

wwPDB EM Validation Summary Report (i)

Feb 27, 2023 – 06:40 pm GMT

PDB ID	:	8AGZ
EMDB ID	:	EMD-15428
Title	:	Yeast RQC complex in state with the RING domain of Ltn1 in the OUT
		position
Authors	:	Tesina, P.; Buschauer, R.; Beckmann, R.
Deposited on	:	2022-07-20
Resolution	:	2.60 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (i)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 43
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.32.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.60 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	204	92%	8%
2	В	199	87%	12% ••
3	С	184	88%	12% •
4	D	186	92%	8% •
5	Е	189	76% 7%	17%
6	F	172	88%	12% •
7	G	160	89%	11% •

Mol	Chain	Length	Quality of chain							
8	Н	121	67%	15% • 17%						
9	Ι	137	88%	11% •						
10	J	155	• 37% • 59%							
11	K	142	84%	• 15%						
12	L	127	92%	6% ·						
13	М	136	92%	7% •						
14	Ν	149	92%	7% •						
15	0	59	83%	12% · ·						
16	Р	105	86%	6% 9%						
17	Q	113	80%	17% ·						
18	R	130	92%	6% ·						
19	S	107	93%	6% ·						
20	Т	121	88%	5% 7%						
21	U	120	93%	6% ·						
22	V	100	93%	6% ·						
23	W	88	85%	7% 8%						
24	Х	78	88%	10% •						
25	Y	51	98%	·						
26	Z	128	41% 59%	6						
27	b	106	97%	•						
28	с	92	99%							
29	d	25	16%	12%						
30	f	3395	• 75%	18% • 5%						
31	h	121	85%	15%						
32	i	158	78%	20% ·						

Continued from previous page...

Mol	Chain	Length	Quality of chain	
33	j	254	97%	·
34	k	387	99%	·
35	1	362	99%	
36	m	297	98%	
37	n	176	94%	• 5%
38	0	244	91%	9%
39	р	256	89%	• 9%
40	q	191	98%	••
41	r	221	98%	
42	S	174	94%	
43	\mathbf{t}	199	96%	
44	u	138	97%	
45	a	1038	81%	18%
46	е	1562	92%	6% •
47	g	245	91%	8%
48	V	157	89%	• 10%
49	W	217	99%	
50	х	76	66% <u>30%</u>	
50	у	76	67% 25%	•••
51	Z	165	89%	• 10%
52	0	312	30% 7% • 61%	
53	1	18	78%	22%

Continued from previous page...

2 Entry composition (i)

There are 56 unique types of molecules in this entry. The entry contains 151339 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called 60S ribosomal protein L15-A.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	А	203	Total 1720	C 1077	N 361	0 281	S 1	0	0

• Molecule 2 is a protein called 60S ribosomal protein L16-A.

Mol	Chain	Residues	Atoms				AltConf	Trace	
2	В	197	Total 1555	C 1003	N 289	O 262	S 1	197	0

• Molecule 3 is a protein called 60S ribosomal protein L17-A.

Mol	Chain	Residues	Atoms				AltConf	Trace
3	С	183	Total	С	N	Ō	0	0
5		100	1416	879	284	253		U

• Molecule 4 is a protein called 60S ribosomal protein L18-A.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	D	185	Total 1441	C 908	N 290	0 241	${S \over 2}$	0	0

• Molecule 5 is a protein called 60S ribosomal protein L19-A.

Mol	Chain	Residues	Atoms				AltConf	Trace
5	Ε	156	Total 1258	C 781	N 265	O 212	0	0

• Molecule 6 is a protein called 60S ribosomal protein L20-A.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	F	171	Total 1437	C 925	N 266	0 243	${ m S} { m 3}$	0	0

• Molecule 7 is a protein called 60S ribosomal protein L21-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
7	G	159	Total 1272	C 802	N 245	0 221	${f S}$ 4	0	0

• Molecule 8 is a protein called 60S ribosomal protein L22-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
8	Н	100	Total	С	Ν	0	0	0
0	11	100	796	516	131	149	0	0

• Molecule 9 is a protein called 60S ribosomal protein L23-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
9	Ι	136	Total 1003	C 628	N 189	0 179	${f S}{7}$	0	0

• Molecule 10 is a protein called 60S ribosomal protein L24-A.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
10	J	63	Total 518	C 333	N 102	O 82	S 1	0	0

• Molecule 11 is a protein called 60S ribosomal protein L25.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	K	121	Total 964	C 620	N 169	0 173	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 12 is a protein called 60S ribosomal protein L26-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
12	L	125	Total 984	C 620	N 191	O 173	0	0

• Molecule 13 is a protein called 60S ribosomal protein L27-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
13	М	135	Total 1080	C 701	N 199	O 180	0	0

• Molecule 14 is a protein called 60S ribosomal protein L28.

Mol	Chain	Residues		At	oms			AltConf	Trace
14	Ν	148	Total 1169	C 747	N 231	0 188	$\frac{S}{3}$	0	0

• Molecule 15 is a protein called 60S ribosomal protein L29.

Mol	Chain	Residues		Ator	ns	AltConf	Trace	
15	О	58	Total 462	C 289	N 100	O 73	0	0

• Molecule 16 is a protein called 60S ribosomal protein L30.

Mol	Chain	Residues		At	oms			AltConf	Trace
16	Р	96	Total 737	$\begin{array}{c} \mathrm{C} \\ 476 \end{array}$	N 123	O 137	S 1	0	0

• Molecule 17 is a protein called 60S ribosomal protein L31-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
17	Q	109	Total 876	C 556	N 167	0 152	S 1	0	0

• Molecule 18 is a protein called 60S ribosomal protein L32.

