

wwPDB X-ray Structure Validation Summary Report (i)

Oct 7, 2023 – 11:14 AM EDT

PDB ID	:	4BTS
Title	:	THE CRYSTAL STRUCTURE OF THE EUKARYOTIC 40S RIBOSOMAL
		SUBUNIT IN COMPLEX WITH EIF1 AND EIF1A
Authors	:	Weisser, M.; Voigts-Hoffmann, F.; Rabl, J.; Leibundgut, M.; Ban, N.
Deposited on	:	2013-06-19
Resolution	:	3.70 Å(reported)
Authors Deposited on Resolution	:	SUBUNIT IN COMPLEX WITH EIF1 AND EIF1A Weisser, M.; Voigts-Hoffmann, F.; Rabl, J.; Leibundgut, M.; Ban, N. 2013-06-19 3.70 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

:	4.02b-467
:	1.13
:	FAILED
:	20191225.v01 (using entries in the PDB archive December 25th 2019)
:	Engh & Huber (2001)
:	Parkinson et al. (1996)
:	2.35.1
	:::::::::::::::::::::::::::::::::::::::

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\;DIFFRACTION$

The reported resolution of this entry is 3.70 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	Similar resolution
	$(\# { m Entries})$	$(\# \text{Entries, resolution range}(\mathbf{A}))$
Clashscore	141614	1027 (3.86 - 3.54)
Ramachandran outliers	138981	1069 (3.88-3.52)
Sidechain outliers	138945	1065 (3.88-3.52)
RNA backbone	3102	1027 (4.40-3.00)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Note EDS failed to run properly.

Mol	Chain	Length	Quality of chain					
1	A0	211	30%	14%	•	53%	_	
1	B0	211	28%	15%	•	53%		
1	C0	211	29%	15%	•	53%		
1	D0	211	31%	13%	•	53%	_	
2	A1	68	549	%		38%	•••	
2	B1	68	51	7%		34%	5% •	

Mol	Chain	Length	Quality of chain				
2	C1	68	53% 37%		7% •		
2	D1	68	54% 34%		9% •		
3	A2	208	62%			30%	7%
3	B2	208	65%			28%	7%
3	C2	208	64%			28%	7%
3	D2	208	64%			29%	7%
4	A3	197	58%			35%	7% •
4	B3	197	60%			31%	8% •
4	C3	197	58%			35%	7% •
4	D3	197	58%			35%	7% •
5	A4	265	46%		28%	6%	21%
5	B4	265	48%		29%	6%	17%
5	C4	265	47%		31%	6%	17%
5	D4	265	48%		29%	7%	17%
6	A5	119	44%		36%	·	16%
6	B5	119	46%		34%	·	16%
6	C5	119	46%		34%	·	16%
6	D5	119	47%		33%	·	16%
7	A6	81	57%			36%	6% •
7	B6	81	56%			36%	7% •
7	C6	81	56%			37%	6% •
7	D6	81	54%			37%	7% •
8	A7	162	40%	19%	•	38%	
8	B7	162	41%	18%	•	38%	
8	C7	162	40%	19%	•	38%	

Mol	Chain	Length	Quality of chain					
8	D7	162	39%		20%	•	38%	
9	A8	143	33%	19%	•		45%	
9	B8	143	32%	20%	·		45%	
9	C8	143	33%	19%	·		45%	
9	D8	143	29%	22%	•		45%	
10	A9	189	30%	19%	•		51%	
10	B9	189	27%	21%	·		51%	
10	C9	189	32%	16%	·		51%	
10	D9	189	28%	19%	••		51%	
11	AA	1753	34%		36%		23%	5% •
11	ВА	1753	34%		35%	-	24%	5% •
11	CA	1753	35%		35%		23%	5% •
11	DA	1753	34%		36%		23%	5% •
12	AB	241	47%			34%	•	17%
12	BB	241	48%			32%	·	17%
12	CB	241	48%			33%	•	17%
12	DB	241	48%			32%	·	17%
13	AC	243	60%)			29%	5% 6%
13	BC	243	60%)			29%	5% 6%
13	$\mathbf{C}\mathbf{C}$	243	58%				31%	5% 6%
13	DC	243	57%				32%	5% 6%
14	AD	181	51%			38	%	10% •
14	BD	181	49%			40%	6	10% •
14	CD	181	54%				37%	9% •
14	DD	181	54%			3	5%	10% •

