

# wwPDB EM Validation Summary Report (i)

#### Dec 11, 2022 – 04:00 pm GMT

| PDB ID       | : | 5AKA                                                                    |
|--------------|---|-------------------------------------------------------------------------|
| EMDB ID      | : | EMD-2917                                                                |
| Title        | : | EM structure of ribosome-SRP-FtsY complex in closed state               |
| Authors      | : | von Loeffelholz, O.; Jiang, Q.; Ariosa, A.; Karuppasamy, M.; Huard, K.; |
|              |   | Berger, I.; Shan, S.; Schaffitzel, C.                                   |
| Deposited on | : | 2015-03-03                                                              |
| Resolution   | : | 5.70  Å(reported)                                                       |
|              |   |                                                                         |

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| : | 0.0.1. dev 43                                                      |
|---|--------------------------------------------------------------------|
| : | 4.02b-467                                                          |
| : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| : | 1.9.9                                                              |
| : | Engh & Huber (2001)                                                |
| : | Parkinson et al. (1996)                                            |
| : | 2.31.3                                                             |
|   | :<br>:<br>:<br>:<br>:                                              |

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $ELECTRON\ MICROSCOPY$ 

The reported resolution of this entry is 5.70 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Motric                | Whole archive       | EM structures       |
|-----------------------|---------------------|---------------------|
|                       | $(\# { m Entries})$ | $(\# { m Entries})$ |
| Clashscore            | 158937              | 4297                |
| Ramachandran outliers | 154571              | 4023                |
| Sidechain outliers    | 154315              | 3826                |
| RNA backbone          | 4643                | 859                 |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for  $\geq=3, 2, 1$  and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions  $\leq=5\%$  The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

| Mol | Chain | Length |     | Quality | of chain |         |
|-----|-------|--------|-----|---------|----------|---------|
|     |       |        | 39% |         |          |         |
| 1   | 0     | 56     | 16% | 52%     | 2        | .0% 12% |
|     |       |        | 35% |         |          |         |
| 2   | 1     | 54     | 17% | 46%     |          | 35% •   |
|     |       |        | 46% |         |          |         |
| 3   | 2     | 46     | 28% | 40      | 6%       | 26%     |
|     |       |        |     | 67%     |          |         |
| 4   | 3     | 64     | 23% | 42%     |          | 33% •   |
|     |       |        | 39% |         |          |         |
| 5   | 4     | 38     | 21% | 37%     | 39       | 9% •    |
|     |       |        | 49% |         |          |         |
| 6   | 5     | 109    | 44% |         | 50%      | 6%      |
|     | _     |        | 25% |         |          |         |
| 7   | 6     | 8      |     | 88%     |          | 12%     |



| Mol | Chain        | Length | Quality of chain |     |         |       |  |  |  |  |
|-----|--------------|--------|------------------|-----|---------|-------|--|--|--|--|
| 2   | _            | - /    | 16%              |     |         |       |  |  |  |  |
| 8   | 1            | 74     | 5                | 5%  | 43%     | •     |  |  |  |  |
| 9   | А            | 120    | 28%              | 56% | 1       | 3% •  |  |  |  |  |
| 10  | В            | 2904   | 24%              | 58% | 15      | ·%    |  |  |  |  |
| 10  | D            | 2001   | 38%              |     | 13      | ••    |  |  |  |  |
| 11  | С            | 273    | 13%              | 42% | 35%     | 8% •  |  |  |  |  |
| 12  | D            | 209    | 13%              | 51% | 33%     | •     |  |  |  |  |
| 13  | Ε            | 201    | 15%              | 52% | 27%     | 5%    |  |  |  |  |
| 14  | F            | 178    | 24%              | 48% | 25%     | •     |  |  |  |  |
| 15  | G            | 176    | 25%              | 56% | 17      | •     |  |  |  |  |
| 16  | Н            | 149    | 27%              | 52% | 199     | % •   |  |  |  |  |
| 17  | Ι            | 141    | 32%              |     | 65%     | •     |  |  |  |  |
| 18  | J            | 142    | 41%<br>9%        | 52% | 35%     | •••   |  |  |  |  |
| 19  | К            | 123    | 26%              | 54% | 20%     | ••    |  |  |  |  |
| 20  | L            | 144    | 39%<br>19%       | 29% | 26% 22% | ·     |  |  |  |  |
| 21  | М            | 136    | 36%<br>18%       | 46% | 25%     | 11%   |  |  |  |  |
| 22  | Ν            | 127    | 37%<br>17%       | 50% | 30%     | •     |  |  |  |  |
| 23  | Ο            | 117    | 38%<br>20%       | 46% | 30%     | ·     |  |  |  |  |
| 24  | Р            | 114    | 44%<br>11%       | 38% | 41%     | 10%   |  |  |  |  |
| 25  | Q            | 117    | 38%              | 60% | 21%     | •     |  |  |  |  |
| 26  | R            | 103    | 13%              | 53% | 30%     | ·     |  |  |  |  |
| 27  | $\mathbf{S}$ | 110    | 28%<br>30%       | 45% | 18%     | 6%    |  |  |  |  |
| 28  | Т            | 100    | 39%<br>19%       | 49% | 25%     | 6% •  |  |  |  |  |
| 29  | U            | 103    | 12%              | 47% | 29%     | 6% •  |  |  |  |  |
| 30  | V            | 94     | 15%<br>24%       | 60% |         | 15% • |  |  |  |  |
| 31  | W            | 84     | 45%              | 44% | 29%     | 11%   |  |  |  |  |
| 32  | Х            | 63     | 16%<br>22%       | 46% | 32%     |       |  |  |  |  |

Continued from previous page...



Continued from previous page...

| Mol | Chain | Length |     | Quality of chain | L   |     |     |
|-----|-------|--------|-----|------------------|-----|-----|-----|
|     |       |        | 28% | -                |     |     |     |
| 33  | Y     | 58     | 28% | 48%              |     | 19% | 5%  |
|     | _     |        | 24% |                  |     |     |     |
| 34  | Z     | 70     | 21% | 43%              | 23% |     | 13% |



# 2 Entry composition (i)

There are 36 unique types of molecules in this entry. The entry contains 92737 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called 50S RIBOSOMAL PROTEIN L32.

| Mol | Chain | Residues |              | Ato      | $\mathbf{ms}$ | AltConf | Trace  |   |   |
|-----|-------|----------|--------------|----------|---------------|---------|--------|---|---|
| 1   | 0     | 56       | Total<br>444 | C<br>269 | N<br>94       | O<br>80 | S<br>1 | 0 | 0 |

• Molecule 2 is a protein called 50S RIBOSOMAL PROTEIN L33.

| Mol | Chain | Residues |              | Aton     | ıs      | AltConf | Trace |   |
|-----|-------|----------|--------------|----------|---------|---------|-------|---|
| 2   | 1     | 54       | Total<br>441 | C<br>284 | N<br>81 | O<br>76 | 0     | 0 |

• Molecule 3 is a protein called 50S RIBOSOMAL PROTEIN L34.

| Mol | Chain | Residues |              | Atc      | $\mathbf{ms}$ | AltConf | Trace           |   |   |
|-----|-------|----------|--------------|----------|---------------|---------|-----------------|---|---|
| 3   | 2     | 46       | Total<br>377 | C<br>228 | N<br>90       | O<br>57 | ${ m S} { m 2}$ | 0 | 0 |

• Molecule 4 is a protein called 50S RIBOSOMAL PROTEIN L35.

| Mol | Chain | Residues |              | Ate      | oms      | AltConf | Trace                                                   |   |   |
|-----|-------|----------|--------------|----------|----------|---------|---------------------------------------------------------|---|---|
| 4   | 3     | 64       | Total<br>504 | C<br>323 | N<br>105 | 0<br>74 | $\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$ | 0 | 0 |

• Molecule 5 is a protein called 50S RIBOSOMAL PROTEIN L36.

| Mol | Chain | Residues |              | Ato      | $\mathbf{ms}$ | AltConf | Trace  |   |   |
|-----|-------|----------|--------------|----------|---------------|---------|--------|---|---|
| 5   | 4     | 38       | Total<br>302 | C<br>185 | N<br>65       | 0<br>48 | S<br>4 | 0 | 0 |

• Molecule 6 is a protein called SIGNAL RECOGNITION PARTICLE PROTEIN.

