

# wwPDB EM Validation Summary Report (i)

#### Dec 18, 2022 – 06:33 pm GMT

| B ID : 7ARQ                                                                                     |                                                                            |  |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|
| B ID : EMD-113                                                                                  | 67                                                                         |  |
| Title : Cryo EM                                                                                 | of 3D DNA origami 16 helix bundle                                          |  |
| thors : Feigl, E.;                                                                              | Kube, M.; Kohler, F.                                                       |  |
| ed on : $2020-10-20$                                                                            | 3                                                                          |  |
| ution : $10.00 \text{ Å}(re$                                                                    | eported)                                                                   |  |
| Title : Cryo EM<br>thors : Feigl, E.; $\frac{1}{2}$<br>ed on : 2020-10-20<br>ution : 10.00 Å(re | of 3D DNA origami 16 helix bundle<br>Kube, M.; Kohler, F.<br>5<br>eported) |  |

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| EMDB validation analysis       | : | 0.0.1. dev 43                                                      |
|--------------------------------|---|--------------------------------------------------------------------|
| MolProbity                     | : | 4.02b-467                                                          |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| MapQ                           | : | 1.9.9                                                              |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.31.3                                                             |

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $ELECTRON\ MICROSCOPY$ 

The reported resolution of this entry is 10.00 Å.

There are no overall percentile quality scores available for this entry.

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for  $\geq=3, 2, 1$  and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions  $\leq=5\%$  The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

| Mol | Chain | Length | Quality of a | chain  |     |  |
|-----|-------|--------|--------------|--------|-----|--|
| 1   | AA    | 1317   | 8%           | 33%    | 6%  |  |
| 2   | AB    | 49     | 59%          | 39%    | •   |  |
| 3   | AC    | 42     | 60%          | 40%    |     |  |
| 4   | AD    | 33     | 55%          | 33% 12 |     |  |
| 5   | AE    | 27     | 56%          | 30%    | 15% |  |
| 6   | AF    | 35     | 54%          | 37%    | 9%  |  |
| 7   | AG    | 49     | 61%          | 37%    | ·   |  |
| 8   | AH    | 34     | 65%          | 26%    | 9%  |  |
| 9   | AI    | 34     | 50%          | 44%    | 6%  |  |
| 10  | AJ    | 30     | 70%          | 23%    | 7%  |  |
| 11  | AK    | 46     | 48%          | 39%    | 13% |  |
| 12  | AL    | 46     | 59%          | 39%    | ·   |  |
| 13  | AM    | 44     | 61%          | 39%    |     |  |
| 14  | AN    | 29     | 69%          | 17%    | 14% |  |
| 15  | AO    | 40     | 65%          | 30%    | 5%  |  |
| 16  | AP    | 43     | 47%          | 47%    | 7%  |  |
| 17  | AQ    | 40     | 52%          | 40%    | 8%  |  |

Continued on next page...



| Mol | Chain | Length | Quality of c    | hain |     |
|-----|-------|--------|-----------------|------|-----|
| 18  | AR    | 30     | 27%<br>57%      | 33%  | 10% |
| 19  | AS    | 34     | 15%             | 44%  | 6%  |
| 20  | AT    | 40     | 60%             | 35%  | 5%  |
| 21  | AU    | 42     | <b>•</b> 67%    | 31%  | •   |
| 22  | AV    | 37     | 65%             | 24%  | 11% |
| 23  | AW    | 41     | <b>•</b><br>49% | 49%  | •   |
| 24  | AX    | 33     | 64%             | 30%  | 6%  |
| 25  | AY    | 35     | 60%             | 34%  | 6%  |
| 26  | AZ    | 31     | 71%             | 29%  |     |
| 27  | Aa    | 49     | 63%             | 27%  | 10% |
| 28  | Ab    | 38     | 32%<br>63%      | 32%  | 5%  |
| 29  | Ac    | 48     | 19%             | 44%  | •   |
| 30  | Ad    | 38     | 42%             | 26%  | •   |
| 31  | Ae    | 27     | 56%             | 37%  | 7%  |
| 32  | Af    | 36     | 36%<br>61%      | 31%  | 8%  |
| 33  | Ag    | 42     | 50%             | 45%  | 5%  |
| 34  | Ah    | 35     | 74%             | 20%  | 6%  |
| 35  | Ai    | 48     | 71%             | 21%  | 8%  |
| 36  | Aj    | 27     | <b>6</b> 3%     | 37%  |     |
| 37  | Ak    | 40     | 5%              | 48%  |     |

Continued from previous page...



# 2 Entry composition (i)

There are 37 unique types of molecules in this entry. The entry contains 54985 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a DNA chain called SCAFFOLD STRAND.

| Mol | Chain | Residues |                | A          | AltConf   | Trace     |           |   |   |
|-----|-------|----------|----------------|------------|-----------|-----------|-----------|---|---|
| 1   | AA    | 1317     | Total<br>26988 | C<br>12825 | N<br>4971 | O<br>7876 | Р<br>1316 | 0 | 0 |

• Molecule 2 is a DNA chain called STAPLE STRAND.

| Mol | Chain | Residues | Atoms         |          |          |          |         | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|---------|---------|-------|
| 2   | AB    | 49       | Total<br>1008 | C<br>478 | N<br>191 | 0<br>291 | Р<br>48 | 0       | 0     |

• Molecule 3 is a DNA chain called STAPLE STRAND.

| Mol | Chain | Residues |              | $\mathbf{A}^{\dagger}$ | toms     | AltConf  | Trace   |   |   |
|-----|-------|----------|--------------|------------------------|----------|----------|---------|---|---|
| 3   | AC    | 42       | Total<br>863 | C<br>412               | N<br>152 | 0<br>258 | Р<br>41 | 0 | 0 |

• Molecule 4 is a DNA chain called STAPLE STRAND.

