

Full wwPDB X-ray Structure Validation Report (i)

Jun 8, 2023 – 05:21 pm BST

PDB ID	:	8BDB
Title	:	Ribulose-1,5-bisphosphate carboxylase/oxygenase from Griffithsia monilis
Authors	:	Andersson, I.; Gunn, L.H.
Deposited on	:	2022-10-19
Resolution	:	1.70 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.4, CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.33
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.33

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 1.70 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motria	Whole archive	Similar resolution
	$(\# {\rm Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
R _{free}	130704	4298 (1.70-1.70)
Clashscore	141614	4695 (1.70-1.70)
Ramachandran outliers	138981	4610 (1.70-1.70)
Sidechain outliers	138945	4610 (1.70-1.70)
RSRZ outliers	127900	4222 (1.70-1.70)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	480	4% 97%	•
1	С	480	% 97%	•
1	G	480	3% 	•
1	K	480	2% 96%	•
1	О	480	2% 97%	•

Continued from previous page...

Mol	Chain	Length	Quality of chain
2	В	138	6%
2	D	138	4% 98% ·
2	F	138	4%
2	Н	138	4%
2	J	138	99% ·
2	L	138	98% ·
2	N	138	99% •
2	Р	138	99% •
3	Е	480	95% · · ·
3	Ι	480	98% •
3	М	480	98% •

8BDB

2 Entry composition (i)

There are 8 unique types of molecules in this entry. The entry contains 43559 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	Λ	480	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	Л	400	3805	2426	650	709	20	0	5	0
1	С	470	Total	С	Ν	Ο	S	0	7	0
1	U	419	3787	2415	647	705	20	0	1	0
1	С	470	Total	С	Ν	Ο	S	0	9	0
1	G	419	3800	2426	647	707	20	0		U
1	K	470	Total	С	Ν	0	S	0	11	0
1	Т	419	3804	2430	647	707	20	0	11	0
1	0	470	Total	С	Ν	Ο	S	0	8	0
	479	3796	2422	647	707	20	0	0		

• Molecule 1 is a protein called Ribulose bisphosphate carboxylase large chain.

• Molecule 2 is a protein called Ribulose bisphosphate carboxylase small chain.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
0	Р	128	Total	С	Ν	0	S	0	2	0
		130	1158	735	197	222	4	0	5	0
9	П	190	Total	С	Ν	Ο	S	0	1	0
	D	130	1149	730	196	219	4	0	I	0
2	F	138	Total	С	Ν	Ο	\mathbf{S}	0	1	0
	I.	130	1149	730	196	219	4		I	0
2	н	138	Total	С	Ν	Ο	\mathbf{S}	0	4	0
	11	130	1160	736	197	223	4	0		0
2	т	190	Total	С	Ν	0	S	0	9	0
2	J	130	1154	733	196	221	4	0	2	0
2	т	138	Total	С	Ν	Ο	\mathbf{S}	0	1	0
		130	1149	730	196	219	4	0	I	0
2	N	138	Total	С	Ν	Ο	\mathbf{S}	0	3	0
	11	130	1158	735	198	221	4	0	5	0
9	р	P 138	Total	С	Ν	0	S	0	4	0
	1		1162	739	197	222	4			0

• Molecule 3 is a protein called Ribulose bisphosphate carboxylase large chain.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
2	F	168	Total	С	Ν	0	S	0	0	0
່ <u>ບ</u>		400	3703	2368	628	687	20	0	9	0
2	т	470	Total	С	Ν	0	S	0	0	0
J	1	419	3798	2421	649	708	20	0	9	0
2	м	470	Total	С	Ν	0	S	0	11	0
J	3 M	479	3801	2427	647	707	20		11	0

• Molecule 4 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	1	Total Mg 1 1	0	0
4	С	1	Total Mg 1 1	0	0
4	Е	1	Total Mg 1 1	0	0
4	G	1	Total Mg 1 1	0	0
4	Ι	1	Total Mg 1 1	0	0
4	К	1	Total Mg 1 1	0	0
4	М	1	Total Mg 1 1	0	0
4	О	1	Total Mg 1 1	0	0

• Molecule 5 is 2-CARBOXYARABINITOL-1,5-DIPHOSPHATE (three-letter code: CAP) (formula: $C_6H_{14}O_{13}P_2$).

Mol	Chain	Residues	A	ton	ns		ZeroOcc	AltConf
5	Λ	1	Total	С	Ο	Р	0	0
0	A	1	21	6	13	2	0	0
5	C	1	Total	С	0	Р	0	0
0	U	1	21	6	13	2	0	0
5	F	1	Total	С	0	Р	0	0
0	Ľ	1	21	6	13	2	0	0
5	С	1	Total	С	Ο	Р	0	0
0	G	1	21	6	13	2	0	0
5	Т	1	Total	С	0	Р	0	0
0	L	T	21	6	13	2	0	0
5	K	1	Total	С	Ο	Р	0	0
0	IX	T	21	6	13	2	0	0
5	М	1	Total	С	Ο	Р	0	0
	111	1	21	6	13	2	0	0
5	0	1	Total	С	Ō	Р	0	0
		1	21	6	13	2	0	0

• Molecule 6 is 1,2-ETHANEDIOL (three-letter code: EDO) (formula: $C_2H_6O_2$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
6	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
6	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
6	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
6	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
6	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
6	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
6	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
6	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
6	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
6	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
6	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
6	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	D	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	D	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	D	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	D	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	D	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	D	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
6	Е	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
6	Е	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
6	Е	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
6	Е	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
6	Е	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
6	Е	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	Е	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	Е	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	Е	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
6	Е	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
6	F	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
6	F	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	F	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	F	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	F	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	G	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	G	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	G	1	$\begin{array}{c cc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	G	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	G	1	$\begin{array}{c ccc} \hline \text{Total} & \text{C} & \text{O} \\ \hline 4 & 2 & 2 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	G	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
6	G	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
6	G	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
6	G	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
6	G	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
6	G	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	Н	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	Н	1	$\begin{array}{ccc} \overline{\text{Total}} & \mathcal{C} & \mathcal{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	Н	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	Н	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	Н	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	Н	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	Н	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	Ι	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	Ι	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	Ι	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	Ι	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	Ι	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	Ι	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	Ι	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	Ι	1	$\begin{array}{c ccc} Total & C & O \\ 4 & 2 & 2 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	Ι	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	Ι	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	Ι	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
6	J	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
6	J	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	J	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	J	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	J	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	J	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	K	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
6	K	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	К	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	К	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	К	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	K	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	К	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	K	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	L	1	$\begin{array}{c c} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	L	1	$\begin{array}{c c} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	L	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	L	1	$\begin{array}{ccc} \hline \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	L	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
6	L	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
6	L	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
6	L	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
6	М	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	М	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	М	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	М	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	М	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	М	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	М	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	Ν	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	Ν	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	Ν	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	Ν	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	Ν	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	Ν	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	Ν	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	Ο	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	О	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	0	1	$\begin{array}{c ccc} Total & C & O \\ 4 & 2 & 2 \end{array}$	0	0

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	О	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	О	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	О	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	О	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	О	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	О	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	Р	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	Р	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	Р	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	Р	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	Р	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	Р	1	$\begin{array}{c cc} \hline \text{Total} & \text{C} & \text{O} \\ \hline 4 & 2 & 2 \end{array}$	0	0
6	Р	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
6	Р	1	$\begin{array}{ccc} \overline{\text{Total}} & \mathcal{C} & \mathcal{O} \\ 4 & 2 & 2 \end{array}$	0	0

Continued from previous page...

• Molecule 7 is BICARBONATE ION (three-letter code: BCT) (formula: CHO₃) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0
7	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0
7	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0
7	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0
7	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0
7	С	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0
7	С	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0
7	D	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0
7	Е	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0
7	Е	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0
7	Е	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0
7	Е	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0
7	G	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0
7	G	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 1 & 3 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	G	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0
7	G	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0
7	G	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0
7	Н	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0
7	Ι	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0
7	Ι	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 1 & 3 \end{array}$	0	0
7	Ι	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0
7	Κ	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0
7	Κ	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0
7	L	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0
7	М	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0
7	М	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0
7	М	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0
7	Ν	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0
7	О	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 1 & 3 \end{array}$	0	0
7	О	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 1 & 3 \end{array}$	0	0
7	Ο	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 1 & 3 \end{array}$	0	0

• Molecule 8 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
8	А	279	Total O 279 279	0	0
8	В	112	Total O 112 112	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
8	С	290	Total O 290 290	0	0
8	D	109	Total O 109 109	0	0
8	Ε	286	Total O 286 286	0	0
8	F	111	Total O 111 111	0	0
8	G	302	Total O 302 302	0	0
8	Н	113	Total O 113 113	0	0
8	Ι	299	Total O 299 299	0	0
8	J	115	Total O 115 115	0	0
8	K	301	Total O 301 301	0	0
8	L	113	Total O 113 113	0	0
8	М	278	Total O 278 278	0	0
8	Ν	96	Total O 96 96	0	0
8	О	284	Total O 284 284	0	0
8	Р	106	Total O 106 106	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Ribulose bisphosphate carboxylase large chain

Chain B:	100%
M1 D57 D57 D60 A61 A61 A61	●
• Molecule 2:	Ribulose bisphosphate carboxylase small chain
Chain D:	98% •
M1 N34 158 158 059 050 060	
• Molecule 2:	Ribulose bisphosphate carboxylase small chain
Chain F:	98%
	• • •
M1 N30 N34 D57 I58 N59	
• Molecule 2:	Ribulose bisphosphate carboxylase small chain
Chain H:	99%
∎ <mark>≝ ≗≌≌ </mark> • Molecule 2:	Ribulose bisphosphate carboxylase small chain
Chain J:	99%
M1 133 156 156 156 156 156 156 156 156 156 156	
• Molecule 2:	Ribulose bisphosphate carboxylase small chain
Chain L:	98% .
M1 133 158 158 158 158 160 160 160	
• Molecule 2:	Ribulose bisphosphate carboxylase small chain
Chain N:	99%
M1 N34 D57 N59 N59 S76	

• Molecule 2: Ribulose bisphosphate carboxylase small chain

Chain P:
M1 E56 E56 E56 A51 A51 A51 A51 A51 A51 A51 A51 A51 A51
\bullet Molecule 3: Ribulose bisphosphate carboxylase large chain
Chain E: 95% · ·
ASN VAL VAL CLU CLU CLU CLU CLU CLU CLU CLU ARG ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN
• Molecule 3: Ribulose bisphosphate carboxylase large chain
Chain I:
ASN 84 85 85 81 810 811 811 813 813 815 813 813 813 813 813 813 813 813 813 813
\bullet Molecule 3: Ribulose bisphosphate carboxylase large chain
Chain M: 98% .
ASN E7 E7 E7 E1 E1 E1 E14 E14 E14 E14 E14 E14 E14 E1