| Mol | Chain | Residues |              | $\mathbf{A}^{\dagger}$ | toms     | AltConf  | Trace   |   |   |
|-----|-------|----------|--------------|------------------------|----------|----------|---------|---|---|
| 6   | 5     | 109      | Total<br>850 | C<br>523               | N<br>159 | 0<br>153 | S<br>15 | 0 | 0 |



There is a discrepancy between the modelled and reference sequences:

| Chain | Residue | Modelled | Actual | Comment  | Reference  |
|-------|---------|----------|--------|----------|------------|
| 5     | 406     | SER      | CYS    | conflict | UNP P0AGD7 |

• Molecule 7 is a protein called ALA-ALA-ALA-ALA-ALA-ALA-ALA-ALA.

| Mol | Chain | Residues | A     | Aton | ns |   | AltConf | Trace |
|-----|-------|----------|-------|------|----|---|---------|-------|
| 7   | 6     | 8        | Total | С    | Ν  | 0 | 0       | 0     |
| •   | 0     | 0        | 41    | 24   | 8  | 9 | 0       | 0     |

• Molecule 8 is a RNA chain called 4.5S ribosomal RNA.

| Mol | Chain | Residues |               | A        | AltConf  | Trace    |         |   |   |
|-----|-------|----------|---------------|----------|----------|----------|---------|---|---|
| 8   | 7     | 74       | Total<br>1591 | C<br>709 | N<br>298 | O<br>511 | Р<br>73 | 0 | 0 |

• Molecule 9 is a RNA chain called 5S ribosomal RNA.

| Mol | Chain | Residues |               | At        | AltConf  | Trace    |          |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|----------|---|---|
| 9   | А     | 117      | Total<br>2507 | C<br>1116 | N<br>459 | 0<br>815 | Р<br>117 | 0 | 0 |

• Molecule 10 is a RNA chain called 23S ribosomal RNA.

| Mol | Chain | Residues |                | -          | AltConf    | Trace      |           |   |   |
|-----|-------|----------|----------------|------------|------------|------------|-----------|---|---|
| 10  | В     | 2841     | Total<br>60995 | C<br>27210 | N<br>11229 | O<br>19715 | Р<br>2841 | 0 | 0 |

There are 2 discrepancies between the modelled and reference sequences:

| Chain | Residue | Modelled | Actual | Comment  | Reference    |
|-------|---------|----------|--------|----------|--------------|
| В     | 2798    | U        | UNK    | conflict | GB 731469900 |
| В     | 2800    | А        | UNK    | conflict | GB 731469900 |

• Molecule 11 is a protein called 50S RIBOSOMAL PROTEIN L2.

| Mol | Chain | Residues | Atoms         |           |          |          |        | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|--------|---------|-------|
| 11  | С     | 267      | Total<br>2053 | C<br>1271 | N<br>416 | O<br>359 | S<br>7 | 0       | 0     |

• Molecule 12 is a protein called 50S RIBOSOMAL PROTEIN L3.



| Mol | Chain | Residues | Atoms         |          |          |          |               | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|---------------|---------|-------|
| 12  | D     | 209      | Total<br>1565 | C<br>979 | N<br>288 | O<br>294 | $\frac{S}{4}$ | 0       | 0     |

• Molecule 13 is a protein called 50S RIBOSOMAL PROTEIN L4.

| Mol | Chain | Residues | Atoms         |          |          |          |                | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|----------------|---------|-------|
| 13  | Е     | 201      | Total<br>1552 | C<br>974 | N<br>283 | O<br>290 | ${ m S}{ m 5}$ | 0       | 0     |

• Molecule 14 is a protein called 50S RIBOSOMAL PROTEIN L5.

| Mol | Chain | Residues | Atoms         |          |          |          |        | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|--------|---------|-------|
| 14  | F     | 178      | Total<br>1420 | C<br>905 | N<br>251 | O<br>258 | S<br>6 | 0       | 0     |

• Molecule 15 is a protein called 50S RIBOSOMAL PROTEIN L6.

| Mol | Chain | Residues | Atoms         |          |          |          |                 | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|-----------------|---------|-------|
| 15  | G     | 176      | Total<br>1323 | C<br>832 | N<br>243 | 0<br>246 | ${ m S} { m 2}$ | 0       | 0     |

• Molecule 16 is a protein called 50S RIBOSOMAL PROTEIN L9.

| Mol | Chain | Residues | Atoms         |          |          |          |        | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|--------|---------|-------|
| 16  | Н     | 149      | Total<br>1111 | C<br>699 | N<br>197 | 0<br>214 | S<br>1 | 0       | 0     |

• Molecule 17 is a protein called 50S RIBOSOMAL PROTEIN L11.

| Mol | Chain | Residues |               | At       | oms      |          |        | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|--------|---------|-------|
| 17  | Ι     | 141      | Total<br>1032 | C<br>651 | N<br>179 | O<br>196 | S<br>6 | 0       | 0     |

• Molecule 18 is a protein called 50S RIBOSOMAL PROTEIN L13.

| Mol | Chain | Residues |               | At       | oms      |          |               | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|---------------|---------|-------|
| 18  | J     | 140      | Total<br>1112 | С<br>704 | N<br>210 | 0<br>194 | ${S \atop 4}$ | 0       | 0     |

 $\bullet\,$  Molecule 19 is a protein called 50S RIBOSOMAL PROTEIN L14.



| Mol | Chain | Residues |              | At       | oms      | AltConf  | Trace      |   |   |
|-----|-------|----------|--------------|----------|----------|----------|------------|---|---|
| 19  | К     | 121      | Total<br>930 | C<br>582 | N<br>179 | O<br>164 | ${f S}{5}$ | 0 | 0 |

• Molecule 20 is a protein called 50S RIBOSOMAL PROTEIN L15.

| Mol | Chain | Residues |               | At       | oms      | AltConf  | Trace  |   |   |
|-----|-------|----------|---------------|----------|----------|----------|--------|---|---|
| 20  | L     | 138      | Total<br>1002 | C<br>623 | N<br>197 | 0<br>181 | S<br>1 | 0 | 0 |

• Molecule 21 is a protein called 50S RIBOSOMAL PROTEIN L16.

| Mol | Chain | Residues |               | At       | oms      |          |        | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|--------|---------|-------|
| 21  | М     | 136      | Total<br>1074 | C<br>686 | N<br>205 | 0<br>177 | S<br>6 | 0       | 0     |

• Molecule 22 is a protein called 50S RIBOSOMAL PROTEIN L17.

| Mol | Chain | Residues |               | At       | oms      | AltConf  | Trace          |   |   |
|-----|-------|----------|---------------|----------|----------|----------|----------------|---|---|
| 22  | Ν     | 127      | Total<br>1008 | C<br>621 | N<br>204 | 0<br>178 | ${ m S}{ m 5}$ | 0 | 0 |

• Molecule 23 is a protein called 50S RIBOSOMAL PROTEIN L18.

| Mol | Chain | Residues |              | At       | oms      |          |        | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|--------|---------|-------|
| 23  | О     | 117      | Total<br>900 | C<br>557 | N<br>179 | 0<br>163 | S<br>1 | 0       | 0     |

• Molecule 24 is a protein called 50S RIBOSOMAL PROTEIN L19.

| Mol | Chain | Residues |              | At       | oms      |          |        | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|--------|---------|-------|
| 24  | Р     | 114      | Total<br>917 | C<br>574 | N<br>179 | 0<br>163 | S<br>1 | 0       | 0     |

• Molecule 25 is a protein called 50S RIBOSOMAL PROTEIN L20.

| Mol | Chain | Residues |              | Ato      | ms       |          | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|---------|-------|
| 25  | Q     | 117      | Total<br>947 | C<br>604 | N<br>192 | O<br>151 | 0       | 0     |

 $\bullet\,$  Molecule 26 is a protein called 50S RIBOSOMAL PROTEIN L21.



| Mol | Chain | Residues |              | At       | oms      | AltConf  | Trace           |   |   |
|-----|-------|----------|--------------|----------|----------|----------|-----------------|---|---|
| 26  | R     | 103      | Total<br>816 | C<br>516 | N<br>153 | 0<br>145 | ${ m S} { m 2}$ | 0 | 0 |

• Molecule 27 is a protein called 50S RIBOSOMAL PROTEIN L22.

| Mol | Chain | Residues |              | At       | oms      |          |                 | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|-----------------|---------|-------|
| 27  | S     | 110      | Total<br>857 | C<br>532 | N<br>166 | 0<br>156 | ${ m S} { m 3}$ | 0       | 0     |

• Molecule 28 is a protein called 50S RIBOSOMAL PROTEIN L23.