Mol	Chain	Residues		At	AltConf	Trace			
18	R	127	Total 1013	C 642	N 205	0 165	S 1	0	0

• Molecule 19 is a protein called 60S ribosomal protein L33-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
19	S	106	Total 850	C 540	N 165	0 144	S 1	0	0

• Molecule 20 is a protein called 60S ribosomal protein L34-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
20	Т	112	Total 880	C 545	N 179	0 152	${S \atop 4}$	0	0

• Molecule 21 is a protein called 60S ribosomal protein L35-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
21	U	119	Total 969	C 615	N 186	O 167	S 1	0	0

• Molecule 22 is a protein called 60S ribosomal protein L36-A.

Mol	Chain	Residues		At	oms	Atoms					
22	V	99	Total 766	C 478	N 154	0 132	${ m S} { m 2}$	0	0		

• Molecule 23 is a protein called 60S ribosomal protein L37-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
23	W	81	Total 645	C 393	N 141	0 106	${ m S}{ m 5}$	0	0

• Molecule 24 is a protein called 60S ribosomal protein L38.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
24	Х	77	Total 612	C 391	N 115	O 106	0	0

• Molecule 25 is a protein called 60S ribosomal protein L39.

Mol	Chain	Residues		Ato	\mathbf{ms}	Atoms					
25	Y	50	Total 436	C 272	N 97	O 65	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0		

• Molecule 26 is a protein called Ubiquitin-60S ribosomal protein L40.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
26	Ζ	52	Total 410	C 254	N 86	O 65	${ m S}{ m 5}$	0	0

• Molecule 27 is a protein called 60S ribosomal protein L42-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
27	b	103	Total 824	C 517	N 167	0 135	${S \atop 5}$	0	0

• Molecule 28 is a protein called 60S ribosomal protein L43-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
28	с	91	Total 694	C 429	N 138	0 121	S 6	0	0

• Molecule 29 is a protein called 60S ribosomal protein L41-A.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
29	d	22	Total 207	C 127	N 56	O 23	S 1	0	0

• Molecule 30 is a RNA chain called 25S rRNA.

Mol	Chain	Residues			Atoms			AltConf	Trace
30	f	3216	Total 68782	C 30723	N 12389	O 22454	Р 3216	0	0

• Molecule 31 is a RNA chain called 5S rRNA.

Mol	Chain	Residues		A	AltConf	Trace			
31	h	121	Total 2579	C 1152	N 461	0 845	Р 121	0	0

• Molecule 32 is a RNA chain called 5.8S rRNA.

Mol	Chain	Residues		Α	toms			AltConf	Trace
32	i	158	Total 3353	C 1500	N 586	O 1109	Р 158	0	0

• Molecule 33 is a protein called 60S ribosomal protein L2-A.

Mol	Chain	Residues		Ate	AltConf	Trace			
33	j	246	Total 1874	C 1168	N 380	O 325	S 1	0	0

• Molecule 34 is a protein called 60S ribosomal protein L3.

Mol	Chain	Residues		At	AltConf	Trace			
34	k	386	Total 3075	C 1950	N 584	O 533	S 8	0	0

• Molecule 35 is a protein called 60S ribosomal protein L4-A.

Mol	Chain	Residues		At	AltConf	Trace			
35	1	361	Total 2748	C 1729	N 522	O 494	${ m S} { m 3}$	0	0

• Molecule 36 is a protein called 60S ribosomal protein L5.

Mol	Chain	Residues		At	AltConf	Trace			
36	m	294	Total 2351	C 1484	N 410	0 455	${ m S} { m 2}$	0	0

• Molecule 37 is a protein called 60S ribosomal protein L6-B.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
37	n	167	Total 1307	C 843	N 234	O 230	0	0

• Molecule 38 is a protein called 60S ribosomal protein L7-A.

Mol	Chain	Residues		At	AltConf	Trace			
38	О	222	Total 1784	C 1151	N 324	O 308	S 1	0	0

• Molecule 39 is a protein called 60S ribosomal protein L8-A.

Mol	Chain	Residues		At	AltConf	Trace			
39	р	233	Total 1804	C 1151	N 323	0 327	$\frac{S}{3}$	0	0

• Molecule 40 is a protein called 60S ribosomal protein L9-A.

Mol	Chain	Residues		At	AltConf	Trace			
40	q	191	Total 1508	C 957	N 274	0 273	$\frac{S}{4}$	0	0

• Molecule 41 is a protein called 60S ribosomal protein L10.

Mol	Chain	Residues		Ate	AltConf	Trace			
41	r	218	Total 1764	C 1117	N 334	O 306	${f S}7$	0	0

• Molecule 42 is a protein called 60S ribosomal protein L11-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
42	s	169	Total 1346	C 843	N 252	O 247	$\frac{S}{4}$	0	0

• Molecule 43 is a protein called 60S ribosomal protein L13-A.

Mol	Chain	Residues	Atoms			AltConf	Trace	
43	t	193	Total 1543	C 962	N 315	O 266	0	0

• Molecule 44 is a protein called 60S ribosomal protein L14-A.

Mol	Chain	Residues	Atoms				AltConf	Trace	
44	u	136	Total 1053	C 675	N 199	0 177	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 45 is a protein called RQC2 isoform 1.

Mol	Chain	Residues	Atoms					AltConf	Trace
45	a	848	Total 6579	C 4194	N 1142	O 1226	${ m S}$ 17	0	0

• Molecule 46 is a protein called E3 ubiquitin-protein ligase listerin.

Mol	Chain	Residues	Atoms					AltConf	Trace
46	е	1527	Total 11506	C 7350	N 1937	0 2181	S 38	0	0

• Molecule 47 is a protein called Eukaryotic translation initiation factor 6.

Mol	Chain	Residues	Atoms					AltConf	Trace
47	g	225	Total 1651	C 1030	N 282	O 332	${f S}7$	0	0

• Molecule 48 is a protein called Eukaryotic translation initiation factor 5A-1.

Mol	Chain	Residues	Atoms					AltConf	Trace
48	V	142	Total 1085	C 676	N 183	0 217	S 9	0	0

• Molecule 49 is a protein called 60S ribosomal protein L1-A.