Quality of chain Chain Length Mol AE 1529630% 23% 43% • BE1529643% 30% 23% • 15CE 29642% 31% 23% • DE 1529642% 31% 23% • 16 \mathbf{AF} 101 68% 19% 12% • 16BF10170% 17% 12% . CF 16101 20% 12% 67% • DF 1610170% 17% 12% • AG 2001760% 32% . . BG1720060% 32% • • 17CG2005% • 60% 30% DG 5% • 1720058% 33% 18 AH 13052% 36% 11%BH1813053% 35% 11% . CH 1301850% 38% 11% 18DH 13053% 35% 11% AI 1914558% 34% 6% • BI 191456% • 55% 37% CI 191456% • 57% 36% DI 1914552% 41% 6%• 20AJ 12054% 32% 10% • BJ2012051% 35% 10% • CJ1202052% 32% 5% 10% DJ 2012010% 52% 34% • 21AK 1519% 7% 51% 33% Continued on next page...

Mol	Chain	Length	Quality of chain				
21	BK	151	54%	30%	9% 7%		
21	СК	151	52%	32%	9% 7%		
21	DK	151	50%	34%	9% 7%		
22	AL	142	61%	28%	9% •		
22	BL	142	59%	32%	8% •		
22	CL	142	58%	34%	7% •		
22	DL	142	59%	32%	8% •		
23	AM	155	59%	33%	7% •		
23	BM	155	59%	32%	8% •		
23	СМ	155	61%	31%	7% •		
23	DM	155	51%	41%	7% •		
24	AN	55	58%	33%	7% •		
24	BN	55	62%	29%	7% •		
24	CN	55	58%	33%	7% •		
24	DN	55	58%	33%	7% •		
25	AO	153	59%	37%	••		
25	BO	153	58%	37%	5%•		
25	СО	153	59%	36%	•••		
25	DO	153	58%	37%	•••		
26	AP	149	60%	36%	••		
26	BP	149	60%	36%	•••		
26	СР	149	60%	36%	••		
26	DP	149	62%	34%	••		
27	AQ	157	57%	34%	8% •		
27	BQ	157	55%	36%	8% •		

Conti Mol	nued fron Chain	<i>i</i> previous <i>j</i>	Quality of chain				
27	CQ	157	59%	32%	9% •		
27	DQ	157	58%	32%	9% •		
28	AR	343	61%	33%	• •		
28	BR	343	61%	33%			
28	CR	343	61%	33%	5% •		
28	DR	343	62%	32%	•••		
29	AS	144	53%	33%	• 11%		
29	BS	144	51%	35%	• 11%		
29	CS	144	51%	35%	. 11%		
29	DS	144	56%	28%	5% 11%		
30	AT	155	50% 610/	20 %	5% 11%		
30	BT	155	61%	220/	0% •		
30	СТ	155	01%	52%	0% •		
20		155	60%	33%	6% •		
		100	61%	33%	6% •		
31	AU	120	58%	36%	• ••		
31	BU	126	60%	33%	5% ••		
31	CU	126	60%	33%	5% ••		
31	DU	126	60%	33%	5% ••		
32	AV	130	57%	30%	5% 8%		
32	BV	130	57%	31%	• 8%		
32	CV	130	53%	35%	• 8%		
32	DV	130	54%	32%	5% 8%		
33	AW	259	61%	33%	6%		
33	BW	259	57%	37%	6%		
33	CW	259	59%	35%	7%		

Mol	Chain	Length	Quality of chain				
33	DW	259	58%	36%		6%	
34	AX	80	66%	22%	•	8%	
34	BX	80	62%	26%	•	8%	
34	CX	80	64%	25%	•	8%	
34	DX	80	66%	21%	5%	8%	
35	AY	293	46% 28%	•	22%		
35	BY	293	45% 29%	•	22%		
35	CY	293	46% 28%	•	22%		
35	DY	293	46% 29%	•	22%		
36	AZ	97	61%	35%		•	
36	ΒZ	97	59%	35%		6%	
36	CZ	97	58%	38%		•	
36	DZ	97	62%	34%		·	

