

Apr 22, 2024 - 04:04 pm BST

PDB ID	:	7AGX
EMDB ID	:	EMD-11780
Title	:	Apo-state type 3 secretion system export apparatus complex from Salmonella enterica typhimurium
Authors	:	Goessweiner-Mohr, N.; Fahrenkamp, D.; Miletic, S.; Wald, J.; Marlovits, T.
Deposited on	:	2020-09-23
Resolution	:	3.60 Å(reported)
This is	a l	Full wwPDB EM Validation Report for a publicly released PDB entry.
		We welcome your comments at validation@mail.wwpdb.org

A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 92
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.60 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motria	Whole archive	EM structures
wietric	$(\# {\rm Entries})$	$(\# {\rm Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	1A	224	80%	9%	11%
1	1B	224	80%	7%	13%
1	1C	224	81%	6%	13%
1	1D	224	80% •		15%
1	1E	224	84%	·	11%
2	$1\mathrm{F}$	263	• 89%		9% •
3	1G	86	85%		15%
3	1H	86	8%		9% •

Chain Length Quality of chain Mol 3 1I86 90% 7% • i 3 1J86 6% • 91% ÷ 4 $1\mathrm{K}$ 10166% 33% • 1L4 10168% 28% . i 41M10166% 5% 29% 1N1014 70% 27% 10 1014 67% 5% 28% i 1P4 10169% • 28% 2A80 526% 71% • 2B580 70% 6% 24% 2C580 71% 26% • 2D80 571% 25% . 5 $2\mathrm{E}$ 80 72% 25% 5 $2\mathbf{F}$ 80 85% 5% 10% $2\mathrm{G}$ 580 8% 6% 86% 52H80 6% 6% 88% i 2I580 90% • 6% 2J80 5• 6% 92% 2K80 584% 12% i 2L580 79% 18% . 52M80 76% 21% • 2N80 566% 5% 29% 52O80 54% 9% 38% ÷ $2\mathbf{P}$ 80 545% 10% 45% 2Q580 16% 84%

Continued from previous page...

2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 47749 atoms, of which 24089 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
1	1.4	200	Total	С	Η	Ν	0	\mathbf{S}	0	0
	IA	200	3196	1050	1622	234	279	11	0	0
1	1P	105	Total	С	Η	Ν	0	S	0	0
	ID	195	3120	1024	1587	228	270	11	0	0
1	10	104	Total	С	Η	Ν	0	S	0	0
	10	194	3100	1021	1575	226	267	11	0	0
1	1D	100	Total	С	Η	Ν	0	S	0	0
	ID	190	3055	1002	1558	221	263	11	0	0
1	1 F	100	Total	С	Η	Ν	0	S	0	0
		199	3203	1051	1632	238	271	11		U

• Molecule 1 is a protein called Surface presentation of antigens protein SpaP.

• Molecule 2 is a protein called Surface presentation of antigens protein SpaR.

Mol	Chain	Residues			Atom	S			AltConf	Trace
2	1F	257	Total 3968	C 1297	Н 2008	N 311	O 338	S 14	0	0

• Molecule 3 is a protein called Surface presentation of antigens protein SpaQ.

Mol	Chain	Residues		1	Atom	\mathbf{s}			AltConf	Trace
2	10	72	Total	С	Η	Ν	Ο	S	0	0
5	16	15	1160	385	602	82	89	2	0	0
3	1日	83	Total	С	Н	Ν	Ο	S	0	0
5	111	00	1320	433	681	96	108	2	0	0
3	11	83	Total	С	Н	Ν	Ο	S	0	0
5	11	00	1320	433	681	96	108	2	0	0
3	1 T	83	Total	С	Η	Ν	Ο	S	0	0
5	тJ	00	1320	433	681	96	108	2	0	U

• Molecule 4 is a protein called Protein PrgJ.

Mol	Chain	Residues		-	Atom	ıs			AltConf	Trace
4	1K	68	Total	С	Η	Ν	0	\mathbf{S}	0	0
4	111	08	1042	321	529	84	106	2	0	0
4	11	73	Total	С	Η	Ν	0	S	0	0
4	112	15	1129	347	571	94	115	2	0	0
4	1M	79	Total	С	Η	Ν	0	S	0	0
4	1 1/1	12	1118	344	566	93	113	2	0	0
4	1 N	74	Total	С	Η	Ν	0	S	0	0
4	110	14	1140	350	576	95	117	2	0	0
4	10	73	Total	С	Η	Ν	0	S	0	0
4	10	15	1129	347	571	94	115	2	0	0
4	1D	73	Total	С	Η	Ν	0	S	0	0
4	11	13	1129	347	571	94	115	2	0	0

• Molecule 5 is a protein called Protein PrgI.