Mol	Chain	Residues	Atoms					AltConf	Trace
49	W	216	Total 1709	C 1092	N 298	0 310	S 9	0	0

• Molecule 50 is a RNA chain called Ala tRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
50	v	74	Total	С	Ν	0	Р	0	0
50 X	14	1579	702	277	526	74	0	0	
50	T.	73	Total	С	Ν	0	Р	0	0
50	У	13	1556	692	272	519	73	0	0

• Molecule 51 is a protein called 60S ribosomal protein L12-B.

Mol	Chain	Residues	Atoms				AltConf	Trace
51	Z	148	Total 728	C 432	N 148	0 148	0	0

• Molecule 52 is a protein called 60S acidic ribosomal protein P0.

Mol	Chain	Residues	Atoms					AltConf	Trace
52	0	121	Total 961	C 618	N 167	0 173	${ m S} { m 3}$	0	0

• Molecule 53 is a protein called CAT-tailed nascent chain.

Mol	Chain	Residues	Atoms				AltConf	Trace
53	1	18	Total 90	С 54	N 18	O 18	0	0

• Molecule 54 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
54	А	1	Total Mg 1 1	0
54	С	1	Total Mg 1 1	0
54	Е	1	Total Mg 1 1	0
54	Ι	1	Total Mg 1 1	0
54	R	1	Total Mg 1 1	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
54	Т	1	Total Mg 1 1	0
54	f	3	Total Mg 3 3	0
54	h	1	Total Mg 1 1	0
54	j	2	Total Mg 2 2	0
54	k	1	Total Mg 1 1	0

• Molecule 55 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
55	Т	1	Total Zn 1 1	0
55	W	1	Total Zn 1 1	0
55	Ζ	1	Total Zn 1 1	0
55	b	1	Total Zn 1 1	0
55	с	1	Total Zn 1 1	0
55	е	2	Total Zn 2 2	0

Mol	Chain	Residues	Atoms	AltConf
56	f	1	Total C N 10 7 3	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 60S ribosomal protein L15-A

GLU ASP ALA

• Molecule 6: 60S ribosomal protein L20-A

Chain F:	88%	12% •
MET A2 P22 832 136 164 177 177 180	137 137 134 134 134 134 134 133 1123 1123 1123	
• Molecule 7: 60S rib	osomal protein L21-A	
Chain G:	89%	11% •
MET R17 R17 R16 R17 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7	899 8100 8100 8100 81100 81136 81136 81136 81136 81136 81136 81136 81136 81136 81136 81136 81155	
• Molecule 8: 60S rib	osomal protein L22-A	
Chain H:	67%	15% <mark>·</mark> 17%
MET ALA PRO ASN THR SER LVS Q D18 V19 S20 S20 S20 S20	141 E44 E44 N49 L50 C51 C56 C51 C56 V56 V56 V56 V56 V56 V56 V56 V56 V56 V	ALM VAL TTRR PRO GLU GLU GLU GLU GLU GLU
• Molecule 9: 60S rib	osomal protein L23-A	
Chain I:	88%	11% •
MET S2 S2 B14 B14 A51 A51 D56	Mb9 R80 981 94 8117 7 8133 8133 8133 8133 8133 8133 81	
• Molecule 10: 60S ri	bosomal protein L24-A	
Chain J:	7% · 59	%
M1 D6 D6 C6 C6 C4 T4 T4 T4 T4 T4 T4 T4 T4 C1U C1U	VAL VAL LYS LYS LYS ARG ARG ARG ARG ARG ARG CLY CAL ARG CLN ARD ALA ARG CLN ARD CLN ARD CLN THE CLN THE CLN THE CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	LYS GLU ARG ARG SER SER ELU CLU CLU CLU CLU CLU CLU CLU CLU CLU C
ALA ASN ASN LYS CLYS CLYS CLYS CLYS ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	LIVIS RETA SER SER SER SER ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	ALA THR SER ARG
• Molecule 11: 60S ri	bosomal protein L25	
Chain K:	84%	• 15%
MET ALA PRO PRO SER ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	GLY THR ASN GLY GLY GLY F12 D134 D134 T142	

• Molecule 12: 60S ribosomal protein L26-A

Chain L:	92%	6% •
MET A2 D11 E55 K63 K63 K63 K77 K77 K77 K77 K77 S94 S94		
• Molecule 13: 60S ribo	osomal protein L27-A	
Chain M:	92%	7% •
MET A2 K22 K27 V23 V23 K27 H29 H29 H29 H29 H28 H28 K133 K133 K134	R135	
• Molecule 14: 60S ribo	osomal protein L28	
Chain N:	92%	7% •
MET P2 657 657 657 657 657 894 894 795 897 799 799	P100 P122 V123 A149	
• Molecule 15: 60S ribo	osomal protein L29	
Chain O:	83%	12% • •
MET A2 A2 A16 A16 C20 C20 C22 K23 K23 K23 K23 K23 K23 K23 A55 A55	K69	
• Molecule 16: 60S ribo	osomal protein L30	
Chain P:	86%	6% 9%
MET ALA PALA PALA PALA PALA GLU GLU GLU GT3 GT3 G73 G73	100 TIA	
• Molecule 17: 60S ribo	osomal protein L31-A	
Chain Q:	80%	17% •
MET ALA ALA GLY R5 K5 19 19 142 H43 H43 H44 G45 G45 T46	D48 D48 L55 L55 L55 R77 R77 R77 R77 R77 R77 R77 R79 R94 D84 L89 D84 C81 D84 C81 D84 C81 C81 C81 C81 C81 C81 C81 C81 C81 C81	ALA
• Molecule 18: 60S ribo	osomal protein L32	
Chain R:	92%	6% ·
MET A2 23 14 19 19 16 11 16 11 16 11 128	ALA	
• Molecule 19: 60S ribc	osomal protein L33-A	