| Mol | Chain | Residues |              | $\mathbf{A}^{\dagger}$ | toms     | AltConf  | Trace   |   |   |
|-----|-------|----------|--------------|------------------------|----------|----------|---------|---|---|
| 4   | AD    | 33       | Total<br>676 | C<br>322               | N<br>128 | O<br>194 | Р<br>32 | 0 | 0 |

• Molecule 5 is a DNA chain called STAPLE STRAND.

| Mol | Chain | Residues |              | At       | $\mathbf{oms}$ | AltConf  | Trace   |   |   |
|-----|-------|----------|--------------|----------|----------------|----------|---------|---|---|
| 5   | AE    | 27       | Total<br>546 | C<br>262 | N<br>95        | O<br>163 | Р<br>26 | 0 | 0 |

• Molecule 6 is a DNA chain called STAPLE STRAND.

| Mol | Chain | Residues |              | A        | toms     | AltConf  | Trace   |   |   |
|-----|-------|----------|--------------|----------|----------|----------|---------|---|---|
| 6   | AF    | 35       | Total<br>710 | C<br>340 | N<br>131 | O<br>205 | Р<br>34 | 0 | 0 |

• Molecule 7 is a DNA chain called STAPLE STRAND.



| Mol | Chain | Residues |               | A        | toms     | AltConf  | Trace   |   |   |
|-----|-------|----------|---------------|----------|----------|----------|---------|---|---|
| 7   | AG    | 49       | Total<br>1006 | C<br>480 | N<br>189 | 0<br>289 | Р<br>48 | 0 | 0 |

• Molecule 8 is a DNA chain called STAPLE STRAND.

| Mol | Chain | Residues |              | A        | toms     | AltConf  | Trace   |   |   |
|-----|-------|----------|--------------|----------|----------|----------|---------|---|---|
| 8   | AH    | 34       | Total<br>698 | C<br>334 | N<br>125 | O<br>206 | Р<br>33 | 0 | 0 |

• Molecule 9 is a DNA chain called STAPLE STRAND.

| Mol | Chain | Residues |              | $\mathbf{A}^{\dagger}$ | toms     |          |         | AltConf | Trace |
|-----|-------|----------|--------------|------------------------|----------|----------|---------|---------|-------|
| 9   | AI    | 34       | Total<br>698 | C<br>332               | N<br>130 | O<br>203 | Р<br>33 | 0       | 0     |

• Molecule 10 is a DNA chain called STAPLE STRAND.

| Mol | Chain | Residues |              | $\mathbf{A}^{\dagger}$ | AltConf  | Trace    |         |   |   |
|-----|-------|----------|--------------|------------------------|----------|----------|---------|---|---|
| 10  | AJ    | 30       | Total<br>611 | C<br>292               | N<br>110 | 0<br>180 | Р<br>29 | 0 | 0 |

• Molecule 11 is a DNA chain called STAPLE STRAND.

| Mol | Chain | Residues |              | A        | AltConf  | Trace    |         |   |   |
|-----|-------|----------|--------------|----------|----------|----------|---------|---|---|
| 11  | AK    | 46       | Total<br>936 | C<br>447 | N<br>165 | 0<br>279 | Р<br>45 | 0 | 0 |

• Molecule 12 is a DNA chain called STAPLE STRAND.

| Mol | Chain | Residues |              | $\mathbf{A}^{\dagger}$ | toms     |          |         | AltConf | Trace |
|-----|-------|----------|--------------|------------------------|----------|----------|---------|---------|-------|
| 12  | AL    | 46       | Total<br>940 | C<br>451               | N<br>167 | 0<br>277 | Р<br>45 | 0       | 0     |

• Molecule 13 is a DNA chain called STAPLE STRAND.

| Mol | Chain | Residues |              | $\mathbf{A}^{\dagger}$ | toms     |          |         | AltConf | Trace |
|-----|-------|----------|--------------|------------------------|----------|----------|---------|---------|-------|
| 13  | AM    | 44       | Total<br>893 | C<br>430               | N<br>143 | 0<br>277 | Р<br>43 | 0       | 0     |

• Molecule 14 is a DNA chain called STAPLE STRAND.



| Mol | Chain | Residues |              | At       | $\mathbf{oms}$ |          |         | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------------|----------|---------|---------|-------|
| 14  | AN    | 29       | Total<br>584 | C<br>282 | N<br>96        | 0<br>178 | Р<br>28 | 0       | 0     |

• Molecule 15 is a DNA chain called STAPLE STRAND.

| Mol | Chain | Residues |              | $\mathbf{A}$ | AltConf  | Trace    |         |   |   |
|-----|-------|----------|--------------|--------------|----------|----------|---------|---|---|
| 15  | AO    | 40       | Total<br>826 | C<br>391     | N<br>161 | 0<br>235 | Р<br>39 | 0 | 0 |

• Molecule 16 is a DNA chain called STAPLE STRAND.

| Mol | Chain | Residues |              | $\mathbf{A}^{\dagger}$ | toms     |          |         | AltConf | Trace |
|-----|-------|----------|--------------|------------------------|----------|----------|---------|---------|-------|
| 16  | AP    | 43       | Total<br>877 | C<br>417               | N<br>156 | O<br>262 | Р<br>42 | 0       | 0     |

• Molecule 17 is a DNA chain called STAPLE STRAND.

| Mol | Chain | Residues |              | $\mathbf{A}^{\dagger}$ | AltConf  | Trace    |         |   |   |
|-----|-------|----------|--------------|------------------------|----------|----------|---------|---|---|
| 17  | AQ    | 40       | Total<br>810 | C<br>387               | N<br>144 | 0<br>240 | Р<br>39 | 0 | 0 |

• Molecule 18 is a DNA chain called STAPLE STRAND.

| Mol | Chain | Residues |              | A        | toms     |          |         | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|---------|---------|-------|
| 18  | AR    | 30       | Total<br>610 | C<br>294 | N<br>108 | 0<br>179 | Р<br>29 | 0       | 0     |

• Molecule 19 is a DNA chain called STAPLE STRAND.

