

wwPDB EM Validation Summary Report (i)

Dec 19, 2022 - 03:15 am GMT

PDB ID	:	7B93
EMDB ID	:	EMD-12095
Title	:	Cryo-EM structure of mitochondrial complex I from Mus musculus inhibited
		by IACS-2858 at 3.0 A
Authors	:	Chung, I.; Hirst, J.
Deposited on	:	2020-12-14
Resolution	:	3.04 Å(reported)
Based on initial model	:	6ZR2

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev43
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.31.3

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.04 Å.

Ramachandran outliers

Sidechain outliers

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Percentile Ranks	Value
Ramachandran outliers		0
Sidechain outliers		0.1%
Worse		Better
Percentile rel	ative to all structures	
Percentile rel	ative to all EM structures	
Metric	Whole archive (#Entries)	EM structures (#Entries)

154571

154315

The table below summarises the geometric issues observed across the polymeric chains and their fit
to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues
that contain outliers for $>=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey
segment represents the fraction of residues that are not modelled. The numeric value for each
fraction is indicated below the corresponding segment, with a dot representing fractions $<\!\!=\!5\%$
The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM
map (all-atom inclusion $< 40\%$). The numeric value is given above the bar.

4023

3826

Mol	Chain	Length	Quality of chain						
1	А	115	• 100%						
2	В	224	70%	30%					
3	С	263	• 79%	21%					
4	D	463	93%	7%					
5	Е	248	87%	13%					
6	F	464	92%	8%					
7	G	727	•• 95%	5%					
8	Н	318	100%						
9	Ι	212	84%	16%					

Mol	Chain	Length	Quality of chain	
10	J	172	6% 100%	
11	K	98	9 9%	•
12	L	607	100%	
13	М	459	100%	
14	N	345	100%	
15	0	355	90%	10%
16	Р	377	• 90%	9%
17	Q	175	72%	28%
18	R	116	83%	17%
19	S	99	85%	15%
20	Т	156	51% 49%	
20	U	156	56% 44%	
21	V	116	99%	
22	W	131	87%	13%
23	Х	172	99%	
24	Y	143	98%	
25	Z	144	• 99%	
26	a	70	100%	
27	b	84	95%	5%
28	с	76	64% 3	6%
29	d	120	• 100%	
30	е	106	9 9%	
31	f	57	96%	••
32	g	151	68%	32%
33	h	189	73%	27%

Mol	Chain	Longth	Quality of chain	
	Ullaili	Deligti		
34	i	128	76%	24%
35	j	105	13%	36%
36	k	104	16%	26%
37	1	186	6% 84%	16%
38	m	129	8% 	·
39	n	179	99%	
40	0	137	84%	16%
41	р	176	5% 97%	·
42	q	145	<u>6%</u> 99%	:
43	r	113	7%	• 11%
44	s	104	5% 41% • 55	8%

2 Entry composition (i)

There are 55 unique types of molecules in this entry. The entry contains 67491 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called NADH-ubiquinone oxidoreductase chain 3.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	А	115	Total 933	C 633	N 133	0 160	S 7	0	0

• Molecule 2 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 7, mitochondrial.

Mol	Chain	Residues	Atoms				AltConf	Trace	
2	В	156	Total 1247	C 796	N 223	0 214	S 14	0	0

• Molecule 3 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	С	207	Total 1721	C 1111	N 296	0 311	${ m S} { m 3}$	0	0

• Molecule 4 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 2, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
4	D	430	Total 3464	C 2215	N 595	O 630	$\begin{array}{c} \mathrm{S} \\ \mathrm{24} \end{array}$	0	0

• Molecule 5 is a protein called NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	Е	215	Total 1664	C 1058	N 280	0 315	S 11	0	0

• Molecule 6 is a protein called NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
6	F	429	Total 3310	C 2086	N 592	O 610	S 22	0	0

• Molecule 7 is a protein called NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial.

Mol	Chain	Residues		\mathbf{A}		AltConf	Trace		
7	G	690	Total 5305	C 3326	N 921	0 1017	S 41	0	0

• Molecule 8 is a protein called NADH-ubiquinone oxidoreductase chain 1.

Mol	Chain	Residues		At	AltConf	Trace			
8	Н	318	Total 2540	C 1706	N 384	0 428	S 22	0	0

• Molecule 9 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, mitochondrial.

Mol	Chain	Residues		\mathbf{A}	toms		AltConf	Trace	
9	Ι	178	Total 1431	C 898	N 245	O 276	S 12	0	0

• Molecule 10 is a protein called NADH-ubiquinone oxidoreductase chain 6.

Mol	Chain	Residues		\mathbf{A}	toms		AltConf	Trace	
10	J	172	Total 1308	C 878	N 186	O 229	S 15	0	0

• Molecule 11 is a protein called NADH-ubiquinone oxidoreductase chain 4L.

Mol	Chain	Residues		A	toms		AltConf	Trace	
11	K	98	Total 737	С 477	N 112	0 137	S 11	0	0

• Molecule 12 is a protein called NADH-ubiquinone oxidoreductase chain 5.

Mol	Chain	Residues	Atoms					AltConf	Trace
12	L	607	Total 4809	C 3187	N 747	O 830	S 45	0	0

• Molecule 13 is a protein called NADH-ubiquinone oxidoreductase chain 4.

Mol	Chain	Residues		At	AltConf	Trace			
13	М	459	Total 3632	C 2408	N 567	O 617	S 40	0	0

• Molecule 14 is a protein called NADH-ubiquinone oxidoreductase chain 2.

Mol	Chain	Residues	Atoms					AltConf	Trace
14	Ν	345	Total 2703	C 1795	N 417	0 454	S 37	0	0

• Molecule 15 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
15	Ο	320	Total 2607	C 1674	N 431	0 492	S 10	0	0

• Molecule 16 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9, mitochondrial.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
16	Р	342	Total 2748	C 1777	N 483	0 481	${ m S} 7$	0	0

• Molecule 17 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
17	Q	126	Total 1022	C 646	N 180	O 192	${S \atop 4}$	0	0

• Molecule 18 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 6, mitochondrial.

Mol	Chain	Residues		At	oms		AltConf	Trace	
18	R	96	Total 758	C 470	N 141	0 144	${ m S} { m 3}$	0	0

• Molecule 19 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 2.

Mol	Chain	Residues		At	oms		AltConf	Trace	
19	\mathbf{S}	84	Total 671	C 421	N 127	O 120	${ m S} { m 3}$	0	0

• Molecule 20 is a protein called Acyl carrier protein, mitochondrial.

