CA2-OA2  |
| 13  | Р     | 303  | PTY  | C14-C15-C16-C17 |
| 13  | N     | 505  | PTY  | C15-C16-C17-C18 |
| 15  | J     | 101  | LMT  | C7-C8-C9-C10    |
| 13  | N     | 505  | PTY  | O4-C1-C6-C5     |
| 14  | Н     | 701  | CDL  | CB3-CB4-CB6-OB8 |
| 14  | N     | 504  | CDL  | C75-C76-C77-C78 |
| 13  | Е     | 401  | PTY  | C41-C42-C43-C44 |
| 14  | А     | 3001 | CDL  | C31-C32-C33-C34 |
| 15  | N     | 507  | LMT  | C9-C10-C11-C12  |
| 13  | Е     | 401  | PTY  | C11-C12-C13-C14 |
| 13  | Ν     | 505  | PTY  | C41-C42-C43-C44 |
| 12  | Ν     | 503  | PC1  | C26-C27-C28-C29 |
| 14  | L     | 3002 | CDL  | C11-C12-C13-C14 |
| 15  | J     | 101  | LMT  | C9-C10-C11-C12  |
| 12  | N     | 503  | PC1  | C27-C28-C29-C2A |
| 14  | А     | 3002 | CDL  | CA6-CA4-OA6-CA5 |
| 13  | С     | 504  | PTY  | C41-C42-C43-C44 |
| 14  | Н     | 701  | CDL  | C75-C76-C77-C78 |
| 14  | N     | 504  | CDL  | OA5-CA3-CA4-OA6 |
| 14  | N     | 504  | CDL  | OB5-CB3-CB4-OB6 |
| _13 | Ν     | 505  | PTY  | C14-C15-C16-C17 |
| 13  | Е     | 401  | PTY  | C12-C13-C14-C15 |
| 15  | С     | 506  | LMT  | C11-C10-C9-C8   |
| 14  | L     | 3001 | CDL  | C72-C73-C74-C75 |

Continued from previous page...



| EMD-15333, | 8AC4 |
|------------|------|
|------------|------|

| 001000 | nucu jion | " preeve | as page. | ••              |
|--------|-----------|----------|----------|-----------------|
| Mol    | Chain     | Res      | Type     | Atoms           |
| 14     | L         | 3001     | CDL      | CB2-C1-CA2-OA2  |
| 14     | L         | 3002     | CDL      | CB2-C1-CA2-OA2  |
| 13     | С         | 504      | PTY      | C40-C41-C42-C43 |
| 12     | Ι         | 201      | PC1      | C34-C35-C36-C37 |
| 13     | Е         | 401      | PTY      | O14-C5-C6-C1    |
| 14     | Н         | 701      | CDL      | OB5-CB3-CB4-CB6 |
| 15     | С         | 506      | LMT      | C9-C10-C11-C12  |
| 15     | N         | 507      | LMT      | C5-C6-C7-C8     |
| 14     | N         | 504      | CDL      | CB5-C51-C52-C53 |
| 13     | С         | 504      | PTY      | C17-C18-C19-C20 |
| 13     | N         | 505      | PTY      | C38-C39-C40-C41 |
| 13     | Е         | 401      | PTY      | C33-C34-C35-C36 |
| 15     | С         | 506      | LMT      | C2-C1-O1'-C1'   |
| 11     | С         | 501      | HEM      | C3D-CAD-CBD-CGD |
| 14     | С         | 505      | CDL      | C31-C32-C33-C34 |
| 12     | С         | 503      | PC1      | C1-C2-C3-O31    |
| 15     | Р         | 302      | LMT      | C3-C4-C5-C6     |
| 13     | С         | 504      | PTY      | C39-C40-C41-C42 |
| 14     | С         | 505      | CDL      | C13-C14-C15-C16 |
| 12     | С         | 503      | PC1      | C26-C27-C28-C29 |
| 14     | А         | 3001     | CDL      | CB3-OB5-PB2-OB2 |
| 14     | Н         | 701      | CDL      | OA5-CA3-CA4-OA6 |
| 14     | Н         | 701      | CDL      | OB5-CB3-CB4-OB6 |
| 14     | N         | 506      | CDL      | O1-C1-CB2-OB2   |
| 13     | С         | 504      | PTY      | C32-C33-C34-C35 |
| 14     | А         | 3002     | CDL      | C34-C35-C36-C37 |
| 14     | А         | 3002     | CDL      | CB5-C51-C52-C53 |
| 13     | N         | 505      | PTY      | O4-C1-C6-O7     |
| 14     | S         | 101      | CDL      | OB6-CB4-CB6-OB8 |
| 13     | P         | 303      | PTY      | C38-C39-C40-C41 |
| 14     | Н         | 701      | CDL      | C72-C73-C74-C75 |
| 14     | L         | 3002     | CDL      | C51-CB5-OB6-CB4 |
| 14     | N         | 504      | CDL      | C51-C52-C53-C54 |
| 14     | С         | 505      | CDL      | CA4-CA3-OA5-PA1 |
| 15     | N         | 507      | LMT      | C11-C10-C9-C8   |
| 11     | N         | 501      | HEM      | C3D-CAD-CBD-CGD |
| 14     | N         | 504      | CDL      | OA7-CA5-OA6-CA4 |
| 12     | Ι         | 201      | PC1      | C22-C21-O21-C2  |
| 14     | Η         | 702      | CDL      | OB5-CB3-CB4-CB6 |
| 14     | Ν         | 504      | CDL      | OA5-CA3-CA4-CA6 |
| 14     | S         | 101      | CDL      | OA5-CA3-CA4-CA6 |
| 14     | S         | 101      | CDL      | OB5-CB3-CB4-CB6 |