| Mol | Chain | Residues |              | A        | toms     |          |         | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|---------|---------|-------|
| 19  | AS    | 34       | Total<br>694 | C<br>334 | N<br>119 | O<br>208 | Р<br>33 | 0       | 0     |

• Molecule 20 is a DNA chain called STAPLE STRAND.

| Mol | Chain | Residues |              | $\mathbf{A}$ | AltConf  | Trace    |         |   |   |
|-----|-------|----------|--------------|--------------|----------|----------|---------|---|---|
| 20  | AT    | 40       | Total<br>831 | C<br>396     | N<br>150 | 0<br>246 | Р<br>39 | 0 | 0 |

• Molecule 21 is a DNA chain called STAPLE STRAND.



| Mol | Chain | Residues |              | $\mathbf{A}^{\dagger}$ | toms     |          | AltConf | Trace |   |
|-----|-------|----------|--------------|------------------------|----------|----------|---------|-------|---|
| 21  | AU    | 42       | Total<br>871 | C<br>414               | N<br>168 | 0<br>248 | Р<br>41 | 0     | 0 |

• Molecule 22 is a DNA chain called STAPLE STRAND.

| Mol | Chain | Residues |              | A        |          | AltConf  | Trace   |   |   |
|-----|-------|----------|--------------|----------|----------|----------|---------|---|---|
| 22  | AV    | 37       | Total<br>749 | C<br>360 | N<br>129 | 0<br>224 | Р<br>36 | 0 | 0 |

• Molecule 23 is a DNA chain called STAPLE STRAND.

| Mol | Chain | Residues |              | $\mathbf{A}$ | toms     |          | AltConf | Trace |   |
|-----|-------|----------|--------------|--------------|----------|----------|---------|-------|---|
| 23  | AW    | 41       | Total<br>844 | C<br>403     | N<br>158 | 0<br>243 | Р<br>40 | 0     | 0 |

• Molecule 24 is a DNA chain called STAPLE STRAND.

| Mol | Chain | Residues |              | $\mathbf{A}$ | toms     | AltConf  | Trace   |   |   |
|-----|-------|----------|--------------|--------------|----------|----------|---------|---|---|
| 24  | AX    | 33       | Total<br>668 | C<br>321     | N<br>114 | 0<br>201 | Р<br>32 | 0 | 0 |

• Molecule 25 is a DNA chain called STAPLE STRAND.

| Mol | Chain | Residues |              | $\mathbf{A}^{\dagger}$ |          | AltConf  | Trace   |   |   |
|-----|-------|----------|--------------|------------------------|----------|----------|---------|---|---|
| 25  | AY    | 35       | Total<br>725 | C<br>343               | N<br>143 | O<br>205 | Р<br>34 | 0 | 0 |

• Molecule 26 is a DNA chain called STAPLE STRAND.

| Mol | Chain | Residues |              | A        | toms     |          |         | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|---------|---------|-------|
| 26  | AZ    | 31       | Total<br>636 | C<br>302 | N<br>124 | O<br>180 | Р<br>30 | 0       | 0     |

• Molecule 27 is a DNA chain called STAPLE STRAND.

| Mol | Chain | Residues |              | $\mathbf{A}$ | toms     |          |         | AltConf | Trace |
|-----|-------|----------|--------------|--------------|----------|----------|---------|---------|-------|
| 27  | Aa    | 49       | Total<br>985 | C<br>473     | N<br>172 | O<br>292 | Р<br>48 | 0       | 0     |

• Molecule 28 is a DNA chain called STAPLE STRAND.



| Mol | Chain | Residues |              | $\mathbf{A}^{\dagger}$ | AltConf  | Trace    |         |   |   |
|-----|-------|----------|--------------|------------------------|----------|----------|---------|---|---|
| 28  | Ab    | 38       | Total<br>776 | C<br>373               | N<br>131 | O<br>235 | Р<br>37 | 0 | 0 |

• Molecule 29 is a DNA chain called STAPLE STRAND.

| Mol | Chain | Residues |              | $\mathbf{A}^{\dagger}$ |          | AltConf  | Trace   |   |   |
|-----|-------|----------|--------------|------------------------|----------|----------|---------|---|---|
| 29  | Ac    | 48       | Total<br>975 | C<br>469               | N<br>164 | O<br>295 | Р<br>47 | 0 | 0 |

• Molecule 30 is a DNA chain called STAPLE STRAND.

| Mol | Chain | Residues |              | $\mathbf{A}$ | toms     |          |         | AltConf | Trace |
|-----|-------|----------|--------------|--------------|----------|----------|---------|---------|-------|
| 30  | Ad    | 38       | Total<br>774 | C<br>370     | N<br>140 | 0<br>227 | Р<br>37 | 0       | 0     |

• Molecule 31 is a DNA chain called STAPLE STRAND.

| Mol | Chain | Residues |              | At       | $\mathbf{oms}$ |          | AltConf | Trace |   |
|-----|-------|----------|--------------|----------|----------------|----------|---------|-------|---|
| 31  | Ae    | 27       | Total<br>547 | C<br>265 | N<br>92        | 0<br>164 | Р<br>26 | 0     | 0 |

• Molecule 32 is a DNA chain called STAPLE STRAND.

| Mol | Chain | Residues |              | A        | toms     |          | AltConf | Trace |   |
|-----|-------|----------|--------------|----------|----------|----------|---------|-------|---|
| 32  | Af    | 36       | Total<br>727 | C<br>348 | N<br>132 | 0<br>212 | Р<br>35 | 0     | 0 |

• Molecule 33 is a DNA chain called STAPLE STRAND.

| Mol | Chain | Residues |              | A        | toms     |          |         | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|---------|---------|-------|
| 33  | Ag    | 42       | Total<br>854 | C<br>411 | N<br>147 | O<br>255 | Р<br>41 | 0       | 0     |

• Molecule 34 is a DNA chain called STAPLE STRAND.