Mol	Chain	Residues	Atoms	AltConf	Trace	
5	2A	59	Total C H N O	0	0	
			937 294 471 80 92		0	
5	2B	61	Total C H N O	0	0	
		01	964 303 484 82 95			
5	2C	59	Total C H N O	0	0	
			937 294 471 80 92		0	
5	2D	60	Total C H N O	0	0	
		00	949 298 475 81 95	0	0	
5	$2\mathrm{E}$	60	Total C H N O	0	0	
0	211	00	949 298 475 81 95	0	0	
5	$2\mathrm{F}$	79	Total C H N O	0	0	
0	21	12	1120 353 558 94 115	0	0	
5	20	75	Total C H N O	0	0	
0	20	15	1158 367 575 97 119	0	0	
5	വ	75	Total C H N O	0	0	
0	211	15	1159 367 575 97 120	0		
5	01	75	Total C H N O	0	0	
0	21	15	1159 367 575 97 120	0	0	
5	01	75	Total C H N O	0	0	
0	20	15	1159 367 575 97 120	0	0	
5	9K	77	Total C H N O	0	0	
0	21	11	1196 383 592 100 121	0	0	
E E	्रा	66	Total C H N O	0	0	
0		00	1033 333 506 87 107	0	0	
5	<u>э</u> М	63	Total C H N O	0	0	
	∠1V1	60	992 320 486 84 102	U	U	
Б	9N	57	Total C H N O	0	0	
0	ZIN	57	901 289 442 77 93	U	U	

Mol	Chain	Residues	Atoms	AltConf	Trace
5	20	50	Total C H N O 788 256 382 68 82	0	0
5	2P	44	Total C H N O 700 229 342 60 69	0	0
5	2Q	13	Total C H N O 199 70 94 15 20	0	0

Continued from previous page...

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Surface presentation of antigens protein SpaP

• Molecule 1: Surface presentation of antigens protein SpaP

Chain 1D: 80% · 15%

Chain 1K:	66%	·	33%
MET SER SER ILLE ALA ALA THR ILE PRO GLU ALA ALA ALA ALA ALA ALA	VAL ASN TILE ARG ARG ARG ARG D25 A36 A36 A36 THR THR THR THR A36 A36 A36 A36 A36 A36 A36 A36 A36 A36	ANG CLU ASP PRO ASN ASN LLO S101	
• Molecule 4: Protein	PrgJ		
Chain 1L:	68%	·	28%
MET SER ILE ALA ALA THR THR THR PRO GLU ALA GLU GLU GLN ALA	VAL VAL TLE ARG SER MET MET ASP ASP VAL VAL SER SER SER SER VAL VAL VAL VAL	8101	
• Molecule 4: Protein	PrgJ		
Chain 1M:	66%	5%	29%
MET SER SER ALA ALA ALA ALA ALA ALA ALA ALA	VAL VAL IILE ARG ARG ARG ARG ARG ARG ARG B30 B30 B30 B30 B31 B31 B32 B31 B32 B32 B32 B32 B32 B32 B32 B32 B32 B32	R89 R100	
• Molecule 4: Protein	PrgJ		
Chain 1N:	70%		27%
MET SER TLE ALA ALA ALA PRO PRO ALU ALA ALA CLU CLU CLU CLU CLU CLU	VAL ASN ARG ARG ARG CIU THR ASP VAL VAL VAL 165 165 165 165	3101	
• Molecule 4: Protein	PrgJ		
Chain 1O:	67%	5%	28%
MET SER SER ALLE THR THR THR TLE PRO GLU GLU GLU GLU GLU ALA ALA ALA	VAL VAL IILE SER MET ARG ARG ARG ARG ARG ILC D 20 D 20 D 20 D 20 D 20 D 20 D 20 D 2	174 K90 S 101	
• Molecule 4: Protein	PrgJ		
Chain 1P:	69%		28%
MET SER SER TILE TILE TILE TILE PRO GLU VAL TILE TILE GLV ALA	A VAL A VAL 11LE SER SER ASP 4SP 129 129 129 129 120 120 120 120 120 120 120 120 120 120		
• Molecule 5: Protein	PrgI		
Chain 2A:	71%		26%
MET ALA ALA THR PRO TTR SER CLFU ASP ASP ASP ASP ASP ASP ALA ALA ALA PHE	T TASP TASP GLY ASP N22 V27 Y54 Y54 R80		
• Molecule 5: Protein	PrgI		