2 Entry composition (i)

There are 39 unique types of molecules in this entry. The entry contains 315512 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called TRANSLATION INITIATION FACTOR EIF-1A FAMILY PROTEIN.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace	
1	4.0	00	Total	С	Ν	0	S	0	0	0	
1	AU	99	817	517	142	152	6	0	0	U	
1	BU	B0 99	Total	С	Ν	0	S	0	0	0	
1	DU		817	517	142	152	6	0	0	0	
1	CO	00	Total	С	Ν	0	S	0	0	0	
	CO	99	817	517	142	152	6	0	0	0	
1	1 D0	D0	00	Total	С	Ν	0	S	0	0	0
		99	817	517	142	152	6	0	0	U	

There are 76 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
A0	-17	MET	-	expression tag	UNP I7MK25
A0	-16	GLY	-	expression tag	UNP I7MK25
A0	-15	SER	-	expression tag	UNP I7MK25
A0	-14	SER	-	expression tag	UNP I7MK25
A0	-13	HIS	-	expression tag	UNP I7MK25
A0	-12	HIS	-	expression tag	UNP I7MK25
A0	-11	HIS	-	expression tag	UNP I7MK25
A0	-10	HIS	-	expression tag	UNP I7MK25
A0	-9	HIS	-	expression tag	UNP I7MK25
A0	-8	HIS	-	expression tag	UNP I7MK25
A0	-7	GLU	-	expression tag	UNP I7MK25
A0	-6	ASN	-	expression tag	UNP I7MK25
A0	-5	LEU	-	expression tag	UNP I7MK25
A0	-4	TYR	-	expression tag	UNP I7MK25
A0	-3	PHE	-	expression tag	UNP I7MK25
A0	-2	GLN	-	expression tag	UNP I7MK25
A0	-1	SER	-	expression tag	UNP I7MK25
A0	0	ASN	-	expression tag	UNP I7MK25
A0	1	ALA	-	expression tag	UNP I7MK25
B0	-17	MET	-	expression tag	UNP I7MK25
				Continued	on next page

Continu	ica jioni pre	vious puge			
Chain	Residue	Modelled	Actual	Comment	Reference
B0	-16	GLY	-	expression tag	UNP I7MK25
B0	-15	SER	-	expression tag	UNP I7MK25
B0	-14	SER	-	expression tag	UNP I7MK25
B0	-13	HIS	-	expression tag	UNP I7MK25
B0	-12	HIS	-	expression tag	UNP I7MK25
B0	-11	HIS	-	expression tag	UNP I7MK25
B0	-10	HIS	-	expression tag	UNP I7MK25
B0	-9	HIS	-	expression tag	UNP I7MK25
B0	-8	HIS	-	expression tag	UNP I7MK25
B0	-7	GLU	-	expression tag	UNP I7MK25
B0	-6	ASN	-	expression tag	UNP I7MK25
B0	-5	LEU	-	expression tag	UNP I7MK25
B0	-4	TYR	-	expression tag	UNP I7MK25
B0	-3	PHE	-	expression tag	UNP I7MK25
B0	-2	GLN	-	expression tag	UNP I7MK25
B0	-1	SER	-	expression tag	UNP I7MK25
B0	0	ASN	-	expression tag	UNP I7MK25
B0	1	ALA	-	expression tag	UNP I7MK25
C0	-17	MET	_	expression tag	UNP I7MK25
C0	-16	GLY	-	expression tag	UNP I7MK25
C0	-15	SER	-	expression tag	UNP I7MK25
C0	-14	SER	-	expression tag	UNP I7MK25
C0	-13	HIS	-	expression tag	UNP I7MK25
C0	-12	HIS	-	expression tag	UNP I7MK25
C0	-11	HIS	-	expression tag	UNP I7MK25
C0	-10	HIS	-	expression tag	UNP I7MK25
C0	-9	HIS	-	expression tag	UNP I7MK25
C0	-8	HIS	-	expression tag	UNP I7MK25
C0	-7	GLU	-	expression tag	UNP I7MK25
C0	-6	ASN	_	expression tag	UNP I7MK25
C0	-5	LEU	_	expression tag	UNP I7MK25
C0	-4	TYR	-	expression tag	UNP I7MK25
C0	-3	PHE	-	expression tag	UNP I7MK25
C0	-2	GLN	-	expression tag	UNP I7MK25
C0	-1	SER	-	expression tag	UNP I7MK25
C0	0	ASN	-	expression tag	UNP I7MK25
C0	1	ALA	-	expression tag	UNP I7MK25
D0	-17	MET	-	expression tag	UNP I7MK25
D0	-16	GLY	-	expression tag	UNP I7MK25
D0	-15	SER	-	expression tag	UNP I7MK25
D0	-14	SER	-	expression tag	UNP I7MK25
D0	-13	HIS	-	expression tag	UNP I7MK25