Mol	Chain	Residues		At	oms		AltConf	Trace	
20	Т	70	Total	С	Ν	0	\mathbf{S}	0	0
20	1	19	637	410	95	127	5	0	0
20	T	<u> </u>	Total	С	Ν	0	S	0	0
20	U	00	706	453	104	144	5	0	0

• Molecule 21 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 5.

Mol	Chain	Residues		At	oms		AltConf	Trace	
21	V	115	Total 932	C 607	N 155	O 167	${ m S} { m 3}$	0	0

• Molecule 22 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 6.

Mol	Chain	Residues		At	AltConf	Trace			
22	W	114	Total 970	C 619	N 180	O 165	${ m S}{ m 6}$	0	0

• Molecule 23 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 8.

Mol	Chain	Residues		A	toms		AltConf	Trace	
23	Х	171	Total 1396	C 889	N 250	O 247	S 10	0	0

• Molecule 24 is a protein called MCG5603.

Mol	Chain	Residues		At	oms		AltConf	Trace	
24	Y	140	Total 1037	C 662	N 175	0 192	S 8	0	0

• Molecule 25 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 13.

Mol	Chain	Residues		At	AltConf	Trace			
25	Z	143	Total 1177	C 756	N 209	0 204	S 8	0	0

• Molecule 26 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 1.

Mol	Chain	Residues		Ate	oms		AltConf	Trace	
26	a	70	Total 572	C 370	N 101	O 97	$\frac{S}{4}$	0	0

• Molecule 27 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 3.

Mol	Chain	Residues		Ate	\mathbf{oms}	AltConf	Trace		
27	b	80	Total 628	C 414	N 99	0 111	${ m S}_{4}$	0	0

• Molecule 28 is a protein called NADH dehydrogenase [ubiquinone] 1 subunit C1, mitochondrial.

Mol	Chain	Residues		Ato	\mathbf{ms}		AltConf	Trace	
28	с	49	Total 407	C 266	N 70	O 70	S 1	0	0

• Molecule 29 is a protein called NADH dehydrogenase [ubiquinone] 1 subunit C2.

Mol	Chain	Residues		At	oms		AltConf	Trace	
29	d	120	Total 996	C 651	N 171	0 165	S 9	0	0

• Molecule 30 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 5.

Mol	Chain	Residues		At	oms		AltConf	Trace	
30	е	105	Total 877	$\begin{array}{c} \mathrm{C} \\ 555 \end{array}$	N 162	0 152	S 8	0	0

• Molecule 31 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 1.

Mol	Chain	Residues		Ato	\mathbf{ms}		AltConf	Trace	
31	f	56	Total 482	C 314	N 85	0 81	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 32 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 11, mitochondrial.

Mol	Chain	Residues		At	oms	AltConf	Trace		
32	g	102	Total 858	$\begin{array}{c} \mathrm{C} \\ 553 \end{array}$	N 137	0 164	$\frac{S}{4}$	0	0

• Molecule 33 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 5, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
33	h	138	Total 1162	C 762	N 194	O 203	${ m S} { m 3}$	0	0

• Molecule 34 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 6.

Mol	Chain	Residues		At	oms		AltConf	Trace	
34	i	97	Total 814	C 529	N 143	0 139	${ m S} { m 3}$	0	0

• Molecule 35 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 2, mitochondrial.

Mol	Chain	Residues		Ate	\mathbf{oms}			AltConf	Trace
35	j	67	Total 580	C 378	N 95	0 106	S 1	0	0

• Molecule 36 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 3.

Mol	Chain	Residues		At	oms	AltConf	Trace		
36	k	77	Total 626	C 414	N 106	O 104	${ m S} { m 2}$	0	0

• Molecule 37 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 8, mitochondrial.

Mol	Chain	Residues		\mathbf{A}	toms		AltConf	Trace	
37	1	157	Total 1323	C 855	N 220	O 237	S 11	0	0

• Molecule 38 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 4.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
38	m	126	Total 1050	C 676	N 189	O 185	0	0

• Molecule 39 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 9.

Mol	Chain	Residues		\mathbf{A}	toms	AltConf	Trace		
39	n	178	Total 1541	$\begin{array}{c} \mathrm{C} \\ 985 \end{array}$	N 276	O 269	S 11	0	0

• Molecule 40 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 7.

Mol	Chain	Residues		At	oms	AltConf	Trace		
40	О	115	Total 988	C 622	N 186	0 172	S 8	0	0

• Molecule 41 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 10.

Mol	Chain	Residues		At	oms	AltConf	Trace		
41	р	171	Total 1444	C 907	N 259	0 270	S 8	0	0

• Molecule 42 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12.

Mol	Chain	Residues		At	oms			AltConf	Trace
42	q	145	Total 1212	C 779	N 215	0 213	${f S}{5}$	0	0

• Molecule 43 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 7.

Mol	Chain	Residues		At	oms			AltConf	Trace
43	r	101	Total 809	C 511	N 150	0 145	${ m S} { m 3}$	0	0

• Molecule 44 is a protein called NADH dehydrogenase [ubiquinone] flavoprotein 3, mitochondrial.

Mol	Chain	Residues		Atom	ıs		AltConf	Trace
44	S	44	Total 368	C 230	N 66	О 72	0	0

• Molecule 45 is IRON/SULFUR CLUSTER (three-letter code: SF4) (formula: Fe_4S_4).

Mol	Chain	Residues	Atoms	AltConf
45	В	1	Total Fe S 8 4 4	0
45	F	1	TotalFeS844	0
45	G	1	Total Fe S 16 8 8	0
45	G	1	TotalFeS1688	0
45	Ι	1	TotalFeS1688	0
45	Ι	1	TotalFeS1688	0

• Molecule 46 is 1,2-DIACYL-SN-GLYCERO-3-PHOSPHOCHOLINE (three-letter code: PC1) (formula: $C_{44}H_{88}NO_8P$).

Mol	Chain	Residues		Ato	oms			AltConf
46	Р	1	Total	С	Ν	Ο	Р	0
40	D	L	78	58	2	16	2	0
46	Р	1	Total	С	Ν	Ο	Р	0
40	D	L	78	58	2	16	2	0
46	ц	1	Total	С	Ν	Ο	Р	0
40	11	L	42	32	1	8	1	0
46	т	1	Total	С	Ν	Ο	Р	0
40			45	35	1	8	1	U

• Molecule 47 is 1,2-DIACYL-SN-GLYCERO-3-PHOSPHOETHANOLAMINE (three-letter code: 3PE) (formula: $C_{41}H_{82}NO_8P$).