| Mol | Chain | Residues |              | At       | oms      |          |               | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|---------------|---------|-------|
| 28  | Т     | 99       | Total<br>777 | C<br>491 | N<br>145 | 0<br>139 | ${S \over 2}$ | 0       | 0     |

• Molecule 29 is a protein called 50S RIBOSOMAL PROTEIN L24.

| Mol | Chain | Residues |              | Ato      | ms       |          | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|---------|-------|
| 29  | U     | 102      | Total<br>779 | C<br>492 | N<br>146 | 0<br>141 | 0       | 0     |

• Molecule 30 is a protein called 50S RIBOSOMAL PROTEIN L25.

| Mol | Chain | Residues |              | At       | oms      |          |                 | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|-----------------|---------|-------|
| 30  | V     | 94       | Total<br>753 | C<br>479 | N<br>137 | 0<br>134 | ${ m S} { m 3}$ | 0       | 0     |

• Molecule 31 is a protein called 50S RIBOSOMAL PROTEIN L27.

| Mol | Chain | Residues |              | At       | oms      |          |        | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|--------|---------|-------|
| 31  | W     | 84       | Total<br>634 | C<br>391 | N<br>129 | 0<br>113 | S<br>1 | 0       | 0     |

• Molecule 32 is a protein called 50S RIBOSOMAL PROTEIN L29.

| Mol | Chain | Residues |              | Ato      | $\mathbf{ms}$ |         |                                                         | AltConf | Trace |
|-----|-------|----------|--------------|----------|---------------|---------|---------------------------------------------------------|---------|-------|
| 32  | Х     | 63       | Total<br>509 | C<br>313 | N<br>99       | O<br>95 | $\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$ | 0       | 0     |

 $\bullet\,$  Molecule 33 is a protein called 50S RIBOSOMAL PROTEIN L30.



| Mol | Chain | Residues |              | Ato      | $\mathbf{ms}$ |         |                 | AltConf | Trace |
|-----|-------|----------|--------------|----------|---------------|---------|-----------------|---------|-------|
| 33  | Y     | 58       | Total<br>449 | C<br>281 | N<br>87       | O<br>79 | ${ m S} { m 2}$ | 0       | 0     |

• Molecule 34 is a protein called 50S RIBOSOMAL PROTEIN L31.

| Mol | Chain | Residues |              | At       | oms      |          |        | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|--------|---------|-------|
| 34  | Z     | 70       | Total<br>549 | C<br>339 | N<br>104 | O<br>100 | S<br>6 | 0       | 0     |

• Molecule 35 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

| Mol | Chain | Residues | Ator         | $\mathbf{ms}$ | AltConf |
|-----|-------|----------|--------------|---------------|---------|
| 35  | В     | 110      | Total<br>110 | Mg<br>110     | 0       |

• Molecule 36 is water.

| Mol | Chain | Residues | Atoms              | AltConf |
|-----|-------|----------|--------------------|---------|
| 36  | В     | 497      | Total O<br>497 497 | 0       |
| 36  | С     | 1        | Total O<br>1 1     | 0       |
| 36  | Е     | 5        | Total O<br>5 5     | 0       |
| 36  | L     | 2        | Total O<br>2 2     | 0       |
| 36  | Ν     | 1        | Total O<br>1 1     | 0       |