W O R L D W I D E PROTEIN DATA BANK

Chain S:	93%	6% ·
MET A2 L14 K31 K31 F37 F37 F37 F49 F195 V71		
• Molecule 20: 60S ribo	somal protein L34-A	
Chain T:	88%	5% 7%
MET A2 B87 B87 B87 B87 B87 A93 F93 F93 F93 F93 F93 F93 F93 F93 F10 6 F110 F110 F110 F110 F110 F110 F11	SER GLU LIYS ALA LIYS LIYS	
• Molecule 21: 60S ribos	somal protein L35-A	
Chain U:	93%	6% •
MET A2 K5 K5 K5 K5 K5 K5 K6 K7 K7 K7 K7 K7 K6 K83 K83 K83 K83		
• Molecule 22: 60S ribo	somal protein L36-A	
Chain V:	93%	6% •
HET 12 15 15 15 15 15 15 15 15 15 10 10		
• Molecule 23: 60S ribos	somal protein L37-A	
Chain W:	85%	7% 8%
MET G2 C3 F27 F27 F27 F27 F39 T39 T59 S158 ALA ALA S5R T159 S5R	ALA SER ALA	
• Molecule 24: 60S ribos	somal protein L38	
Chain X:	88%	10% •
MET MET R9 89 813 813 813 813 813 813 813 813 813 813		
• Molecule 25: 60S ribo	somal protein L39	
Chain Y:	98%	·
MET 151		
• Molecule 26: Ubiquitin	n-60S ribosomal protein L40	

Chair	n Z:		419	%					59%	6				
MET GLN TLE PHE	VAL LYS THR	THR GLY LYS THR THR	THR LEU GLU VAL	GLU SER SER ASP THR	ILE ASP ASN VAL	LYS SER LYS TLF	GLN ASP LYS	GLY GLY PRO PRO	ASP GLN GLN	LEU LEU PHE	ALA GLY LYS GLN	LEU GLU ASP	GLY ARG THR	LEU SER ASP TYR ASN
GLU GLN GLN	SER THR LEU HIS	LEU VAL LEU ARG	ARG GLY GLY ITT	K128										
• Mo	lecule	e 27: 60)S ribo	somal	prote	ein L4	2-A							
Chair	n b:					ç	7%						·	
MET V2 L104	GLN													
• Mo	lecule	e 28: 60)S ribo	somal	prote	ein L4	3-A							
Chair	n c:						99%						·	
MET A2 A03	ANZ													
• Mo	lecule	e 29: 60)S ribo	somal	prote	ein L4	1-A							
Chair	n d:	16%				88%						12	2%	
M4 K22	V23 R24 A25	SER LYS												
• Mo	lecule	e 30: 25	5S rRN	IA										
Chair	n f:				75%						18%	•	5%	
ם נו נו	A6 A13 111 A	A26 C36	A40 A43	A49 G59 A60	A65 A66 U78	U87 (292	098 098	4109 6110 6111	C112 C113	6120 6120 6121	A122 U133 U134	C135 G136	C142 U149	G156 A157 A165
C166 6172 6173	A187	0191 0191 0192 0200	G206 U210 A211	6212 A213 6218 A219	G234 U240	6241 C242 6243 6244	U245 U249	U252 G269 U270	G283 G283	U286 A295	U305 C315	A323	U329 C339	C350 U354
A374 A375 G376	A 398 A 399 G 400	6406 6406	U411 G421 A422	C439 A440 U441 C442	6443 0444 6445 0446	U447 U448 U449	6460 0451 G	יטבטט	בטטכ	פפטט	8000	5 C D 4	:000	G A A D C
טטטמ	A486 U487 U488 U488	6490 6494 6518	4519 U520 A521 A522	4523 U524 G535 IT536	C543 C544 U545	C546 G547 G548	A551 G552	U556 A557 U558 A559 A559	A578 G579	A589 G597	G604 A608	G609 G610 A611	U620 A621	A622 C637 C638
A649 A660	A677 U681	G684 A690 A691	A705 G712	A715 A716 U719 A720	C758 C758 G763	U764 C765 U766	U776 U777	A780 G781 G785	A786 A806	A 817 A 830	G835 A846	C849 U850	C861	U865 U874 U879

WORLDWIDE PROTEIN DATA BANK

U3214 U3217 C3217 A3218 G3219 G3229 G3229 G3229 G3229 C3235 C3255	A3245 C3246 C3246 C3246 C3246 C3259 U3269 U3275 C3278 U3275 C3278 U3275 C3278 C3278 C3278 C3278 C3278 C3278 C3278 C32888 C3288 C3288 C32888 C3288 C3288 C3288 C3288 C3288 C3288 C328	A3307 U3313 A3316 A3316 C3315 C3315 C3315 A3320 A3342 A3342
A Molecule 31: 5S	rRNA	
Chain h:	85%	15%
1 1 1 1 1 1 1 1 1 1	052 053 053 055 055 055 055 0105 01121 0121	

• Molecule 32: 5.8S rRNA

• Molecule 33: 60S ribosomal protein L2-A

Chain j:	97% •
MET C 2 C 2 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1	
• Molecule 34: 60S ribosomal protein	n L3
Chain k:	99%
MET 83 14 13 13 13 13 13 13 13 13 13 13 13 13 13	