Mol	Chain	Residues		Ato	oms			AltConf
47	Л	1	Total	С	Ν	Ο	Р	0
41	D	L	49	39	1	8	1	0
47	ц	1	Total	С	Ν	0	Р	0
41	11	L	44	34	1	8	1	0
47	т	1	Total	С	Ν	Ο	Р	0
41	1	L	51	41	1	8	1	0
47	K	1	Total	С	Ν	0	Р	0
41	П	T	33	23	1	8	1	0
47	T	1	Total	С	Ν	Ο	Р	0
- 41	Ľ	1	49	39	1	8	1	0
17	М	1	Total	С	Ν	Ο	Р	0
41	111	T	42	32	1	8	1	0
17	V	1	Total	С	Ν	Ο	Р	0
41	I	T	41	31	1	8	1	0
47	h	1	Total	С	Ν	0	Р	0
41	11	L	37	27	1	8	1	U
47	i	1	Total	С	Ν	0	Р	0
41	I	L	42	32	1	8	1	U

• Molecule 48 is FE2/S2 (INORGANIC) CLUSTER (three-letter code: FES) (formula: Fe_2S_2).

Mol	Chain	Residues	Atoms	AltConf
18	F	1	Total Fe S	0
40	Ľ	1	4 2 2	0
19	С	1	Total Fe S	0
40	G	T	4 2 2	0

• Molecule 49 is FLAVIN MONONUCLEOTIDE (three-letter code: FMN) (formula: $C_{17}H_{21}N_4O_9P$).

Mol	Chain	Residues		Ato	oms			AltConf
40	F	1	Total	С	Ν	0	Р	0
49	Ľ	1	31	17	4	9	1	0

• Molecule 50 is 1-[[3-(4-methylsulfonylpiperidin-1-yl)phenyl]methyl]-5-[3-[4-(trifluorom ethyloxy)phenyl]-1,2,4-oxadiazol-5-yl]pyridin-2-one (three-letter code: T2Q) (formula: $C_{27}H_{25}F_3N_4O_5S$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		Α	ton	ıs			AltConf
50	Ц	1	Total	С	F	Ν	0	S	0
- 30	11	1	40	27	3	4	5	1	0

• Molecule 51 is CARDIOLIPIN (three-letter code: CDL) (formula: $C_{81}H_{156}O_{17}P_2$).

Mol	Chain	Residues	A	Aton	ns		AltConf
51	т	1	Total	С	Ο	Р	0
51		L	74	55	17	2	0
51	N	1	Total	С	Ο	Р	0
51	IN	T	65	46	17	2	0
51	v	1	Total	С	Ο	Р	0
51	Λ	I	67	48	17	2	0
51	d	1	Total	С	Ο	Р	0
51	u	T	122	85	33	4	0
51	d	1	Total	С	Ο	Р	0
51	u	T	122	85	33	4	0
51	h	1	Total	С	Ο	Р	0
51	11	T	70	51	17	2	0
51	a	1	Total	С	0	Р	0
51	Ч	L	57	38	17	2	0

• Molecule 52 is ADENOSINE-5'-TRIPHOSPHATE (three-letter code: ATP) (formula: $C_{10}H_{16}N_5O_{13}P_3$).

Mol	Chain	Residues		Ate	oms			AltConf
50	0	1	Total	С	Ν	Ο	Р	0
32	U	T	31	10	5	13	3	0

• Molecule 53 is NADPH DIHYDRO-NICOTINAMIDE-ADENINE-DINUCLEOTIDE PHOSPHATE (three-letter code: NDP) (formula: $C_{21}H_{30}N_7O_{17}P_3$).

Mol	Chain	Residues		At	oms			AltConf
53	D	1	Total	С	Ν	Ο	Р	0
- 55	T	L	48	21	7	17	3	0

• Molecule 54 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms		Atoms		AltConf
54	R	1	Total Z 1	Zn 1	0		

• Molecule 55 is {S}-[2-[3-[[(2 {R})-3,3-dimethyl-2-oxidanyl-4-phosphonooxy-butanoyl]ami no]propanoylamino]ethyl] (3 {S})-3-oxidanyltetradecanethioate (three-letter code: EHZ) (formula: $C_{25}H_{49}N_2O_9PS$).

Mol	Chain	Residues	Atoms				AltConf		
55	Т	1	Total	С	Ν	Ο	Р	S	0
	1	L	37	25	2	8	1	1	0
55	II	1	Total	С	Ν	Ο	Р	S	0
00	U		37	25	2	8	1	1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: NADH-ubiquinone oxidoreductase chain 3

• Molecule 5: NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial

Chain E:	87%	13%
MET PHE SER LEU LEU ALA ALA ALA ALA ALA ALA ALA	LU LU ALA ALA ALA GLY GLY ALA ALA ALA ALA ALA ALA ALA ALA ALA A	D1122 (Control Control
E204 + + 2005 -		
• Molecule 6: N	ADH dehydrogenase [ubiquinone] flav	voprotein 1, mitochondrial
Chain F:	92%	8%
MET LEU LEU ALA ALA ARG ARG HIS CH GLY CLV	PRAL VAL VAL VAL ARG VAL ARG ARG ARG ARG ARG ARG CI THR ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	B87 B87 D170 D170 D212 D212 C248 C248 C248 D212 D
ALA ALA SER		
• Molecule 7: N	ADH-ubiquinone oxidoreductase 75 k	Da subunit, mitochondrial
Chain G:	95%	5%
MET LEU LEU ARG PRO TILE ARG ARG ALA LEU LEU	LUL SER SER ASN SER ASN SER TTR TTR TTR AILA ALA ALA ALA ALA ALA ALA ALA ALA AL	S340 D341 E352 R436 R436 A444 D445 A446 A446 A446 C546 C516 D536
E638 T639 N640 N653 Q654 C657 A658	E683 ALA ALA ALA ALA ALA ALU BLU BLU BLU BLU BLU CYS CYS	
• Molecule 8: N	ADH-ubiquinone oxidoreductase chai	n 1
Chain H:	100%	
M318		
• Molecule 9: N	ADH dehydrogenase [ubiquinone] iro	n-sulfur protein 8, mitochondrial
Chain I:	84%	16%
MET TYR ARG LEU SER SER MET FRO PRO PRO	ALM LLU ALA ALA ALA ALA ALA ALA ALA ALA ALA	
• Molecule 10:	NADH-ubiquinone oxidoreductase cha	ain 6
Chain J:	100%	

• Molecule 11: NADH-ubiquinone oxidoreductase chain 4L

Chain K:	99% .
C98 C98	
• Molecule 12: 1	NADH-ubiquinone oxidoreductase chain 5
Chain L:	100%
M1 K28 D352 E397	8494 E6006
• Molecule 13: 1	NADH-ubiquinone oxidoreductase chain 4
Chain M:	100%
M184	
• Molecule 14: 1	NADH-ubiquinone oxidoreductase chain 2
Chain N:	100%
M1 T345	
- Malassia 15.	