# 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 50S RIBOSOMAL PROTEIN L32







| U137     | U138                | 0139<br>C140 | G141     | A142           | C143         | A144       | 0145<br>A146    | C147  | U148     | A149<br>11150 | 0150<br>C151     | A152        | U153  | 0154<br>4155  | A156         | C157   |          | A160<br>A161 | U162         | C163        | C164       | A165<br>II166 | A167          | G168         | G169<br>11170     | 0171          | A172       | A173       | 01/4<br>G175   | A176         | G177<br>C178 |              | A181         | A182<br>C183  | C184         | 6185<br>0186 | 6187         | G188   | G189<br>A190       | A191              | C192<br>111 02    |               | A196         | Als/<br>C198 | A199  |
|----------|---------------------|--------------|----------|----------------|--------------|------------|-----------------|-------|----------|---------------|------------------|-------------|-------|---------------|--------------|--------|----------|--------------|--------------|-------------|------------|---------------|---------------|--------------|-------------------|---------------|------------|------------|----------------|--------------|--------------|--------------|--------------|---------------|--------------|--------------|--------------|--------|--------------------|-------------------|-------------------|---------------|--------------|--------------|-------|
| U200     | 4 20 3              | A204         | G205     | U206<br>A207   | C208         | C209       | C210<br>C211    | G212  | A213     | G214          | 6215<br>A216     |             | A221  | A222          | N224         | C225   | A226     | A227         | G230         | A231        | G232       | A233          | U235          | C236         | <mark>C237</mark> | C:240         | A241       | G242       | U243<br>A244   | G245         | C246         | G247<br>G248 | C249         | соБо<br>СоБо  | C253         | G254         | A255<br>A256 | C257   | <mark>G</mark> 258 | <mark>G263</mark> | C264              | A265<br>G266  | C267         | C268<br>C269 |       |
| A270     | 62/1<br>4272        | G273         | C274     | C275           | G277         | A278       | A279<br>U280    | C281  | A282     | G283          | 0.284<br>G285    | U286        | G287  | U288          | U290         | G291   | U292     | U293         | 6295         | U296        | G297       | G298          | A299<br>A300  | <b>G</b> 301 | C302              | 1304<br>11304 | C305       | U306       | G307<br>G308   | A309         | A310         | A311<br>G312 | G313         | C314<br>C315  | C316         | G317         | G319<br>G319 | A320   | U321<br>A322       | C323              | A324              | 6325<br>6326  | G327         | U328<br>G329 |       |
| A330     | C331<br><u>A332</u> | <b>G</b> 333 | C334     | C335<br>7336   | C337         | G338       | 0339<br>A340    | C341  | A342     | C343          | A344<br>A345     | A346        | A347  | A348<br>11240 | G350         | C351   | A352     | C353<br>A3E4 | U355         | <b>G356</b> | C357       | U358          | 1360          | G361         | A362              | G364<br>C364  | U365       | C366       | G367<br>A368   | U369         | G370         | G372         | U373         | A374<br>G375  |              | C378         | G380         | G381   | A382               | G386              | U387              | 6388<br>6389  | 0390         | A391<br>U392 |       |
| C393     | C394<br>11395       | <b>G396</b>  | U397     | C398<br>11300  | G400         | A401       | A402<br>U403    | A404  | U405     | G406          | G407<br>G408     | G409        | G410  | G411          | C414         | A415   | U416     | C417         | 0419<br>U419 | C420        |            | A423          | G425          | C426         | U427              | A428<br>A429  |            | C433       | 0434<br>C435   | C436         | U437         | G438<br>A439 | C440         | 0441<br>6442  | A443         | C444         | C445<br>G446 | A447   | U448               | 6450              | U451              | 6452          | C455         | C456<br>A457 |       |
| G458     | 0459<br>A460        | C461         |          | 0464<br>Слег   | A466         | G467       | G469<br>G469    |       | G476     | A477          | A4/8<br>A479     | A480        | G481  | A482          | C484         |        | C487     | 6488         | C490         | G491        | A492       | G493          | G495          | G496         | A497              | 1499          | GEOO       | A501       | A502<br>A503   | A504         | A505         | 4507         | A508         | C509          | U511         | G512         | A513<br>A514 | A515   | C516               | C517<br>G518      | <mark>U519</mark> | G520<br>11521 | 4522         | C523<br>C523 | 1 100 |
| 525      | 526<br>527          | 528          | 529      | 530            | 532          | 533        | 534<br>535      | 536   | 537      | 038           | 540              | 541         | 542   | 543           | 545          | 546    | 547      | 548          | 549          |             | 554<br>554 | 555           | 556           | 55 X         | 559               | 560           | 561<br>562 | 563        | 564<br>565     | 000<br>000   | 567          | 568          | 570          | 571<br>       | 573<br>573   | 574          | 575<br>576   | 577    |                    | 580<br>581        | 582               | 583           | 585          | 586<br>587   |       |
| Ď        | A C                 | A            | A        | ö              | A            | <b>ö</b> : | 5 8             | ö     | ö        | A C           | 5 C              | A!          | Ũ     | 8             | δ Β          | Ď      | A        | Ŭ            |              | 3           | Б          | ũ             | A             | 55           | ö                 | 0 0           | 5 6        | A          | 00             | 5 E          |              | ы<br>Б       | 5 8          | ň             | A D          | A            | A            | 5 8    |                    | 50                | A                 | 80            |              | ¥ Ü          | 5     |
| U588     | 0589<br>4590        | U591         | A592     | U593<br>115 04 | C595<br>C595 | U596       | 0598<br>U598    | A599  |          | A603          | 11606            | <b>U607</b> | A608  | A609          | CC11<br>CC11 | G612   | A613     | A614         | U615<br>A616 | GE17        |            | G620          | A621          | C623         |                   | A627          | G630       | A631       | A632           | A633<br>C634 | C635         | G636         | G638         | U639          | 0400         | A643         | A644         | U646   |                    | G649<br>C650      | G651              |               | A655<br>A655 | Gebe         | 1 GOU |
| U658     | CEEO<br>CEEO        | A661         | G662     | G663<br>C664   | U665         | A666       | 0667<br>A668    | G99D  | A670     | C671          | C673<br>C673     | G674        |       | C678          | CG80         |        | G684     | A685         | C687         | <b>U688</b> | A689       | G690          | C691<br>C692  | A693         | <b>U694</b>       | A699          | G700       | G701       | U/02<br>U703   | G704         | A705         | G708         | 020          | U710<br>G711  | G712         | G713         | A716         | C717   | A718<br>7719       | U720              | A721              | A/22          | 6726         | G728         |       |
| G729     | A/30                | CT37         | G738     | A739           | U741         | A742       | A/43<br>U744    | G745  | U746     | U747          | A751             | A752        | A753  | U754          | A756         | G757   | C758     | G759<br>C760 |              | G763        | A764       | C765          | 00/0          | G770         | G771              | 0//2<br>U773  | G774       | G775       | 6//6           | G780         | A781         | A/82<br>A783 | G784         | G785<br>C786  | C787         |              | 0620         | A794   | C795               | C796<br>C797      |                   | 6805<br>7806  | 1807         | 6808<br>6809 | 2     |
| U810     | 0811<br>C812        | U813         | C814     |                | G818         | A819       | A820<br>A821    | G822  | C823     | U824          | 4825<br>U826     | U827        | U828  | A829          | G831         | U832   | A833     | G834<br>7025 |              | U839        | C840       | G841          | 0642<br>G843  | A844         | A845<br>11846     | U846<br>U847  | C848       | A849       | 0850<br>C851   | <b>U852</b>  | C853         | C854<br>G855 | G856         | G857<br>G858  | G859         |              | A863<br>G864 | C865   | A866               | 6869              | <u>U870</u>       | U871<br>11872 | C873         | G874<br>G875 | 2     |
| C876     | A877<br>A878        | 5            | IJ       | 5 5            |              | n          | P C             | n     | C        | 0 0           | ი <b>ლ</b>       | Ä           | U     | n<br>1        | A            | c c    | C898     | A899         | A900         | C901        | C902       | C903          | 6904<br>A ODE |              | C908              | A909          | A911       | C912       | U913           | G914         | 6916<br>G916 | A917         | A918<br>U919 | A920          | C921<br>C922 | G923         | G924         | 6926   | A927               | A928              | 0 2 0             | U932          | A933<br>U934 | C935         | 6937  |
| 938      | 939                 | 941          | 942<br>1 | 943            | 946          | 947        | 948             | 950   | 951      | 952<br>852    | 954              | 955         | 956   | 957<br>958    | 959          | 960    | 961      | 962          | 964          | 965         | 966        | 967           | 900           | 970          | 971<br>270        | 973           | 974        | 975<br>270 | 976            | 978          | 979<br>000   | 981          | 982          |               | 985<br>985   | 986          | 987<br>980   | 080    | 066                | 991<br>992        | 993               | 994<br>DOF    | 966          | 997<br>208   | 2     |
| 0        | 000<br>100          | 02 V         | Ű        | 005 A          | 07           | 08<br>08   | 10<br>10<br>010 | 11 6  | 012<br>C | 013           | 114<br>115<br>66 | 16          | 017 G | 018<br>10     | 120 AS       | 121 A  | 122<br>C | 023          | 125 Ct       | 26<br>C     | 127        | 028<br>00     | 30            | 131 U        | 32<br>32          | 334 A         | 35 G       | 136 A      | 33<br>38<br>66 | 39           | 140 A        | 141 A        | 143<br>Ct    | 144 A:        | 146 Ct       | 047 C        | 048<br>049   | 150 G. | 151 At             | 2 C               | 154<br>Cr         |               | 157 A        | 200          | 5     |
| 00<br>01 |                     | 13 G10       | 14       | 35 C10         | 17 C10       | 88 A10     | 0 A10           | 1 G10 | 2 U10    | 3 C10         | 4 A10            | 6 G10       | 7 610 | 010<br>0110   | NO A10       | 11 A10 | 32 G10   | 010          | 15 G10       | 16 G10      | 37 A10     | 38 A10        | 0 C10         | 01 610       | 92 A10            | 4 G10         | 15 U10     | 96 G10     | 8 G10          | 9 A10        | 00 A10       | 10 610       | 03 C10       | 04 C10        | 16 A10       | 07 G10       | 9 C10        | 0 A10  | .1 G10             | 3 C10             | 4 A10             | 6 G10         | 7 A10        | 9 G10        |       |
| U106     | 0106<br>6106        | G106         | C106     | U106           | A106         | G106       | A106<br>A107    | G107  | C107     | A107          | G107             | C107        | A107  | 10107         | A108         | U108   | U108     | 0108         | A108         | A108        | G108       | A108          | A103<br>A109  | G109         | C1 09             | 6010<br>6010  | A109       | A109       |                | G109         | C110         |              | A110         | C110<br>II110 | G110         | G110         |              | G111   | A111<br>C111       | U111              | C111              | G111<br>G111  | C111         |              |       |