WORLDWIDE PROTEIN DATA BANK

Chain 2B:	70%	6%	24%
MET ALA THR THR TTR CLEU CLEU ASP ASP ASP LTS ASP ASP ASP ASP	R T THR CLY V 20 V 20 V 20 V 20 V 20 V 20 V 20 V 20		
• Molecule 5: Protein	PrgI		
Chain 2C:	71%	•	26%
MET ALA ALA ALA THR PRO SER CLY TRP CLY CLY SER ALA ALA ALA ALA ALA ALA ALA ALA ALA	ASF THR ASD ASD ASD AS2 V27 Y54 R80		
• Molecule 5: Protein	PrgI		
Chain 2D:	71%	·	25%
MET ALA ALA THR PRO FRO SER CLY CLY CLY SER ALA ASP ASP CLYS SER ALA ALA ASP CLYS SER ALA	7.18 0.17 0.21 0.21 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24		
• Molecule 5: Protein	PrgI		
Chain 2E:	72%	•	25%
MET ALA ALA PRD TRP FRD GLY TRP GLY CLY ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	THR GLY D21 D21 C7 R80		
• Molecule 5: Protein	PrgI		
Chain 2F:	85%		5% 10%
MET ALA ALA THR THR THR CU CU D21 D21 D21 D21 D21 D21 D21 D21 D21 D21	2		
• Molecule 5: Protein	PrgI		
Chain 2G:	86%		8% 6%
MET ALA PTRP TTRP TTRP TTRP D17 D17 N22 L23 V54 V54 V57	88		
• Molecule 5: Protein	PrgI		
Chain 2H:	88%		6% 6%
MET ALA THR PRD TRD S6 S6 D17 V20 V20 V20 V20 V20 V20 V20 V20 V20 V20	og all and a second sec		
• Molecule 5: Protein	– PrgI		

Chain 2I:	90%		• 6%
MET ALA THR FRO S6 S6 D1 7 V20 V20 V20 V20 V20 V20 V20 V20 V20 V20			
• Molecule 5: Protein	PrgI		
Chain 2J:	92%		• 6%
MET THA PRO PRO SG N5 N5 R80			
• Molecule 5: Protein	PrgI		
Chain 2K:	84%		12% ·
MET ALA THR P4 P4 P1 P1 P1 P17 D17 D17 D17 D17 D17 L23 L23 L23	P40 Y57 Q61 Y689 K89 K89 K89		
• Molecule 5: Protein	PrgI		
Chain 2L:	79%		• 18%
MET THR THR P4 P4 P2 P32 P32 P32 P32 P32 P32 P32 P32 P32	PRIO ASP ASP ALA LEU L44 R80 R80		
• Molecule 5: Protein	PrgI		
Chain 2M:	76%		21%
MET ALA ALA ALA 14 13 13 13 13 13 13 13 13	SER ASP ALA LEU LEU ALA ALA ALA ALA		
• Molecule 5: Protein	PrgI		
Chain 2N:	66%	5%	29%
MET THR P4 P4 P4 P1 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2	LASP LASP LEU LEU ALA ALA ALA PRO PRO PRO PRO LEU LEU LEU LEU LEU CAN	88 0 0 88 88	
• Molecule 5: Protein	PrgI		
Chain 2O:	54%	9%	38%
MET ALA Pa D17 D21 L23 L23 L23 C24 C24 C24 C24 C24 C24 C24 C24 C24 C24	oLU LEU LEU LEU LEU LEU ALA ALA ALA ALA ALA ALA ALA ALA	ALA TYR SER SER LYS LYS SE2 171 171 R80	
• Molecule 5: Protein	PrgI		