• Molecule 15: NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10, mitochondrial

Chain O:	90%							10%	
MET ALA ALA ALA ARG ARG ARG CLEU ARC PYAL PYAL ALA	PR.D. PR.D. ALA ALA CLEV CLEV CLEV CLA ALA ALA ALA ALA ALA ALA ALA ALA ALA	VAL HIS CYS LYS L1 R2	R67	D85 K185	6187	D230	D237	K242	K320

 \bullet Molecule 16: NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9, mitochondrial

Chain P:	90%		9%
MET ALA ALA ALA ALA ARG PHE ARG VAL	ALA ALA ALA PRU PRU MET ARG PRO PRO ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	SER HIS ARG CLN CLN D77 K78 K78 K140	D222 ♦ D282 ♦ M293 ♦ T294 ♦ D296 ♦ E332 ♦ K335 ♦
		WORLDWIDE PROTEIN DATA BANK	

• Molecule 17: NA	ADH dehydrogenase	[ubiquinone] iron-	sulfur protein 4,	mitochondrial
Chain Q:	72%		28%	_
MET ALA ALA VAL SER SER SER SER SER ALA ALA	LEU LEU GLY GLY ARG ARG ALA ALA ALA ALA ALA ALA ALA VAL SER CYA	ARG VAL PRO SER ARG ARG LEU LEU LEU SER THR THR THR THR THR	LEU ALA ASN ASN GLN THR ARG ASP D14	
• Molecule 18: NA	ADH dehydrogenase	[ubiquinone] iron-	sulfur protein 6,	mitochondrial
Chain R:	839	6	17%	_
MET ALA ALA ALA LEU PHE PHE ARG LEU LEU LEU THR PDD	ALA ALA ALA ALA ALA ALA ALA ALA CI CI CI CI CI CI CI CI CI CI CI CI CI	1135 1136 1136		
• Molecule 19: NA	ADH dehydrogenase	[ubiquinone] 1 alp	ha subcomplex s	subunit 2
Chain S:	859	%	15%	-
MET ALA ALA ALA ALA ALA ALA ALA GLY CLY LYS	L13 C14 D34 R39 E42 E42 K45 N49	E59 D84 A89 M90 C96 C96 LYS	Ала	
• Molecule 20: Ac	yl carrier protein, m	nitochondrial		
Chain T:	51%		49%	_
MET ALA SER SER ARG VAL CYS CYS CYS CYS ARG ARG ARG ARG	FRU ALA ALA ALA ALA PRO PRO PRO PRO FRO THR LEU LEU LEU	ALA ARG PRO LEU SER THR THR THR CYS CYS PRO GLU GLU	ARG ARG ARG PRO GLY GLY CLEU GLN SER ALA ALA ALA	LEU ALM GLN VAL PRO GLY THR
VAL THR HIIS LEU CYS CYS CYS CILN CYS SER ASP ALA ALA PRO	L6 17 L8 01 013 013 14 116 116 116 116 116 K20	L21 Y22 D23 K24 I25 P27 E28 K29 K29 K29 K29 K29 K29 K29 K29 K29	V32 N33 M37 K38 K38 D39 C41 C41	E57 F58 G59 F60 E61 165 A67 K69 C668 K69 C668 K69 C74
E75 D78 D82 K84 K84 ASP VAL TYR GLU				
• Molecule 20: Ac	yl carrier protein, m	nitochondrial		
Chain U:	56%		44%	_
MET ALA ALA SER ARG VAL LEU CYS ARG ARG ARG ARG	P.R.O. ALA ALA ALA ALA PRO PRO PRO PRO LEU LEU LEU LEU	ALA ARG PRO LEU LEU SER THR THR THR CYS CYS PRO GLU GLU	ARG ARG ARG PRO GLY GLY ALA CLEU GLN SER ALA ALA	LEU ALA GLN VAL PRO GLY THR
VAL THR HIS HIS CYS CYS CYS CYS CI BI D2 D2 D2 D2 M3	D36 P26 F27 F28 K29 K29 N33 F • • •			
• Molecule 21: NA	ADH dehydrogenase	[ubiquinone] 1 alp	ha subcomplex s	subunit 5
Chain V:		99%		-

99%

wo

D W I D E DATA BANK

Chain V:

• Molecule 22: NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 6

Chain W:	87%	13%
MET ALA ALA ALA ALA ALA ALA THR THR THR ALA ALA ALA ALA ALA ALA SER SER	R117 R115 P115 P115 P130	

• Molecule 23: NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 8

• Molecule 25: NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 13

Chain Z:	99%	
MET A1 A2 S3 S3 B99 N102		

• Molecule 26: NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 1

Chain a:	100%	-
M1 169 D70		
• Molecule 27:	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex	subunit 3
Chain b:	95%	5%
• •••	• •	
MET ALA GLY ARG 14 D58 D58 D58 G60	M01 M62 P64 L83	

• Molecule 28: NADH dehydrogenase [ubiquinone] 1 subunit C1, mitochondrial

11%					
Chain c:	64%		36%		
MET ALA ALA PRO SER VAL LEU LEU ARG SER SER SER SER	LEU LEU ALA ALA ALA ARA ARA SER SER ARA SER ARA SER ARA SER ARA SER ARA	E6 N9 A10 K11 647 L48 E49			
• Molecule 29: N	NADH dehydrogenase [ubi	quinone] 1 subu	unit C2		
Chain d:	10	0%		•	
M1 D16 E103 K104 E105 R120					
• Molecule 30: N	NADH dehydrogenase [ubi	quinone] iron-sı	ulfur protein 5		
Chain e:	99	%			
MET P1 D4 E88 E101 E102 P102					
• Molecule 31: N	NADH dehydrogenase [ubi	quinone] 1 beta	subcomplex sub	unit 1	
Chain f:	26% 96%		• •	I	
MET 11 12 12 12 12 12 12 12 12 12	E46 E46 R48 R48 R50 E51 K56 K56				
• Molecule 32: drial	NADH dehydrogenase [u	ıbiquinone] 1 b	eta subcomplex	subunit 11,	mitochon-
Chain g:	68%		32%		
MET ALA ALA ARG ARG LEU LEU LEU TYR TYR ARG CYS	LEU LEU ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	SER ALA ALA ALA ILE ALA ALA PRO GLY VAL	LYS LYS ARG GLN PRO E31 E31 E31	K38 E99 ♦ E120 D121	
D122					
• Molecule 33: drial	NADH dehydrogenase [ubiquinone] 1	oeta subcomplex	subunit 5,	mitochon-
Chain h:	73%		27%		
MET ALA ALA MET MET SER LEU CLU CLU CLU ALA SER VAL VAL	SER ALA ALA ALA ALA LEU LEU ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	PHE LEU THR ARG SER PHE PRO PRO LYS VAL ALA	VAL VAL ARG SER GLY GLY K6 GLY E57	D81	