| U1184 G1120 | G1185 C1121 | G1186 G1122<br>G1187 C1123 | U1188 G1124 | A1189 G1125 | G1191 A1120 G1191        | G1192 U1130 | G1193 G1131<br>A1194 U1132 | G1195 A1133 | C1196 A1134 | G1197 C1135<br>U1198 G1136 | U1199 G1137 | C1200 G1138 | U1201 G1139<br>G1202 C1140  | U1203 U1141       | A1204 A1142 | A1205                   | G1206 C1145<br>C1207 C1145 |             | G1210 G1149<br>C1011 C1150 | G1212 A1151 | C1152       | G1215 C1193<br>C1216 G1154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 01217 A1155 | G1218 A1156       | 01219<br>G1220 C1158 | C1221 U1159 | U1224 C1161           | G1225 G1162   | A1226<br>G1227 C1164    | G1228 A1165 | C1229<br>A1230<br>C1167    | U1231 G1168 A1169        | G1232<br>C1170       | G1236 G1171         | A1237 01172<br>01738 01173   | G1239 U1174           | U1240 A1175          | 01242 G1177 G1177          | C1243<br>C1178<br>C1178 | A1244 U1180             | A1246 U1181         | A1247 G1182 G1248 U1183  |
|-------------|-------------|----------------------------|-------------|-------------|--------------------------|-------------|----------------------------|-------------|-------------|----------------------------|-------------|-------------|-----------------------------|-------------------|-------------|-------------------------|----------------------------|-------------|----------------------------|-------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------|----------------------|-------------|-----------------------|---------------|-------------------------|-------------|----------------------------|--------------------------|----------------------|---------------------|------------------------------|-----------------------|----------------------|----------------------------|-------------------------|-------------------------|---------------------|--------------------------|
| L314 U1249  | [315 G1250  | [316 C1251<br>317 C1252    | 1318 A1253  | 1319 A1254  | 1320 01255<br>1321 G1256 | [322 C1257  | [323 01258<br>[324 G1259   | 1325 A1260  | C1261       | (327)<br>(328) (1266)      | 1329 U1267  | 1330 A1268  | 1331 A1269<br>1332 C1270    | <b>[333</b> 61271 | 1334 A1272  | 1335 U1273              | L337 A1274<br>L337 A1275   | A1276       | 1341 G1277 G1277           | 1345 G1279  | 1346 G1280  | 1348 G1281 G1281 G1281 G1248 G1248 G1248 G1248 G1248 G1248 G1248 G1448 G1488 G | [349 G1283  | 1350 A1284        | 1352 A1286 A1286     | 1353 A1287  | 1355 C1288 C1289      | C1290         | 1360 C1291 C1292        | [36] C1293  | 1363 01294 01295 01295     | 1364 G1296<br>1365 G1206 | C1 298               | [368 G1299          | <b>G1300</b><br><b>G1300</b> | 1374 A1302            | 1375<br>1376<br>1376 | 1377 A1304<br>C1305        | 1378                    | 1380 G1310 G1310 G1310  | [381 G1311          | 1382 U1312<br>1383 U1313 |
| A1384 C1    | A1385 C1    |                            | G1388 U1    |             | A1392 CJ                 | U1394 A1    | A1395 C1<br>U1396 G1       | U1397       | C1398 U1    | C1399 A1<br>11400 A1       | G1401 U1    | U1402 C1    | A1403 G1<br>C1404 G1        | 01405 G1          | U1406 G1    | G1407 C1                | 01409 G1                   | G1410       | 01411<br>U1412             | A1413 C1    | C1414 G1    | 01415<br>G1416 C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2           | A1419 C1<br>A1420 |                      | G1424 A1    | G1426 G1              | A1427         | G1429 G1                | G1430 G1    | 61432 C1                   | A1433 G1<br>A1434 A1     |                      | C1437 G1<br>111/128 | 01430<br>A1439 A1            | U1440 G1              | G1441 U1<br>U1442 C1 | U1443 G1                   | G1444 A1                | C1446 G1                | C1447 G1            | 61449<br>61449           |
| G1516 G1450 | G1517 C1451 | C1518 G1452<br>C1519 A1453 | U1520 C1454 | G1521 G1455 | 01523 01457 01457        | G1524 U1458 | A1525 G1459<br>C1526 U1460 | G1527 C1461 | A1528 C1462 | G1529 C1463<br>G1530 G1464 | C1531 G1465 | A1532       | C1533 A1469<br>111534 A1470 | A1535 G1471       | C1536 C1572 | G1537 G1473 G1473 G1473 | U1539 G1475                | G1540 U1476 | C1541 A14//<br>U1542 G1478 | G1543 G1479 | A1544 C1480 | G1546 G1482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C1547 G1483 | A1548 U1484       | C1550 U1486          | A1551 U1487 | A1553 C1489           | U1554 A1490   | C1556 C1493             | C1557 A1494 | U1559 A A1495              | G1560                    | U1562 A1502 A1502    | U1563 A1503         | C1564 A1504 C1565 A1505      | A1566 U1506           | G1567 C1507          | 41508 A1508 A1509 A1509    | A1570 G1510             | A1571 G1511 G1511 C1512 | G1573 U1513         | C1574 G1514 A1515        |
| U1578       | A1579       | A1580                      | A1583       | U1584       | C1585<br>A1586           | G1587       | G1588<br>U1589             | A1590       | A1591       | C1592                      | A1593       | C1595       | A1596                       | A1597<br>A1598    | U1599       | C1600                   | G1601<br>111602            | A1603       | 200                        | C1607       | A1608       | A1609<br>A1610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C1611       | C1612             | G1613                | A1616       | C1617<br>A1618        | •             | G1622<br>G1623          | U1624       | U1629                      | 2000                     | 61633<br>A1634       | A1635               | 01636<br>41637               | C1638                 | C1639                | A1640<br>A1641             | G1642                   | G1645                   | C1646               | 01647<br>01648           |
| G1715 G1649 | U1716       | A1717 A1652                | G1719 A1654 | U1720 A1655 | A1722 U1657              | G1723 C1658 | G1724<br>U1725 G1661       | C1726 U1662 | C1727 G1663 | C1728 A1664 A1665          | C1730 G1666 | G1731 G1667 | C1732 A1668<br>C1733 A1668  | G1734 C1670       | A1735 U1671 | U1736 A1672             | G1738 G1674                | A1739 C1675 | G1740 A1676 A1677 A1677    | U1742       | G1743 G1681 | A1745 U1683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A1746 G1684 | U1747 C1685       | A1749 G1687          | G1750 U1688 | C1752 A1690           | G1753 🔶 C1691 | A1754 01692 01693 01693 | G1756 C1694 | A1757 G1695<br>U1758 G1696 | A1759                    | A1/00<br>A1762 A1701 | G1763 G1702         | C1764 C1703 C1703            | G1766 A1705           | C1706                | C1//1 G1/0/<br>A1772 C1708 | A1773 U1709             | C1774 G1710 U1775 A1711 | G1776 U1712         | A1713<br>U1779 U1714     |
| 846 A1780   | 847 U1781   | 848 U1782                  | 851 A1784   | 852 A1785   | 854 A1787                | 855 C1788   | .856 A1789<br>857 C1790    | 858 A1791   | G1792       | 864 C1793<br>865 A1794     | 866 C1795   | 867 U1796   | 868 G1797<br>869 II1798     | 870 G1799         | 871 C1800   | 872 A1801               | 874 A1803                  | 875 C1804   | 8/6 A1805                  | 878 A1808   | 879 A1809   | 881 A1810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 882 U1812   | 883<br>884        | 885 61814            | 000 C1816   | 889 G1817<br>111 01 0 | 890 A1819     | 898 U1820               | C1822       | 902<br>902<br>61823        | 903<br>904<br>904        | 905<br>911 27        | 906 01027<br>G1828  | 909 A1829                    | 910 C1830 G1831 G1831 | 913 C1832            | 914 C1833                  | 017<br>C1838            | 918<br>318              | 919<br>000<br>C1843 | 921 C1844<br>921 G1845   |
| G1922 G18   | U1923 A1    | C1924 A1                   | A1927 U18   | A1928 U1    | G1930 A18                | U1931 U1    | A1932 01<br>G1933 G18      | C1934 A18   | G1935       | A1936 U1<br>A1937 U1       | A1938 A18   | U1939 G1    | U1940 C1                    | U1943 C18         | U1944 A1    | G1945 A1                | C1947 C18                  | G1948 G1    | G1949 A1<br>G1950 A1       | U1951 G18   | A1952 C10   | G1954 C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | U1955 U18   | U1956 U10         | C1958 A18            | G1959       | U1963 A18             | G1964 A1      | A1966 U18               | C1967       | A1970 C15                  | 01971 G10<br>G1972 G15   | G1973 C1             | C1974 G1            | U1979 C15                    | G1980 G1              | A1981 A19            | C1986 C19                  | A1987                   | G1989 A15               | C1990 A1            | 01992 G1992              |































# 4 Experimental information (i)

| Property                           | Value                   | Source    |
|------------------------------------|-------------------------|-----------|
| EM reconstruction method           | SINGLE PARTICLE         | Depositor |
| Imposed symmetry                   | POINT, C1               | Depositor |
| Number of particles used           | 32170                   | Depositor |
| Resolution determination method    | Not provided            |           |
| CTF correction method              | PER MICROGRAPH          | Depositor |
| Microscope                         | FEI TITAN KRIOS         | Depositor |
| Voltage (kV)                       | 300                     | Depositor |
| Electron dose $(e^-/\text{\AA}^2)$ | 24                      | Depositor |
| Minimum defocus (nm)               | 600                     | Depositor |
| Maximum defocus (nm)               | 3000                    | Depositor |
| Magnification                      | 77769                   | Depositor |
| Image detector                     | FEI FALCON II (4k x 4k) | Depositor |
| Maximum map value                  | 0.158                   | Depositor |
| Minimum map value                  | -0.099                  | Depositor |
| Average map value                  | 0.000                   | Depositor |
| Map value standard deviation       | 0.014                   | Depositor |
| Recommended contour level          | 0.02                    | Depositor |
| Map size (Å)                       | 360.0, 360.0, 360.0     | wwPDB     |
| Map dimensions                     | 180, 180, 180           | wwPDB     |
| Map angles (°)                     | 90.0, 90.0, 90.0        | wwPDB     |
| Pixel spacing (Å)                  | 2.0, 2.0, 2.0           | Depositor |