• Molecule 35: 60S ribosomal protein L4-A

Chain l: 99% MET • Molecule 36: 60S ribosomal protein L5

Chain m:		98%	
MET ALA PHE 0137 K5 D137 L1222 L1222 L222 D230	1296 1297 ♦		

• Molecule 37: 60S ribos	somal protein L6-B	
Chain n:	94%	• 5%
MET T2 K8 K8 K8 K8 K120 CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU		
• Molecule 38: 60S ribos	somal protein L7-A	
Chain o:	91%	9%
MET ALA ALA ALA GLU GLU FRU GLU SER CLN CLN SER LYS LYS LYS	GLN GLN LIXS THR A23 N244	
• Molecule 39: 60S ribos	somal protein L8-A	
Chain p:	89%	• 9%
MET PRO GLY GLY GLY CYS LYS VAL VAL ALA PRO PRO PRO PRO PRO PRO TAR TAR	SER ASN LYS THR N24 N24 A76 Q79 Q79 Q79 Q79 Q79 Q79 Q79 Q79 Q76 A76 A76 A76 A76 A76 A76 A76 A76 A76 A76 A76 A76 A76 A76 A76 A76 A76 A76 A76 A76 A76 A76 A76 A76 A76 A76 A76 A77 A76 A76 A77 A76 A76 A77 A76 A76 A77 A76 A76 A77 A76 A76 A77 A76 A76 A77 A76 A76 A76 A76 A76 A77 A76 A76 A76 A76 A76 A76 A76 A76 A76 A76 A76 A76 A76 A76 A76 A76 A76 A76 A77 A76 A76 A76 A77 A76 A76 A77 A76 A77 A76 A77 A76 A77 A76 A77 A76 A77 A76 A77 A77 A76 A77 A76 A77 A77 A76 A77 A77 A77 A76 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A77 A	
• Molecule 40: 60S ribos	somal protein L9-A	
Chain q:	98%	
M1 K21 B42 B42 B107 L191		
• Molecule 41: 60S ribos	somal protein L10	
Chain r:	98%	
MET A2 Q112 Q112 A219 GLN ALA		
• Molecule 42: 60S ribos	somal protein L11-A	
Chain s:	94%	•••
MET SER ALA ALA ALA ALA ALA ALA R5 R5 R5 R5 R5 R5 R5 R5 R5 R10 S R10 S R10 S R10 S R10 S R10 S R10 S R10 R10 S R10 R10 S R10 R10 R10 R10 R10 R10 R10 R10 R10 R10	K174	
• Molecule 43: 60S ribos	somal protein L13-A	
Chain t:	96%	
MET A2 E136 E136 E136 GLU LYS LYS LYS		

• Molecule 44: 60S ribosomal protein L14-A

78%

GLY PHE GLY PHE PHE ASP

• Molecule 53: CAT-tailed nascent chain

Chain 1:

22%

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	79267	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	46	Depositor
Minimum defocus (nm)	400	Depositor
Maximum defocus (nm)	4000	Depositor
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT $(4k \ge 4k)$	Depositor
Maximum map value	3.680	Depositor
Minimum map value	-0.672	Depositor
Average map value	0.021	Depositor
Map value standard deviation	0.131	Depositor
Recommended contour level	0.4	Depositor
Map size (Å)	476.55002, 476.55002, 476.55002	wwPDB
Map dimensions	450, 450, 450	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.059, 1.059, 1.059	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: 5CT, SPD, MG, ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths]	Bond angles
WIOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.39	0/1757	0.70	1/2354~(0.0%)
2	В	0.39	0/1585	0.64	1/2128~(0.0%)
3	С	0.37	0/1439	0.71	2/1938~(0.1%)
4	D	0.34	0/1465	0.67	1/1965~(0.1%)
5	Е	0.37	0/1275	0.67	1/1702~(0.1%)
6	F	0.38	0/1473	0.65	0/1980
7	G	0.36	0/1296	0.62	0/1739
8	Н	0.39	0/812	0.69	3/1099~(0.3%)
9	Ι	0.35	0/1018	0.64	0/1369
10	J	0.36	0/530	0.63	0/703
11	K	0.41	0/979	0.69	1/1321~(0.1%)
12	L	0.35	0/995	0.67	1/1329~(0.1%)
13	М	0.36	0/1106	0.61	0/1485
14	Ν	0.40	0/1200	0.62	0/1607
15	0	0.32	0/473	0.72	2/629~(0.3%)
16	Р	0.35	0/745	0.68	0/1001
17	Q	0.39	0/890	0.77	2/1196~(0.2%)
18	R	0.32	0/1034	0.59	0/1385
19	S	0.38	0/868	0.61	0/1168
20	Т	0.35	0/890	0.67	0/1189
21	U	0.34	0/978	0.65	1/1301~(0.1%)
22	V	0.34	0/772	0.66	0/1026
23	W	0.39	0/660	0.69	0/875
24	Х	0.33	0/618	0.78	1/826~(0.1%)
25	Y	0.33	0/443	0.65	0/588
26	Ζ	0.33	0/416	0.70	0/553
27	b	0.36	0/836	0.65	0/1104
28	с	0.36	0/701	0.66	0/934
29	d	0.26	0/208	0.84	0/267
30	f	0.61	$0/7\overline{6989}$	1.03	$301/1200\overline{31}\ (0.3\overline{\%})$
31	h	0.53	0/2883	0.98	9/4491~(0.2%)
32	i	0.60	0/3746	0.96	7/5832~(0.1%)

Mal	Chain	Bond	lengths]	Bond angles
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5
33	j	0.37	0/1908	0.67	0/2564
34	k	0.37	0/3146	0.64	1/4228~(0.0%)
35	1	0.36	0/2800	0.65	2/3790~(0.1%)
36	m	0.34	0/2400	0.66	4/3239~(0.1%)
37	n	0.36	0/1329	0.67	0/1794
38	0	0.37	0/1821	0.61	0/2451
39	р	0.34	0/1836	0.62	2/2481~(0.1%)
40	q	0.37	0/1529	0.68	2/2060~(0.1%)
41	r	0.33	0/1801	0.64	0/2416
42	S	0.36	0/1367	0.70	3/1834~(0.2%)
43	t	0.36	0/1568	0.69	1/2106~(0.0%)
44	u	0.34	0/1068	0.66	1/1438~(0.1%)
45	a	0.31	0/6689	0.57	3/9023~(0.0%)
46	е	0.37	0/11705	0.57	1/15895~(0.0%)
47	g	0.32	0/1672	0.63	0/2281
48	v	0.31	0/1084	0.62	1/1456~(0.1%)
49	W	0.33	0/1736	0.65	0/2332
50	X	0.36	0/1760	1.02	8/2738~(0.3%)
50	у	0.40	0/1734	1.10	7/2697~(0.3%)
51	Z	0.37	0/726	0.60	0/1006
52	0	0.33	0/976	0.55	0/1313
All	All	0.50	0/161735	0.88	370/236257~(0.2%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
15	0	0	1
21	U	0	1
34	k	0	1
35	l	0	2
39	р	0	3
40	q	0	1
44	u	0	1
46	е	0	1
47	g	0	1
All	All	0	12

There are no bond length outliers.