| Mol | Chain | Residues |              | $\mathbf{A}^{\dagger}$ | toms     |          |         | AltConf | Trace |
|-----|-------|----------|--------------|------------------------|----------|----------|---------|---------|-------|
| 34  | Ah    | 35       | Total<br>713 | C<br>340               | N<br>134 | O<br>205 | Р<br>34 | 0       | 0     |

• Molecule 35 is a DNA chain called STAPLE STRAND.



| Mol | Chain | Residues |              | $\mathbf{A}$ | toms     |          |         | AltConf | Trace |
|-----|-------|----------|--------------|--------------|----------|----------|---------|---------|-------|
| 35  | Ai    | 48       | Total<br>966 | C<br>468     | N<br>153 | O<br>298 | Р<br>47 | 0       | 0     |

• Molecule 36 is a DNA chain called STAPLE STRAND.

| Mol | Chain | Residues |              | A        | toms     |          |         | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|---------|---------|-------|
| 36  | Aj    | 27       | Total<br>551 | C<br>263 | N<br>103 | 0<br>159 | Р<br>26 | 0       | 0     |

• Molecule 37 is a DNA chain called STAPLE STRAND.

| Mol | Chain | Residues |              | $\mathbf{A}^{\dagger}$ | toms     |          |         | AltConf | Trace |
|-----|-------|----------|--------------|------------------------|----------|----------|---------|---------|-------|
| 37  | Ak    | 40       | Total<br>819 | C<br>386               | N<br>163 | 0<br>231 | Р<br>39 | 0       | 0     |



# 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.















| • Molecule 20: STAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PLE STRAND                                                                                                                                                                                                                                                                           |     |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| Chain AT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60%                                                                                                                                                                                                                                                                                  | 35% | 5%  |
| C1<br>C2<br>C3<br>C3<br>C3<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 625<br>626<br>627<br>627<br>627<br>630<br>630<br>630<br>636<br>636<br>636                                                                                                                                                                                                            |     |     |
| • Molecule 21: STAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PLE STRAND                                                                                                                                                                                                                                                                           |     |     |
| Chain AU:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 67%                                                                                                                                                                                                                                                                                  | 31% |     |
| 61<br>87<br>87<br>81<br>11<br>11<br>11<br>11<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>133</b><br>134<br>135<br>135<br>135<br>135<br>135<br>135<br>134<br>134<br>134<br>134<br>133                                                                                                                                                                                       |     |     |
| • Molecule 22: STAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PLE STRAND                                                                                                                                                                                                                                                                           |     |     |
| Chain AV:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 65%                                                                                                                                                                                                                                                                                  | 24% | 11% |
| 0<br>5<br>11<br>11<br>11<br>11<br>12<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>13<br>11<br>11 | T28<br>C34<br>C35<br>T37<br>T37                                                                                                                                                                                                                                                      |     |     |
| • Molecule 23: STAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PLE STRAND                                                                                                                                                                                                                                                                           |     |     |
| Chain AW:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 49%                                                                                                                                                                                                                                                                                  | 49% |     |
| 11<br>62<br>62<br>62<br>63<br>63<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 117<br>118<br>118<br>118<br>1219<br>1219<br>1219<br>133<br>133<br>133<br>133<br>133<br>135<br>135<br>135<br>135<br>135                                                                                                                                                               |     |     |
| • Molecule 24: STAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PLE STRAND                                                                                                                                                                                                                                                                           |     |     |
| Chain AX:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 64%                                                                                                                                                                                                                                                                                  | 30% | 6%  |
| <b>G1</b><br>13<br>13<br>13<br>13<br>13<br>14<br>14<br>14<br>119<br>119<br>119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120<br>21<br>22<br>627<br>633<br>633                                                                                                                                                                                                                                                 |     |     |
| • Molecule 25: STAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PLE STRAND                                                                                                                                                                                                                                                                           |     |     |
| Chain AY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60%                                                                                                                                                                                                                                                                                  | 34% | 6%  |
| A1<br>62<br>64<br>64<br>64<br>65<br>66<br>66<br>61<br>21<br>21<br>21<br>22<br>61<br>22<br>620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>621</b><br><b>A22</b><br><b>C24</b><br><b>C24</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C33</b><br><b>C33</b><br><b>C33</b><br><b>C33</b><br><b>C33</b><br><b>C33</b><br><b>C33</b><br><b>C33</b><br><b>C33</b><br><b>C33</b><br><b>C33</b><br><b>C34</b> |     |     |
| • Molecule 26: STAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PLE STRAND                                                                                                                                                                                                                                                                           |     |     |
| Chain AZ:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 71%                                                                                                                                                                                                                                                                                  | 29% |     |
| 11<br>C2<br>C2<br>C2<br>C2<br>C10<br>C10<br>C10<br>C10<br>C10<br>C10<br>C27<br>C27<br>C27<br>C27<br>C27<br>C27<br>C27<br>C27<br>C27<br>C27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                      |     |     |
| • Molecule 27: STAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PLE STRAND                                                                                                                                                                                                                                                                           |     |     |