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	54491	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	TFS KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	31.5	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT $(4k \ge 4k)$	Depositor
Maximum map value	0.087	Depositor
Minimum map value	-0.061	Depositor
Average map value	-0.000	Depositor
Map value standard deviation	0.003	Depositor
Recommended contour level	0.008	Depositor
Map size (Å)	470.88, 470.88, 470.88	wwPDB
Map dimensions	432, 432, 432	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.09, 1.09, 1.09	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond	lengths	Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	1A	0.39	0/1610	0.52	0/2186	
1	1B	0.38	0/1567	0.51	0/2126	
1	1C	0.35	0/1560	0.50	0/2117	
1	1D	0.37	0/1530	0.50	0/2076	
1	1E	0.39	0/1607	0.51	0/2178	
2	1F	0.38	0/2012	0.56	0/2754	
3	1G	0.32	0/570	0.47	0/776	
3	1H	0.34	0/652	0.53	0/890	
3	1I	0.35	0/652	0.48	0/890	
3	1J	0.35	0/652	0.52	0/890	
4	1K	0.38	0/515	0.52	0/696	
4	1L	0.37	0/562	0.52	0/762	
4	1M	0.35	0/556	0.47	0/754	
4	1N	0.33	0/568	0.52	0/770	
4	10	0.34	0/562	0.50	0/762	
4	1P	0.36	0/562	0.52	0/762	
5	2A	0.39	0/472	0.50	0/638	
5	2B	0.41	0/486	0.48	0/659	
5	2C	0.37	0/472	0.45	0/638	
5	2D	0.39	0/480	0.47	0/649	
5	2E	0.42	0/480	0.47	0/649	
5	2F	0.39	0/569	0.49	0/770	
5	2G	0.43	0/591	0.54	0/801	
5	2H	0.40	0/592	0.46	0/801	
5	2I	0.36	0/592	0.49	0/801	
5	2J	0.37	0/592	0.46	0/801	
5	2K	0.36	0/615	0.51	0/835	
5	2L	0.41	0/535	0.47	0/724	
5	2M	0.38	0/514	0.46	0/695	
5	2N	0.37	0/466	0.50	0/628	
5	20	0.35	0/413	0.48	0/556	
5	2P	0.39	0/365	0.48	0/491	
5	2Q	0.41	0/109	0.42	0/147	
All	All	0.37	0/24080	0.50	0/32672	

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	1A	1574	1622	1621	15	0
1	1B	1533	1587	1584	12	0
1	1C	1525	1575	1573	9	0
1	1D	1497	1558	1555	8	0
1	1E	1571	1632	1629	8	0
2	1F	1960	2008	2008	17	0
3	1G	558	602	600	0	0
3	1H	639	681	680	5	0
3	1I	639	681	680	4	0
3	1J	639	681	680	3	0
4	1K	513	529	527	1	0
4	1L	558	571	570	2	0
4	1M	552	566	565	4	0
4	1N	564	576	575	2	0
4	10	558	571	570	3	0
4	1P	558	571	570	2	0
5	2A	466	471	470	1	0
5	2B	480	484	483	3	0
5	2C	466	471	470	1	0
5	2D	474	475	474	2	0
5	$2\mathrm{E}$	474	475	474	2	0
5	$2\mathrm{F}$	562	558	557	3	0
5	2G	583	575	574	3	0
5	$2\mathrm{H}$	584	575	574	3	0
5	2I	584	575	574	2	0
5	2J	584	575	574	2	0
5	2K	604	592	592	6	0
5	2L	527	506	505	2	0
5	2M	506	486	485	1	0
5	2N	459	442	441	3	0

001000			pagem			
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
5	20	406	382	381	8	0
5	2P	358	342	341	4	0
5	2Q	105	94	94	0	0
All	All	23660	24089	24050	120	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 3.