4 Data and refinement statistics (i)

Property	Value	Source
Space group	C 1 2 1	Depositor
Cell constants	210.33Å 131.93Å 196.32Å	Depositor
a, b, c, α , β , γ	90.00° 94.75° 90.00°	Depositor
Bosolution (Å)	49.60 - 1.70	Depositor
	49.60 - 1.70	EDS
% Data completeness	99.2 (49.60-1.70)	Depositor
(in resolution range)	99.2 (49.60-1.70)	EDS
R_{merge}	0.10	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.31 (at 1.70 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.8.0107	Depositor
B B.	0.158 , 0.178	Depositor
II, II free	0.168 , 0.186	DCC
R_{free} test set	28852 reflections $(4.99%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	15.5	Xtriage
Anisotropy	0.266	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.36 , 41.4	EDS
L-test for $twinning^2$	$ < L >=0.49, < L^2>=0.32$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.97	EDS
Total number of atoms	43559	wwPDB-VP
Average B, all atoms $(Å^2)$	18.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.26% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: EDO, BCT, HL2, CCS, CAP, KCX, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond	angles
	Ullaili	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.39	0/3890	0.64	0/5266
1	С	0.39	0/3864	0.66	0/5232
1	G	0.40	0/3885	0.66	0/5262
1	Κ	0.39	0/3897	0.65	0/5278
1	0	0.39	0/3877	0.65	0/5250
2	В	0.41	0/1202	0.61	0/1630
2	D	0.40	0/1185	0.63	0/1607
2	F	0.40	0/1185	0.62	0/1607
2	Н	0.41	0/1208	0.61	0/1638
2	J	0.40	0/1194	0.62	0/1619
2	L	0.39	0/1185	0.62	0/1607
2	Ν	0.39	0/1202	0.60	0/1630
2	Р	0.39	0/1210	0.60	0/1641
3	Е	0.40	0/3799	0.65	0/5148
3	Ι	0.40	0/3894	0.67	0/5273
3	М	0.38	0/3901	0.64	0/5284
All	All	0.39	0/40578	0.64	0/54972

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	3805	0	3760	6	0
1	С	3787	0	3743	4	0
1	G	3800	0	3762	1	0
1	Κ	3804	0	3765	8	0
1	0	3796	0	3755	4	0
2	В	1158	0	1089	0	0
2	D	1149	0	1085	2	0
2	F	1149	0	1085	2	0
2	Н	1160	0	1090	0	0
2	J	1154	0	1087	1	0
2	L	1149	0	1085	1	0
2	Ν	1158	0	1091	0	0
2	Р	1162	0	1096	1	0
3	Е	3703	0	3662	4	0
3	Ι	3798	0	3754	3	0
3	М	3801	0	3762	2	0
4	А	1	0	0	0	0
4	С	1	0	0	0	0
4	Ε	1	0	0	0	0
4	G	1	0	0	0	0
4	Ι	1	0	0	0	0
4	Κ	1	0	0	0	0
4	М	1	0	0	0	0
4	0	1	0	0	0	0
5	А	21	0	8	0	0
5	С	21	0	8	0	0
5	Ε	21	0	8	0	0
5	G	21	0	8	0	0
5	Ι	21	0	8	0	0
5	Κ	21	0	8	0	0
5	М	21	0	8	0	0
5	Ο	21	0	8	0	0
6	А	52	0	78	1	0
6	В	24	0	36	0	0
6	C	44	0	66	0	0
6	D	24	0	36	0	0
6	Ε	40	0	60	0	0
6	F	20	0	30	0	0
6	G	44	0	66	0	0
6	Η	28	0	42	0	0
6	Ι	44	0	66	0	0
6	J	24	0	36	0	0
6	K	32	0	48	0	0

8BI	ЭB

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
6	L	32	0	48	0	0
6	М	28	0	42	0	0
6	Ν	28	0	42	0	0
6	0	36	0	54	0	0
6	Р	32	0	48	0	0
7	А	16	0	0	0	0
7	В	4	0	0	0	0
7	С	8	0	0	0	0
7	D	4	0	0	0	0
7	Е	16	0	0	0	0
7	G	20	0	0	0	0
7	Н	4	0	0	0	0
7	Ι	12	0	0	0	0
7	Κ	8	0	0	0	0
7	L	4	0	0	0	0
7	М	12	0	0	0	0
7	Ν	4	0	0	0	0
7	0	12	0	0	0	0
8	А	279	0	0	0	0
8	В	112	0	0	0	0
8	С	290	0	0	0	0
8	D	109	0	0	0	0
8	Е	286	0	0	0	0
8	F	111	0	0	0	0
8	G	302	0	0	0	0
8	Н	113	0	0	0	0
8	Ι	299	0	0	0	0
8	J	115	0	0	0	0
8	Κ	301	0	0	0	0
8	L	113	0	0	0	0
8	М	278	0	0	0	0
8	Ν	96	0	0	0	0
8	0	284	0	0	0	0
8	Р	106	0	0	0	0
All	All	43559	0	39533	39	0

Continued from previous page...

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 0.

All (39) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic	Clash
	1100111-2	distance (Å)	overlap (Å)
1:A:425:VAL:HG21	1:A:455:CCS:HD2	1.80	0.62
1:A:28:TYR:CZ	1:A:68:ALA:HB2	2.39	0.58
1:C:28:TYR:CZ	1:C:68:ALA:HB2	2.39	0.58
3:I:28:TYR:CZ	3:I:68:ALA:HB2	2.39	0.57
1:A:374[A]:LEU:HD23	6:A:513:EDO:H21	1.86	0.57
1:A:425:VAL:HG21	1:A:455:CCS:CD	2.37	0.55
2:F:68:ILE:HG23	2:F:100:ILE:HD12	1.90	0.53
1:O:28:TYR:CZ	1:O:68:ALA:HB2	2.43	0.53
2:F:68:ILE:HG23	2:F:100:ILE:CD1	2.39	0.53
1:K:28:TYR:CZ	1:K:68:ALA:HB2	2.45	0.52
1:C:28:TYR:CE2	1:C:68:ALA:HB2	2.46	0.51
3:M:28:TYR:CZ	3:M:68:ALA:HB2	2.46	0.50
3:E:28:TYR:CZ	3:E:68:ALA:HB2	2.48	0.49
1:G:28:TYR:CZ	1:G:68:ALA:HB2	2.47	0.49
1:K:340:GLY:HA3	1:K:345[A]:ILE:HD11	1.95	0.48
3:I:28:TYR:CE2	3:I:68:ALA:HB2	2.50	0.46
1:K:307[B]:GLN:HG2	1:K:309[B]:ILE:HG22	1.98	0.46
3:I:43:LEU:HD11	3:I:102:PHE:HB3	1.97	0.46
1:C:43:LEU:HD11	1:C:102:PHE:HB3	1.98	0.46
2:L:33:ILE:HD12	2:L:58:ILE:HD13	1.98	0.46
1:O:175:GLY:HA2	1:O:203:PHE:O	2.17	0.44
2:D:68:ILE:HG23	2:D:100:ILE:HD12	1.99	0.44
1:O:28:TYR:CE2	1:O:68:ALA:HB2	2.52	0.44
1:K:455:CCS:HD2	1:K:457:PRO:HD2	2.00	0.43
1:K:179:LYS:HA	1:K:180:PRO:C	2.39	0.43
2:J:33:ILE:HD12	2:J:58:ILE:HD13	2.01	0.43
1:K:28:TYR:CE2	1:K:68:ALA:HB2	2.54	0.43
1:O:455:CCS:HD2	1:O:457:PRO:HD2	1.99	0.43
3:M:28:TYR:CE2	3:M:68:ALA:HB2	2.54	0.42
1:A:28:TYR:CE2	1:A:68:ALA:HB2	2.55	0.42
3:E:307[B]:GLN:CG	3:E:309[B]:ILE:HG22	2.49	0.42
1:K:43:LEU:HD11	1:K:102:PHE:HB3	2.01	0.42
2:D:68:ILE:HG23	2:D:100:ILE:CD1	2.50	0.41
3:E:203:PHE:HA	3:E:241:GLY:O	2.21	0.41
1:A:179:LYS:HA	1:A:180:PRO:C	2.41	0.41
1:C:53:ASP:HA	1:C:54:PRO:HD3	1.94	0.40
3:E:179:LYS:HA	3:E:180:PRO:C	2.41	0.40
1:K:334:VAL:HG22	1:K:345[A]:ILE:HD12	2.01	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	А	484/480~(101%)	471 (97%)	12 (2%)	1 (0%)	47 30
1	С	481/480~(100%)	470 (98%)	10 (2%)	1 (0%)	47 30
1	G	483/480~(101%)	471 (98%)	11 (2%)	1 (0%)	47 30
1	Κ	485/480~(101%)	472 (97%)	12 (2%)	1 (0%)	47 30
1	Ο	482/480~(100%)	470 (98%)	11 (2%)	1 (0%)	47 30
2	В	139/138 (101%)	133 (96%)	6 (4%)	0	100 100
2	D	137/138~(99%)	130~(95%)	7 (5%)	0	100 100
2	F	137/138~(99%)	130 (95%)	7 (5%)	0	100 100
2	Н	140/138~(101%)	133~(95%)	7 (5%)	0	100 100
2	J	138/138~(100%)	133~(96%)	5(4%)	0	100 100
2	L	137/138~(99%)	132~(96%)	5 (4%)	0	100 100
2	Ν	139/138~(101%)	132~(95%)	7 (5%)	0	100 100
2	Р	140/138~(101%)	133~(95%)	7 (5%)	0	100 100
3	Ε	473/480~(98%)	461 (98%)	11 (2%)	1 (0%)	47 30
3	Ι	484/480~(101%)	471 (97%)	12 (2%)	1 (0%)	47 30
3	М	485/480~(101%)	472 (97%)	12 (2%)	1 (0%)	47 30
All	All	4964/4944~(100%)	4814 (97%)	142 (3%)	8 (0%)	47 30

All (8) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	340	GLY
3	Е	340	GLY
1	Κ	340	GLY
3	М	340	GLY
1	С	340	GLY
1	G	340	GLY