| Chain Aa:                                                                                                                                                                                                                               | 63%                                                                                                                                                                  | 27% | 10% |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| C1<br>12<br>73<br>04<br>04<br>65<br>65<br>66<br>73<br>76<br>71<br>815<br>613<br>015<br>015                                                                                                                                              | C22<br>721<br>721<br>726<br>425<br>425<br>425<br>631<br>631<br>631<br>647<br>647<br>649<br>649                                                                       |     |     |
| • Molecule 28: STA                                                                                                                                                                                                                      | APLE STRAND                                                                                                                                                          |     |     |
| Chain Ab:                                                                                                                                                                                                                               | 32%<br>63%                                                                                                                                                           | 32% | 5%  |
| T1<br>T2<br>A4<br>A4<br>C5<br>C5<br>C5<br>C5<br>C5<br>C5<br>C5<br>C5<br>C5<br>C5<br>C5<br>C5<br>C5                                                                                                                                      | 122 122   623 624   624 127   127 631   631 631   137 631   136 135   137 138                                                                                        |     |     |
| • Molecule 29: STA                                                                                                                                                                                                                      | APLE STRAND                                                                                                                                                          |     |     |
| Chain Ac:                                                                                                                                                                                                                               | 52%                                                                                                                                                                  | 44% | •   |
| 11<br>12<br>13<br>13<br>13<br>13<br>13<br>13<br>11<br>13                                                                                                                                                                                | 114<br>115<br>115<br>115<br>115<br>118<br>118<br>128<br>128<br>128<br>128<br>128<br>124<br>148<br>148<br>148<br>148<br>148<br>148                                    |     |     |
| • Molecule 30: STA                                                                                                                                                                                                                      | APLE STRAND                                                                                                                                                          |     |     |
| Chain Ad:                                                                                                                                                                                                                               | 71%                                                                                                                                                                  | 26% | ·   |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                   | 1112<br>1112<br>1114<br>1114<br>1114<br>1114<br>1114<br>1114                                                                                                         |     |     |
| • Molecule 31: STA                                                                                                                                                                                                                      | APLE STRAND                                                                                                                                                          |     |     |
| Chain Ae:                                                                                                                                                                                                                               | 56%                                                                                                                                                                  | 37% | 7%  |
| 11<br>12<br>13<br>13<br>13<br>13<br>13<br>14<br>11<br>12                                                                                                                                                                                | A17<br>618<br>122<br>123<br>126<br>126<br>126<br>126<br>127                                                                                                          |     |     |
| • Molecule 32: STA                                                                                                                                                                                                                      | APLE STRAND                                                                                                                                                          |     |     |
| Chain Af:                                                                                                                                                                                                                               | 36%<br>61%                                                                                                                                                           | 31% | 8%  |
| G1<br>C2<br>C2<br>C2<br>C2<br>C2<br>C3<br>C3<br>C3<br>C3<br>C10<br>C10<br>C10<br>C10<br>C12<br>C12<br>C12<br>C12<br>C12<br>C12<br>C12<br>C12<br>C12<br>C2<br>C3<br>C3<br>C3<br>C3<br>C3<br>C3<br>C3<br>C3<br>C3<br>C3<br>C3<br>C3<br>C3 | C225<br>A26<br>A28<br>A28<br>C29<br>G30<br>C29<br>G33<br>C33<br>C33<br>C33<br>C33<br>C33<br>C33<br>C33<br>C33<br>C33                                                 |     |     |
| • Molecule 33: STA                                                                                                                                                                                                                      | APLE STRAND                                                                                                                                                          |     |     |
| Chain Ag:                                                                                                                                                                                                                               | 50%                                                                                                                                                                  | 45% | 5%  |
| 61<br>8 8<br>1 1 8<br>1 8                                                                        | A16<br>A19<br>120<br>121<br>121<br>127<br>127<br>127<br>128<br>A13<br>138<br>A33<br>138<br>A33<br>138<br>A33<br>138<br>A33<br>138<br>A34<br>138<br>A41<br>A41<br>A41 |     |     |
| • Molecule 34: STA                                                                                                                                                                                                                      | APLE STRAND                                                                                                                                                          |     |     |



| Chain Ah:                                                                         | 74%                                                                                                          | 20% | 6% |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----|----|
| A1<br>G2<br>G7<br>G15<br>G16<br>C24<br>C24<br>C28                                 | A 29<br>A 30<br>T 35<br>T 35                                                                                 |     |    |
| • Molecule 35:                                                                    | STAPLE STRAND                                                                                                |     |    |
| Chain Ai:                                                                         | 71%                                                                                                          | 21% | 8% |
| C1<br>172<br>14<br>13<br>14<br>14<br>016<br>114<br>016<br>118                     | 122<br>27<br>27<br>27<br>23<br>133<br>133<br>133<br>133<br>133<br>133<br>133<br>133<br>133                   |     |    |
| • Molecule 36:                                                                    | STAPLE STRAND                                                                                                |     |    |
| Chain Aj:                                                                         | 63%                                                                                                          | 37% |    |
| C1<br>T2<br>G11<br>G11<br>A13<br>A13<br>G18<br>G18<br>T20<br>G21<br>G21           | 622<br>623<br><b>6</b> 2<br><b>7</b>                                                                         |     |    |
| • Molecule 37:                                                                    | STAPLE STRAND                                                                                                |     |    |
| Chain Ak:                                                                         | 52%                                                                                                          | 48% |    |
| C1<br>T4<br>G5<br>G5<br>G10<br>C10<br>C10<br>C10<br>C10<br>C10<br>C10<br>C10<br>C | C 11<br>C 15<br>C 19<br>C 19<br>C 19<br>C 19<br>C 23<br>C 23<br>C 23<br>C 23<br>C 23<br>C 23<br>C 23<br>C 23 |     |    |



# 4 Experimental information (i)

| Property                           | Value                        | Source    |
|------------------------------------|------------------------------|-----------|
| EM reconstruction method           | SINGLE PARTICLE              | Depositor |
| Imposed symmetry                   | POINT, Not provided          |           |
| Number of particles used           | 44605                        | Depositor |
| Resolution determination method    | FSC 0.143 CUT-OFF            | Depositor |
| CTF correction method              | PHASE FLIPPING AND AMPLITUDE | Depositor |
|                                    | CORRECTION                   |           |
| Microscope                         | FEI TITAN KRIOS              | Depositor |
| Voltage (kV)                       | 300                          | Depositor |
| Electron dose $(e^-/\text{\AA}^2)$ | 60                           | Depositor |
| Minimum defocus (nm)               | Not provided                 |           |
| Maximum defocus (nm)               | Not provided                 |           |
| Magnification                      | Not provided                 |           |
| Image detector                     | FEI FALCON III (4k x 4k)     | Depositor |
| Maximum map value                  | 0.551                        | Depositor |
| Minimum map value                  | -0.116                       | Depositor |
| Average map value                  | 0.000                        | Depositor |
| Map value standard deviation       | 0.016                        | Depositor |
| Recommended contour level          | 0.17                         | Depositor |
| Map size (Å)                       | 828.0, 828.0, 828.0          | wwPDB     |
| Map dimensions                     | 360, 360, 360                | wwPDB     |
| Map angles (°)                     | 90.0, 90.0, 90.0             | wwPDB     |
| Pixel spacing (Å)                  | 2.3, 2.3, 2.3                | Depositor |