All (120) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
5:2I:17:ASP:OD2	5:2I:57:TYR:OH	1.90	0.88
1:1E:97:ASP:OD1	1:1E:100:ARG:NH1	2.15	0.79
1:1B:107:SER:O	1:1B:109:ARG:NH2	2.18	0.77
2:1F:8:GLU:OE1	4:1P:32:ARG:NH1	2.18	0.76
2:1F:191:VAL:HG21	2:1F:226:ILE:CD1	2.17	0.75
5:2N:17:ASP:OD1	5:2N:24:GLN:NE2	2.21	0.73
5:2K:17:ASP:OD2	5:2K:57:TYR:OH	2.07	0.72
5:2P:17:ASP:OD1	5:2P:57:TYR:OH	2.06	0.72
1:1A:209:THR:HG23	2:1F:175:ASN:ND2	2.07	0.69
5:2H:17:ASP:OD1	5:2H:57:TYR:OH	2.11	0.68
5:2J:55:ASN:ND2	5:20:71:ILE:HD11	2.09	0.68
1:1A:2:GLY:N	4:1K:36:ALA:O	2.27	0.68
2:1F:191:VAL:HG21	2:1F:226:ILE:HD13	1.76	0.66
2:1F:98:LEU:HD12	2:1F:185:ALA:HB2	1.78	0.65
1:1A:209:THR:HG23	2:1F:175:ASN:HD22	1.61	0.64
5:2E:77:GLN:OE1	5:2E:80:ARG:NH2	2.26	0.64
5:2G:17:ASP:OD1	5:2G:57:TYR:OH	2.15	0.63
1:1C:97:ASP:OD1	1:1C:100:ARG:NH1	2.32	0.62
3:1H:37:GLN:OE1	3:1H:43:GLN:NE2	2.31	0.62
2:1F:98:LEU:CD1	2:1F:185:ALA:HB2	2.30	0.62
5:2D:21:ASP:N	5:2D:24:GLN:OE1	2.33	0.61
4:1N:55:ILE:HG22	4:1N:55:ILE:O	2.01	0.61
5:20:21:ASP:OD2	5:20:22:ASN:N	2.37	0.58
1:1A:97:ASP:OD1	1:1A:100:ARG:NH1	2.38	0.57
1:1A:25:THR:HG23	1:1A:64:MET:HG3	1.86	0.56
1:1B:25:THR:HG22	1:1B:26:CYS:N	2.21	0.56
4:10:30:ASP:OD1	4:10:31:ASP:N	2.37	0.56
1:1D:25:THR:HG22	1:1D:26:CYS:N	2.21	0.55
5:2N:20:VAL:HG12	5:2N:20:VAL:O	2.06	0.55
1:1D:218:GLN:NE2	3:1I:83:LEU:O	2.34	0.55

	A + 2	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
4:1N:61:VAL:HG23	4:1N:62:THR:HG23	1.88	0.54	
5:2K:11:ASP:OD2	5:2K:15:LYS:NZ	2.37	0.54	
5:2P:9:LEU:O	5:2P:12:VAL:HG22	2.07	0.54	
1:1B:114:PHE:CE2	1:1C:216:ILE:HD11	2.42	0.54	
5:2F:63:ASN:ND2	5:2L:76:ILE:O	2.41	0.54	
5:2F:21:ASP:OD2	5:2F:22:ASN:N	2.41	0.53	
5:2H:20:VAL:HB	5:2H:23:LEU:HD12	1.90	0.53	
3:1I:13:TYR:CZ	3:1I:17:ILE:HD11	2.44	0.53	
1:1E:140:LYS:N	1:1E:141:PRO:CD	2.72	0.53	
1:1C:218:GLN:NE2	3:1H:83:LEU:O	2.43	0.52	
1:1D:85:ILE:HG23	1:1D:86:SER:N	2.24	0.52	
3:1H:3:ASP:OD1	3:1H:4:LEU:N	2.43	0.51	
3:1J:29:ILE:CG2	3:1J:51:ILE:HG22	2.41	0.51	
5:2K:65:VAL:O	5:2K:65:VAL:HG12	2.10	0.51	
5:2B:20:VAL:HG13	5:2B:21:ASP:N	2.26	0.51	
4:1L:30:ASP:OD1	4:1L:31:ASP:N	2.44	0.50	
5:2J:55:ASN:HD21	5:20:71:ILE:HD11	1.75	0.50	
5:2I:20:VAL:HG12	5:2I:20:VAL:O	2.11	0.50	
5:2F:20:VAL:HG12	5:2F:20:VAL:O	2.12	0.50	
5:2K:20:VAL:HG12	5:2K:23:LEU:HB3	1.94	0.49	
1:1D:69:HIS:CE1	1:1D:73:VAL:HG11	2.48	0.49	
5:2B:63:ASN:ND2	5:2H:76:ILE:O	2.46	0.48	
5:2P:15:LYS:O	5:2P:19:GLY:N	2.46	0.48	
2:1F:157:CYS:HB3	2:1F:163:CYS:HB3	1.95	0.48	
1:1A:38:ARG:NH1	1:1A:49:ASN:OD1	2.44	0.48	
1:1C:150:TYR:OH	1:1C:154:GLU:OE2	2.28	0.48	
1:1B:150:TYR:CE2	1:1B:154:GLU:HG3	2.49	0.48	
1:1B:47:PRO:HG2	1:1B:52:LEU:HD21	1.95	0.47	
2:1F:158:ASP:OD1	2:1F:161:ASN:ND2	2.45	0.47	
1:1A:24:GLY:O	1:1A:99:TYR:OH	2.29	0.47	
1:1D:138:ILE:HG13	1:1D:138:ILE:O	2.15	0.47	
1:1E:166:TYR:CZ	1:1E:170:VAL:HG22	2.49	0.47	
2:1F:56:PRO:HG2	2:1F:57:HIS:ND1	2.30	0.46	
5:2A:27:VAL:HG21	5:2A:54:TYR:HB2	1.96	0.46	
1:1E:140:LYS:N	1:1E:141:PRO:HD2	2.31	0.46	
3:1H:13:TYR:CZ	3:1H:17:ILE:HD11	2.51	0.46	
4:10:90:LYS:NZ	5:2E:80:ARG:O	2.44	0.46	
5:2C:27:VAL:HG21	5:2C:54:TYR:HB2	1.98	0.46	
5:2N:20:VAL:HG12	5:2N:23:LEU:HB2	1.97	0.45	
1:1E:182:ALA:HA	2:1F:217:THR:HG22	1.99	0.45	
2:1F:18:LEU:HD12	2:1F:65:PHE:CE1	2.52	0.45	