 $Continued \ from \ previous \ page...$

Mol	Chain	Res	Type
3	Ι	340	GLY
1	0	340	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	399/391~(102%)	394~(99%)	5 (1%)	69 56
1	С	396/391~(101%)	391~(99%)	5 (1%)	69 56
1	G	399/391~(102%)	393~(98%)	6~(2%)	65 51
1	Κ	400/391~(102%)	397~(99%)	3~(1%)	81 74
1	Ο	398/391~(102%)	391~(98%)	7~(2%)	59 43
2	В	129/126~(102%)	129~(100%)	0	100 100
2	D	127/126~(101%)	126~(99%)	1 (1%)	81 74
2	F	127/126~(101%)	126~(99%)	1 (1%)	81 74
2	Н	130/126~(103%)	129~(99%)	1 (1%)	81 74
2	J	128/126~(102%)	128 (100%)	0	100 100
2	L	127/126~(101%)	126~(99%)	1 (1%)	81 74
2	Ν	129/126~(102%)	128~(99%)	1 (1%)	81 74
2	Р	130/126~(103%)	130 (100%)	0	100 100
3	Е	389/392~(99%)	384~(99%)	5 (1%)	69 56
3	Ι	400/392~(102%)	393~(98%)	7~(2%)	59 43
3	М	401/392~(102%)	395~(98%)	6 (2%)	65 51
All	All	4209/4139~(102%)	4160 (99%)	49 (1%)	71 59

All (49) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	189	TYR
1	А	198	ARG

Mol	Chain	Res	Type
1	А	207	ASP
1	А	243	TYR
1	А	346	ARG
1	С	53	ASP
1	С	87	LYS
1	С	189	TYR
1	С	198	ARG
1	С	243	TYR
2	D	34	ASN
3	Е	134	VAL
3	Е	189	TYR
3	Е	198	ARG
3	Е	243	TYR
3	E	346	ARG
2	F	34	ASN
1	G	189	TYR
1	G	198	ARG
1	G	207	ASP
1	G	243	TYR
1	G	346	ARG
1	G	482	GLU
2	Н	34	ASN
3	Ι	14	GLU
3	Ι	87	LYS
3	Ι	189	TYR
3	Ι	198	ARG
3	I	243	TYR
3	Ι	466[A]	LYS
3	I	466[B]	LYS
1	K	189	TYR
1	K	198	ARG
1	K	243	TYR
2	L	102	ARG
3	M	83	LEU
3	M	87	LYS
3	M	189	TYR
3	M	207	ASP
3	M	243	TYR
3	M	346	ARG
2	N	34	ASN
1	0	14	GLU
1	0	87	LYS

Continued from previous page...

Continued from previous page...

Mol	Chain	Res	Type
1	0	189	TYR
1	0	198	ARG
1	0	243	TYR
1	0	346	ARG
1	0	481	VAL

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (7) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	211	ASN
1	С	211	ASN
1	G	211	ASN
3	Ι	211	ASN
1	Κ	211	ASN
3	М	211	ASN
1	0	211	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

21 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Type		Chain	Dec	Pog Link	B	ond leng	gths	Bond angles		
MOI	туре	Unain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
3	HL2	Ι	174	3	7,8,9	0.51	0	7,10,12	0.52	0
1	KCX	А	205	1,4	9,11,12	2.16	1 (11%)	$5,\!12,\!14$	1.88	1 (20%)
1	KCX	K	205	1,4	9,11,12	2.14	1 (11%)	5,12,14	1.81	1 (20%)
1	CCS	А	455	1	8,9,10	0.89	0	6,10,12	1.29	1 (16%)
1	HL2	0	174	1	7,8,9	0.48	0	7,10,12	0.65	0
3	KCX	М	205	3,4	9,11,12	0.63	0	5,12,14	0.58	0

Mal	Type	Chain	Bos	Link	B	ond leng	gths	Bond angles		
WIOI	туре	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
1	CCS	0	455	1	8,9,10	0.88	0	6,10,12	1.75	3 (50%)
3	HL2	М	174	3	7,8,9	0.60	0	7,10,12	0.60	0
3	KCX	Ι	205	3,4	9,11,12	0.71	0	5,12,14	0.46	0
3	HL2	E	174	3	7,8,9	0.60	0	7,10,12	0.71	0
1	CCS	G	455	1	8,9,10	0.88	0	6,10,12	1.76	3 (50%)
1	HL2	А	174	1	7,8,9	0.49	0	7,10,12	0.73	0
1	KCX	Ο	205	1,4	9,11,12	2.19	1 (11%)	$5,\!12,\!14$	2.18	1 (20%)
1	CCS	C	455	1	8,9,10	0.89	0	6,10,12	0.98	1 (16%)
1	KCX	С	205	1,4	9,11,12	0.52	0	5,12,14	0.54	0
1	HL2	С	174	1	7,8,9	0.47	0	7,10,12	0.57	0
1	CCS	K	455	1	8,9,10	0.93	0	6,10,12	1.74	3 (50%)
1	HL2	G	174	1	7,8,9	0.58	0	7,10,12	0.65	0
1	HL2	K	174	1	7,8,9	0.50	0	7,10,12	0.56	0
3	KCX	E	205	3,4	9,11,12	0.63	0	$5,\!12,\!14$	0.47	0
1	KCX	G	205	1,4	9,11,12	2.01	1 (11%)	5,12,14	2.19	1 (20%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	HL2	Ι	174	3	-	1/9/10/12	-
1	KCX	А	205	1,4	-	0/9/10/12	-
1	KCX	Κ	205	1,4	-	0/9/10/12	-
1	CCS	А	455	1	-	0/6/8/10	-
1	HL2	0	174	1	-	1/9/10/12	-
3	KCX	М	205	3,4	-	0/9/10/12	-
1	CCS	0	455	1	-	1/6/8/10	-
3	HL2	М	174	3	-	1/9/10/12	-
3	KCX	Ι	205	3,4	-	0/9/10/12	-
3	HL2	Е	174	3	-	1/9/10/12	-
1	CCS	G	455	1	-	1/6/8/10	-
1	HL2	А	174	1	-	1/9/10/12	-
1	KCX	0	205	1,4	-	0/9/10/12	-
1	CCS	С	455	1	-	0/6/8/10	-
1	KCX	С	205	1,4	-	0/9/10/12	-
1	HL2	С	174	1	-	1/9/10/12	-
1	CCS	K	455	1	-	1/6/8/10	-
1	HL2	G	174	1	-	1/9/10/12	-
1	HL2	K	174	1	-	1/9/10/12	-

Continued from previous page...

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	KCX	Е	205	3,4	-	0/9/10/12	-
1	KCX	G	205	1,4	-	0/9/10/12	-

All (4) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
1	0	205	KCX	OQ1-CX	6.37	1.33	1.21
1	Κ	205	KCX	OQ1-CX	6.22	1.33	1.21
1	А	205	KCX	OQ1-CX	6.22	1.33	1.21
1	G	205	KCX	OQ1-CX	5.72	1.32	1.21

All (15) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	G	205	KCX	OQ1-CX-NZ	-4.71	117.65	124.96
1	0	205	KCX	OQ1-CX-NZ	-4.61	117.81	124.96
1	А	205	KCX	OQ1-CX-NZ	-4.04	118.70	124.96
1	K	205	KCX	OQ1-CX-NZ	-3.88	118.94	124.96
1	0	455	CCS	OZ1-CE-CD	-2.75	115.29	122.82
1	А	455	CCS	CE-CD-SG	2.64	119.81	113.10
1	G	455	CCS	OZ2-CE-CD	2.64	122.20	113.46
1	0	455	CCS	OZ2-CE-CD	2.57	122.00	113.46
1	K	455	CCS	OZ2-CE-CD	2.49	121.72	113.46
1	K	455	CCS	OZ1-CE-CD	-2.46	116.08	122.82
1	K	455	CCS	CE-CD-SG	2.39	119.17	113.10
1	G	455	CCS	OZ1-CE-CD	-2.36	116.37	122.82
1	G	455	CCS	CE-CD-SG	2.31	118.96	113.10
1	С	455	CCS	CE-CD-SG	2.03	118.26	113.10
1	0	455	CCS	CE-CD-SG	2.01	118.20	113.10

There are no chirality outliers.

All (11) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
1	А	174	HL2	O-C-CA-CB
1	С	174	HL2	O-C-CA-CB
3	Е	174	HL2	O-C-CA-CB
1	G	174	HL2	O-C-CA-CB
3	Ι	174	HL2	O-C-CA-CB
1	Κ	174	HL2	O-C-CA-CB
3	М	174	HL2	O-C-CA-CB

Mol	Chain	Res	Type	Atoms
1	0	174	HL2	O-C-CA-CB
1	Κ	455	CCS	CA-CB-SG-CD
1	0	455	CCS	CA-CB-SG-CD
1	G	455	CCS	CA-CB-SG-CD

Continued from previous page...

There are no ring outliers.

3 monomers are involved in 4 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
1	А	455	CCS	2	0
1	0	455	CCS	1	0
1	K	455	CCS	1	0

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 180 ligands modelled in this entry, 8 are monoatomic - leaving 172 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	Bo	ond leng	ths	В	ond ang	les
	туре	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
7	BCT	L	209	-	2,3,3	0.98	0	$2,\!3,\!3$	0.14	0
6	EDO	Ι	505	-	3,3,3	0.43	0	2,2,2	0.31	0
6	EDO	А	513	-	3,3,3	0.44	0	2,2,2	0.22	0
6	EDO	L	206	-	3,3,3	0.56	0	2,2,2	0.19	0
6	EDO	F	203	-	3,3,3	0.49	0	$2,\!2,\!2$	0.26	0
7	BCT	Н	208	-	2,3,3	0.71	0	$2,\!3,\!3$	0.65	0
6	EDO	F	202	-	3,3,3	0.54	0	2,2,2	0.19	0
6	EDO	С	507	-	3,3,3	0.44	0	2,2,2	0.38	0
6	EDO	Е	505	-	3,3,3	0.44	0	2,2,2	0.46	0
6	EDO	K	510	-	3,3,3	0.49	0	2,2,2	0.08	0
6	EDO	J	201	-	3,3,3	0.47	0	2,2,2	0.28	0