The worst 5 of 370 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
30	f	3217	C	N1-C2-O2	12.11	126.17	118.90
30	f	3217	C	C2-N1-C1'	11.31	131.25	118.80
50	У	75	С	C6-N1-C2	-10.30	116.18	120.30
30	f	3217	С	N3-C2-O2	-9.73	115.09	121.90
11	Κ	134	ASP	CB-CG-OD1	9.72	127.05	118.30

There are no chirality outliers.

5 of 12 planarity outliers are listed below:

Mol	Chain	Res	Type	Group
15	0	20	GLY	Peptide
21	U	83	LYS	Peptide
34	k	141	GLY	Peptide
35	l	13	GLY	Peptide
35	l	318	LEU	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1720	0	1779	9	0
2	В	1555	0	1659	13	0
3	С	1416	0	1433	11	0
4	D	1441	0	1543	7	0
5	Е	1258	0	1342	6	0
6	F	1437	0	1475	14	0
7	G	1272	0	1312	10	0
8	Н	796	0	812	8	0
9	Ι	1003	0	1048	8	0
10	J	518	0	542	3	0
11	Κ	964	0	1025	1	0
12	L	984	0	1075	4	0
13	М	1080	0	1122	5	0
14	Ν	1169	0	1211	7	0
15	0	462	0	491	5	0
16	Р	737	0	792	3	0
17	Q	876	0	912	9	0
18	R	1013	0	1077	5	0

Conti	nuea fron	<i>i</i> previous	page			
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
19	S	850	0	880	3	0
20	Т	880	0	942	3	0
21	U	969	0	1078	3	0
22	V	766	0	844	4	0
23	W	645	0	645	3	0
24	Х	612	0	682	3	0
25	Y	436	0	475	0	0
26	Z	410	0	442	0	0
27	b	824	0	888	0	0
28	с	694	0	734	0	0
29	d	207	0	250	0	0
30	f	68782	0	34563	0	0
31	h	2579	0	1304	0	0
32	i	3353	0	1695	0	0
33	j	1874	0	1943	0	0
34	k	3075	0	3142	0	0
35	l	2748	0	2859	0	0
36	m	2351	0	2294	0	0
37	n	1307	0	1377	0	0
38	0	1784	0	1862	0	0
39	р	1804	0	1877	0	0
40	q	1508	0	1572	0	0
41	r	1764	0	1804	0	0
42	s	1346	0	1370	0	0
43	t	1543	0	1608	0	0
44	u	1053	0	1149	0	0
45	a	6579	0	6482	0	0
46	е	11506	0	10754	0	0
47	g	1651	0	1613	0	0
48	v	1085	0	1086	0	0
49	W	1709	0	1799	0	0
50	Х	1579	0	798	0	0
50	У	1556	0	788	0	0
51	Z	728	0	337	0	0
52	0	961	0	979	12	0
53	1	90	0	23	3	0
54	А	1	0	0	0	0
54	С	1	0	0	0	0
54	Е	1	0	0	0	0
54	Ι	1	0	0	0	0
54	R	1	0	0	0	0
54	Т	1	0	0	0	0

Continued from previous page...

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
54	f	3	0	0	0	0
54	h	1	0	0	0	0
54	j	2	0	0	0	0
54	k	1	0	0	0	0
55	Т	1	0	0	0	0
55	W	1	0	0	0	0
55	Ζ	1	0	0	0	0
55	b	1	0	0	0	0
55	с	1	0	0	0	0
55	е	2	0	0	0	0
56	f	10	0	19	0	0
All	All	151339	0	113607	153	0

Continued from previous page...

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 5.

The worst 5 of 153 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
15:O:16:ALA:O	15:O:20:GLY:HA3	1.69	0.90
15:O:16:ALA:O	15:O:20:GLY:CA	2.36	0.73
23:W:21:ARG:HE	23:W:39:TYR:HB2	1.58	0.69
52:0:26:PHE:HB2	52:0:87:VAL:HB	1.73	0.69
2:B:46[A]:GLU:HB3	2:B:49[A]:ARG:HG3	1.75	0.68

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	А	201/204~(98%)	190 (94%)	11 (6%)	0	100 100