	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:1E:206:ASP:HB2	1:1E:210:LEU:HG	1.99	0.45
1:1A:36:MET:HG3	1:1B:46:ILE:HD13	1.98	0.45
4:1P:29:LEU:HG	4:1P:31:ASP:H	1.81	0.45
2:1F:120:ILE:HG22	2:1F:121:ASP:N	2.32	0.45
1:1A:35:VAL:HB	1:1B:46:ILE:HD11	1.99	0.44
1:1A:43:LEU:HD12	1:1A:199:LEU:HD11	2.00	0.44
5:20:20:VAL:O	5:20:24:GLN:N	2.34	0.44
5:2G:23:LEU:HD21	5:2G:54:TYR:HA	1.98	0.44
5:2L:21:ASP:OD1	5:2L:22:ASN:N	2.51	0.44
1:1B:25:THR:CG2	1:1B:26:CYS:N	2.81	0.44
1:1B:96:LEU:O	1:1B:99:TYR:N	2.48	0.43
5:2M:7:GLY:N	5:2M:10:ASP:OD2	2.50	0.43
5:2P:8:TYR:O	5:2P:11:ASP:HB3	2.18	0.43
1:1A:57:LEU:O	1:1A:61:MET:HG2	2.18	0.43
1:1E:164:TYR:CD1	3:1J:82:ALA:HB2	2.53	0.43
1:1A:150:TYR:CZ	1:1A:154:GLU:HG3	2.54	0.43
5:2K:17:ASP:OD2	5:2K:61:GLN:NE2	2.52	0.43
5:20:20:VAL:HG22	5:20:23:LEU:HB2	2.00	0.43
4:1M:31:ASP:OD1	4:1M:32:ARG:N	2.52	0.43
1:1A:5:ILE:HD12	1:1A:5:ILE:N	2.34	0.42
4:10:70:SER:O	4:10:74:ILE:HG22	2.19	0.42
5:2K:69:LYS:HD2	5:2K:69:LYS:O	2.20	0.42
1:1C:171:VAL:O	1:1C:175:VAL:HG23	2.19	0.42
1:1B:114:PHE:CZ	1:1C:216:ILE:HD11	2.54	0.42
4:1L:61:VAL:O	4:1L:67:LEU:HD21	2.20	0.42
1:1A:43:LEU:HB3	1:1A:46:ILE:HD12	2.02	0.42
2:1F:106:ARG:CG	2:1F:107:GLY:N	2.82	0.42
1:1C:164:TYR:CD1	3:1H:82:ALA:HB2	2.54	0.42
1:1D:8:ILE:HG13	5:2D:75:ILE:HD11	2.01	0.42
1:1B:4:ASP:OD2	4:1M:77:TYR:OH	2.26	0.42
3:1J:13:TYR:CZ	3:1J:17:ILE:HD11	2.55	0.42
1:1C:25:THR:HG22	1:1C:26:CYS:N	2.33	0.42
2:1F:191:VAL:HG21	2:1F:226:ILE:HD12	1.97	0.42
5:20:17:ASP:O	5:20:20:VAL:HG12	2.19	0.42
1:1B:97:ASP:OD1	1:1B:100:ARG:NH1	2.53	0.42
5:2B:34:LEU:HD22	5:2B:47:TYR:CD2	2.55	0.42
3:1I:37:GLN:NE2	3:1I:44:GLU:O	2.43	0.41
5:2O:20:VAL:CG2	5:2O:23:LEU:HB2	2.50	0.41
4:1M:29:LEU:HB2	4:1M:31:ASP:OD1	2.19	0.41
5:20:20:VAL:O	5:2O:23:LEU:N	2.51	0.41
1:1C:109:ARG:HG3	1:1C:110:GLU:N	2.36	0.41