• Molecule 34: NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 6

Chain i:	76%	24%	
		2170	
MET S1 D6 D6 B3 P36 P36 P36 P36 P36 P36 P12 P10 CLU	ARG ARG ASP ASP ASP ASP ASP ALY ALA ALA ALA ALA ALA ALA ALA ALA ALA	E111 E111 7112 7113 7113 7120 7121 7122 7122 7123 7123 7123 7123 7123	
• Molecule 35: NAD)H dehydrogenase [ubiquinone] 1 beta subcomplex	subunit 2, mitochon-
drial 13%			
Chain j:	64%	36%	
			• ••••
MET SER ALA ALA LEU THR ARG PHE PRO PHE GLY VAL CLY ARG CLY ARG	LEU LEU ARG CLY CYS CYS CLY ALA ALA ALA ALA ALA ALA ALA ALA ALA A	H6 17 08 043 H50 H50 658 653 E63	166 P67 P68 P68 D69 D70 D70
• Molecule 36: NADH	f dehydrogenase [ubiquinone] 1	beta subcomplex sub	unit 3
Chain k:	74%	26%	
	*** * * * * * * *	• • • ••• •	
MET ALLA ALLA ALLA CLY CLY CLY CLY CLU CLY CLY CLY CLY CLY CLY CLY	HIS GLY K18 M19 E20 E35 C44 E35 C44 C46 C45 C46 C46 C46 C46 C46 C46 C46 C46 C46 C46	A 45 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ASP LYS LYS HIS HIS
• Molecule 37: NAD drial)H dehydrogenase [ubiquinone] 1 beta subcomplex	subunit 8, mitochon-
Chain l:	84%	16%	
	•• • • •	<u>• ••• • • •</u> •	
MET ALA ALA ALA ALA ALA ALA ALA ALA CLEU CLEU CLEU CLEU CLEU CLEU CLEU CLEU	THR THR ARG GLY VAL VAL VAL CALU ARG ALU ALA ARG ARG ARG ARG ARG ARG ARG ARG ARG AR	D144 D145 T146 K147 E146 P148 P148 P151 V152 V152 T157	
• Molecule 38: NADH	dehydrogenase [ubiquinone] 1	beta subcomplex sub	unit 4
Chain m:	98%		
	• •• •		
MET SIER GLY Y22 B21 B23 B23 R30 R30 R41	4116 K119 K123 Y128		
• Molecule 39: NADH	[dehydrogenase [ubiquinone] 1	beta subcomplex sub	unit 9
Chain n:	99%		
MET 41 NS2 853 K54 D55 M56 M57 R58 R58 R58 R58 R58	E141 • E142 • E142 • E142 • E142 • E142 • E143 • E143 • E146 • E159 • E1		
• Molecule 40: NADH	f dehydrogenase [ubiquinone] 1	beta subcomplex sub	unit 7
14%			
Unain o:	84%	16%	

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	44000	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	52	Depositor
Minimum defocus (nm)	1500	Depositor
Maximum defocus (nm)	2700	Depositor
Magnification	130000	Depositor
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor
Maximum map value	0.346	Depositor
Minimum map value	-0.079	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.008	Depositor
Recommended contour level	0.055	Depositor
Map size (Å)	474.74997, 474.74997, 474.74997	wwPDB
Map dimensions	450, 450, 450	wwPDB
Map angles $(^{\circ})$	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.055, 1.055, 1.055	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: 3PE, AYA, EHZ, T2Q, 2MR, SF4, NDP, PC1, FMN, ATP, FES, AME, CDL, FME, ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	$\mathbf{lengths}$	Bond	angles
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.29	0/949	0.43	0/1297
2	В	0.39	0/1278	0.46	0/1730
3	С	0.33	0/1771	0.44	0/2412
4	D	0.34	0/3540	0.45	0/4795
5	Е	0.31	0/1704	0.49	0/2321
6	F	0.29	0/3385	0.46	0/4572
7	G	0.31	0/5392	0.47	0/7305
8	Н	0.31	0/2607	0.44	0/3564
9	Ι	0.34	0/1461	0.45	0/1974
10	J	0.30	0/1330	0.44	0/1810
11	K	0.28	0/738	0.42	0/1002
12	L	0.30	0/4922	0.43	0/6698
13	М	0.28	0/3709	0.44	0/5052
14	N	0.30	0/2755	0.45	0/3751
15	0	0.31	0/2674	0.44	0/3626
16	Р	0.30	0/2823	0.45	0/3828
17	Q	0.30	0/1045	0.45	0/1411
18	R	0.34	0/773	0.44	0/1041
19	S	0.27	0/682	0.47	0/920
20	Т	0.29	0/646	0.45	0/869
20	U	0.28	0/718	0.40	0/970
21	V	0.29	0/954	0.41	0/1293
22	W	0.29	0/993	0.41	0/1335
23	Х	0.32	0/1434	0.43	0/1937
24	Y	0.27	0/1061	0.40	0/1439
25	Z	0.30	0/1208	0.44	0/1630
26	a	0.30	0/585	0.42	0/788
27	b	0.28	0/651	0.40	0/895
28	с	0.28	0/418	0.39	0/567
29	d	0.31	0/1028	0.42	0/1387
30	е	0.27	0/900	0.39	0/1199
31	f	0.29	0/495	0.43	0/667

Mal	Chain	Bond	lengths	Bond	angles
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
32	g	0.31	0/886	0.39	0/1207
33	h	0.31	0/1197	0.41	0/1621
34	i	0.29	0/840	0.43	0/1141
35	j	0.27	0/605	0.41	0/828
36	k	0.28	0/646	0.39	0/873
37	l	0.29	0/1379	0.40	0/1882
38	m	0.29	0/1079	0.43	0/1463
39	n	0.29	0/1596	0.41	0/2162
40	0	0.27	0/1013	0.41	0/1360
41	р	0.30	0/1477	0.43	0/1996
42	q	0.31	0/1243	0.45	0/1692
43	r	0.29	0/819	0.45	0/1108
44	s	0.26	0/379	0.42	0/515
All	All	0.30	0/67788	0.44	0/91933