Continued from previous page...



| EMD-15333, | 8AC4 |
|------------|------|
|------------|------|

| Mol | Chain | Res  | Type | Atoms           |
|-----|-------|------|------|-----------------|
| 14  | N     | 504  | CDL  | C72-C73-C74-C75 |
| 12  | Ι     | 201  | PC1  | C22-C23-C24-C25 |
| 14  | Н     | 702  | CDL  | CB6-CB4-OB6-CB5 |
| 14  | L     | 3002 | CDL  | CA6-CA4-OA6-CA5 |
| 14  | S     | 101  | CDL  | CB6-CB4-OB6-CB5 |
| 13  | С     | 504  | PTY  | C31-C30-O4-C1   |
| 14  | A     | 3002 | CDL  | C31-CA7-OA8-CA6 |
| 15  | Р     | 302  | LMT  | O5'-C1'-O1'-C1  |
| 12  | N     | 503  | PC1  | C1-C2-C3-O31    |
| 12  | Т     | 201  | PC1  | C1-C2-C3-O31    |
| 13  | С     | 504  | PTY  | O4-C1-C6-C5     |
| 14  | N     | 504  | CDL  | CA3-CA4-CA6-OA8 |
| 14  | N     | 506  | CDL  | CA4-CA3-OA5-PA1 |
| 13  | Р     | 303  | PTY  | O14-C5-C6-O7    |
| 14  | S     | 101  | CDL  | OB5-CB3-CB4-OB6 |
| 12  | N     | 503  | PC1  | C33-C34-C35-C36 |
| 14  | L     | 3002 | CDL  | C52-C53-C54-C55 |
| 12  | N     | 503  | PC1  | O22-C21-O21-C2  |
| 14  | Н     | 701  | CDL  | OA6-CA4-CA6-OA8 |
| 14  | Н     | 701  | CDL  | OB6-CB4-CB6-OB8 |
| 14  | N     | 504  | CDL  | OA6-CA4-CA6-OA8 |
| 15  | С     | 506  | LMT  | C7-C8-C9-C10    |
| 13  | С     | 504  | PTY  | O30-C30-O4-C1   |
| 14  | Н     | 701  | CDL  | OA7-CA5-OA6-CA4 |
| 14  | А     | 3002 | CDL  | CA5-C11-C12-C13 |
| 14  | L     | 3002 | CDL  | C34-C35-C36-C37 |
| 13  | Е     | 401  | PTY  | C3-O11-P1-O14   |
| 14  | L     | 3001 | CDL  | CB2-OB2-PB2-OB5 |
| 14  | L     | 3001 | CDL  | O1-C1-CA2-OA2   |
| 12  | Ι     | 201  | PC1  | C11-O13-P-O14   |
| 12  | Т     | 201  | PC1  | C11-C12-N-C14   |
| 13  | С     | 504  | PTY  | C5-O14-P1-O12   |
| 13  | С     | 504  | PTY  | C5-O14-P1-O13   |
| 13  | Р     | 303  | PTY  | C5-O14-P1-O13   |
| 13  | Ν     | 505  | PTY  | C5-O14-P1-O12   |
| 14  | С     | 505  | CDL  | CA3-OA5-PA1-OA4 |
| 14  | Н     | 701  | CDL  | CB3-OB5-PB2-OB4 |
| 14  | Н     | 702  | CDL  | CB3-OB5-PB2-OB3 |
| 14  | S     | 101  | CDL  | CB3-OB5-PB2-OB3 |
| 14  | N     | 506  | CDL  | C31-CA7-OA8-CA6 |
| 14  | Н     | 701  | CDL  | OA5-CA3-CA4-CA6 |
| 14  | Н     | 702  | CDL  | OA5-CA3-CA4-CA6 |