	•	
Continued from	previous	page

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
2	В	195/199~(98%)	192 (98%)	3~(2%)	0	100	100
3	\mathbf{C}	181/184~(98%)	172 (95%)	9~(5%)	0	100	100
4	D	183/186~(98%)	176~(96%)	7 (4%)	0	100	100
5	Ε	154/189~(82%)	151 (98%)	3 (2%)	0	100	100
6	F	169/172~(98%)	163 (96%)	6 (4%)	0	100	100
7	G	157/160~(98%)	149 (95%)	8 (5%)	0	100	100
8	Н	98/121 (81%)	93 (95%)	5 (5%)	0	100	100
9	Ι	134/137~(98%)	132 (98%)	2 (2%)	0	100	100
10	J	61/155~(39%)	61 (100%)	0	0	100	100
11	K	119/142 (84%)	118 (99%)	1 (1%)	0	100	100
12	L	123/127~(97%)	119 (97%)	4 (3%)	0	100	100
13	М	133/136~(98%)	126 (95%)	7 (5%)	0	100	100
14	Ν	146/149~(98%)	136 (93%)	10 (7%)	0	100	100
15	Ο	56/59~(95%)	52 (93%)	3 (5%)	1 (2%)	8	16
16	Р	94/105~(90%)	93~(99%)	1 (1%)	0	100	100
17	Q	107/113~(95%)	98 (92%)	9 (8%)	0	100	100
18	R	125/130~(96%)	123 (98%)	2 (2%)	0	100	100
19	S	104/107~(97%)	101 (97%)	3 (3%)	0	100	100
20	Т	110/121~(91%)	108 (98%)	2(2%)	0	100	100
21	U	117/120~(98%)	112 (96%)	5 (4%)	0	100	100
22	V	97/100~(97%)	93 (96%)	4 (4%)	0	100	100
23	W	79/88~(90%)	75~(95%)	4 (5%)	0	100	100
24	Х	75/78~(96%)	74 (99%)	1 (1%)	0	100	100
25	Y	48/51~(94%)	46 (96%)	2 (4%)	0	100	100
26	Ζ	50/128~(39%)	47 (94%)	3 (6%)	0	100	100
27	b	101/106~(95%)	95 (94%)	6 (6%)	0	100	100
28	с	89/92~(97%)	85 (96%)	4 (4%)	0	100	100
29	d	20/25~(80%)	19 (95%)	1 (5%)	0	100	100
33	j	244/254~(96%)	226 (93%)	18 (7%)	0	100	100
34	k	$\overline{384/387}\ (99\%)$	363 (94%)	21 (6%)	0	100	100
35	1	359/362~(99%)	329 (92%)	29 (8%)	1 (0%)	41	64

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
36	m	292/297~(98%)	277~(95%)	15~(5%)	0	100	100
37	n	163/176~(93%)	154 (94%)	9~(6%)	0	100	100
38	О	220/244~(90%)	207~(94%)	13~(6%)	0	100	100
39	р	231/256~(90%)	220 (95%)	11 (5%)	0	100	100
40	q	189/191~(99%)	174 (92%)	14 (7%)	1 (0%)	29	52
41	r	216/221~(98%)	206 (95%)	10 (5%)	0	100	100
42	S	167/174~(96%)	161 (96%)	5(3%)	1 (1%)	25	47
43	t	191/199~(96%)	174 (91%)	16 (8%)	1 (0%)	29	52
44	u	134/138~(97%)	125~(93%)	9~(7%)	0	100	100
45	a	842/1038~(81%)	827~(98%)	15~(2%)	0	100	100
46	е	1519/1562~(97%)	1501 (99%)	16 (1%)	2~(0%)	51	75
47	g	223/245~(91%)	215~(96%)	8 (4%)	0	100	100
48	v	139/157~(88%)	139 (100%)	0	0	100	100
49	W	214/217~(99%)	211 (99%)	3~(1%)	0	100	100
51	Z	144/165~(87%)	134 (93%)	9 (6%)	1 (1%)	22	43
52	0	117/312~(38%)	116 (99%)	0	1 (1%)	17	35
All	All	9314/10279~(91%)	8958 (96%)	347 (4%)	9 (0%)	54	75

Continued from previous page...

5 of 9 Ramachandran outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
51	Z	88	PRO
35	l	4	PRO
40	q	107	ASP
42	s	108	GLU
46	е	437	LYS

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	175/176~(99%)	175 (100%)	0	100	100
2	В	160/162~(99%)	160 (100%)	0	100	100
3	С	138/146~(94%)	138 (100%)	0	100	100
4	D	150/151~(99%)	149 (99%)	1 (1%)	84	94
5	Ε	129/154~(84%)	129 (100%)	0	100	100
6	F	155/156~(99%)	155 (100%)	0	100	100
7	G	135/137~(98%)	134 (99%)	1 (1%)	84	94
8	Н	87/107 (81%)	85 (98%)	2 (2%)	50	75
9	Ι	104/105~(99%)	104 (100%)	0	100	100
10	J	54/129~(42%)	54 (100%)	0	100	100
11	K	104/118 (88%)	104 (100%)	0	100	100
12	L	108/110~(98%)	108 (100%)	0	100	100
13	М	112/116~(97%)	112 (100%)	0	100	100
14	N	117/119~(98%)	117 (100%)	0	100	100
15	Ο	46/47~(98%)	45 (98%)	1 (2%)	52	76
16	Р	81/88~(92%)	81 (100%)	0	100	100
17	Q	92/97~(95%)	92 (100%)	0	100	100
18	R	107/111~(96%)	107 (100%)	0	100	100
19	S	90/91~(99%)	90 (100%)	0	100	100
20	Т	95/103~(92%)	94 (99%)	1 (1%)	73	88
21	U	104/105~(99%)	104 (100%)	0	100	100
22	V	80/82~(98%)	80 (100%)	0	100	100
23	W	67/71~(94%)	67 (100%)	0	100	100
24	Х	68/69~(99%)	66~(97%)	2(3%)	42	68
25	Y	45/46~(98%)	45 (100%)	0	100	100
26	Z	45/116 (39%)	45 (100%)	0	100	100
27	b	87/91~(96%)	87 (100%)	0	100	100
28	с	71/72~(99%)	71 (100%)	0	100	100
29	d	20/23~(87%)	20 (100%)	0	100	100
33	j	189/196~(96%)	189 (100%)	0	100	100
34	k	321/323~(99%)	319~(99%)	2 (1%)	86	95
35	1	288/289~(100%)	288 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles		
36	m	241/245~(98%)	241 (100%)	0	100	100	
37	n	139/155~(90%)	138~(99%)	1 (1%)	84	94	
38	0	186/205~(91%)	186 (100%)	0	100	100	
39	р	187/208~(90%)	187 (100%)	0	100	100	
40	q	168/171~(98%)	168 (100%)	0	100	100	
41	r	185/187~(99%)	183 (99%)	2 (1%)	73	88	
42	S	145/150~(97%)	142 (98%)	3 (2%)	53	77	
43	t	154/159~(97%)	154 (100%)	0	100	100	
44	u	107/109~(98%)	107 (100%)	0	100	100	
45	a	678/949~(71%)	675 (100%)	3 (0%)	91	97	
46	е	1149/1451 (79%)	1057 (92%)	92 (8%)	12	24	
47	g	180/211 (85%)	180 (100%)	0	100	100	
48	v	119/132~(90%)	118 (99%)	1 (1%)	81	92	
49	W	197/198~(100%)	196 (100%)	1 (0%)	88	96	
52	0	104/254~(41%)	95 (91%)	9 (9%)	10	20	
All	All	7563/8690~(87%)	7441 (98%)	122 (2%)	64	82	

Continued from previous page...