Chain	Residue	Modelled	Actual	Comment	Reference
D0	-12	HIS	-	expression tag	UNP I7MK25
D0	-11	HIS	-	expression tag	UNP I7MK25
D0	-10	HIS	-	expression tag	UNP I7MK25
D0	-9	HIS	-	expression tag	UNP I7MK25
D0	-8	HIS	-	expression tag	UNP I7MK25
D0	-7	GLU	-	expression tag	UNP I7MK25
D0	-6	ASN	-	expression tag	UNP I7MK25
D0	-5	LEU	-	expression tag	UNP I7MK25
D0	-4	TYR	-	expression tag	UNP I7MK25
D0	-3	PHE	-	expression tag	UNP I7MK25
D0	-2	GLN	-	expression tag	UNP I7MK25
D0	-1	SER	-	expression tag	UNP I7MK25
D0	0	ASN	-	expression tag	UNP I7MK25
D0	1	ALA	-	expression tag	UNP I7MK25

• Molecule 2 is a protein called 40S RIBOSOMAL PROTEIN RPS28E.

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf	Trace
0	Δ.1	66	Total	С	Ν	Ο	S	0	0	0
	AI	00	511	308	103	96	4	0	0	0
2	R1	66	Total	С	Ν	Ο	S	0	0	0
	DI	00	511	308	103	96	4	0	0	0
0	C1	66	Total	С	Ν	Ο	S	0	0	0
	01	00	511	308	103	96	4	0	0	0
2	D1	66	Total	С	Ν	Ο	S	0	0	0
		66	511	308	103	96	4	0	0	U

• Molecule 3 is a protein called 40S RIBOSOMAL PROTEIN S8.

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf	Trace
3	1.2	207	Total	С	Ν	0	S	0	0	0
5	A2	201	1693	1057	336	296	4	0	0	0
3	Bo	207	Total	С	Ν	0	S	0	0	0
5	D_{2}	201	1693	1057	336	296	4	0	0	0
2	Co	207	Total	С	Ν	0	S	0	0	0
5		207	1693	1057	336	296	4	0	0	0
2	<u>р</u> 9	207	Total	С	Ν	0	S	0	0	0
5	D_2	201	1693	1057	336	296	4	0	0	0

• Molecule 4 is a protein called 40S RIBOSOMAL PROTEIN RPS7E.

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf	Trace
4	٨٥	106	Total	С	Ν	0	\mathbf{S}	0	0	0
4	Að	190	1629	1048	286	294	1	0	0	0
4	D3	106	Total	С	Ν	0	S	0	0	0
4	Do	190	1629	1048	286	294	1	0	0	0
4	C2	106	Total	С	Ν	0	S	0	0	0
4	03	190	1629	1048	286	294	1	0	0	0
4	D3	106	Total	С	Ν	0	S	0	0	0
4	D3	03 196	1629	1048	286	294	1	0	U	U

• Molecule 5 is a protein called 40S RIBOSOMAL PROTEIN S3A.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
Б	Δ.4	200	Total	С	Ν	0	\mathbf{S}	0	0	0
5	A4	209	1679	1061	304	310	4	0	0	0
5	P4	221	Total	С	Ν	0	S	0	0	0
5	D4		1775	1121	319	331	4	0	0	0
E E	C4	001	Total	С	Ν	Ο	S	0	0	0
0	04	221	1775	1121	319	331	4	0	0	0
5	D4	221	Total	С	Ν	0	S	0	0	0
5	D4	221	1775	1121	319	331	4	0	0	0