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
5:2G:21:ASP:OD1	5:2G:22:ASN:ND2	2.54	0.41
1:1A:25:THR:HG22	1:1A:27:PHE:H	1.86	0.41
2:1F:22:ARG:HD2	2:1F:77:GLU:OE1	2.21	0.41
4:1M:29:LEU:CB	4:1M:31:ASP:OD1	2.69	0.40
1:1E:166:TYR:CE2	1:1E:170:VAL:CG2	3.04	0.40
2:1F:16:ALA:HB2	2:1F:52:LEU:HD21	2.04	0.40
1:1D:25:THR:CG2	1:1D:26:CYS:N	2.83	0.40
1:1D:168:PRO:HG3	3:1I:78:VAL:HG21	2.03	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	1A	196/224~(88%)	192 (98%)	4 (2%)	0	100	100
1	1B	189/224~(84%)	188 (100%)	1 (0%)	0	100	100
1	1C	188/224~(84%)	187 (100%)	1 (0%)	0	100	100
1	1D	184/224~(82%)	182 (99%)	2(1%)	0	100	100
1	1E	193/224~(86%)	190 (98%)	3 (2%)	0	100	100
2	1F	255/263~(97%)	251 (98%)	4 (2%)	0	100	100
3	1G	69/86~(80%)	69 (100%)	0	0	100	100
3	1H	81/86~(94%)	81 (100%)	0	0	100	100
3	1I	81/86~(94%)	81 (100%)	0	0	100	100
3	1J	81/86~(94%)	81 (100%)	0	0	100	100
4	1K	64/101~(63%)	63~(98%)	1 (2%)	0	100	100
4	1L	71/101 (70%)	70 (99%)	1 (1%)	0	100	100
4	1M	70/101~(69%)	70 (100%)	0	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
4	1N	72/101~(71%)	72 (100%)	0	0	100	100
4	10	71/101 (70%)	71 (100%)	0	0	100	100
4	1P	71/101 (70%)	71 (100%)	0	0	100	100
5	2A	57/80 (71%)	57 (100%)	0	0	100	100
5	2B	59/80~(74%)	59 (100%)	0	0	100	100
5	2C	57/80 (71%)	57 (100%)	0	0	100	100
5	2D	58/80~(72%)	58 (100%)	0	0	100	100
5	2E	58/80~(72%)	58 (100%)	0	0	100	100
5	2F	70/80~(88%)	66 (94%)	4 (6%)	0	100	100
5	2G	73/80~(91%)	72 (99%)	1 (1%)	0	100	100
5	2H	73/80~(91%)	72 (99%)	1 (1%)	0	100	100
5	2I	73/80~(91%)	71 (97%)	2 (3%)	0	100	100
5	2J	73/80~(91%)	72 (99%)	1 (1%)	0	100	100
5	2K	75/80~(94%)	72 (96%)	3 (4%)	0	100	100
5	2L	62/80~(78%)	61 (98%)	1 (2%)	0	100	100
5	2M	59/80~(74%)	59 (100%)	0	0	100	100
5	2N	53/80~(66%)	52 (98%)	1 (2%)	0	100	100
5	20	46/80~(58%)	46 (100%)	0	0	100	100
5	2P	40/80~(50%)	40 (100%)	0	0	100	100
5	2Q	11/80 (14%)	11 (100%)	0	0	100	100
All	All	2933/3693 (79%)	2902 (99%)	31 (1%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	1A	177/199~(89%)	177 (100%)	0	100 100