Continued from previous page...



| EMD-15333, | 8AC4 |
|------------|------|
|------------|------|

|     | Contentaca from provous page |      |      |                 |  |
|-----|------------------------------|------|------|-----------------|--|
| Mol | Chain                        | Res  | Type | Atoms           |  |
| 14  | N                            | 504  | CDL  | OB5-CB3-CB4-CB6 |  |
| 14  | А                            | 3001 | CDL  | C72-C73-C74-C75 |  |
| 14  | С                            | 505  | CDL  | C32-C33-C34-C35 |  |
| 14  | Н                            | 701  | CDL  | C51-C52-C53-C54 |  |
| 13  | С                            | 504  | PTY  | O14-C5-C6-O7    |  |
| 14  | С                            | 505  | CDL  | OA5-CA3-CA4-OA6 |  |
| 14  | Н                            | 702  | CDL  | OA5-CA3-CA4-OA6 |  |
| 14  | Н                            | 702  | CDL  | OB5-CB3-CB4-OB6 |  |
| 14  | N                            | 506  | CDL  | OA5-CA3-CA4-OA6 |  |
| 14  | А                            | 3002 | CDL  | OA9-CA7-OA8-CA6 |  |
| 13  | Е                            | 401  | PTY  | C36-C37-C38-C39 |  |
| 14  | Н                            | 701  | CDL  | CA3-CA4-CA6-OA8 |  |
| 14  | А                            | 3002 | CDL  | OA6-CA4-CA6-OA8 |  |
| 14  | А                            | 3002 | CDL  | C13-C14-C15-C16 |  |
| 14  | N                            | 506  | CDL  | C32-C33-C34-C35 |  |
| 14  | N                            | 504  | CDL  | C11-CA5-OA6-CA4 |  |
| 14  | L                            | 3002 | CDL  | OB7-CB5-OB6-CB4 |  |
| 15  | Р                            | 302  | LMT  | C5-C6-C7-C8     |  |
| 12  | Т                            | 201  | PC1  | C11-C12-N-C15   |  |
| 17  | А                            | 3003 | XP4  | C5-C6-C7-C8     |  |
| 13  | N                            | 505  | PTY  | O30-C30-O4-C1   |  |
| 14  | N                            | 506  | CDL  | OA9-CA7-OA8-CA6 |  |
| 17  | U                            | 101  | XP4  | C1-O4-P1-O2     |  |
| 13  | N                            | 505  | PTY  | O14-C5-C6-O7    |  |
| 13  | С                            | 504  | PTY  | C13-C14-C15-C16 |  |
| 13  | С                            | 504  | PTY  | O4-C1-C6-O7     |  |
| 14  | Н                            | 702  | CDL  | OB6-CB4-CB6-OB8 |  |
| 13  | C                            | 504  | PTY  | C3-O11-P1-O14   |  |
| 13  | Р                            | 303  | PTY  | C3-O11-P1-O14   |  |
| 14  | A                            | 3002 | CDL  | CB2-OB2-PB2-OB5 |  |
| 14  | A                            | 3002 | CDL  | CB3-OB5-PB2-OB2 |  |
| 14  | Н                            | 702  | CDL  | CB2-OB2-PB2-OB5 |  |
| 14  | L                            | 3002 | CDL  | CB2-OB2-PB2-OB5 |  |
| 14  | S                            | 101  | CDL  | CB2-OB2-PB2-OB5 |  |
| 14  | A                            | 3001 | CDL  | C72-C71-CB7-OB8 |  |
| 15  | J                            | 101  | LMT  | O1'-C1-C2-C3    |  |
| 14  | Н                            | 702  | CDL  | CB3-CB4-CB6-OB8 |  |
| 14  | N                            | 504  | CDL  | CB3-CB4-CB6-OB8 |  |
| 14  | S                            | 101  | CDL  | CB3-CB4-CB6-OB8 |  |
| 13  | N                            | 505  | PTY  | C31-C30-O4-C1   |  |
| 14  | Н                            | 702  | CDL  | CB4-CB3-OB5-PB2 |  |
| 14  | А                            | 3001 | CDL  | OB5-CB3-CB4-CB6 |  |