# 5 Model quality (i)

## 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal | Chain | B    | ond lengths     | I    | Bond angles      |
|-----|-------|------|-----------------|------|------------------|
|     | Chain | RMSZ | # Z  > 5        | RMSZ | # Z  > 5         |
| 1   | 0     | 0.53 | 1/450~(0.2%)    | 1.15 | 7/599~(1.2%)     |
| 2   | 1     | 0.36 | 0/448           | 0.71 | 0/594            |
| 3   | 2     | 0.33 | 0/380           | 0.64 | 0/498            |
| 4   | 3     | 0.47 | 0/513           | 0.96 | 1/676~(0.1%)     |
| 5   | 4     | 0.40 | 0/303           | 0.73 | 0/397            |
| 6   | 5     | 0.24 | 0/855           | 0.38 | 0/1124           |
| 7   | 6     | 0.37 | 0/40            | 0.26 | 0/53             |
| 8   | 7     | 0.13 | 0/1781          | 0.63 | 0/2779           |
| 9   | А     | 0.27 | 0/2803          | 0.74 | 0/4371           |
| 10  | В     | 0.32 | 11/68314~(0.0%) | 0.77 | 54/106569~(0.1%) |
| 11  | С     | 0.40 | 0/2092          | 0.88 | 7/2813~(0.2%)    |
| 12  | D     | 0.40 | 0/1586          | 0.80 | 2/2134~(0.1%)    |
| 13  | Е     | 0.45 | 1/1571~(0.1%)   | 0.88 | 6/2113~(0.3%)    |
| 14  | F     | 0.33 | 0/1444          | 0.87 | 5/1937~(0.3%)    |
| 15  | G     | 0.31 | 0/1343          | 0.69 | 0/1816           |
| 16  | Н     | 0.27 | 0/1122          | 0.59 | 0/1515           |
| 17  | Ι     | 0.26 | 0/1046          | 0.58 | 0/1410           |
| 18  | J     | 0.41 | 1/1135~(0.1%)   | 0.72 | 3/1529~(0.2%)    |
| 19  | Κ     | 0.35 | 0/939           | 0.99 | 2/1258~(0.2%)    |
| 20  | L     | 0.71 | 0/1006          | 1.61 | 29/1331~(2.2%)   |
| 21  | М     | 0.48 | 0/1093          | 1.03 | 8/1460~(0.5%)    |
| 22  | Ν     | 0.34 | 0/1021          | 0.78 | 4/1364~(0.3%)    |
| 23  | 0     | 0.30 | 0/910           | 0.67 | 1/1219~(0.1%)    |
| 24  | Р     | 0.55 | 0/929           | 1.40 | 16/1242~(1.3%)   |
| 25  | Q     | 0.41 | 0/960           | 0.86 | 2/1278~(0.2%)    |
| 26  | R     | 1.06 | 6/829~(0.7%)    | 1.42 | 13/1107~(1.2%)   |
| 27  | S     | 0.28 | 0/864           | 0.69 | 1/1156~(0.1%)    |
| 28  | Т     | 0.38 | 0/784           | 0.77 | 4/1048~(0.4%)    |
| 29  | U     | 0.48 | 0/787           | 0.74 | 3/1051~(0.3%)    |
| 30  | V     | 0.30 | 0/766           | 0.53 | 0/1025           |
| 31  | W     | 0.36 | 0/642           | 0.96 | 5/848~(0.6%)     |
| 32  | Х     | 0.29 | 0/509           | 0.81 | 1/674~(0.1%)     |



| Mal   | Chain   | Bond lengths |                  | Bond angles |                   |  |
|-------|---------|--------------|------------------|-------------|-------------------|--|
| INIOI | Ullalli | RMSZ         | # Z  > 5         | RMSZ        | # Z  > 5          |  |
| 33    | Y       | 0.30         | 0/453            | 0.64        | 0/605             |  |
| 34    | Ζ       | 0.48         | 0/559            | 1.04        | 5/745~(0.7%)      |  |
| All   | All     | 0.35         | 20/100277~(0.0%) | 0.80        | 179/150338~(0.1%) |  |

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

| Mol | Chain | #Chirality outliers | #Planarity outliers |
|-----|-------|---------------------|---------------------|
| 10  | В     | 0                   | 55                  |
| 11  | С     | 0                   | 3                   |
| 18  | J     | 0                   | 2                   |
| 20  | L     | 0                   | 1                   |
| 24  | Р     | 0                   | 1                   |
| 25  | Q     | 0                   | 1                   |
| 26  | R     | 0                   | 1                   |
| All | All   | 0                   | 64                  |

The worst 5 of 20 bond length outliers are listed below:

| Mol | Chain | Res  | Type | Atoms   | Z      | Observed(Å) | Ideal(Å) |
|-----|-------|------|------|---------|--------|-------------|----------|
| 26  | R     | 53   | PHE  | CB-CG   | 17.81  | 1.81        | 1.51     |
| 26  | R     | 54   | VAL  | N-CA    | -11.64 | 1.23        | 1.46     |
| 26  | R     | 54   | VAL  | CA-CB   | 11.12  | 1.78        | 1.54     |
| 10  | В     | 2196 | С    | O3'-P   | 10.16  | 1.73        | 1.61     |
| 10  | В     | 2052 | А    | C4'-C3' | -8.24  | 1.44        | 1.53     |

The worst 5 of 179 bond angle outliers are listed below:

| Mol | Chain | Res  | Type | Atoms     | Z      | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------|------|-----------|--------|------------------|---------------|
| 10  | В     | 2791 | G    | O5'-P-OP1 | -28.73 | 76.22            | 110.70        |
| 10  | В     | 2791 | G    | O5'-P-OP2 | 18.24  | 132.59           | 110.70        |
| 26  | R     | 53   | PHE  | CA-C-N    | -17.34 | 79.05            | 117.20        |
| 26  | R     | 54   | VAL  | CB-CA-C   | 15.12  | 140.12           | 111.40        |
| 10  | В     | 2790 | U    | OP1-P-O3' | 14.24  | 136.52           | 105.20        |

There are no chirality outliers.

5 of 64 planarity outliers are listed below:



| Mol | Chain | Res | Type | Group     |
|-----|-------|-----|------|-----------|
| 10  | В     | 136 | G    | Sidechain |
| 10  | В     | 139 | U    | Sidechain |
| 10  | В     | 142 | А    | Sidechain |
| 10  | В     | 143 | С    | Sidechain |
| 10  | В     | 51  | G    | Sidechain |

#### 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | 0     | 444   | 0        | 461      | 105     | 0            |
| 2   | 1     | 441   | 0        | 485      | 68      | 0            |
| 3   | 2     | 377   | 0        | 418      | 50      | 0            |
| 4   | 3     | 504   | 0        | 574      | 108     | 0            |
| 5   | 4     | 302   | 0        | 343      | 45      | 0            |
| 6   | 5     | 850   | 0        | 897      | 94      | 0            |
| 7   | 6     | 41    | 0        | 39       | 1       | 0            |
| 8   | 7     | 1591  | 0        | 806      | 24      | 0            |
| 9   | А     | 2507  | 0        | 1270     | 86      | 0            |
| 10  | В     | 60995 | 0        | 30659    | 4160    | 0            |
| 11  | С     | 2053  | 0        | 2122     | 432     | 0            |
| 12  | D     | 1565  | 0        | 1616     | 377     | 0            |
| 13  | Ε     | 1552  | 0        | 1617     | 282     | 0            |
| 14  | F     | 1420  | 0        | 1460     | 167     | 0            |
| 15  | G     | 1323  | 0        | 1374     | 165     | 0            |
| 16  | Н     | 1111  | 0        | 1148     | 190     | 0            |
| 17  | Ι     | 1032  | 0        | 1088     | 199     | 0            |
| 18  | J     | 1112  | 0        | 1147     | 217     | 0            |
| 19  | Κ     | 930   | 0        | 1000     | 119     | 0            |
| 20  | L     | 1002  | 0        | 1070     | 287     | 0            |
| 21  | М     | 1074  | 0        | 1157     | 244     | 0            |
| 22  | Ν     | 1008  | 0        | 1036     | 232     | 0            |
| 23  | Ο     | 900   | 0        | 935      | 129     | 0            |
| 24  | Р     | 917   | 0        | 965      | 205     | 0            |
| 25  | Q     | 947   | 0        | 1022     | 173     | 0            |
| 26  | R     | 816   | 0        | 838      | 166     | 0            |
| 27  | S     | 857   | 0        | 922      | 120     | 0            |
| 28  | Т     | 777   | 0        | 840      | 129     | 0            |
| 29  | U     | 779   | 0        | 831      | 255     | 0            |



| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 30  | V     | 753   | 0        | 780      | 104     | 0            |
| 31  | W     | 634   | 0        | 656      | 157     | 0            |
| 32  | Х     | 509   | 0        | 541      | 68      | 0            |
| 33  | Y     | 449   | 0        | 491      | 57      | 0            |
| 34  | Ζ     | 549   | 0        | 552      | 114     | 0            |
| 35  | В     | 110   | 0        | 0        | 0       | 0            |
| 36  | В     | 497   | 0        | 0        | 17      | 0            |
| 36  | С     | 1     | 0        | 0        | 0       | 0            |
| 36  | Ε     | 5     | 0        | 0        | 0       | 0            |
| 36  | L     | 2     | 0        | 0        | 0       | 0            |
| 36  | N     | 1     | 0        | 0        | 0       | 0            |
| All | All   | 92737 | 0        | 61160    | 8365    | 0            |

Continued from previous page...