• Molecule 6 is a protein called 40S RIBOSOMAL PROTEIN RPS26E.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
6	Λ.5	100	Total	С	Ν	0	S	0	0	0
0	AJ	100	812	496	172	138	6	0	0	0
6	D2	100	Total	С	Ν	0	S	0	0	0
0	D9	100	812	496	172	138	6	0	0	0
6	CF.	100	Total	С	Ν	0	S	0	0	0
0	\mathbb{C}^{3}	100	812	496	172	138	6	0	0	0
6	DE	100	Total	С	Ν	0	S	0	0	0
0	D0	100	812	496	172	138	6	0		U

• Molecule 7 is a protein called 40S RIBOSOMAL PROTEIN S27.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
7	16	80	Total	С	Ν	0	S	0	0	0
1	A0	80	632	398	110	116	8	0	0	0
7	P6	80	Total	С	Ν	0	\mathbf{S}	0	0	0
(D0	80	632	398	110	116	8	0	0	0
7	Ce	80	Total	С	Ν	0	S	0	0	0
1	0	80	632	398	110	116	8	0	0	0

Continued from previous page...

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
7	D6	80	Total 632	C 398	N 110	0 116	S 8	0	0	0

• Molecule 8 is a protein called 40S RIBOSOMAL PROTEIN RPS10E.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
0	Δ.7	101	Total	С	Ν	0	S	0	0	0
0		101	833	546	139	146	2	0	0	0
8	B7	101	Total	С	Ν	0	S	0	0	0
0	Di	101	833	546	139	146	2	0	0	0
0	07	101	Total	С	Ν	0	S	0	0	0
0	01	101	833	546	139	146	2	0	0	0
0	D7	101	Total	С	Ν	0	S	0	0	0
0	DI	101	833	546	139	146	2	0	0	U

• Molecule 9 is a protein called 40S RIBOSOMAL PROTEIN RPS25E.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
0	٨٩	70	Total	С	Ν	0	S	0	0	0
9	Ao	19	615	388	112	113	2	0	0	0
0	B8	70	Total	С	Ν	0	S	0	0	0
9	Do	19	615	388	112	113	2	0	0	0
0	<u>C</u> 8	70	Total	С	Ν	0	S	0	0	0
9	00	19	615	388	112	113	2	0	0	0
0	<u></u>	70	Total	С	Ν	0	S	0	0	0
9	D0	19	615	388	112	113	2			U

• Molecule 10 is a protein called 40S RIBOSOMAL PROTEIN RPS31E.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
10	40	03	Total	С	Ν	Ο	\mathbf{S}	0	0	0
10	A9	90	751	477	143	126	5	0	0	0
10	B0	03	Total	С	Ν	Ο	S	0	0	0
10	D9	90	751	477	143	126	5	0	0	0
10	CO	03	Total	С	Ν	0	S	0	0	0
10	09	90	751	477	143	126	5	0	0	0
10	ро	03	Total	С	Ν	0	S	0	0	0
10	D9	90	751	477	143	126	5	0	0	0

• Molecule 11 is a RNA chain called 18S ribosomal RNA.

Mol	Chain	Residues		I	Atoms			ZeroOcc	AltConf	Trace
11	ΔΔ	1717	Total	С	Ν	Ο	Р	0	0	0
11	ΠΠ	1/1/	36629	16385	6539	11988	1717	0	0	0
11	BΔ	1717	Total	С	Ν	0	Р	0	0	0
11	DA	1111	36629	16385	6539	11988	1717	0	0	0
11	CA	1717	Total	С	Ν	Ο	Р	0	0	0
11	UA	1111	36629	16385	6539	11988	1717	0	0	0
11		1717	Total	С	Ν	Ο	Р	0	0	0
11		1111	36629	16385	6539	11988	1717	0	0	0

• Molecule 12 is a protein called 40S RIBOSOMAL PROTEIN SA.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
19	٨P	201	Total	С	Ν	0	\mathbf{S}	0	0	0
12	AD	201	1619	1023	285	301	10	0	0	0
19	PD	201	Total	С	Ν	0	S	0	0	0
	DD	201	1619	1023	285	301	10	0	0	0
19	CP	201	Total	С	Ν	Ο	S	0	0	0
	CD	201	1619	1023	285	301	10	0	0	0
19	DB	201	Total	С	Ν	Ο	S	0	0	0
	מט	201	1619	1023	285	301	10	0		

• Molecule 13 is a protein called 40S RIBOSOMAL PROTEIN RPS3E.