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
42	q	0	1

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
42	q	1	AME	Mainchain

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	113/115~(98%)	107 (95%)	6(5%)	0	100	100
2	В	154/224~(69%)	147~(96%)	7 (4%)	0	100	100
3	С	205/263~(78%)	199~(97%)	6 (3%)	0	100	100
4	D	427/463~(92%)	408 (96%)	19 (4%)	0	100	100
5	Ε	213/248~(86%)	204 (96%)	9 (4%)	0	100	100
6	F	427/464~(92%)	410 (96%)	17 (4%)	0	100	100
7	G	688/727~(95%)	660 (96%)	28 (4%)	0	100	100
8	Н	316/318~(99%)	301 (95%)	15 (5%)	0	100	100
9	Ι	176/212~(83%)	170 (97%)	6 (3%)	0	100	100
10	J	170/172~(99%)	161 (95%)	9(5%)	0	100	100
11	K	96/98~(98%)	94 (98%)	2 (2%)	0	100	100
12	L	605/607~(100%)	569 (94%)	36 (6%)	0	100	100
13	М	457/459~(100%)	445 (97%)	12 (3%)	0	100	100
14	Ν	343/345~(99%)	332 (97%)	11 (3%)	0	100	100
15	Ο	318/355~(90%)	306 (96%)	12 (4%)	0	100	100
16	Р	340/377~(90%)	331 (97%)	9(3%)	0	100	100
17	Q	124/175~(71%)	121 (98%)	3 (2%)	0	100	100
18	R	94/116 (81%)	94 (100%)	0	0	100	100
19	S	82/99~(83%)	74 (90%)	8 (10%)	0	100	100
20	Т	77/156~(49%)	73 (95%)	4 (5%)	0	100	100
20	U	86/156~(55%)	85 (99%)	1 (1%)	0	100	100
21	V	113/116~(97%)	108 (96%)	5 (4%)	0	100	100
22	W	112/131~(86%)	108 (96%)	4 (4%)	0	100	100
23	Х	169/172~(98%)	160 (95%)	9 (5%)	0	100	100
24	Y	138/143~(96%)	134 (97%)	4 (3%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
25	Z	141/144 (98%)	136 (96%)	5 (4%)	0	100	100
26	a	68/70~(97%)	67 (98%)	1 (2%)	0	100	100
27	b	78/84~(93%)	76 (97%)	2 (3%)	0	100	100
28	с	47/76~(62%)	47 (100%)	0	0	100	100
29	d	118/120 (98%)	115 (98%)	3 (2%)	0	100	100
30	е	103/106~(97%)	100 (97%)	3 (3%)	0	100	100
31	f	54/57~(95%)	51 (94%)	3 (6%)	0	100	100
32	g	100/151~(66%)	97 (97%)	3 (3%)	0	100	100
33	h	136/189~(72%)	132 (97%)	4 (3%)	0	100	100
34	i	93/128~(73%)	87 (94%)	6 (6%)	0	100	100
35	j	65/105~(62%)	60 (92%)	5 (8%)	0	100	100
36	k	75/104 (72%)	72 (96%)	3 (4%)	0	100	100
37	1	155/186~(83%)	147 (95%)	8 (5%)	0	100	100
38	m	124/129~(96%)	118 (95%)	6 (5%)	0	100	100
39	n	176/179~(98%)	165 (94%)	11 (6%)	0	100	100
40	О	113/137 (82%)	105 (93%)	8 (7%)	0	100	100
41	р	169/176~(96%)	159 (94%)	10 (6%)	0	100	100
42	q	143/145~(99%)	136 (95%)	7 (5%)	0	100	100
43	r	97/113~(86%)	94 (97%)	3 (3%)	0	100	100
44	S	42/104 (40%)	39 (93%)	3 (7%)	0	100	100
All	All	8140/9214 (88%)	7804 (96%)	336 (4%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	103/103~(100%)	103 (100%)	0	100 100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
2	В	132/185~(71%)	132 (100%)	0	100	100
3	С	189/227~(83%)	189 (100%)	0	100	100
4	D	370/394~(94%)	370~(100%)	0	100	100
5	Ε	184/206~(89%)	184 (100%)	0	100	100
6	F	344/370~(93%)	343 (100%)	1 (0%)	92	97
7	G	580/610~(95%)	580 (100%)	0	100	100
8	Н	279/279~(100%)	279 (100%)	0	100	100
9	Ι	152/178~(85%)	152 (100%)	0	100	100
10	J	137/137~(100%)	137 (100%)	0	100	100
11	K	87/87~(100%)	87 (100%)	0	100	100
12	L	549/549~(100%)	549 (100%)	0	100	100
13	М	414/414 (100%)	414 (100%)	0	100	100
14	Ν	307/307~(100%)	307 (100%)	0	100	100
15	О	284/309~(92%)	284 (100%)	0	100	100
16	Р	299/325~(92%)	298 (100%)	1 (0%)	92	97
17	Q	113/153~(74%)	113 (100%)	0	100	100
18	R	81/96~(84%)	81 (100%)	0	100	100
19	S	74/80~(92%)	74 (100%)	0	100	100
20	Т	73/135~(54%)	73 (100%)	0	100	100
20	U	81/135~(60%)	81 (100%)	0	100	100
21	V	101/102~(99%)	101 (100%)	0	100	100
22	W	108/114~(95%)	108 (100%)	0	100	100
23	Х	153/154~(99%)	153 (100%)	0	100	100
24	Y	105/107~(98%)	105 (100%)	0	100	100
25	Ζ	122/123~(99%)	122 (100%)	0	100	100
26	a	60/60~(100%)	60 (100%)	0	100	100
27	b	71/73~(97%)	71 (100%)	0	100	100
28	с	43/67~(64%)	43 (100%)	0	100	100
29	d	107/107~(100%)	107 (100%)	0	100	100
30	е	93/94~(99%)	93 (100%)	0	100	100
31	f	52/53~(98%)	51 (98%)	1 (2%)	57	82

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
32	g	93/129~(72%)	93~(100%)	0	100	100
33	h	123/162~(76%)	123 (100%)	0	100	100
34	i	92/120~(77%)	92 (100%)	0	100	100
35	j	63/87~(72%)	63~(100%)	0	100	100
36	k	60/78~(77%)	60 (100%)	0	100	100
37	1	142/161~(88%)	142 (100%)	0	100	100
38	m	112/114 (98%)	112 (100%)	0	100	100
39	n	163/164~(99%)	163 (100%)	0	100	100
40	О	106/121 (88%)	106 (100%)	0	100	100
41	р	155/158~(98%)	155 (100%)	0	100	100
42	q	130/130~(100%)	130 (100%)	0	100	100
43	r	90/96~(94%)	90 (100%)	0	100	100
44	S	43/95~(45%)	42 (98%)	1 (2%)	50	78
All	All	7219/7948~(91%)	7215 (100%)	4 (0%)	93	98