N.T. 1	T		D	т :1.	Bond lengths		Bond angles			
IVIOI	Type	Chain	Res	Link	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
6	EDO	L	201	-	3,3,3	0.51	0	2,2,2	0.14	0
5	CAP	K	502	4	17,20,20	0.76	0	22,31,31	0.89	0
6	EDO	G	504	-	3,3,3	0.42	0	2,2,2	0.43	0
7	BCT	G	518	-	2,3,3	1.03	0	2,3,3	0.12	0
6	EDO	Е	506	-	3,3,3	0.41	0	2,2,2	0.44	0
6	EDO	В	203	-	3,3,3	0.49	0	2,2,2	0.32	0
6	EDO	G	506	-	3,3,3	0.43	0	2,2,2	0.39	0
6	EDO	G	503	-	3,3,3	0.45	0	2,2,2	0.15	0
6	EDO	Р	201	-	3,3,3	0.42	0	2,2,2	0.21	0
6	EDO	L	205	-	3,3,3	0.39	0	2,2,2	0.59	0
6	EDO	С	509	-	3,3,3	0.44	0	2,2,2	0.42	0
6	EDO	С	505	-	3,3,3	0.45	0	2,2,2	0.36	0
6	EDO	С	510	-	3,3,3	0.45	0	2,2,2	0.36	0
6	EDO	G	513	-	3,3,3	0.43	0	2,2,2	0.35	0
7	BCT	Ι	515	-	2,3,3	1.13	0	2,3,3	0.29	0
6	EDO	D	202	-	3,3,3	0.43	0	2,2,2	0.25	0
6	EDO	К	504	-	3,3,3	0.46	0	2,2,2	0.44	0
6	EDO	М	504	-	3,3,3	0.41	0	2,2,2	0.51	0
6	EDO	L	208	-	3,3,3	0.42	0	2,2,2	0.43	0
6	EDO	0	505	-	3,3,3	0.48	0	2,2,2	0.29	0
7	BCT	0	513	-	2,3,3	0.70	0	2,3,3	0.63	0
7	BCT	0	514	-	2,3,3	0.71	0	2,3,3	0.51	0
6	EDO	Р	203	-	3,3,3	0.44	0	2,2,2	0.26	0
7	BCT	0	512	-	2,3,3	0.73	0	2,3,3	0.76	0
6	EDO	А	504	-	3,3,3	0.45	0	2,2,2	0.38	0
6	EDO	D	204	-	3,3,3	0.47	0	2,2,2	0.19	0
7	BCT	А	518	-	2,3,3	0.93	0	2,3,3	0.44	0
6	EDO	0	506	-	3,3,3	0.45	0	2,2,2	0.38	0
6	EDO	N	205	-	3,3,3	0.37	0	2,2,2	0.54	0
6	EDO	М	509	-	3,3,3	0.44	0	2,2,2	0.14	0
7	BCT	G	515	-	2,3,3	0.99	0	2,3,3	0.14	0
7	BCT	D	207	-	2,3,3	0.69	0	2,3,3	0.55	0
5	CAP	Ι	502	4	17,20,20	0.65	0	22,31,31	0.93	0
6	EDO	Н	202	-	3,3,3	0.48	0	2,2,2	0.10	0
6	EDO	G	509	-	3,3,3	0.55	0	2,2,2	0.15	0
6	EDO	А	515	-	3,3,3	0.46	0	2,2,2	0.38	0
6	EDO	А	509	-	3,3,3	0.47	0	2,2,2	0.34	0
6	EDO	Е	512	-	3,3,3	0.47	0	2,2,2	0.26	0
6	EDO	М	508	-	3,3,3	0.43	0	2,2,2	0.38	0
6	EDO	А	514	-	3,3,3	0.29	0	2,2,2	0.35	0
6	EDO	А	512	-	3,3,3	0.35	0	2,2,2	0.51	0
6	EDO	G	505	-	3,3,3	0.41	0	2,2,2	0.34	0
6	EDO	L	207	-	3,3,3	0.44	0	2,2,2	0.36	0

N.T. 1	T	<u> </u>	D	τ. 1	Bo	ond leng	$_{\rm ths}$	Bond angles		
IVIOI	Type	Chain	Res	Link	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
6	EDO	0	503	-	3,3,3	0.49	0	$2,\!2,\!2$	0.23	0
7	BCT	G	514	-	2,3,3	0.79	0	2,3,3	0.25	0
7	BCT	М	511	-	2,3,3	0.91	0	2,3,3	0.64	0
6	EDO	Е	511	-	3,3,3	0.44	0	2,2,2	0.36	0
7	BCT	G	516	-	2,3,3	0.68	0	2,3,3	0.63	0
6	EDO	А	511	-	3,3,3	0.44	0	2,2,2	0.33	0
7	BCT	Ι	514	-	2,3,3	0.68	0	2,3,3	0.60	0
6	EDO	0	510	-	3,3,3	0.49	0	2,2,2	0.16	0
6	EDO	N	204	_	3,3,3	0.47	0	2,2,2	0.27	0
7	BCT	Е	513	-	2,3,3	0.78	0	2,3,3	0.49	0
6	EDO	В	201	_	3,3,3	0.53	0	2,2,2	0.16	0
6	EDO	С	504	-	3,3,3	0.45	0	2,2,2	0.37	0
7	BCT	Ι	516	-	2,3,3	0.71	0	2,3,3	0.56	0
6	EDO	0	509	-	3,3,3	0.42	0	2,2,2	0.41	0
6	EDO	K	503	-	3,3,3	0.42	0	2,2,2	0.55	0
6	EDO	Ι	507	-	3,3,3	0.45	0	2,2,2	0.08	0
7	BCT	K	512	-	2,3,3	0.67	0	2,3,3	0.69	0
6	EDO	Ν	201	-	3,3,3	0.46	0	2,2,2	0.21	0
6	EDO	Ι	512	-	3,3,3	0.53	0	2,2,2	0.20	0
6	EDO	М	503	-	3,3,3	0.48	0	2,2,2	0.24	0
5	CAP	М	502	4	17,20,20	0.75	0	22,31,31	0.89	0
6	EDO	Ι	503	-	3,3,3	0.51	0	2,2,2	0.25	0
6	EDO	А	507	_	3,3,3	0.38	0	2,2,2	0.40	0
6	EDO	0	507	-	3,3,3	0.40	0	2,2,2	0.40	0
6	EDO	Ν	207	-	3,3,3	0.39	0	2,2,2	0.31	0
6	EDO	D	205	-	3,3,3	0.40	0	2,2,2	0.32	0
6	EDO	В	206	-	3,3,3	0.38	0	2,2,2	0.48	0
6	EDO	Ι	504	-	3,3,3	0.44	0	2,2,2	0.23	0
6	EDO	G	510	-	3,3,3	0.41	0	$2,\!2,\!2$	0.33	0
6	EDO	J	205	_	3,3,3	0.41	0	2,2,2	0.38	0
7	BCT	G	517	-	2,3,3	0.96	0	2,3,3	0.34	0
6	EDO	K	509	-	3,3,3	0.47	0	2,2,2	0.35	0
6	EDO	С	508	_	3,3,3	0.44	0	2,2,2	0.34	0
6	EDO	М	505	-	3,3,3	0.51	0	2,2,2	0.26	0
7	BCT	В	207	_	2,3,3	0.69	0	2,3,3	0.59	0
6	EDO	K	508	-	3,3,3	0.41	0	2,2,2	0.38	0
6	EDO	Р	205	-	3,3,3	0.41	0	2,2,2	0.20	0
7	BCT	М	512	-	2,3,3	0.65	0	2,3,3	0.64	0
7	BCT	Е	514	-	2,3,3	0.65	0	2,3,3	0.85	0
6	EDO	Е	508	-	3,3,3	0.46	0	2,2,2	0.40	0
6	EDO	K	506	-	3,3,3	0.45	0	2,2,2	0.44	0
6	EDO	М	506	-	3,3,3	0.46	0	$2,\!2,\!2$	0.37	0
6	EDO	G	507	-	3,3,3	0.47	0	$2,\!2,\!2$	0.18	0

N.T. 1	T	Clast'	D	τ. 1	Bo	ond leng	$_{\rm ths}$	Bond angles		
IVIOI	Type	Chain	Res	Link	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
6	EDO	С	513	-	3,3,3	0.47	0	2,2,2	0.57	0
6	EDO	Ι	508	-	3,3,3	0.51	0	2,2,2	0.06	0
6	EDO	J	204	-	3,3,3	0.50	0	2,2,2	0.15	0
5	CAP	G	502	4	17,20,20	0.73	0	22,31,31	0.86	0
6	EDO	L	203	-	3,3,3	0.34	0	2,2,2	0.35	0
6	EDO	Ι	511	-	3,3,3	0.49	0	2,2,2	0.32	0
7	BCT	С	514	-	2,3,3	0.66	0	2,3,3	0.52	0
6	EDO	Ι	510	-	3,3,3	0.48	0	2,2,2	0.40	0
6	EDO	L	202	-	3,3,3	0.41	0	2,2,2	0.44	0
6	EDO	D	201	-	3,3,3	0.45	0	2,2,2	0.26	0
6	EDO	N	206	-	3,3,3	0.49	0	2,2,2	0.27	0
6	EDO	С	511	-	3,3,3	0.53	0	2,2,2	0.30	0
6	EDO	Р	204	-	3,3,3	0.40	0	2,2,2	0.38	0
6	EDO	K	505	-	3,3,3	0.40	0	2,2,2	0.39	0
6	EDO	J	206	-	3,3,3	0.37	0	2,2,2	0.56	0
6	EDO	Ι	513	-	3,3,3	0.51	0	2,2,2	0.04	0
6	EDO	G	508	-	3,3,3	0.58	0	2,2,2	0.11	0
6	EDO	Н	204	-	3,3,3	0.45	0	2,2,2	0.24	0
6	EDO	В	204	-	3,3,3	0.53	0	2,2,2	0.09	0
6	EDO	Е	504	-	3,3,3	0.52	0	2,2,2	0.18	0
6	EDO	F	201	-	3,3,3	0.49	0	2,2,2	0.21	0
6	EDO	Р	202	-	3,3,3	0.44	0	2,2,2	0.25	0
7	BCT	С	515	-	2,3,3	0.97	0	2,3,3	0.27	0
7	BCT	N	208	-	2,3,3	0.97	0	2,3,3	0.22	0
6	EDO	Е	507	-	3,3,3	0.47	0	2,2,2	0.33	0
6	EDO	G	511	-	3,3,3	0.40	0	2,2,2	0.45	0
6	EDO	А	505	-	3,3,3	0.38	0	2,2,2	0.43	0
6	EDO	Н	207	-	3,3,3	0.45	0	2,2,2	0.36	0
6	EDO	Р	206	-	3,3,3	0.48	0	2,2,2	0.26	0
6	EDO	D	206	-	3,3,3	0.40	0	2,2,2	0.60	0
6	EDO	Н	201	-	3,3,3	0.46	0	2,2,2	0.23	0
6	EDO	Е	509	-	3,3,3	0.55	0	2,2,2	0.09	0
5	CAP	0	502	4	17,20,20	0.78	0	22,31,31	0.94	0
6	EDO	N	203	-	3,3,3	0.50	0	2,2,2	0.27	0
6	EDO	Ι	509	-	3,3,3	0.47	0	2,2,2	0.38	0
6	EDO	С	503	-	3,3,3	0.44	0	2,2,2	0.21	0
6	EDO	Е	503	-	3,3,3	0.60	0	2,2,2	0.19	0
6	EDO	J	203	-	3,3,3	0.48	0	2,2,2	0.20	0
6	EDO	С	506	-	3,3,3	0.48	0	2,2,2	0.05	0
7	BCT	K	511	-	2,3,3	0.71	0	2,3,3	0.99	0
6	EDO	N	202	-	3,3,3	0.38	0	2,2,2	0.23	0
6	EDO	Е	510	-	3,3,3	0.40	0	2,2,2	0.42	0
6	EDO	K	507	-	3,3,3	0.48	0	2,2,2	0.31	0