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf	Trace
12		222	Total	С	Ν	0	\mathbf{S}	0	0	0
10	AU	220	1811	1167	318	318	8	0	0	0
12	BC	222	Total	С	Ν	0	S	0	0	0
10	DU	220	1811	1167	318	318	8	0	0	0
19	CC	222	Total	С	Ν	0	S	0	0	0
10		220	1811	1167	318	318	8	0	0	0
12	DC	222	Total	С	Ν	0	S	0	0	0
61		220	1811	1167	318	318	8		U	

• Molecule 14 is a protein called 40S RIBOSOMAL PROTEIN RPS9E.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
14		180	Total	С	Ν	0	\mathbf{S}	0	0	0
14	AD	180	1478	932	287	254	5	0	0	0
14	חס	190	Total	С	Ν	0	S	0	0	0
14	DD	160	1478	932	287	254	5	0	0	0
14	CD	190	Total	С	Ν	0	\mathbf{S}	0	0	0
14	CD	160	1478	932	287	254	5	0	0	0

Continued from previous page...

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
14	DD	180	Total 1478	C 932	N 287	0 254	${ m S}{ m 5}$	0	0	0

• Molecule 15 is a protein called 40S RIBOSOMAL PROTEIN RPS2E.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
15	٨F	220	Total	С	Ν	0	S	0	0	0
10	AL		1818	1171	321	323	3	0	0	0
15	BE	220	Total	С	Ν	0	S	0	0	0
10	DE	229	1818	1171	321	323	3	0	0	0
15	CE	220	Total	С	Ν	0	S	0	0	0
10	UE	229	1818	1171	321	323	3	0	0	0
15	DE	220	Total	С	Ν	0	S	0	0	0
10		229	1818	1171	321	323	3		U	U

• Molecule 16 is a protein called EIF1.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
16	٨٢	80	Total	С	Ν	0	\mathbf{S}	0	0	0
10	Ar	89	736	465	131	137	3	0	0	0
16	BE	80	Total	С	Ν	0	S	0	0	0
10	DI	09	736	465	131	137	3	0	0	0
16	CF	80	Total	С	Ν	0	S	0	0	0
10	UI	09	736	465	131	137	3	0	0	0
16	DF	80	Total	С	Ν	0	S	0	0	0
10	Dr	89	736	465	131	137	3	0	0	0

• Molecule 17 is a protein called 40S RIBOSOMAL PROTEIN RPS5E.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
17		102	Total	С	Ν	0	\mathbf{S}	0	0	0
11	AG	192	1520	961	281	270	8	0	0	0
17	РС	102	Total	С	Ν	0	S	0	0	0
11	DG	192	1520	961	281	270	8	0	0	0
17	CC	102	Total	С	Ν	0	S	0	0	0
11	UG	192	1520	961	281	270	8	0	0	0
17	DC	102	Total	С	Ν	0	S	0	0	0
11	DG	192	1520	961	281	270	8	0	0	U

• Molecule 18 is a protein called 40S RIBOSOMAL PROTEIN RPS22E.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
10	۸Ц	120	Total	С	Ν	0	\mathbf{S}	0	0	0
10	AII	129	1040	671	184	180	5	0	0	0
18	вн	120	Total	С	Ν	0	S	0	0	0
10	DII	129	1040	671	184	180	5	0	0	0
10	СЦ	120	Total	С	Ν	0	S	0	0	0
10	UII	129	1040	671	184	180	5	0	0	0
10	рц	120	Total	С	Ν	0	S	0	0	0
10		129	1040	671	184	180	5	0	0	0

• Molecule 19 is a protein called 40S RIBOSOMAL PROTEIN RPS16E.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
10	ΔΤ	1/2	Total	С	Ν	0	\mathbf{S}	0	0	0
19	AI	140	1135	715	217	198	5	0	0	0
10	BI	1/2	Total	С	Ν	0	S	0	0	0
19	DI	140	1135	715	217	198	5	0	0	0
10	CI	149	Total	С	Ν	0	S	0	0	0
19		140	1135	715	217	198	5	0	0	0
10	Л	1/2	Total	С	Ν	0	S	0	0	0
19		140	1135	715	217	198	5			U