All (4) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
6	F	249	ARG
16	Р	82	ARG
31	f	56	LYS
44	s	56	ARG

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 19 such side chains are listed below:

Mol	Chain	Res	Type
40	0	109	GLN
41	р	106	GLN
42	q	12	GLN
41	р	99	GLN
14	N	144	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

10 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	Bo	ond leng	\mathbf{ths}	Bond angles		
WIOI	туре	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
8	FME	Н	1	8	8,9,10	0.94	0	7,9,11	1.05	1 (14%)
12	FME	L	1	12	8,9,10	0.90	0	7,9,11	1.42	1 (14%)
13	FME	М	1	13	8,9,10	0.96	0	7,9,11	0.84	0
11	FME	К	1	11	8,9,10	0.98	0	7,9,11	1.19	1 (14%)
43	AYA	r	1	43	6,7,8	1.27	1 (16%)	5,8,10	1.28	1 (20%)
10	FME	J	1	10	8,9,10	0.90	0	7,9,11	0.96	0
4	2MR	D	85	4	10,12,13	2.38	3 (30%)	5,13,15	2.03	2 (40%)
14	FME	Ν	1	14	8,9,10	0.95	0	7,9,11	1.00	1 (14%)
42	AME	q	1	42	9,10,11	1.55	1 (11%)	9,11,13	2.35	<mark>5 (55%)</mark>
1	FME	А	1	1	8,9,10	0.94	0	7,9,11	0.64	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
8	FME	Н	1	8	-	3/7/9/11	-
12	FME	L	1	12	-	4/7/9/11	-
13	FME	М	1	13	-	2/7/9/11	-
11	FME	К	1	11	-	3/7/9/11	-
43	AYA	r	1	43	-	0/4/6/8	-
10	FME	J	1	10	-	4/7/9/11	-
4	2MR	D	85	4	-	2/10/13/15	-
14	FME	Ν	1	14	-	5/7/9/11	-
42	AME	q	1	42	-	5/9/10/12	-
1	FME	А	1	1	-	3/7/9/11	-

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
4	D	85	2MR	CZ-NE	5.15	1.45	1.34
4	D	85	2MR	CZ-NH2	4.70	1.43	1.33
42	q	1	AME	CT1-N	3.57	1.46	1.34
43	r	1	AYA	CA-N	-2.49	1.43	1.46
4	D	85	2MR	CQ1-NH1	-2.04	1.42	1.46

All (5) bond length outliers are listed below:

The worst 5 of 12 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
42	q	1	AME	CT2-CT1-N	5.08	124.69	116.10
4	D	85	2MR	NE-CZ-NH2	-3.31	116.44	119.48
4	D	85	2MR	CD-NE-CZ	3.02	129.07	123.41
12	L	1	FME	C-CA-N	2.91	114.98	109.73
43	r	1	AYA	CB-CA-N	2.56	112.46	109.61

There are no chirality outliers.

5 of 31 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
1	А	1	FME	O-C-CA-CB
8	Н	1	FME	O-C-CA-CB
8	Н	1	FME	CA-CB-CG-SD
10	J	1	FME	CB-CA-N-CN
11	Κ	1	FME	N-CA-CB-CG

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 35 ligands modelled in this entry, 1 is monoatomic - leaving 34 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond

7.6.1	-		Б	.	Bo	ond leng	ths	Bo	ond ang	les
Mol	Type	Chain	Res	Link	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
46	PC1	В	203	-	42,42,53	1.05	4 (9%)	48,50,61	0.98	2 (4%)
47	3PE	h	202	-	36,36,50	1.01	4 (11%)	39,41,55	1.08	2 (5%)
49	FMN	F	501	-	33,33,33	0.69	0	48,50,50	0.73	2 (4%)
47	3PE	D	501	-	48,48,50	0.87	3 (6%)	51,53,55	1.06	2 (3%)
47	3PE	Н	401	-	43,43,50	0.91	4 (9%)	46,48,55	1.09	2 (4%)
45	SF4	G	802	7	0,12,12	_	-	-		<u> </u>
47	3PE	i	201	-	41,41,50	0.95	4 (9%)	44,46,55	1.06	2 (4%)
51	CDL	h	201	-	69,69,99	1.04	8 (11%)	75,81,111	1.12	4 (5%)
52	ATP	0	401	-	26,33,33	0.91	1 (3%)	31,52,52	1.56	5 (16%)
45	SF4	В	201	2	0,12,12	-	-	-		
45	SF4	Ι	204	9	0,12,12	-	-	-		
51	CDL	q	201	-	56,56,99	1.15	8 (14%)	62,68,111	1.16	4 (6%)
47	3PE	М	501	-	41,41,50	0.95	4 (9%)	$44,\!46,\!55$	1.01	2 (4%)
48	FES	Е	301	5	0,4,4	-	-	-		
51	CDL	L	702	-	73,73,99	1.02	8 (10%)	79,85,111	1.10	4 (5%)
51	CDL	d	201	-	58, 58, 99	1.02	6 (10%)	63,69,111	1.04	3 (4%)
46	PC1	Ι	202	-	44,44,53	1.02	4 (9%)	50,52,61	1.06	2 (4%)
55	EHZ	U	201	20	29,36,37	1.67	5 (17%)	35,44,47	8.60	5 (14%)
51	CDL	Х	201	-	66,66,99	1.06	8 (12%)	72,78,111	1.14	4 (5%)
47	3PE	Y	401	-	40,40,50	0.96	4 (10%)	43,45,55	1.05	2 (4%)
45	SF4	G	801	7	0,12,12	-	-	-		
51	CDL	d	202	-	62,62,99	1.09	8 (12%)	68,74,111	1.14	4 (5%)
55	EHZ	Т	201	20	29,36,37	1.67	5 (17%)	35,44,47	1.40	1 (2%)
48	FES	G	803	7	0,4,4	-	-	-		
45	SF4	F	502	6	0,12,12	-	-	-		
45	SF4	Ι	203	9	0,12,12	-	-	-		
46	PC1	В	202	-	34,34,53	1.16	4 (11%)	40,42,61	1.11	2 (5%)
50	T2Q	Н	403	-	41,44,44	1.66	5 (12%)	52,65,65	2.54	9 (17%)
47	3PE	K	201	-	32,32,50	1.06	4 (12%)	$35,\!37,\!55$	1.05	2 (5%)
47	3PE	Ι	201	-	50,50,50	0.85	4 (8%)	53,55,55	1.09	2 (3%)
51	CDL	N	401	-	64,64,99	1.08	8 (12%)	70,76,111	1.07	4 (5%)
46	PC1	Н	402	-	41,41,53	1.06	4 (9%)	47,49,61	1.04	2 (4%)
53	NDP	Р	501	-	45,52,52	2.26	4 (8%)	53,80,80	1.73	9 (16%)