Mal	Turne	Chain	Dec	Link	Bo	ond leng	$_{\rm ths}$	Bond angles		
	Type	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
6	EDO	L	204	-	3,3,3	0.53	0	2,2,2	0.05	0
7	BCT	А	516	-	2,3,3	1.03	0	2,3,3	0.57	0
6	EDO	0	508	-	3,3,3	0.42	0	2,2,2	0.36	0
6	EDO	Н	206	-	3,3,3	0.34	0	2,2,2	0.64	0
6	EDO	F	204	-	3,3,3	0.33	0	2,2,2	0.41	0
6	EDO	Н	205	-	3,3,3	0.40	0	2,2,2	0.21	0
6	EDO	0	511	-	3,3,3	0.35	0	2,2,2	0.40	0
7	BCT	А	519	-	2,3,3	0.62	0	2,3,3	0.65	0
7	BCT	Е	515	-	2,3,3	0.96	0	2,3,3	0.30	0
6	EDO	С	512	-	3,3,3	0.41	0	2,2,2	0.33	0
6	EDO	Р	208	-	3,3,3	0.36	0	2,2,2	0.42	0
6	EDO	Ι	506	-	3,3,3	0.51	0	2,2,2	0.21	0
6	EDO	В	202	-	3,3,3	0.39	0	2,2,2	0.27	0
6	EDO	Р	207	-	3,3,3	0.37	0	2,2,2	0.52	0
6	EDO	А	508	-	3,3,3	0.52	0	2,2,2	0.27	0
6	EDO	F	205	-	3,3,3	0.40	0	2,2,2	0.57	0
6	EDO	D	203	-	3,3,3	0.52	0	2,2,2	0.16	0
6	EDO	J	202	-	3,3,3	0.49	0	2,2,2	0.13	0
6	EDO	G	512	-	3,3,3	0.61	0	2,2,2	0.17	0
6	EDO	А	506	-	3,3,3	0.43	0	2,2,2	0.38	0
6	EDO	М	507	-	3,3,3	0.42	0	2,2,2	0.32	0
5	CAP	С	502	4	17,20,20	0.72	0	22,31,31	0.90	0
6	EDO	0	504	-	3,3,3	0.39	0	2,2,2	0.48	0
6	EDO	В	205	-	3,3,3	0.39	0	2,2,2	0.41	0
7	BCT	М	510	-	2,3,3	0.94	0	2,3,3	0.25	0
6	EDO	Н	203	-	3,3,3	0.53	0	2,2,2	0.08	0
6	EDO	А	510	-	3,3,3	0.44	0	2,2,2	0.36	0
5	CAP	Е	502	4	17,20,20	0.75	0	22,31,31	0.71	0
7	BCT	А	517	-	2,3,3	0.65	0	2,3,3	0.57	0
6	EDO	А	503	-	3,3,3	0.50	0	2,2,2	0.08	0
5	CAP	А	502	4	17,20,20	0.76	0	22,31,31	0.92	0
7	BCT	Е	516	-	2,3,3	0.94	0	2,3,3	0.27	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
6	EDO	Ι	505	-	-	0/1/1/1	-
6	EDO	А	513	-	-	0/1/1/1	-
6	EDO	L	206	-	-	1/1/1/1	-
6	EDO	F	203	-	-	0/1/1/1	-

8BDB

Conti	Continued from previous page								
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings		
6	EDO	F	202	-	-	0/1/1/1	-		
6	EDO	С	507	-	-	1/1/1/1	-		
6	EDO	E	505	-	-	0/1/1/1	-		
6	EDO	K	510	-	-	1/1/1/1	-		
6	EDO	J	201	-	-	0/1/1/1	-		
6	EDO	L	201	-	-	0/1/1/1	-		
5	CAP	Κ	502	4	-	9/29/29/29	-		
6	EDO	G	504	-	-	0/1/1/1	-		
6	EDO	Ε	506	-	-	0/1/1/1	-		
6	EDO	В	203	-	-	0/1/1/1	-		
6	EDO	G	506	-	-	1/1/1/1	-		
6	EDO	G	503	-	-	0/1/1/1	-		
6	EDO	Р	201	-	-	0/1/1/1	-		
6	EDO	L	205	-	-	0/1/1/1	-		
6	EDO	С	509	-	-	0/1/1/1	-		
6	EDO	С	505	-	-	0/1/1/1	-		
6	EDO	С	510	-	-	0/1/1/1	-		
6	EDO	G	513	-	-	1/1/1/1	-		
6	EDO	D	202	-	-	0/1/1/1	-		
6	EDO	K	504	-	-	0/1/1/1	-		
6	EDO	М	504	-	-	0/1/1/1	-		
6	EDO	L	208	-	-	1/1/1/1	-		
6	EDO	0	505	-	-	1/1/1/1	-		
6	EDO	Р	203	-	-	0/1/1/1	-		
6	EDO	А	504	-	-	0/1/1/1	-		
6	EDO	D	204	-	-	0/1/1/1	-		
6	EDO	0	506	-	-	0/1/1/1	-		
6	EDO	N	205	-	-	0/1/1/1	-		
6	EDO	М	509	-	-	1/1/1/1	-		
5	CAP	Ι	502	4	-	7/29/29/29	-		
6	EDO	Н	202	-	-	0/1/1/1	-		
6	EDO	G	509	-	-	0/1/1/1	-		
6	EDO	А	515	-	-	0/1/1/1	-		
6	EDO	А	509	-	-	1/1/1/1	-		
6	EDO	Е	512	-	-	0/1/1/1	-		
6	EDO	М	508	-	-	0/1/1/1	-		
6	EDO	А	514	-	-	1/1/1/1	-		
6	EDO	А	512	-	-	0/1/1/1	-		
6	EDO	G	505	-	-	1/1/1/1	-		
6	EDO	L	207	-	-	0/1/1/1	-		
6	EDO	0	503	-	-	0/1/1/1	_		
6	EDO	Е	511	_	_	1/1/1/1	_		

Cntin d fa

8BDB

Continuea from previous page							
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
6	EDO	A	511	-	-	0/1/1/1	-
6	EDO	0	510	-	-	0/1/1/1	-
6	EDO	N	204	-	-	0/1/1/1	-
6	EDO	В	201	-	-	0/1/1/1	-
6	EDO	С	504	-	-	0/1/1/1	-
6	EDO	0	509	-	-	1/1/1/1	-
6	EDO	K	503	-	-	0/1/1/1	-
6	EDO	I	507	-	-	1/1/1/1	-
6	EDO	N	201	-	-	0/1/1/1	-
6	EDO	Ι	512	-	-	1/1/1/1	-
6	EDO	М	503	-	-	0/1/1/1	-
5	CAP	М	502	4	-	7/29/29/29	-
6	EDO	Ι	503	-	-	0/1/1/1	-
6	EDO	А	507	_	-	0/1/1/1	-
6	EDO	0	507	-	-	1/1/1/1	-
6	EDO	N	207	-	-	1/1/1/1	-
6	EDO	D	205	-	-	0/1/1/1	-
6	EDO	В	206	-	-	0/1/1/1	-
6	EDO	Ι	504	-	-	0/1/1/1	-
6	EDO	G	510	-	-	0/1/1/1	-
6	EDO	J	205	-	-	1/1/1/1	-
6	EDO	K	509	-	-	1/1/1/1	-
6	EDO	С	508	-	-	0/1/1/1	-
6	EDO	М	505	_	-	0/1/1/1	-
6	EDO	K	508	-	-	0/1/1/1	-
6	EDO	Р	205	-	-	1/1/1/1	-
6	EDO	Е	508	-	-	0/1/1/1	-
6	EDO	K	506	-	-	0/1/1/1	-
6	EDO	М	506	-	-	0/1/1/1	-
6	EDO	G	507	-	-	0/1/1/1	-
6	EDO	С	513	-	-	1/1/1/1	-
6	EDO	Ι	508	-	-	1/1/1/1	-
6	EDO	J	204	-	-	0/1/1/1	-
5	CAP	G	502	4	-	7/29/29/29	-
6	EDO	L	203	-	-	0/1/1/1	-
6	EDO	Ι	511	-	-	0/1/1/1	-
6	EDO	Ι	510	-	-	0/1/1/1	-
6	EDO	L	202	-	-	0/1/1/1	-
6	EDO	D	201	-	-	0/1/1/1	-
6	EDO	N	206	-	-	0/1/1/1	-
6	EDO	С	511	-	-	1/1/1/1	-
6	EDO	Р	204	-	-	0/1/1/1	-

J fa α n tin

Continued on next page...