• Molecule 20 is a protein called 40S RIBOSOMAL PROTEIN RPS20E.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
20	ΔΤ	108	Total	С	Ν	Ο	S	0	0	0
20	AJ	108	859	539	154	160	6	0	0	0
20	ЪI	108	Total	С	Ν	0	S	0	0	0
20	DJ	108	859	539	154	160	6	0	0	0
20	CI	109	Total	С	Ν	0	S	0	0	0
20	CJ	108	859	539	154	160	6	0	0	0
20	וח	108	Total	С	Ν	0	S	0	0	0
20	DJ	100	859	539	154	160	6	0		U

• Molecule 21 is a protein called 40S RIBOSOMAL PROTEIN RPS14E.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
21	ΔK	140	Total	С	Ν	0	S	0	0	0
21	АК	140	1063	654	206	197	6	0	0	0
01	DV	140	Total	С	Ν	0	\mathbf{S}	0	0	0
	DK	140	1063	654	206	197	6	0	0	0
21	CK	140	Total	С	Ν	0	\mathbf{S}	0	0	0
	UN	140	1063	654	206	197	6	0	0	U

Continued from previous page...

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
21	DK	140	Total 1063	$\begin{array}{c} \mathrm{C} \\ 654 \end{array}$	N 206	0 197	S 6	0	0	0

• Molecule 22 is a protein called 40S RIBOSOMAL PROTEIN S12.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
22	ΔT	140	Total	С	Ν	Ο	S	0	0	0
	AL	140	1086	685	217	179	5	0	0	0
22	BI	140	Total	С	Ν	Ο	S	0	0	0
		140	1086	685	217	179	5	0	0	0
	CI	140	Total	С	Ν	0	S	0	0	0
	OL	140	1086	685	217	179	5	0	0	0
	ות	140	Total	С	Ν	0	S	0	0	0
		140	1086	685	217	179	5	0	0	U

• Molecule 23 is a protein called 40S RIBOSOMAL PROTEIN RPS18E.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
93	АМ	152	Total	С	Ν	0	S	0	0	0
20	AM	100	1231	775	236	215	5	0	0	0
23	BM	152	Total	С	Ν	0	S	0	0	0
23	DIVI	155	1231	775	236	215	5	0	0	0
23	CM	153	Total	С	Ν	0	S	0	0	0
23	UM	155	1231	775	236	215	5	0	0	0
93	рм	152	Total	С	Ν	0	S	0	0	0
20		100	1231	775	236	215	5	0	0	0

• Molecule 24 is a protein called 40S RIBOSOMAL PROTEIN RPS29E.

Mol	Chain	Residues		Ato	\mathbf{ms}			ZeroOcc	AltConf	Trace
24	AN	54	Total	С	Ν	Ο	\mathbf{S}	0	0	0
24	AN		454	283	92	73	6	0	0	0
24	BN	54	Total	С	Ν	Ο	S	0	0	0
24	DN		454	283	92	73	6	0	0	0
24	CN	54	Total	С	Ν	Ο	S	0	0	0
24	UN		454	283	92	73	6	0	0	0
24	DN	54	Total	С	Ν	Ο	S	0	0	0
24	DN	54	454	283	92	73	6	0	U	0

• Molecule 25 is a protein called 40S RIBOSOMAL PROTEIN RPS13E.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
25		159	Total	С	Ν	0	S	0	0	0
20	AU	152	1229	790	233	202	4	0	0	0
25	BO	159	Total	С	Ν	0	S	0	0	0
20	DO	152	1229	790	233	202	4	0	0	0
25	CO	159	Total	С	Ν	0	S	0	0	0
20		152	1229	790	233	202	4	0	0	0
25	DO	159	Total	С	Ν	0	S	0	0	0
2.0	00	102	1229	790	233	202	4		0	U

• Molecule 26 is a protein called 40S RIBOSOMAL PROTEIN S24.