# 5 Model quality (i)

# 5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal | Chain | Bo   | nd lengths     | Bond angles |                              |  |
|-----|-------|------|----------------|-------------|------------------------------|--|
|     | Unam  | RMSZ | # Z  > 5       | RMSZ        | # Z  > 5                     |  |
| 1   | AA    | 1.24 | 1/30285~(0.0%) | 1.41        | 410/46736~(0.9%)             |  |
| 2   | AB    | 1.29 | 0/1132         | 1.44        | 15/1747~(0.9%)               |  |
| 3   | AC    | 1.30 | 1/966~(0.1%)   | 1.39        | 11/1492~(0.7%)               |  |
| 4   | AD    | 1.31 | 0/759          | 1.45        | 13/1170~(1.1%)               |  |
| 5   | AE    | 1.28 | 1/610~(0.2%)   | 1.51        | 16/939~(1.7%)                |  |
| 6   | AF    | 1.23 | 0/796          | 1.44        | 14/1225~(1.1%)               |  |
| 7   | AG    | 1.24 | 0/1130         | 1.33        | 14/1743~(0.8%)               |  |
| 8   | AH    | 1.29 | 0/782          | 1.43        | 13/1207~(1.1%)               |  |
| 9   | AI    | 1.25 | 0/783          | 1.39        | 8/1208~(0.7%)                |  |
| 10  | AJ    | 1.29 | 0/684          | 1.49        | 8/1054~(0.8%)                |  |
| 11  | AK    | 1.27 | 1/1047~(0.1%)  | 1.49        | 19/1614~(1.2%)               |  |
| 12  | AL    | 1.27 | 0/1053         | 1.51        | 18/1624~(1.1%)               |  |
| 13  | AM    | 1.20 | 0/995          | 1.33        | 11/1535~(0.7%)               |  |
| 14  | AN    | 1.19 | 0/651          | 1.38        | 7/1002~(0.7%)                |  |
| 15  | AO    | 1.26 | 0/929          | 1.47        | 12/1434~(0.8%)               |  |
| 16  | AP    | 1.28 | 0/981          | 1.49        | 16/1513~(1.1%)               |  |
| 17  | AQ    | 1.27 | 0/906          | 1.43        | 11/1395~(0.8%)               |  |
| 18  | AR    | 1.23 | 0/683          | 1.56        | 14/1052~(1.3%)               |  |
| 19  | AS    | 1.23 | 0/776          | 1.33        | 9/1197~(0.8%)                |  |
| 20  | AT    | 1.32 | 1/932~(0.1%)   | 1.45        | 14/1442~(1.0%)               |  |
| 21  | AU    | 1.26 | 0/980          | 1.36        | 13/1514~(0.9%)               |  |
| 22  | AV    | 1.24 | 0/837          | 1.38        | 8/1289~(0.6%)                |  |
| 23  | AW    | 1.23 | 0/948          | 1.54        | 21/1463~(1.4%)               |  |
| 24  | AX    | 1.21 | 0/746          | 1.36        | 9/1149~(0.8%)                |  |
| 25  | AY    | 1.30 | 0/816          | 1.46        | 15/1260~(1.2%)               |  |
| 26  | AZ    | 1.28 | 0/715          | 1.31        | 5/1102~(0.5%)                |  |
| 27  | Aa    | 1.21 | 0/1101         | 1.51        | 15/1693~(0.9%)               |  |
| 28  | Ab    | 1.22 | 0/867          | 1.45        | 12/1338~(0.9%)               |  |
| 29  | Ac    | 1.22 | 0/1089         | 1.50        | 19/1679~(1.1%)               |  |
| 30  | Ad    | 1.18 | 0/867          | 1.29        | 9/1336(0.7%)                 |  |
| 31  | Ae    | 1.18 | 0/611          | 1.43        | 10/941~(1.1%)                |  |
| 32  | Af    | 1.19 | 0/814          | 1.34        | 6/1252 (0.5%)                |  |
| 33  | Ag    | 1.28 | 0/955          | 1.48        | $2\overline{0/1472}~(1.4\%)$ |  |
| 34  | Ah    | 1.26 | 0/800          | 1.40        | $1\overline{0/1232}~(0.8\%)$ |  |



| Mal   | Chain | Bo   | nd lengths     | Bond angles |                  |  |
|-------|-------|------|----------------|-------------|------------------|--|
| INIOI | Unam  | RMSZ | # Z  > 5       | RMSZ        | # Z  > 5         |  |
| 35    | Ai    | 1.18 | 0/1076         | 1.36        | 14/1657~(0.8%)   |  |
| 36    | Aj    | 1.27 | 0/618          | 1.48        | 11/952~(1.2%)    |  |
| 37    | Ak    | 1.28 | 0/921          | 1.41        | 13/1419~(0.9%)   |  |
| All   | All   | 1.24 | 5/61641~(0.0%) | 1.42        | 863/95077~(0.9%) |  |