Mol	Tvne	Chain	Bes	Link	Chirals	Torsions	Rings
6	EDO	K	505	_	-	1/1/1/1	-
6	EDO	J	206	_	_	$\frac{1}{1}$	_
6	EDO	I	513	_	_	$\frac{0/1/1}{1/1/1}$	_
6	EDO	G	508	_	_	$\frac{1/1/1}{0/1/1/1}$	_
6	EDO	H	204	_	-	$\frac{0/1/1}{1/1}$	_
6	EDO	В	204	_	-	0/1/1/1	_
6	EDO	Е	504	-	-	0/1/1/1	-
6	EDO	F	201	-	-	0/1/1/1	-
6	EDO	Р	202	-	-	0/1/1/1	-
6	EDO	Е	507	-	-	1/1/1/1	-
6	EDO	G	511	-	-	0/1/1/1	-
6	EDO	А	505	-	-	0/1/1/1	_
6	EDO	Н	207	-	-	0/1/1/1	-
6	EDO	Р	206	-	-	0/1/1/1	-
6	EDO	D	206	-	-	0/1/1/1	-
6	EDO	Н	201	-	-	0/1/1/1	-
6	EDO	Е	509	-	-	0/1/1/1	-
5	CAP	Ο	502	4	-	9/29/29/29	-
6	EDO	N	203	-	-	0/1/1/1	-
6	EDO	Ι	509	-	-	1/1/1/1	-
6	EDO	С	503	-	-	0/1/1/1	-
6	EDO	Е	503	-	-	0/1/1/1	-
6	EDO	J	203	-	-	0/1/1/1	-
6	EDO	С	506	-	-	1/1/1/1	-
6	EDO	N	202	-	-	0/1/1/1	-
6	EDO	Е	510	-	-	0/1/1/1	-
6	EDO	K	507	-	-	1/1/1/1	-
6	EDO	L	204	-	-	0/1/1/1	-
6	EDO	0	508	-	-	0/1/1/1	-
6	EDO	Н	206	-	-	0/1/1/1	-
6	EDO	F	204	-	-	0/1/1/1	-
6	EDO	Н	205	-	-	1/1/1/1	-
6	EDO	0	511	-	-	1/1/1/1	-
6	EDO	С	512	-	-	0/1/1/1	-
6	EDO	Р	208	-	-	1/1/1/1	-
6	EDO	Ι	506	-	-	0/1/1/1	-
6	EDO	B	202	-	-	0/1/1/1	-
6	EDO	P	207	-	-	0/1/1/1	-
6	EDO	A	508	-	-	0/1/1/1	-
6	EDO	F	205	-	-	0/1/1/1	-
6	EDO	D	203	-	-	0/1/1/1	-
6	EDO	J	202	-	-	0/1/1/1	-

Continued from previous page...

Continued on next page...

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
6	EDO	G	512	-	-	0/1/1/1	-
6	EDO	А	506	-	-	0/1/1/1	-
6	EDO	М	507	-	-	0/1/1/1	-
5	CAP	С	502	4	-	7/29/29/29	-
6	EDO	0	504	-	-	0/1/1/1	-
6	EDO	В	205	-	-	1/1/1/1	-
6	EDO	Н	203	-	-	0/1/1/1	-
6	EDO	А	510	-	-	1/1/1/1	-
5	CAP	Е	502	4	-	9/29/29/29	-
6	EDO	А	503	-	-	0/1/1/1	-
5	CAP	А	502	4	-	9/29/29/29	-

Continued from previous page...

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (98) torsion outliers are listed below
--

Mol	Chain	Res	Type	Atoms
5	А	502	CAP	O6-C-C2-O2
5	А	502	CAP	C2-C3-C4-O4
5	А	502	CAP	O3-C3-C4-O4
5	С	502	CAP	O6-C-C2-C1
5	С	502	CAP	O7-C-C2-C1
5	С	502	CAP	O6-C-C2-O2
5	С	502	CAP	O7-C-C2-O2
5	С	502	CAP	O3-C3-C4-O4
5	Е	502	CAP	O6-C-C2-O2
5	Ε	502	CAP	O3-C3-C4-O4
5	G	502	CAP	O6-C-C2-C1
5	G	502	CAP	O7-C-C2-C1
5	G	502	CAP	O6-C-C2-O2
5	G	502	CAP	O7-C-C2-O2
5	G	502	CAP	C2-C3-C4-O4
5	G	502	CAP	O3-C3-C4-O4
5	Ι	502	CAP	O6-C-C2-C1
5	Ι	502	CAP	O7-C-C2-C1
5	Ι	502	CAP	O6-C-C2-O2
5	Ι	502	CAP	O7-C-C2-O2
5	Ι	502	CAP	O3-C3-C4-O4
5	K	502	CAP	O7-C-C2-C1

Continued on next page...

Mol	Chain	\mathbf{Res}	Type	Atoms
5	K	502	CAP	O6-C-C2-O2
5	K	502	CAP	O3-C3-C4-O4
5	М	502	CAP	O6-C-C2-C1
5	М	502	CAP	O7-C-C2-C1
5	М	502	CAP	O6-C-C2-O2
5	М	502	CAP	O7-C-C2-O2
5	М	502	CAP	C2-C3-C4-O4
5	М	502	CAP	O3-C3-C4-O4
5	0	502	CAP	O6-C-C2-O2
5	0	502	CAP	O3-C3-C4-O4
5	А	502	CAP	O7-C-C2-C1
5	Е	502	CAP	O7-C-C2-C1
5	0	502	CAP	O7-C-C2-C1
6	А	510	EDO	O1-C1-C2-O2
6	В	205	EDO	O1-C1-C2-O2
6	G	506	EDO	O1-C1-C2-O2
6	G	513	EDO	O1-C1-C2-O2
6	Ι	512	EDO	O1-C1-C2-O2
6	0	509	EDO	O1-C1-C2-O2
5	А	502	CAP	O2-C2-C3-C4
5	С	502	CAP	O2-C2-C3-C4
5	Е	502	CAP	O2-C2-C3-C4
5	G	502	CAP	O2-C2-C3-C4
5	Ι	502	CAP	O2-C2-C3-C4
5	K	502	CAP	O2-C2-C3-C4
5	М	502	CAP	O2-C2-C3-C4
5	0	502	CAP	O2-C2-C3-C4
5	С	502	CAP	C2-C3-C4-O4
5	Ι	502	CAP	C2-C3-C4-O4
5	K	502	CAP	C2-C3-C4-O4
5	А	502	CAP	O7-C-C2-O2
5	K	502	CAP	O7-C-C2-O2
5	0	502	CAP	O7-C-C2-O2
6	K	505	EDO	O1-C1-C2-O2
5	K	502	CAP	O6-C-C2-C1
6	С	506	EDO	O1-C1-C2-O2
6	С	511	EDO	O1-C1-C2-O2
6	Ι	508	EDO	O1-C1-C2-O2
6	K	509	EDO	O1-C1-C2-O2
6	L	208	EDO	O1-C1-C2-O2
6	Р	208	EDO	O1-C1-C2-O2
5	А	502	CAP	O6-C-C2-C3
	1	1	1	1

502CAPO6-C-C2-C3Continued on next page...

Mol	Chain	Res	Type	Atoms
5	Е	502	CAP	O6-C-C2-C3
5	0	502	CAP	O6-C-C2-C3
5	А	502	CAP	O6-C-C2-C1
5	Е	502	CAP	O6-C-C2-C1
5	0	502	CAP	O6-C-C2-C1
5	Е	502	CAP	C2-C3-C4-O4
5	Е	502	CAP	O7-C-C2-O2
6	С	513	EDO	O1-C1-C2-O2
6	Е	511	EDO	O1-C1-C2-O2
6	Ι	513	EDO	O1-C1-C2-O2
6	J	205	EDO	O1-C1-C2-O2
6	K	507	EDO	O1-C1-C2-O2
6	М	509	EDO	O1-C1-C2-O2
6	Р	205	EDO	O1-C1-C2-O2
5	А	502	CAP	O7-C-C2-C3
5	Е	502	CAP	O7-C-C2-C3
5	K	502	CAP	O7-C-C2-C3
5	0	502	CAP	O7-C-C2-C3
6	Ι	507	EDO	O1-C1-C2-O2
6	А	509	EDO	O1-C1-C2-O2
6	А	514	EDO	O1-C1-C2-O2
6	С	507	EDO	O1-C1-C2-O2
6	0	511	EDO	O1-C1-C2-O2
5	K	502	CAP	O6-C-C2-C3
5	Ο	502	CAP	C2-C3-C4-O4
6	Е	507	EDO	O1-C1-C2-O2
6	Н	205	EDO	O1-C1-C2-O2
6	Ι	509	EDO	01-C1-C2-O2
6	K	510	EDO	O1-C1-C2-O2
6	L	206	EDO	O1-C1-C2-O2
6	G	505	EDO	01-C1-C2-O2
6	N	207	EDO	01-C1-C2-O2
6	0	505	EDO	01-C1-C2-O2
6	0	507	EDO	01-C1-C2-O2

Continued from previous page...

There are no ring outliers.

1 monomer is involved in 1 short contact:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
6	А	513	EDO	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths,

bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	# RSRZ > 2		$OWAB(Å^2)$	Q<0.9
1	А	477/480~(99%)	-0.14	18 (3%) 40	45	10, 16, 31, 61	0
1	С	476/480~(99%)	-0.36	7 (1%) 73	77	10, 15, 30, 54	0
1	G	476/480~(99%)	-0.28	13 (2%) 54	58	9, 14, 25, 59	0
1	Κ	476/480~(99%)	-0.30	9 (1%) 66	70	9, 14, 27, 50	0
1	Ο	476/480~(99%)	-0.26	11 (2%) 60	65	10, 16, 31, 67	0
2	В	138/138~(100%)	-0.06	8 (5%) 23	25	12, 18, 34, 52	0
2	D	138/138~(100%)	-0.21	5 (3%) 42	47	12, 18, 34, 57	0
2	F	138/138~(100%)	-0.24	5 (3%) 42	47	12, 18, 33, 54	0
2	Н	138/138~(100%)	-0.35	5 (3%) 42	47	11, 16, 28, 46	0
2	J	138/138~(100%)	-0.24	7 (5%) 28	31	12, 17, 30, 52	0
2	L	138/138~(100%)	-0.15	6 (4%) 35	39	11, 17, 32, 50	0
2	Ν	138/138~(100%)	-0.19	5 (3%) 42	47	12, 19, 32, 52	0
2	Р	138/138~(100%)	-0.00	11 (7%) 12	14	12, 20, 35, 53	0
3	Е	466/480~(97%)	-0.25	7 (1%) 73	77	9,16,27,56	0
3	Ι	477/480 (99%)	-0.26	11 (2%) 60	65	10, 15, 27, 54	0
3	М	$47\overline{7/480}\ (99\%)$	-0.14	13 (2%) 54	58	11, 18, 31, 57	0
All	All	4905/4944 (99%)	-0.23	141 (2%) 51	56	9, 16, 30, 67	0

All (141) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	А	482	GLU	5.2
2	L	58	ILE	5.0
3	Е	16	TYR	4.9
1	А	4	SER	4.7
1	0	481	VAL	4.6

Continued from previous page...