 $5~{\rm of}~122$ residues with a non-rotameric side chain are listed below:

Mol	Chain	\mathbf{Res}	Type
46	е	869	HIS
46	е	1555	ARG
46	е	1028	PHE
46	е	1551	CYS
52	0	80	VAL

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 19 such side chains are listed below:

Mol	Chain	Res	Type
46	е	1288	GLN
48	V	52	HIS
52	0	36	GLN
47	g	9	ASN
46	е	805	ASN

5.3.3	\mathbf{RNA}	(\mathbf{i})
-------	----------------	----------------

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
30	f	3212/3395~(94%)	591~(18%)	0
31	h	120/121~(99%)	12 (10%)	0
32	i	157/158~(99%)	32~(20%)	0
50	Х	72/76~(94%)	21 (29%)	0
50	У	71/76~(93%)	20~(28%)	0
All	All	3632/3826~(94%)	676~(18%)	0

5 of 676 RNA backbone outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
30	f	6	А
30	f	13	А
30	f	14	U
30	f	26	А
30	f	40	А

There are no RNA pucker outliers to report.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

1 non-standard protein/DNA/RNA residue is modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Dog	Tink	Bo	ond leng	ths	B	ond ang	gles
	Type		lain nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
48	5CT	v	51	48	13,14,15	0.76	0	9,15,17	1.28	1 (11%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
48	$5\mathrm{CT}$	v	51	48	-	9/13/14/16	-

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
48	V	51	5CT	C4-C3-C2	-2.20	108.84	113.47

There are no chirality outliers.

5 of 9 torsion outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms
48	V	51	5CT	NZ-C1-C2-C3
48	V	51	5CT	O1-C2-C3-C4
48	V	51	5CT	C2-C3-C4-N1
48	V	51	5CT	C-CA-CB-CG
48	V	51	5CT	N-CA-CB-CG

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 21 ligands modelled in this entry, 20 are monoatomic - leaving 1 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Tuno		Chain	Dec	Tink	Bond lengths			Bond angles		
Moi Type	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
56	SPD	f	3401	-	9,9,9	0.32	0	8,8,8	0.86	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
56	SPD	f	3401	-	-	5/7/7/7	-

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (5) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
56	f	3401	SPD	C3-C4-C5-N6
56	f	3401	SPD	N6-C7-C8-C9
56	f	3401	SPD	C2-C3-C4-C5
56	f	3401	SPD	C8-C7-N6-C5
56	f	3401	SPD	C4-C5-N6-C7

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-15428. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 225

Y Index: 225

Z Index: 225

6.2.2 Raw map

X Index: 225

Y Index: 225

Z Index: 225

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 219

Y Index: 237

Z Index: 231

6.3.2 Raw map

X Index: 219

Y Index: 237

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.4. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.4.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is $1851~\rm{nm^3};$ this corresponds to an approximate mass of 1672 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.385 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.385 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\mathbf{Bosolution} \text{ ostimato } (\mathbf{\hat{\lambda}})$	Estimation criterion (FSC cut-off)			
Resolution estimate (A)	0.143	0.5	Half-bit	
Reported by author	2.60	-	-	
Author-provided FSC curve	2.55	2.94	2.60	
Unmasked-calculated*	3.25	4.65	3.34	

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 3.25 differs from the reported value 2.6 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-15428 and PDB model 8AGZ. Per-residue inclusion information can be found in section 3 on page 15.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.4 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.4).

9.4 Atom inclusion (i)

At the recommended contour level, 94% of all backbone atoms, 92% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.4) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score		
All	0.9190	0.5120		
0	0.8470	0.2900		
1	1.0000	0.4020		
А	0.9927	0.6120		
В	0.9789	0.5890		
С	0.9635	0.5890		
D	0.9821	0.5850		
Е	0.9390	0.5500		
F	0.9813	0.5800		
G	0.9684	0.5650		
Н	0.9220	0.4640		
I	0.9684	0.5780		
J	0.9661	0.5780		
Κ	0.9660	0.5740		
\mathbf{L}	0.9770	0.5700		
М	0.9556	0.5210		
Ν	0.9807	0.5940		
О	0.9580	0.5420		
Р	0.9393	0.5230		
Q	0.9259	0.5490		
R	0.9818	0.5990		
S	0.9915	0.6150		
Т	0.9766	0.5760		
U	0.9671	0.5580		
V	0.9595	0.5300		
W	1.0000	0.6280		
Х	0.9215	0.4970		
Y	1.0000	0.6020		
Ζ	0.9698	0.5760		
a	0.5854	0.2180		
b	0.9640	0.5730		
с	0.9716	0.5700		
d	0.7606	0.4030		
e	0.6976	0.2570		
f	0.9824	0.5700		

Continued from previous page...

Chain	Atom inclusion	Q-score
g	0.8440	0.4880
h	0.9992	0.5720
i	0.9967	0.5980
j	0.9906	0.6050
k	0.9786	0.5880
1	0.9780	0.5770
m	0.9401	0.4870
n	0.9500	0.5290
0	0.9690	0.5710
р	0.9458	0.5210
q	0.9608	0.5500
r	0.9614	0.5470
s	0.9297	0.4480
t	0.9711	0.5610
u	0.9698	0.5500
V	0.4605	0.3610
W	0.1234	0.2290
X	0.7467	0.2550
У	0.8689	0.2310
Z	0.9093	0.2990