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

| Mol | Chain | #Chirality outliers | #Planarity outliers |
|-----|-------|---------------------|---------------------|
| 1   | AA    | 3                   | 313                 |
| 2   | AB    | 0                   | 12                  |
| 3   | AC    | 0                   | 11                  |
| 4   | AD    | 0                   | 12                  |
| 5   | AE    | 0                   | 8                   |
| 6   | AF    | 0                   | 11                  |
| 7   | AG    | 0                   | 10                  |
| 8   | AH    | 0                   | 8                   |
| 9   | AI    | 0                   | 13                  |
| 10  | AJ    | 0                   | 6                   |
| 11  | AK    | 0                   | 15                  |
| 12  | AL    | 0                   | 11                  |
| 13  | AM    | 0                   | 9                   |
| 14  | AN    | 0                   | 7                   |
| 15  | AO    | 0                   | 8                   |
| 16  | AP    | 0                   | 17                  |
| 17  | AQ    | 0                   | 13                  |
| 18  | AR    | 0                   | 10                  |
| 19  | AS    | 0                   | 12                  |
| 20  | AT    | 0                   | 11                  |
| 21  | AU    | 0                   | 8                   |
| 22  | AV    | 0                   | 11                  |
| 23  | AW    | 0                   | 10                  |
| 24  | AX    | 0                   | 7                   |
| 25  | AY    | 0                   | 7                   |
| 26  | AZ    | 0                   | 5                   |
| 27  | Aa    | 0                   | 14                  |
| 28  | Ab    | 1                   | 5                   |
| 29  | Ac    | 0                   | 14                  |
| 30  | Ad    | 0                   | 5                   |
| 31  | Ae    | 0                   | 7                   |

Continued on next page...



| Mol | Chain | #Chirality outliers | #Planarity outliers |
|-----|-------|---------------------|---------------------|
| 32  | Af    | 0                   | 12                  |
| 33  | Ag    | 0                   | 11                  |
| 34  | Ah    | 0                   | 5                   |
| 35  | Ai    | 0                   | 9                   |
| 36  | Aj    | 0                   | 5                   |
| 37  | Ak    | 0                   | 10                  |
| All | All   | 4                   | 662                 |

Continued from previous page...

All (5) bond length outliers are listed below:

| Mol | Chain | Res  | Type | Atoms   | Ζ     | Observed(Å) | $\mathrm{Ideal}(\mathrm{\AA})$ |
|-----|-------|------|------|---------|-------|-------------|--------------------------------|
| 11  | AK    | 33   | DG   | C2-N2   | -5.78 | 1.28        | 1.34                           |
| 1   | AA    | 1285 | DG   | C2-N2   | -5.74 | 1.28        | 1.34                           |
| 20  | AT    | 8    | DG   | C4'-C3' | 5.44  | 1.58        | 1.53                           |
| 3   | AC    | 1    | DA   | C4'-C3' | 5.12  | 1.58        | 1.53                           |
| 5   | AE    | 10   | DT   | C4'-C3' | 5.02  | 1.58        | 1.53                           |

The worst 5 of 863 bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms       |        | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-------------|--------|------------------|---------------|
| 1   | AA    | 129 | DC   | O4'-C4'-C3' | -15.74 | 96.55            | 106.00        |
| 28  | Ab    | 20  | DG   | P-O3'-C3'   | 15.70  | 138.54           | 119.70        |
| 29  | Ac    | 17  | DG   | P-O3'-C3'   | 14.63  | 137.26           | 119.70        |
| 27  | Aa    | 41  | DA   | P-O3'-C3'   | 14.36  | 136.93           | 119.70        |
| 16  | AP    | 16  | DG   | P-O3'-C3'   | 14.30  | 136.85           | 119.70        |

All (4) chirality outliers are listed below:

| Mol | Chain | Res  | Type | Atom    |
|-----|-------|------|------|---------|
| 1   | AA    | 272  | DC   | C4',C3' |
| 1   | AA    | 1272 | DC   | C3'     |
| 28  | Ab    | 35   | DT   | C3'     |

5 of 662 planarity outliers are listed below:

| Mol | Chain | Res | Type | Group     |
|-----|-------|-----|------|-----------|
| 1   | AA    | 1   | DA   | Sidechain |
| 1   | AA    | 12  | DG   | Sidechain |
| 1   | AA    | 15  | DC   | Sidechain |
| 1   | AA    | 3   | DC   | Sidechain |
| 1   | AA    | 5   | DA   | Sidechain |



## 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | AA    | 26988 | 0        | 14795    | 0       | 0            |
| 2   | AB    | 1008  | 0        | 551      | 0       | 0            |
| 3   | AC    | 863   | 0        | 478      | 0       | 0            |
| 4   | AD    | 676   | 0        | 372      | 0       | 0            |
| 5   | AE    | 546   | 0        | 307      | 0       | 0            |
| 6   | AF    | 710   | 0        | 395      | 0       | 0            |
| 7   | AG    | 1006  | 0        | 553      | 0       | 0            |
| 8   | AH    | 698   | 0        | 387      | 0       | 0            |
| 9   | AI    | 698   | 0        | 384      | 0       | 0            |
| 10  | AJ    | 611   | 0        | 340      | 0       | 0            |
| 11  | AK    | 936   | 0        | 519      | 0       | 0            |
| 12  | AL    | 940   | 0        | 523      | 0       | 0            |
| 13  | AM    | 893   | 0        | 505      | 0       | 0            |
| 14  | AN    | 584   | 0        | 332      | 0       | 0            |
| 15  | AO    | 826   | 0        | 449      | 0       | 0            |
| 16  | AP    | 877   | 0        | 486      | 0       | 0            |
| 17  | AQ    | 810   | 0        | 452      | 0       | 0            |
| 18  | AR    | 610   | 0        | 342      | 0       | 0            |
| 19  | AS    | 694   | 0        | 389      | 0       | 0            |
| 20  | AT    | 831   | 0        | 456      | 0       | 0            |
| 21  | AU    | 871   | 0        | 474      | 0       | 0            |
| 22  | AV    | 749   | 0        | 421      | 0       | 0            |
| 23  | AW    | 844   | 0        | 464      | 0       | 0            |
| 24  | AX    | 668   | 0        | 376      | 0       | 0            |
| 25  | AY    | 725   | 0        | 393      | 0       | 0            |
| 26  | AZ    | 636   | 0        | 348      | 0       | 0            |
| 27  | Aa    | 985   | 0        | 554      | 0       | 0            |
| 28  | Ab    | 776   | 0        | 435      | 0       | 0            |
| 29  | Ac    | 975   | 0        | 548      | 0       | 0            |
| 30  | Ad    | 774   | 0        | 430      | 0       | 0            |
| 31  | Ae    | 547   | 0        | 310      | 0       | 0            |
| 32  | Af    | 727   | 0        | 406      | 0       | 0            |
| 33  | Ag    | 854   | 0        | 479      | 0       | 0            |
| 34  | Ah    | 713   | 0        | 394      | 0       | 0            |
| 35  | Ai    | 966   | 0        | 551      | 0       | 0            |
| 36  | Aj    | 551   | 0        | 305      | 0       | 0            |
| 37  | Ak    | 819   | 0        | 445      | 0       | 0            |

Continued on next page...