Mol	Chain	Res	Type	RSRZ
1	G	13	ASN	4.6
1	0	482	GLU	4.6
1	G	482	GLU	4.5
3	М	14	GLU	4.5
3	Ι	482	GLU	4.4
3	М	12	LYS	4.4
1	G	14	GLU	4.4
1	G	481	VAL	4.4
2	Р	57	ASP	4.3
2	D	58	ILE	4.2
1	0	14	GLU	4.2
1	А	14	GLU	4.2
2	Р	58	ILE	4.2
1	0	13	ASN	4.2
1	А	3	ASN	4.1
3	М	13	ASN	4.0
2	Ν	57	ASP	3.9
3	М	482	GLU	3.9
3	Е	482	GLU	3.8
1	А	13	ASN	3.8
2	L	59	ASN	3.8
2	D	59	ASN	3.8
2	Н	59	ASN	3.7
1	А	481	VAL	3.7
3	М	4	SER	3.7
2	L	57	ASP	3.6
1	0	12	LYS	3.6
2	Н	76	SER	3.6
3	Ι	12	LYS	3.6
2	F	58	ILE	3.6
2	Р	66	TYR	3.6
2	Р	73	GLN	3.6
1	K	482	GLU	3.5
2	F	59	ASN	3.5
1	G	5	VAL	3.5
2	Н	57	ASP	3.5
1	С	13	ASN	3.4
1	A	11[A]	ILE	3.4
1	G	9	THR	3.4
1	G	12	LYS	3.4
3	Ι	481	VAL	3.4
1	G	4	SER	3.4

$\alpha \cdot \cdot \cdot$	C		
Continued	trom	premous	naae
001111111111111111	J. 0.110	proceed ac	pagem

Mol	Chain	Res	Type	RSRZ
3	Ι	14	GLU	3.4
1	С	482	GLU	3.3
3	М	98	SER	3.3
1	G	7	GLU	3.3
1	0	4	SER	3.3
1	Κ	13	ASN	3.3
2	Н	85[A]	PHE	3.2
1	G	11[A]	ILE	3.2
2	N	59	ASN	3.2
2	J	85[A]	PHE	3.2
1	Κ	98	SER	3.2
2	В	66	TYR	3.2
2	J	57	ASP	3.2
1	Κ	481	VAL	3.1
2	F	85[A]	PHE	3.1
3	Е	98	SER	3.1
2	В	59	ASN	3.1
3	М	21	ILE	3.1
2	В	58	ILE	3.0
2	J	58	ILE	3.0
2	Р	59	ASN	3.0
2	J	66	TYR	3.0
1	С	4	SER	3.0
1	А	16	TYR	3.0
3	М	7	GLU	2.9
2	Ν	85[A]	PHE	2.9
2	L	60	ASP	2.9
2	Ν	76	SER	2.8
2	Р	76	SER	2.8
1	С	12	LYS	2.8
3	М	481	VAL	2.8
3	Ι	13	ASN	2.7
1	А	9	THR	2.7
3	Ι	11[A]	ILE	2.7
3	М	11[A]	ILE	2.7
1	K	12	LYS	2.7
1	0	8	ARG	2.7
1	O	11[A]	ILE	2.7
1	A	7	GLU	2.7
3	E	17	GLU	2.7
3	Ι	16	TYR	2.7
1	K	7	GLU	2.6

Mol	Chain	Res	Type	RSRZ
3	Ι	9	THR	2.6
1	А	466	LYS	2.6
1	А	5	VAL	2.6
1	G	16	TYR	2.6
2	F	57	ASP	2.6
3	Ι	7	GLU	2.6
2	В	57	ASP	2.6
1	С	11[A]	ILE	2.5
3	Е	454	THR	2.5
3	М	9	THR	2.5
2	D	85[A]	PHE	2.5
1	K	11[A]	ILE	2.5
2	В	73	GLN	2.4
2	J	73	GLN	2.4
1	0	5	VAL	2.4
2	Ν	58	ILE	2.4
2	D	57	ASP	2.4
1	G	8	ARG	2.4
1	А	442 ALA		2.4
1	С	16	TYR	2.4
1	С	454	THR	2.4
2	Р	104	SER	2.3
3	Е	481	VAL	2.3
1	0	7	GLU	2.3
2	Н	58	ILE	2.3
1	А	8	ARG	2.3
1	G	82	ASP	2.3
2	В	60	ASP	2.3
2	J	62	ALA	2.3
1	А	467	ASP	2.3
3	М	29	TRP	2.3
3	Ι	4	SER	2.3
1	K	51	GLY	2.2
2	J	59	ASN	2.2
3	М	16	TYR	2.2
2	В	85[A]	PHE	2.2
2	L	85[A]	PHE	2.2
2	Р	85[A]	PHE	2.2
2	D	60	ASP	2.2
1	0	21	ILE	2.1
2	L	62	ALA	2.1
1	А	12	LYS	2.1

	5	1	1 5	
Mol	Chain	Res	Type	RSRZ
1	А	21	ILE	2.1
2	Р	60	ASP	2.1
2	Р	55[A]	LEU	2.1
3	Ι	467	ASP	2.1
1	Κ	8	ARG	2.1
2	В	61	ALA	2.1
1	А	98	SER	2.1
2	Р	62	ALA	2.0
2	F	30	ASN	2.0
3	Е	51	GLY	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
1	CCS	0	455	10/11	0.91	0.14	24,27,41,41	0
1	CCS	G	455	10/11	0.93	0.13	18,21,35,37	0
1	CCS	А	455	10/11	0.93	0.15	$19,\!23,\!35,\!37$	0
1	CCS	K	455	10/11	0.94	0.14	$19,\!23,\!37,\!38$	0
1	CCS	С	455	10/11	0.94	0.19	23,27,41,42	0
3	KCX	М	205	12/13	0.96	0.08	13,14,16,16	0
1	KCX	0	205	12/13	0.96	0.09	12,13,13,14	0
1	KCX	K	205	12/13	0.96	0.10	11,11,12,12	0
1	KCX	С	205	12/13	0.97	0.06	12,12,13,13	0
1	KCX	А	205	12/13	0.97	0.09	13,14,15,16	0
3	KCX	Е	205	12/13	0.97	0.09	12,12,13,13	0
1	HL2	0	174	9/10	0.97	0.09	13,14,14,14	0
1	KCX	G	205	12/13	0.97	0.09	11,12,12,13	0
1	HL2	С	174	9/10	0.97	0.08	12,13,14,14	0
3	HL2	Е	174	9/10	0.98	0.07	$14,\!14,\!15,\!15$	0
3	HL2	М	174	9/10	0.98	0.08	$15,\!15,\!16,\!16$	0
1	HL2	А	174	9/10	0.98	0.07	12,13,14,14	0
3	HL2	Ι	174	9/10	0.98	0.06	13,13,14,14	0
3	KCX	Ι	205	12/13	0.98	0.08	12,12,13,13	0
1	HL2	G	174	9/10	0.98	0.09	11,12,12,12	0
1	HL2	K	174	9/10	0.99	0.08	12,12,13,13	0