length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Type	Chain	Dec	Tink	Bo	ond leng	$_{\rm ths}$	Bo	ond ang	les
	туре	Unam	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
47	3PE	L	701	-	48,48,50	0.89	4 (8%)	$51,\!53,\!55$	1.02	2 (3%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
46	PC1	В	203	-	-	22/46/46/57	-
47	3PE	h	202	-	-	22/40/40/54	-
49	FMN	F	501	-	-	7/18/18/18	0/3/3/3
47	3PE	D	501	-	-	28/52/52/54	-
47	3PE	Н	401	-	-	22/47/47/54	-
45	SF4	G	802	7	-	-	0/6/5/5
47	3PE	i	201	-	-	22/45/45/54	-
51	CDL	h	201	-	-	34/80/80/110	-
52	ATP	0	401	-	-	7/18/38/38	0/3/3/3
51	CDL	q	201	-	-	37/67/67/110	-
45	SF4	В	201	2	-	-	0/6/5/5
45	SF4	Ι	204	9	-	-	0/6/5/5
47	3PE	М	501	-	-	22/45/45/54	-
48	FES	Е	301	5	-	-	0/1/1/1
51	CDL	L	702	-	-	40/84/84/110	-
51	CDL	d	201	-	-	27/67/67/110	-
46	PC1	Ι	202	-	-	17/48/48/57	-
55	EHZ	U	201	20	-	19/42/44/45	-
51	CDL	Х	201	-	-	37/77/77/110	-
47	3PE	Y	401	-	-	15/44/44/54	-
45	SF4	G	801	7	-	-	0/6/5/5
51	CDL	d	202	-	-	27/73/73/110	-
55	EHZ	Т	201	20	-	10/42/44/45	-
48	FES	G	803	7	-	-	0/1/1/1
45	SF4	F	502	6	-	-	0/6/5/5
45	SF4	Ι	203	9	-	-	0/6/5/5
46	PC1	В	202	-	-	17/38/38/57	-
50	T2Q	Н	403	-	-	4/23/37/37	0/5/5/5
47	3PE	К	201	-	-	14/36/36/54	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
47	3PE	Ι	201	-	-	21/54/54/54	-
51	CDL	Ν	401	-	-	38/75/75/110	-
46	PC1	Н	402	-	-	22/45/45/57	-
53	NDP	Р	501	-	-	9/30/77/77	0/5/5/5
47	3PE	L	701	-	-	19/52/52/54	_

The worst 5 of 125 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
53	Р	501	NDP	P2B-O2B	12.55	1.83	1.59
50	Н	403	T2Q	O4-C8	7.69	1.40	1.23
55	U	201	EHZ	C15-N2	5.42	1.45	1.33
55	Т	201	EHZ	C15-N2	5.39	1.45	1.33
55	U	201	EHZ	C12-N1	5.23	1.45	1.33

The worst 5 of 84 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
55	U	201	EHZ	C8-C9-S1	37.87	160.49	113.63
55	U	201	EHZ	O2-C9-S1	-33.22	79.47	122.61
50	Н	403	T2Q	OP1-S1-O3'	-11.59	101.34	117.72
50	Н	403	T2Q	C7-N6-CAA	8.47	107.98	101.13
53	Р	501	NDP	PN-O3-PA	-7.21	108.08	132.83

There are no chirality outliers.

5 of 559 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
46	В	202	PC1	C1-O11-P-O12
46	В	202	PC1	C1-O11-P-O14
46	В	202	PC1	C1-O11-P-O13
46	В	202	PC1	C22-C21-O21-C2
46	В	203	PC1	C22-C21-O21-C2

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is

within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-12095. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 225

Y Index: 225

Z Index: 225

6.2.2 Raw map

X Index: 225

Y Index: 225

Z Index: 225

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 242

Y Index: 230

Z Index: 296

6.3.2 Raw map

X Index: 242

Y Index: 231

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.055. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.4.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

Mask visualisation (i) 6.5

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

$emd_{12095}msk_{1.map}$ (i) 6.5.1

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 305 $\rm nm^3;$ this corresponds to an approximate mass of 276 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.329 \AA^{-1}

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.329 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estimation criterion (FSC cut-off)		
resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	3.04	-	-
Author-provided FSC curve	3.04	3.55	3.16
Unmasked-calculated*	3.93	7.07	4.03

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 3.93 differs from the reported value 3.04 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-12095 and PDB model 7B93. Per-residue inclusion information can be found in section 3 on page 19.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.055 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.055).

9.4 Atom inclusion (i)

At the recommended contour level, 78% of all backbone atoms, 73% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.055) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	Q-score
All	0.7270	0.5650
А	0.7313	0.5770
В	0.8300	0.5940
С	0.8209	0.5990
D	0.8033	0.5870
Е	0.6722	0.5500
F	0.7200	0.5550
G	0.7410	0.5680
Н	0.7654	0.5750
Ι	0.8117	0.5890
J	0.6896	0.5480
K	0.7337	0.5740
L	0.7229	0.5590
М	0.7671	0.5740
Ν	0.7647	0.5760
О	0.7555	0.5760
Р	0.7675	0.5760
Q	0.7512	0.5780
R	0.7409	0.5720
S	0.5982	0.5260
Т	0.4350	0.4710
U	0.6431	0.5400
V	0.6921	0.5600
W	0.7407	0.5720
Х	0.6971	0.5630
Y	0.6616	0.5540
Z	0.7276	0.5660
a	0.7505	0.5690
b	0.6769	0.5580
С	0.6111	0.5250
d	0.7042	0.5680
е	0.7263	0.5650
f	0.6013	0.5390
g	0.7025	0.5570
h	0.7130	0.5760

0.0 <0.0

1.0

Chain	Atom inclusion	Q-score
i	0.6522	0.5410
j	0.5894	0.5160
k	0.5993	0.5270
1	0.7185	0.5640
m	0.7082	0.5510
n	0.6960	0.5500
0	0.6212	0.5260
р	0.6819	0.5360
q	0.7403	0.5770
r	0.7052	0.5610
S	0.6351	0.5460