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 55.

The worst 5 of 8365 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

| Atom-1          | Atom-2            | Interatomic<br>distance (Å) | Clash<br>overlap (Å) |
|-----------------|-------------------|-----------------------------|----------------------|
| 10:B:1062:G:H21 | 17:I:134:SER:CB   | 1.09                        | 1.62                 |
| 10:B:1059:G:C5' | 17:I:117:THR:HG23 | 1.22                        | 1.60                 |
| 26:R:54:VAL:CA  | 26:R:54:VAL:CB    | 1.78                        | 1.59                 |
| 26:R:53:PHE:CB  | 26:R:53:PHE:CG    | 1.81                        | 1.58                 |
| 10:B:80:G:C5'   | 10:B:346:A:C8     | 1.88                        | 1.53                 |

There are no symmetry-related clashes.

#### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed    | Favoured | Allowed  | Outliers | Percentiles |
|-----|-------|-------------|----------|----------|----------|-------------|
| 1   | 0     | 54/56~(96%) | 30~(56%) | 15 (28%) | 9 (17%)  | 0 3         |



| $\alpha$ $\cdot$ 1      | C    |                                                |               |
|-------------------------|------|------------------------------------------------|---------------|
| Continued               | trom | previous                                       | <i>paae</i>   |
| • • • • • • • • • • • • | J    | <i>r</i> · · · · · · · · · · · · · · · · · · · | r - g - · · · |

| Mol | Chain | Analysed        | Favoured   | Allowed   | Outliers  | Perce | entiles |
|-----|-------|-----------------|------------|-----------|-----------|-------|---------|
| 2   | 1     | 52/54~(96%)     | 19 (36%)   | 23~(44%)  | 10 (19%)  | 0     | 2       |
| 3   | 2     | 44/46~(96%)     | 23~(52%)   | 14 (32%)  | 7~(16%)   | 0     | 3       |
| 4   | 3     | 62/64~(97%)     | 30 (48%)   | 25 (40%)  | 7 (11%)   | 0     | 7       |
| 5   | 4     | 36/38~(95%)     | 18 (50%)   | 9(25%)    | 9(25%)    | 0     | 1       |
| 6   | 5     | 107/109~(98%)   | 83 (78%)   | 19 (18%)  | 5 (5%)    | 2     | 21      |
| 7   | 6     | 6/8~(75%)       | 5 (83%)    | 1 (17%)   | 0         | 100   | 100     |
| 11  | С     | 265/273~(97%)   | 103 (39%)  | 82 (31%)  | 80 (30%)  | 0     | 0       |
| 12  | D     | 207/209~(99%)   | 90 (44%)   | 69 (33%)  | 48 (23%)  | 0     | 1       |
| 13  | Е     | 199/201~(99%)   | 98 (49%)   | 60 (30%)  | 41 (21%)  | 0     | 2       |
| 14  | F     | 176/178~(99%)   | 95 (54%)   | 48 (27%)  | 33 (19%)  | 0     | 2       |
| 15  | G     | 174/176~(99%)   | 118 (68%)  | 39 (22%)  | 17 (10%)  | 0     | 9       |
| 16  | Н     | 147/149~(99%)   | 85 (58%)   | 47 (32%)  | 15 (10%)  | 0     | 8       |
| 17  | Ι     | 139/141 (99%)   | 124 (89%)  | 11 (8%)   | 4 (3%)    | 4     | 29      |
| 18  | J     | 138/142~(97%)   | 67 (49%)   | 42 (30%)  | 29 (21%)  | 0     | 2       |
| 19  | K     | 119/123~(97%)   | 71 (60%)   | 32 (27%)  | 16 (13%)  | 0     | 4       |
| 20  | L     | 132/144 (92%)   | 55 (42%)   | 36 (27%)  | 41 (31%)  | 0     | 0       |
| 21  | М     | 134/136~(98%)   | 69~(52%)   | 37 (28%)  | 28 (21%)  | 0     | 2       |
| 22  | N     | 125/127~(98%)   | 71 (57%)   | 34 (27%)  | 20 (16%)  | 0     | 3       |
| 23  | Ο     | 115/117 (98%)   | 64 (56%)   | 26 (23%)  | 25 (22%)  | 0     | 2       |
| 24  | Р     | 112/114 (98%)   | 39 (35%)   | 36 (32%)  | 37 (33%)  | 0     | 0       |
| 25  | Q     | 115/117 (98%)   | 81 (70%)   | 22 (19%)  | 12 (10%)  | 0     | 8       |
| 26  | R     | 101/103 (98%)   | 44 (44%)   | 31 (31%)  | 26 (26%)  | 0     | 1       |
| 27  | S     | 108/110 (98%)   | 63 (58%)   | 27 (25%)  | 18 (17%)  | 0     | 3       |
| 28  | Т     | 97/100~(97%)    | 41 (42%)   | 39 (40%)  | 17 (18%)  | 0     | 3       |
| 29  | U     | 100/103~(97%)   | 30 (30%)   | 47 (47%)  | 23 (23%)  | 0     | 1       |
| 30  | V     | 92/94~(98%)     | 62 (67%)   | 22 (24%)  | 8 (9%)    | 1     | 11      |
| 31  | W     | 82/84~(98%)     | 29 (35%)   | 26 (32%)  | 27 (33%)  | 0     | 0       |
| 32  | X     | 60/63~(95%)     | 28 (47%)   | 20 (33%)  | 12 (20%)  | 0     | 2       |
| 33  | Y     | 56/58~(97%)     | 29 (52%)   | 17 (30%)  | 10 (18%)  | 0     | 3       |
| 34  | Z     | 68/70~(97%)     | 29 (43%)   | 26 (38%)  | 13 (19%)  | 0     | 2       |
| All | All   | 3422/3507~(98%) | 1793 (52%) | 982 (29%) | 647 (19%) | 0     | 2       |



5 of 647 Ramachandran outliers are listed below:

| Mol | Chain | $\mathbf{Res}$ | Type |
|-----|-------|----------------|------|
| 1   | 0     | 10             | SER  |
| 1   | 0     | 29             | VAL  |
| 1   | 0     | 35             | GLU  |
| 2   | 1     | 46             | VAL  |
| 3   | 2     | 4              | THR  |

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed       | Rotameric | Outliers | Perce | entiles |
|-----|-------|----------------|-----------|----------|-------|---------|
| 1   | 0     | 47/47~(100%)   | 31~(66%)  | 16 (34%) | 0     | 1       |
| 2   | 1     | 48/48~(100%)   | 33~(69%)  | 15 (31%) | 0     | 2       |
| 3   | 2     | 38/38~(100%)   | 27 (71%)  | 11 (29%) | 0     | 2       |
| 4   | 3     | 51/51~(100%)   | 33~(65%)  | 18 (35%) | 0     | 1       |
| 5   | 4     | 34/34~(100%)   | 22~(65%)  | 12 (35%) | 0     | 1       |
| 6   | 5     | 92/92~(100%)   | 89~(97%)  | 3 (3%)   | 38    | 61      |
| 11  | С     | 213/218~(98%)  | 145 (68%) | 68 (32%) | 0     | 2       |
| 12  | D     | 164/164~(100%) | 112 (68%) | 52 (32%) | 0     | 2       |
| 13  | Е     | 165/165~(100%) | 115 (70%) | 50 (30%) | 0     | 2       |
| 14  | F     | 149/149~(100%) | 119 (80%) | 30 (20%) | 1     | 7       |
| 15  | G     | 137/137~(100%) | 105 (77%) | 32 (23%) | 1     | 4       |
| 16  | Н     | 114/114 (100%) | 87 (76%)  | 27 (24%) | 1     | 4       |
| 17  | Ι     | 109/109~(100%) | 106~(97%) | 3(3%)    | 43    | 64      |
| 18  | J     | 114/116~(98%)  | 84 (74%)  | 30 (26%) | 0     | 3       |
| 19  | Κ     | 102/104~(98%)  | 78 (76%)  | 24 (24%) | 1     | 4       |
| 20  | L     | 97/103~(94%)   | 57~(59%)  | 40 (41%) | 0     | 0       |
| 21  | М     | 109/109~(100%) | 77 (71%)  | 32 (29%) | 0     | 2       |
| 22  | N     | 103/103~(100%) | 78 (76%)  | 25 (24%) | 0     | 4       |
| 23  | Ο     | 87/87~(100%)   | 58 (67%)  | 29 (33%) | 0     | 2       |