Continued from previous page...



| EMD-15333, | 8AC4 |
|------------|------|
|------------|------|

| Mol | Chain   | <b>Bes</b> | Type         | Atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----|---------|------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1/  | C       | 505        | CDI          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14  | I U     | 101        | LMT          | C3_C4_C5_C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 12  | J<br>C  | 50/        | PTV          | $\begin{array}{c} 0 - 0 + 0 - 0 \\ 0 - 0 + 0 - 0 \\ 0 - 0 + 0 - 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 + 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\ 0 - 0 \\$ |
| 10  | U<br>N  | 502        | I I I<br>HEM | $\frac{\text{CAD} \text{CBD} \text{CD} \text{CD} \text{CD}}{\text{CAD} \text{CD} \text{CD} \text{CD}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 11  | IN<br>N | 502        |              | $\frac{\text{CAD-CBD-CGD-O2D}}{\text{C6} \text{ C7} \text{ C8} \text{ C0}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10  |         | 507        | HEM 1        | $\frac{\text{CO-CT-CO-C9}}{\text{CAA} \text{CBA} \text{CCA} \text{O1A}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 11  | U<br>I  | 002<br>201 |              | $\begin{array}{c} \text{CAA-CDA-CGA-OIA} \\ \text{C22} \text{ C22} \text{ C24} \text{ C25} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 12  | I       | 201        | CDI          | $\begin{array}{c} 0.32 - 0.33 - 0.34 - 0.30 \\ 0.051 & 0.52 & 0.52 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 14  | L       | 5002       |              | CD0-C01-C02-C03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | C       | 501        | HEM<br>CDI   | CAA-CBA-CGA-O2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14  | C       | 505        | CDL<br>DTV   | 0B0-CB4-CB0-OB8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 13  | C       | 504        | PTY          | Cb-C5-014-P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 14  | S       | 101        | CDL          | CB4-CB3-OB5-PB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11  | C       | 501        | HEM          | CAA-CBA-CGA-OIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11  | C       | 502        | HEM          | CAD-CBD-CGD-O2D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11  | N       | 501        | HEM          | CAA-CBA-CGA-O2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 18  | D       | 401        | HEC          | CAA-CBA-CGA-O1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14  | Н       | 702        | CDL          | CA3-CA4-CA6-OA8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14  | S       | 101        | CDL          | CA3-CA4-CA6-OA8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11  | С       | 502        | HEM          | CAD-CBD-CGD-O1D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11  | Ν       | 501        | HEM          | CAA-CBA-CGA-O1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11  | Ν       | 502        | HEM          | CAA-CBA-CGA-O1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12  | Т       | 201        | PC1          | C11-C12-N-C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 14  | С       | 505        | CDL          | CA3-OA5-PA1-OA2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11  | С       | 502        | HEM          | CAA-CBA-CGA-O2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 13  | С       | 504        | PTY          | C12-C13-C14-C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12  | Ι       | 201        | PC1          | O22-C21-O21-C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 14  | С       | 505        | CDL          | C11-C12-C13-C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14  | А       | 3002       | CDL          | C51-C52-C53-C54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11  | N       | 502        | HEM          | CAD-CBD-CGD-O1D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14  | А       | 3002       | CDL          | C31-C32-C33-C34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 18  | D       | 401        | HEC          | CAA-CBA-CGA-O2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 15  | J       | 101        | LMT          | C11-C10-C9-C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 13  | Р       | 303        | PTY          | C12-C13-C14-C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12  | Т       | 201        | PC1          | C32-C33-C34-C35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14  | S       | 101        | CDL          | OA5-CA3-CA4-OA6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11  | N       | 502        | HEM          | CAA-CBA-CGA-O2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 18  | 0       | 401        | HEC          | CAA-CBA-CGA-O2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 13  | С       | 504        | PTY          | O14-C5-C6-C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 14  | С       | 505        | CDL          | OA5-CA3-CA4-CA6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14  | N       | 506        | CDL          | OA5-CA3-CA4-CA6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14  | C       | 505        | CDL          | OA9-CA7-OA8-CA6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14  | H       | 702        | CDL          | C32-C31-CA7-OA8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Continued from previous page...