Continued from previous page...

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| All | All   | 54985 | 0        | 30348    | 0       | 0            |

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). Clashscore could not be calculated for this entry.

There are no clashes within the asymmetric unit.

There are no symmetry-related clashes.

## 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

There are no protein molecules in this entry.

#### 5.3.2 Protein sidechains (i)

There are no protein molecules in this entry.

#### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

### 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

### 5.6 Ligand geometry (i)

There are no ligands in this entry.

#### 5.7 Other polymers (i)

There are no such residues in this entry.



# 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



# 6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-11367. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

# 6.1 Orthogonal projections (i)

#### 6.1.1 Primary map



The images above show the map projected in three orthogonal directions.

## 6.2 Central slices (i)

#### 6.2.1 Primary map



X Index: 180



Y Index: 180



Z Index: 180

The images above show central slices of the map in three orthogonal directions.

## 6.3 Largest variance slices (i)

#### 6.3.1 Primary map



X Index: 191

Y Index: 171

Z Index: 189

The images above show the largest variance slices of the map in three orthogonal directions.

## 6.4 Orthogonal surface views (i)

#### 6.4.1 Primary map



The images above show the 3D surface view of the map at the recommended contour level 0.17. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.



# 6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.



# 7 Map analysis (i)

This section contains the results of statistical analysis of the map.

# 7.1 Map-value distribution (i)



The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.



# 7.2 Volume estimate (i)



The volume at the recommended contour level is 795  $\rm nm^3;$  this corresponds to an approximate mass of 719 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.



## 7.3 Rotationally averaged power spectrum (i)



\*Reported resolution corresponds to spatial frequency of 0.100  ${\rm \AA^{-1}}$ 



# 8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

### 8.1 FSC (i)



\*Reported resolution corresponds to spatial frequency of 0.100  ${\rm \AA^{-1}}$ 



# 8.2 Resolution estimates (i)

| $\mathbf{Bosolution} \text{ ostimato } (\mathbf{\hat{\lambda}})$ | Estimation criterion (FSC cut-off) |       |          |  |  |
|------------------------------------------------------------------|------------------------------------|-------|----------|--|--|
| Resolution estimate (A)                                          | 0.143                              | 0.5   | Half-bit |  |  |
| Reported by author                                               | 10.00                              | -     | -        |  |  |
| Author-provided FSC curve                                        | 9.91                               | 15.34 | 10.17    |  |  |
| Unmasked-calculated*                                             | -                                  | -     | -        |  |  |

\*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.



# 9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-11367 and PDB model 7ARQ. Per-residue inclusion information can be found in section 3 on page 10.

# 9.1 Map-model overlay (i)



The images above show the 3D surface view of the map at the recommended contour level 0.17 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.



## 9.2 Q-score mapped to coordinate model (i)



The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

### 9.3 Atom inclusion mapped to coordinate model (i)



The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.17).



## 9.4 Atom inclusion (i)



At the recommended contour level, 71% of all backbone atoms, 79% of all non-hydrogen atoms, are inside the map.



1.0

0.0 <0.0

## 9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.17) and Q-score for the entire model and for each chain.

| Chain | Atom inclusion | Q-score |
|-------|----------------|---------|
| All   | 0.7937         | 0.1570  |
| AA    | 0.8086         | 0.1630  |
| AB    | 0.8988         | 0.1720  |
| AC    | 0.9247         | 0.1730  |
| AD    | 0.7899         | 0.1620  |
| AE    | 0.8974         | 0.1670  |
| AF    | 0.9296         | 0.1740  |
| AG    | 0.8817         | 0.1670  |
| AH    | 0.9226         | 0.1810  |
| AI    | 0.6662         | 0.1290  |
| AJ    | 0.5941         | 0.1150  |
| AK    | 0.7222         | 0.1160  |
| AL    | 0.8798         | 0.1570  |
| AM    | 0.3606         | 0.0880  |
| AN    | 0.7192         | 0.1390  |
| AO    | 0.8777         | 0.1680  |
| AP    | 0.9008         | 0.1620  |
| AQ    | 0.4099         | 0.0700  |
| AR    | 0.6131         | 0.1220  |
| AS    | 0.7421         | 0.1510  |
| AT    | 0.8664         | 0.1560  |
| AU    | 0.8542         | 0.1610  |
| AV    | 0.8398         | 0.1720  |
| AW    | 0.8353         | 0.1480  |
| AX    | 0.8892         | 0.1590  |
| AY    | 0.8993         | 0.1670  |
| AZ    | 0.9214         | 0.1850  |
| Aa    | 0.9086         | 0.1730  |
| Ab    | 0.5361         | 0.1160  |
| Ac    | 0.6892         | 0.1530  |
| Ad    | 0.4677         | 0.1320  |
| Ae    | 0.5704         | 0.1220  |
| Af    | 0.5117         | 0.1410  |
| Ag    | 0.9215         | 0.1740  |
| Ah    | 0.9144         | 0.1770  |

Continued on next page...



Continued from previous page...

| Chain | Atom inclusion | Q-score |
|-------|----------------|---------|
| Ai    | 0.8975         | 0.1660  |
| Aj    | 0.8403         | 0.1710  |
| Ak    | 0.8120         | 0.1530  |