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
7	BCT	В	207	4/4	0.57	0.24	50,52,52,52	0
7	BCT	А	519	4/4	0.63	0.33	44,46,46,47	0
6	EDO	А	515	4/4	0.64	0.30	52,52,52,53	0
6	EDO	С	513	4/4	0.65	0.34	32,33,33,36	4
7	BCT	Е	515	4/4	0.65	0.26	37,44,44,45	0
7	BCT	А	518	4/4	0.70	0.28	38,45,46,46	0
7	BCT	N	208	4/4	0.72	0.27	61,63,63,63	0
6	EDO	0	511	4/4	0.73	0.32	28,29,30,32	4
6	EDO	Ι	510	4/4	0.74	0.17	44,46,47,47	0
7	BCT	G	515	4/4	0.74	0.20	51,52,53,53	0
7	BCT	Е	514	4/4	0.74	0.21	51,52,54,54	0
7	BCT	Ι	514	4/4	0.75	0.24	40,43,43,45	0
7	BCT	М	512	4/4	0.76	0.24	39,39,40,42	0
7	BCT	М	511	4/4	0.76	0.22	34,39,40,42	0
7	BCT	С	515	4/4	0.77	0.23	39,41,42,43	0
6	EDO	А	511	4/4	0.77	0.24	35,39,39,41	0
7	BCT	K	512	4/4	0.78	0.23	47,48,48,49	0
6	EDO	0	510	4/4	0.78	0.18	41,44,45,47	0
6	EDO	Е	510	4/4	0.78	0.21	43,44,45,47	0
7	BCT	Ι	516	4/4	0.78	0.23	50,53,53,54	0
7	BCT	G	516	4/4	0.79	0.26	$39,\!44,\!46,\!47$	0
7	BCT	G	517	4/4	0.79	0.21	35,37,38,39	0
6	EDO	Р	208	4/4	0.79	0.28	$29,\!29,\!30,\!32$	4
6	EDO	G	511	4/4	0.79	0.13	38,38,39,39	0
6	EDO	Ι	512	4/4	0.80	0.23	$26,\!30,\!32,\!35$	0
7	BCT	А	517	4/4	0.80	0.28	43,44,45,46	0
7	BCT	L	209	4/4	0.80	0.35	$53,\!54,\!55,\!55$	0
6	EDO	A	512	4/4	0.81	0.16	38,39,40,42	0
7	BCT	Е	516	4/4	0.81	0.35	$51,\!53,\!53,\!54$	0
6	EDO	A	514	4/4	0.81	0.20	45,47,48,49	0
6	EDO	K	510	4/4	0.81	0.20	32,35,36,37	0
7	BCT	Ō	513	4/4	0.81	0.29	42,43,44,45	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
6	EDO	K	507	4/4	0.82	0.18	43,43,43,44	0
6	EDO	K	509	4/4	0.82	0.20	28,31,33,36	0
6	EDO	Ι	509	4/4	0.82	0.17	32,35,36,37	0
6	EDO	F	205	4/4	0.82	0.17	35,37,38,40	0
6	EDO	С	511	4/4	0.82	0.16	26,29,29,31	0
6	EDO	Е	511	4/4	0.83	0.21	33,36,38,41	0
6	EDO	L	207	4/4	0.83	0.21	36,38,39,40	0
6	EDO	А	506	4/4	0.83	0.21	$35,\!37,\!38,\!39$	0
6	EDO	L	208	4/4	0.84	0.17	34,35,35,37	0
6	EDO	0	507	4/4	0.84	0.12	39,40,40,41	0
7	BCT	0	514	4/4	0.84	0.28	50,51,51,52	0
6	EDO	N	207	4/4	0.85	0.23	29,31,31,32	4
6	EDO	Ι	507	4/4	0.85	0.14	38,41,41,43	0
6	EDO	L	206	4/4	0.85	0.18	32,36,38,40	0
6	EDO	А	509	4/4	0.85	0.16	41,43,44,45	0
7	BCT	С	514	4/4	0.85	0.28	43,47,47,48	0
6	EDO	Р	205	4/4	0.85	0.18	45,45,46,46	0
6	EDO	G	512	4/4	0.85	0.17	$26,\!28,\!28,\!29$	0
7	BCT	D	207	4/4	0.86	0.27	48,49,50,51	0
6	EDO	A	510	4/4	0.86	0.14	36,38,39,40	0
6	EDO	G	513	4/4	0.86	0.17	29,32,34,38	0
6	EDO	М	506	4/4	0.86	0.13	30,34,36,38	0
6	EDO	Р	207	4/4	0.87	0.19	30,32,34,34	0
7	BCT	М	510	4/4	0.87	0.21	42,44,45,46	0
6	EDO	J	205	4/4	0.87	0.15	32,33,34,35	0
6	EDO	I	508	4/4	0.87	0.19	33,34,34,37	0
6	EDO	С	507	4/4	0.87	0.15	$28,\!31,\!32,\!35$	0
6	EDO	I	513	4/4	0.87	0.21	41,42,42,42	0
6	EDO	N	206	4/4	0.87	0.12	29,30,30,30	0
6	EDO	G	508	4/4	0.88	0.15	26,30,31,32	0
6	EDO	С	505	4/4	0.88	0.12	32,35,35,38	0
6	EDO	D	205	4/4	0.88	0.16	38,39,39,41	0
6	EDO	E	508	4/4	0.88	0.15	38,39,40,41	0
6	EDO	P	206	4/4	0.88	0.15	45,45,45,45	0
6	EDO	Н	205	4/4	0.89	0.16	32,34,34,37	0
6	EDO	G	506	4/4	0.89	0.22	31,35,36,37	0
6	EDO	G	507	4/4	0.89	0.15	34,35,36,37	0
6	EDO	C	510	4/4	0.89	0.20	27,30,31,34	0
6	EDO	L	205	4/4	0.89	0.14	31,32,33,34	0
6	EDO	C	506	4/4	0.89	0.15	31,34,35,36	0
6	EDO	B	205	4/4	0.89	0.15	34,36,36,39	0
7	BCT	H	208	4/4	0.89	0.14	$48,\!49,\!49,\!51$	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
6	EDO	С	509	4/4	0.89	0.13	37,38,39,39	0
7	BCT	A	516	4/4	0.90	0.11	35,36,36,38	0
6	EDO	0	509	4/4	0.90	0.16	38,40,40,41	0
6	EDO	D	206	4/4	0.90	0.14	31,33,33,34	0
6	EDO	Ι	511	4/4	0.90	0.16	22,23,23,23	4
6	EDO	М	509	4/4	0.90	0.14	36,38,38,39	0
6	EDO	K	505	4/4	0.90	0.16	30,33,35,36	0
6	EDO	Е	507	4/4	0.90	0.12	33,34,34,35	0
6	EDO	K	508	4/4	0.90	0.13	34,35,37,38	0
7	BCT	Ι	515	4/4	0.90	0.12	34,36,36,37	0
7	BCT	G	514	4/4	0.91	0.13	37,38,39,40	0
6	EDO	Е	509	4/4	0.91	0.12	24,27,27,29	0
7	BCT	G	518	4/4	0.91	0.23	52,52,53,54	0
6	EDO	М	505	4/4	0.92	0.12	28,29,30,31	0
6	EDO	G	509	4/4	0.92	0.11	29,29,30,30	0
6	EDO	G	505	4/4	0.92	0.16	32,32,32,34	0
6	EDO	N	205	4/4	0.92	0.14	29,31,31,33	0
6	EDO	Ι	506	4/4	0.92	0.25	40,42,42,44	0
6	EDO	А	513	4/4	0.92	0.19	27,28,29,30	0
6	EDO	K	506	4/4	0.93	0.12	25,26,27,27	0
6	EDO	0	506	4/4	0.93	0.11	42,42,43,44	0
7	BCT	0	512	4/4	0.93	0.10	38,39,41,42	0
6	EDO	Н	204	4/4	0.93	0.10	25,27,27,27	0
7	BCT	K	511	4/4	0.93	0.09	35,35,36,37	0
6	EDO	В	202	4/4	0.94	0.11	21,22,22,23	0
6	EDO	Е	512	4/4	0.94	0.11	22,23,24,24	0
6	EDO	0	505	4/4	0.94	0.09	30,31,31,31	0
6	EDO	А	507	4/4	0.94	0.11	23,24,25,26	0
6	EDO	E	503	4/4	0.94	0.09	17,18,18,18	0
6	EDO	В	206	4/4	0.94	0.13	27,28,29,30	0
6	EDO	J	201	4/4	0.94	0.09	19,20,21,21	0
7	BCT	E	513	4/4	0.94	0.12	39,39,39,40	0
6	EDO	Н	206	4/4	0.94	0.09	31,31,32,34	0
6	EDO	Р	204	4/4	0.94	0.12	22,22,23,24	0
6	EDO	K	503	4/4	0.94	0.14	$22,\!22,\!23,\!23$	0
6	EDO	А	508	4/4	0.94	0.11	$29,\!31,\!31,\!32$	0
6	EDO	M	508	4/4	0.94	0.11	23,25,25,26	0
6	EDO	A	505	4/4	0.94	0.10	21,21,21,22	0
6	EDO	D	202	4/4	0.94	0.08	19,21,21,22	0
6	EDO	В	201	4/4	0.95	0.09	$16,\!17,\!17,\!17$	0
6	EDO	K	504	4/4	0.95	0.13	18,19,19,19	4
6	EDO	G	503	4/4	0.95	0.07	$16,\!16,\!16,\!17$	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
6	EDO	М	507	4/4	0.95	0.21	33,35,36,37	0
6	EDO	С	508	4/4	0.95	0.08	28,30,31,32	0
6	EDO	С	512	4/4	0.95	0.10	22,25,25,27	0
6	EDO	С	503	4/4	0.95	0.09	14,14,15,15	0
6	EDO	Е	505	4/4	0.95	0.08	23,23,24,24	0
6	EDO	Н	207	4/4	0.95	0.09	20,20,21,21	0
6	EDO	Ι	504	4/4	0.95	0.11	25,26,26,26	0
6	EDO	Е	506	4/4	0.95	0.10	31,33,33,34	0
6	EDO	J	206	4/4	0.95	0.10	29,29,30,30	0
6	EDO	0	508	4/4	0.95	0.08	32,33,33,33	0
6	EDO	Е	504	4/4	0.96	0.07	14,14,15,15	0
6	EDO	С	504	4/4	0.96	0.08	22,22,23,24	0
6	EDO	Ι	503	4/4	0.96	0.07	14,14,15,15	0
6	EDO	0	503	4/4	0.96	0.06	16,16,16,16	0
6	EDO	0	504	4/4	0.96	0.09	22,24,24,25	0
6	EDO	А	504	4/4	0.96	0.11	21,21,21,21	0
6	EDO	J	204	4/4	0.96	0.07	17,17,17,17	0
6	EDO	Ι	505	4/4	0.96	0.08	22,23,24,24	0
6	EDO	L	201	4/4	0.97	0.07	17,17,17,17	0
6	EDO	L	203	4/4	0.97	0.07	18,19,20,20	0
6	EDO	L	204	4/4	0.97	0.08	21,21,22,22	0
6	EDO	F	204	4/4	0.97	0.07	19,19,19,19	0
6	EDO	В	203	4/4	0.97	0.08	17,17,17,18	0
6	EDO	G	510	4/4	0.97	0.10	22,23,23,23	0
6	EDO	В	204	4/4	0.97	0.08	21,21,21,22	0
6	EDO	М	504	4/4	0.97	0.08	$25,\!25,\!25,\!25$	0
6	EDO	G	504	4/4	0.97	0.12	20,20,20,20	0
6	EDO	D	204	4/4	0.97	0.07	20,20,21,21	0
6	EDO	J	203	4/4	0.97	0.07	18,19,20,20	0
6	EDO	F	202	4/4	0.97	0.08	16,16,17,17	0
6	EDO	F	203	4/4	0.97	0.09	$18,\!18,\!19,\!19$	0
6	EDO	Ν	202	4/4	0.97	0.10	20,21,21,21	0
6	EDO	Ν	203	4/4	0.97	0.08	18,19,19,19	0
6	EDO	Ν	204	4/4	0.97	0.06	21,21,21,21	0
6	EDO	Н	203	4/4	0.98	0.05	19,20,20,21	0
6	EDO	J	202	4/4	0.98	0.06	$15,\!15,\!16,\!16$	0
5	CAP	М	502	21/21	0.98	0.07	16, 17, 18, 19	0
6	EDO	Р	201	4/4	0.98	0.06	$15, \overline{16, 16, 16}$	0
6	EDO	P	202	4/4	0.98	0.06	18,18,18,18	0
6	EDO	Р	203	4/4	0.98	0.06	21,22,22,22	0
6	EDO	М	503	4/4	0.98	0.05	16,16,16,17	0
4	MG	М	501	1/1	0.98	0.06	16, 16, 16, 16	0

Continued from previous page...

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
6	EDO	F	201	4/4	0.98	0.05	13,14,14,14	0
5	CAP	А	502	21/21	0.98	0.06	15,16,16,17	0
6	EDO	L	202	4/4	0.98	0.07	13,13,13,14	0
6	EDO	D	203	4/4	0.98	0.05	16,16,16,16	0
5	CAP	Е	502	21/21	0.98	0.06	$14,\!15,\!16,\!16$	0
6	EDO	Н	201	4/4	0.98	0.06	13,14,14,14	0
4	MG	K	501	1/1	0.99	0.03	$13,\!13,\!13,\!13$	0
6	EDO	Ν	201	4/4	0.99	0.06	16, 16, 16, 17	0
5	CAP	0	502	21/21	0.99	0.04	$14,\!15,\!15,\!16$	0
6	EDO	А	503	4/4	0.99	0.05	14, 14, 14, 14	0
4	MG	А	501	1/1	0.99	0.04	16, 16, 16, 16	0
4	MG	0	501	1/1	0.99	0.04	$15,\!15,\!15,\!15$	0
4	MG	С	501	1/1	0.99	0.04	$15,\!15,\!15,\!15$	0
5	CAP	С	502	21/21	0.99	0.05	$14,\!15,\!16,\!16$	0
6	EDO	Н	202	4/4	0.99	0.05	16, 16, 16, 16	0
4	MG	Е	501	1/1	0.99	0.03	14,14,14,14	0
5	CAP	G	502	21/21	0.99	0.05	$12,\!13,\!13,\!13$	0
5	CAP	Ι	502	21/21	0.99	0.05	$14,\!15,\!15,\!16$	0
6	EDO	D	201	4/4	0.99	0.06	$15,\!16,\!16,\!16$	0
5	CAP	K	502	21/21	0.99	0.05	$12,\!13,\!13,\!13$	0
4	MG	Ι	501	1/1	1.00	0.05	$14, 14, 14, 1\overline{4}$	0
4	MG	G	501	1/1	1.00	0.03	$14,\!14,\!14,\!14$	0

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