| EMD-15333, | 8AC4 |
|------------|------|
|------------|------|

| 001000 | continued from pretions page |      |      |                 |
|--------|------------------------------|------|------|-----------------|
| Mol    | Chain                        | Res  | Type | Atoms           |
| 14     | S                            | 101  | CDL  | C32-C31-CA7-OA8 |
| 15     | С                            | 506  | LMT  | C1-C2-C3-C4     |
| 14     | Н                            | 701  | CDL  | C12-C13-C14-C15 |
| 12     | Ι                            | 201  | PC1  | C33-C34-C35-C36 |
| 13     | N                            | 505  | PTY  | C13-C14-C15-C16 |
| 17     | U                            | 101  | XP4  | C1-O4-P1-O1     |
| 13     | N                            | 505  | PTY  | C1-C6-O7-C8     |
| 11     | С                            | 501  | HEM  | CAD-CBD-CGD-O2D |
| 14     | Н                            | 701  | CDL  | C72-C71-CB7-OB8 |
| 14     | N                            | 506  | CDL  | C32-C31-CA7-OA8 |
| 18     | 0                            | 401  | HEC  | CAA-CBA-CGA-O1A |
| 14     | С                            | 505  | CDL  | C32-C31-CA7-OA8 |
| 14     | N                            | 504  | CDL  | C72-C71-CB7-OB8 |
| 12     | Ι                            | 201  | PC1  | O21-C21-C22-C23 |
| 12     | N                            | 503  | PC1  | O31-C31-C32-C33 |
| 13     | Р                            | 303  | PTY  | O4-C30-C31-C32  |
| 14     | Н                            | 702  | CDL  | C32-C31-CA7-OA9 |
| 14     | L                            | 3002 | CDL  | OA6-CA4-CA6-OA8 |
| 14     | S                            | 101  | CDL  | C32-C31-CA7-OA9 |
| 11     | N                            | 501  | HEM  | CAD-CBD-CGD-O2D |
| 12     | С                            | 503  | PC1  | O31-C31-C32-C33 |
| 12     | С                            | 503  | PC1  | C11-C12-N-C15   |
| 14     | Н                            | 701  | CDL  | C11-CA5-OA6-CA4 |
| 14     | Н                            | 702  | CDL  | C72-C71-CB7-OB8 |
| 14     | S                            | 101  | CDL  | C72-C71-CB7-OB8 |
| 14     | L                            | 3002 | CDL  | C51-C52-C53-C54 |
| 12     | N                            | 503  | PC1  | C22-C21-O21-C2  |
| 14     | Н                            | 701  | CDL  | C72-C71-CB7-OB9 |
| 14     | Н                            | 701  | CDL  | CA2-C1-CB2-OB2  |
| 14     | С                            | 505  | CDL  | C32-C31-CA7-OA9 |
| 14     | N                            | 506  | CDL  | C32-C31-CA7-OA9 |
| 14     | А                            | 3002 | CDL  | CB2-OB2-PB2-OB3 |
| 14     | Н                            | 702  | CDL  | CB2-OB2-PB2-OB3 |
| 14     | N                            | 506  | CDL  | CA3-OA5-PA1-OA4 |
| 14     | L                            | 3002 | CDL  | CB2-OB2-PB2-OB3 |
| 14     | S                            | 101  | CDL  | CB2-OB2-PB2-OB3 |
| 14     | N                            | 504  | CDL  | C72-C71-CB7-OB9 |
| 13     | Р                            | 303  | PTY  | O30-C30-C31-C32 |
| 15     | J                            | 101  | LMT  | C5-C6-C7-C8     |
| 11     | С                            | 501  | HEM  | CAD-CBD-CGD-O1D |
| 14     | Н                            | 701  | CDL  | CA3-CA4-OA6-CA5 |
| 14     | N                            | 504  | CDL  | CA3-CA4-OA6-CA5 |