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
1	1B	172/199~(86%)	172~(100%)	0	100	100
1	$1\mathrm{C}$	171/199~(86%)	171 (100%)	0	100	100
1	1D	169/199~(85%)	169 (100%)	0	100	100
1	$1\mathrm{E}$	175/199~(88%)	175 (100%)	0	100	100
2	$1\mathrm{F}$	214/219~(98%)	212 (99%)	2(1%)	78	90
3	1G	59/71~(83%)	59 (100%)	0	100	100
3	1H	69/71~(97%)	69 (100%)	0	100	100
3	1I	69/71~(97%)	69 (100%)	0	100	100
3	1J	69/71~(97%)	69 (100%)	0	100	100
4	1K	59/88~(67%)	59~(100%)	0	100	100
4	1L	64/88~(73%)	64 (100%)	0	100	100
4	1M	63/88~(72%)	62~(98%)	1 (2%)	62	83
4	1N	65/88~(74%)	65~(100%)	0	100	100
4	10	64/88~(73%)	64 (100%)	0	100	100
4	1P	64/88~(73%)	64 (100%)	0	100	100
5	2A	50/67~(75%)	50 (100%)	0	100	100
5	2B	52/67~(78%)	52 (100%)	0	100	100
5	$2\mathrm{C}$	50/67~(75%)	50 (100%)	0	100	100
5	2D	51/67~(76%)	51 (100%)	0	100	100
5	2E	51/67~(76%)	51 (100%)	0	100	100
5	$2\mathrm{F}$	61/67~(91%)	61 (100%)	0	100	100
5	2G	63/67~(94%)	63 (100%)	0	100	100
5	2H	63/67~(94%)	63 (100%)	0	100	100
5	2I	63/67~(94%)	63 (100%)	0	100	100
5	2J	63/67~(94%)	63 (100%)	0	100	100
5	2K	65/67~(97%)	64 (98%)	1 (2%)	65	84
5	2L	57/67~(85%)	57 (100%)	0	100	100
5	2M	55/67~(82%)	55 (100%)	0	100	100
5	2N	51/67~(76%)	51 (100%)	0	100	100
5	20	44/67~(66%)	44 (100%)	0	100	100
5	2P	38/67~(57%)	38 (100%)	0	100	100

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
5	2Q	11/67~(16%)	11 (100%)	0	100	100
All	All	2611/3165~(82%)	2607 (100%)	4 (0%)	93	98

All (4) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
2	$1\mathrm{F}$	57	HIS
2	1F	212	PHE
4	1M	89	ARG
5	2K	22	ASN

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-11780. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 216

Y Index: 216

Z Index: 216

6.2.2 Raw map

X Index: 216

Y Index: 216

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 262

Y Index: 261

Z Index: 159

6.3.2 Raw map

X Index: 203

Y Index: 232

Z Index: 158

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.008. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1197 nm^3 ; this corresponds to an approximate mass of 1081 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.278 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.278 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	3.60	-	-
Author-provided FSC curve	3.26	3.82	3.34
Unmasked-calculated*	3.89	6.32	4.00

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-11780 and PDB model 7AGX. Per-residue inclusion information can be found in section 3 on page 7.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.008 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.008).

9.4 Atom inclusion (i)

At the recommended contour level, 87% of all backbone atoms, 86% of all non-hydrogen atoms, are inside the map.

1.0

0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.008) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$	
All	0.8650	0.4890	
1A	0.8790	0.5140	
1B	0.8800	0.4960	
1C	0.8830	0.4880	
1D	0.8790	0.4930	
1E	0.8670	0.4930	
$1\mathrm{F}$	0.8730	0.5020	
1G	0.6190	0.3880	
1H	0.7330	0.4240	
1I	0.7770	0.4570	
1J	0.8130	0.4430	
1K	0.8240	0.4810	
1L	0.8890	0.5160	
1M	0.8690	0.4950	
1N	0.8540	0.4850	
10	0.8940	0.5000	
1P	0.9090	0.5160	
2A	0.9260	0.5310	
2B	0.8820	0.5010	
$2\mathrm{C}$	0.9060	0.4940	
2D	0.8840	0.4870	
$2\mathrm{E}$	0.8630	0.4870	
$2\mathrm{F}$	0.8970	0.5070	
$2\mathrm{G}$	0.9130	0.5160	
$2\mathrm{H}$	0.8750	0.5030	
2I	0.8770	0.4800	
2J	0.8610	0.4810	
2K	0.8620	0.4710	
2L	0.8760	0.4990	
2M	0.8950	0.5140	
2N	0.8630	0.4750	
20	0.8570	0.4570	
2P	0.8630	0.4890	
2Q	0.8640	0.5080	