| Mol | Chain | Analysed        | Rotameric  | Outliers  | Percentiles |
|-----|-------|-----------------|------------|-----------|-------------|
| 24  | Р     | 99/99~(100%)    | 77 (78%)   | 22 (22%)  | 1 6         |
| 25  | Q     | 89/89~(100%)    | 66 (74%)   | 23 (26%)  | 0 3         |
| 26  | R     | 84/84~(100%)    | 68 (81%)   | 16 (19%)  | 1 8         |
| 27  | S     | 93/93~(100%)    | 72 (77%)   | 21 (23%)  | 1 5         |
| 28  | Т     | 83/84~(99%)     | 60 (72%)   | 23~(28%)  | 0 3         |
| 29  | U     | 83/84~(99%)     | 58 (70%)   | 25~(30%)  | 0 2         |
| 30  | V     | 78/78~(100%)    | 66~(85%)   | 12~(15%)  | 2 14        |
| 31  | W     | 62/62~(100%)    | 46 (74%)   | 16 (26%)  | 0 3         |
| 32  | Х     | 55/55~(100%)    | 40 (73%)   | 15 (27%)  | 0 3         |
| 33  | Y     | 48/48~(100%)    | 36 (75%)   | 12 (25%)  | 0 3         |
| 34  | Z     | 62/62~(100%)    | 43 (69%)   | 19 (31%)  | 0 2         |
| All | All   | 2809/2826~(99%) | 2088 (74%) | 721 (26%) | 2 3         |

Continued from previous page...

5 of 721 residues with a non-rotameric sidechain are listed below:

| Mol | Chain | $\operatorname{Res}$ | Type |
|-----|-------|----------------------|------|
| 22  | Ν     | 1                    | MET  |
| 26  | R     | 66                   | HIS  |
| 22  | Ν     | 57                   | THR  |
| 21  | М     | 136                  | MET  |
| 24  | Р     | 24                   | THR  |

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 102 such sidechains are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 19  | K     | 82  | ASN  |
| 24  | Р     | 2   | ASN  |
| 34  | Ζ     | 30  | HIS  |
| 20  | L     | 38  | GLN  |
| 22  | N     | 73  | ASN  |

### 5.3.3 RNA (i)

| Mol | Chain | Analysed        | Backbone Outliers | Pucker Outliers |
|-----|-------|-----------------|-------------------|-----------------|
| 10  | В     | 2837/2904~(97%) | 552~(19%)         | 19 (0%)         |
| 8   | 7     | 73/74~(98%)     | 3(4%)             | 0               |



Continued from previous page...

| Mol | Chain | Analysed        | Backbone Outliers | Pucker Outliers |
|-----|-------|-----------------|-------------------|-----------------|
| 9   | А     | 116/120~(96%)   | 23~(19%)          | 0               |
| All | All   | 3026/3098~(97%) | 578~(19%)         | 19 (0%)         |

5 of 578 RNA backbone outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 8   | 7     | 121 | А    |
| 8   | 7     | 124 | U    |
| 8   | 7     | 168 | U    |
| 9   | А     | 11  | С    |
| 9   | А     | 12  | С    |

5 of 19 RNA pucker outliers are listed below:

| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 10  | В     | 2258 | С    |
| 10  | В     | 2425 | А    |
| 10  | В     | 2756 | U    |
| 10  | В     | 2336 | А    |
| 10  | В     | 1236 | G    |

## 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

## 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

## 5.6 Ligand geometry (i)

Of 110 ligands modelled in this entry, 110 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.



# 5.7 Other polymers (i)

There are no such residues in this entry.

## 5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

| Mol | Chain | Number of breaks |
|-----|-------|------------------|
| 32  | Х     | 1                |

All chain breaks are listed below:

| Model | Chain | Residue-1 | Atom-1 | Residue-2 | Atom-2 | Distance (Å) |
|-------|-------|-----------|--------|-----------|--------|--------------|
| 1     | Х     | 1:MET     | С      | 2:LYS     | N      | 3.26         |



# 6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-2917. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

## 6.1 Orthogonal projections (i)

#### 6.1.1 Primary map



The images above show the map projected in three orthogonal directions.

### 6.2 Central slices (i)

#### 6.2.1 Primary map



X Index: 90



Y Index: 90



Z Index: 90



The images above show central slices of the map in three orthogonal directions.

### 6.3 Largest variance slices (i)

#### 6.3.1 Primary map



X Index: 95

Y Index: 79

Z Index: 98

The images above show the largest variance slices of the map in three orthogonal directions.

### 6.4 Orthogonal surface views (i)

#### 6.4.1 Primary map



The images above show the 3D surface view of the map at the recommended contour level 0.02. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.



# 6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.



# 7 Map analysis (i)

This section contains the results of statistical analysis of the map.

## 7.1 Map-value distribution (i)



The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.



### 7.2 Volume estimate (i)



The volume at the recommended contour level is 2076  $\rm nm^3;$  this corresponds to an approximate mass of 1875 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.



## 7.3 Rotationally averaged power spectrum (i)



\*Reported resolution corresponds to spatial frequency of 0.175  ${\rm \AA^{-1}}$ 



# 8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

#### 8.1 FSC (i)



\*Reported resolution corresponds to spatial frequency of 0.175  $\mathrm{\AA^{-1}}$ 



## 8.2 Resolution estimates (i)

| $\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$ | Estim | Estimation criterion (FSC cut-off) |          |  |
|---------------------------------------------------------|-------|------------------------------------|----------|--|
| Resolution estimate (A)                                 | 0.143 | 0.5                                | Half-bit |  |
| Reported by author                                      | -     | -                                  | -        |  |
| Author-provided FSC curve                               | 5.64  | 8.93                               | 5.97     |  |
| Unmasked-calculated*                                    | -     | -                                  | -        |  |

\*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.



# 9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-2917 and PDB model 5AKA. Per-residue inclusion information can be found in section 3 on page 11.

## 9.1 Map-model overlay (i)



The images above show the 3D surface view of the map at the recommended contour level 0.02 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.



### 9.2 Q-score mapped to coordinate model (i)



The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

#### 9.3 Atom inclusion mapped to coordinate model (i)



The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.02).



### 9.4 Atom inclusion (i)



At the recommended contour level, 72% of all backbone atoms, 75% of all non-hydrogen atoms, are inside the map.



### 9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.02) and Q-score for the entire model and for each chain.

| Chain | Atom inclusion | $\mathbf{Q}	extsf{-score}$ |
|-------|----------------|----------------------------|
| All   | 0.7515         | 0.1560                     |
| 0     | 0.5397         | 0.1450                     |
| 1     | 0.5497         | 0.0750                     |
| 2     | 0.4197         | 0.1470                     |
| 3     | 0.3116         | 0.1210                     |
| 4     | 0.4384         | 0.0500                     |
| 5     | 0.4329         | 0.1280                     |
| 6     | 0.6585         | 0.3100                     |
| 7     | 0.7373         | 0.0860                     |
| А     | 0.7894         | 0.1070                     |
| В     | 0.8416         | 0.1890                     |
| С     | 0.5048         | 0.0930                     |
| D     | 0.5273         | 0.0790                     |
| Е     | 0.5941         | 0.1120                     |
| F     | 0.6182         | 0.0300                     |
| G     | 0.6461         | 0.0400                     |
| Н     | 0.5766         | 0.1080                     |
| Ι     | 0.5861         | 0.0720                     |
| J     | 0.5014         | 0.0970                     |
| Κ     | 0.5713         | 0.1020                     |
| L     | 0.4923         | 0.0690                     |
| М     | 0.5096         | 0.0930                     |
| Ν     | 0.5258         | 0.1220                     |
| О     | 0.5304         | 0.0150                     |
| P     | 0.4707         | 0.0770                     |
| Q     | 0.5374         | 0.0980                     |
| R     | 0.5847         | 0.0930                     |
| S     | 0.5287         | 0.1330                     |
| Т     | 0.4915         | 0.1170                     |
| U     | 0.7497         | 0.1510                     |
| V     | 0.6978         | 0.0690                     |
| W     | 0.4466         | 0.0640                     |
| Х     | 0.6740         | 0.1360                     |
| Y     | 0.6133         | 0.1120                     |
| Z     | 0.5446         | 0.0960                     |