Continued from previous page...



| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 14  | Ν     | 506 | CDL  | CB6-CB4-OB6-CB5 |
| 12  | С     | 503 | PC1  | C33-C34-C35-C36 |
| 13  | Р     | 303 | PTY  | C15-C16-C17-C18 |
| 12  | С     | 503 | PC1  | C11-C12-N-C13   |
| 11  | Ν     | 501 | HEM  | CAD-CBD-CGD-O1D |
| 12  | Ν     | 503 | PC1  | O32-C31-C32-C33 |
| 15  | Ν     | 507 | LMT  | C4-C5-C6-C7     |
| 13  | Е     | 401 | PTY  | O4-C30-C31-C32  |
| 12  | Ι     | 201 | PC1  | O22-C21-C22-C23 |
| 12  | С     | 503 | PC1  | O32-C31-C32-C33 |
| 13  | Е     | 401 | PTY  | O30-C30-C31-C32 |

Continued from previous page...

There are no ring outliers.

27 monomers are involved in 86 short contacts:

| Mol | Chain | Res  | Type | Clashes | Symm-Clashes |
|-----|-------|------|------|---------|--------------|
| 11  | С     | 502  | HEM  | 2       | 0            |
| 14  | Н     | 701  | CDL  | 2       | 0            |
| 13  | N     | 505  | PTY  | 9       | 0            |
| 14  | С     | 505  | CDL  | 2       | 0            |
| 11  | С     | 501  | HEM  | 6       | 0            |
| 14  | L     | 3001 | CDL  | 1       | 0            |
| 14  | L     | 3002 | CDL  | 1       | 0            |
| 14  | N     | 506  | CDL  | 2       | 0            |
| 18  | 0     | 401  | HEC  | 13      | 0            |
| 17  | U     | 101  | XP4  | 1       | 0            |
| 14  | S     | 101  | CDL  | 2       | 0            |
| 14  | А     | 3002 | CDL  | 2       | 0            |
| 11  | N     | 501  | HEM  | 5       | 0            |
| 11  | Ν     | 502  | HEM  | 3       | 0            |
| 14  | N     | 504  | CDL  | 3       | 0            |
| 18  | D     | 401  | HEC  | 12      | 0            |
| 15  | С     | 506  | LMT  | 1       | 0            |
| 13  | Е     | 401  | PTY  | 1       | 0            |
| 13  | С     | 504  | PTY  | 3       | 0            |
| 12  | Т     | 201  | PC1  | 2       | 0            |
| 17  | A     | 3003 | XP4  | 1       | 0            |
| 13  | Р     | 303  | PTY  | 10      | 0            |
| 12  | С     | 503  | PC1  | 1       | 0            |
| 12  | N     | 503  | PC1  | 1       | 0            |
| 15  | J     | 101  | LMT  | 1       | 0            |
| 14  | A     | 3001 | CDL  | 2       | 0            |



Continued from previous page...

| Mol | Chain | Res | Type | Clashes | Symm-Clashes |
|-----|-------|-----|------|---------|--------------|
| 14  | Н     | 702 | CDL  | 2       | 0            |

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.



































































## 5.7 Other polymers (i)

There are no such residues in this entry.

## 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



# 6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-15333. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

## 6.1 Orthogonal projections (i)

#### 6.1.1 Primary map



6.1.2 Raw map



The images above show the map projected in three orthogonal directions.



### 6.2 Central slices (i)

#### 6.2.1 Primary map



X Index: 180



Y Index: 180



Z Index: 180

#### 6.2.2 Raw map



X Index: 180

Y Index: 180

Z Index: 180

The images above show central slices of the map in three orthogonal directions.



### 6.3 Largest variance slices (i)

#### 6.3.1 Primary map



X Index: 187





Z Index: 182

#### 6.3.2 Raw map



X Index: 187

Y Index: 166



The images above show the largest variance slices of the map in three orthogonal directions.



## 6.4 Orthogonal surface views (i)

#### 6.4.1 Primary map



The images above show the 3D surface view of the map at the recommended contour level 0.01. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

#### 6.4.2 Raw map



These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

#### 6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.



# 7 Map analysis (i)

This section contains the results of statistical analysis of the map.

## 7.1 Map-value distribution (i)



The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.


# 7.2 Volume estimate (i)



The volume at the recommended contour level is 241  $\rm nm^3;$  this corresponds to an approximate mass of 217 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.



# 7.3 Rotationally averaged power spectrum (i)



\*Reported resolution corresponds to spatial frequency of 0.370  ${\rm \AA^{-1}}$ 



# 8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

#### 8.1 FSC (i)



\*Reported resolution corresponds to spatial frequency of 0.370  ${\rm \AA^{-1}}$ 



## 8.2 Resolution estimates (i)

| $\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$ | Estimation criterion (FSC cut-off) |      |          |
|---------------------------------------------------------|------------------------------------|------|----------|
| resolution estimate (A)                                 | 0.143                              | 0.5  | Half-bit |
| Reported by author                                      | 2.70                               | -    | -        |
| Author-provided FSC curve                               | 2.68                               | 3.08 | 2.72     |
| Unmasked-calculated*                                    | 3.10                               | 3.72 | 3.18     |

\*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 3.10 differs from the reported value 2.7 by more than 10 %



# 9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-15333 and PDB model 8AC4. Per-residue inclusion information can be found in section 3 on page 12.

# 9.1 Map-model overlay (i)



The images above show the 3D surface view of the map at the recommended contour level 0.01 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.



### 9.2 Q-score mapped to coordinate model (i)



The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

### 9.3 Atom inclusion mapped to coordinate model (i)



The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.01).



## 9.4 Atom inclusion (i)



At the recommended contour level, 99% of all backbone atoms, 92% of all non-hydrogen atoms, are inside the map.



1.0

0.0 <0.0

# 9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.01) and Q-score for the entire model and for each chain.

| Chain | Atom inclusion | Q-score |
|-------|----------------|---------|
| All   | 0.9219         | 0.5890  |
| А     | 0.9114         | 0.5860  |
| В     | 0.9084         | 0.5760  |
| С     | 0.9677         | 0.6230  |
| D     | 0.9498         | 0.6110  |
| Е     | 0.9419         | 0.6150  |
| F     | 0.8255         | 0.5060  |
| G     | 0.9283         | 0.6030  |
| Н     | 0.9593         | 0.6050  |
| Ι     | 0.9599         | 0.6130  |
| J     | 0.8955         | 0.5750  |
| L     | 0.9128         | 0.5850  |
| М     | 0.9131         | 0.5770  |
| Ν     | 0.9682         | 0.6230  |
| 0     | 0.9482         | 0.6100  |
| Р     | 0.7562         | 0.4710  |
| Q     | 0.8342         | 0.5100  |
| R     | 0.9232         | 0.6020  |
| S     | 0.9593         | 0.6040  |
| Т     | 0.9557         | 0.6060  |
| U     | 0.9133         | 0.5850  |