Mol	Chain	Residues		Ato	ms		ZeroOcc	AltConf	Trace
26		1/19	Total	С	Ν	Ο	0	0	0
20	AI	140	1197	763	221	213	0	0	0
26	PD	1/19	Total	С	Ν	0	0	0	0
20	DI	140	1197	763	221	213	0	0	0
26	CD	1/19	Total	С	Ν	Ο	0	0	0
20		140	1197	763	221	213	0	0	0
26	пр	1/19	Total	С	Ν	Ο	0	0	0
20	DI	140	1197	763	221	213	0	0	0

• Molecule 27 is a protein called 40S RIBOSOMAL PROTEIN RPS11E.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
97	10	156	Total	С	Ν	0	S	0	0	0
21	AQ	150	1267	813	234	216	4	0	0	0
97	BO	156	Total	С	Ν	0	S	0	0	0
21	ЪQ	150	1267	813	234	216	4	0	0	0
97	CO	156	Total	С	Ν	0	S	0	0	0
21	UQ	150	1267	813	234	216	4	0	0	0
97	DO	156	Total	С	Ν	0	S	0	0	0
21	DQ	130	1267	813	234	216	4		0	U

• Molecule 28 is a protein called 40S RIBOSOMAL PROTEIN RACK1.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
20	٨D	220	Total	С	Ν	0	S	0	0	0
20	An		2682	1711	462	501	8	0	0	0
10	DD	220	Total	С	Ν	0	\mathbf{S}	0	0	0
20	DR	000	2682	1711	462	501	8	0	0	0
10	CD	220	Total	С	Ν	0	\mathbf{S}	0	0	0
20	UN	000	2682	1711	462	501	8		U	U

Continued from previous page...

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
28	DR	338	Total 2682	C 1711	N 462	O 501	S 8	0	0	0

• Molecule 29 is a protein called 40S RIBOSOMAL PROTEIN RPS15E.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
20	٨S	198	Total	С	Ν	0	S	0	0	0
29	AD	120	1010	648	178	180	4	0	0	0
20	PC	198	Total	С	Ν	0	S	0	0	0
29	DS	120	1010	648	178	180	4	0	0	0
20	CS	198	Total	С	Ν	0	S	0	0	0
29	05	120	1010	648	178	180	4	0	0	0
20	DC	198	Total	С	Ν	0	S	0	0	0
29	DS	120	1010	648	178	180	4	0	0	U

• Molecule 30 is a protein called 40S RIBOSOMAL PROTEIN RPS19E.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
20		154	Total	С	Ν	0	S	0	0	0
30	AI	104	1242	785	234	221	2	0	0	0
30	вт	154	Total	С	Ν	0	S	0	0	0
30	DI	104	1242	785	234	221	2	0	0	0
30	СТ	154	Total	С	Ν	0	S	0	0	0
30		104	1242	785	234	221	2	0	0	0
20	рт	154	Total	С	Ν	0	S	0	0	0
- 50		104	1242	785	234	221	2	0		U

• Molecule 31 is a protein called 40S RIBOSOMAL PROTEIN RPS12E.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
21		194	Total	С	Ν	0	S	0	0	0
51	AU	124	952	599	166	182	5	0	0	0
21	BII	194	Total	С	Ν	0	S	0	0	0
51	DU	124	952	599	166	182	5	0	0	0
21	CU	194	Total	С	Ν	0	S	0	0	0
51		124	952	599	166	182	5	0	0	0
21	DU	194	Total	С	Ν	0	S	0	0	0
51	DU	124	952	599	166	182	5	0	0	U

• Molecule 32 is a protein called 40S RIBOSOMAL PROTEIN RPS17E.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
20	417	110	Total	С	Ν	0	\mathbf{S}	0	0	0
32	AV	119	968	613	180	173	2	0	0	0
20	DV	110	Total	С	Ν	0	S	0	0	0
32	DV	119	968	613	180	173	2	0	0	0
20	CV	110	Total	С	Ν	0	\mathbf{S}	0	0	0
32	UV	119	968	613	180	173	2	0	0	0
20	DV	110	Total	С	Ν	0	S	0	0	0
32		119	968	613	180	173	2	0		U

• Molecule 33 is a protein called 40S RIBOSOMAL PROTEIN RPS4E.

Mol	Chain	Residues		Atoms			ZeroOcc	AltConf	Trace	
	250	Total	С	Ν	0	\mathbf{S}	0	0	0	
55	Aw	239	2079	1322	383	370	4	0	0	0
22	BW	250	Total	С	Ν	0	S	0	0	0
55	DW	209	2079	1322	383	370	4	0	0	0
22	CW	250	Total	С	Ν	0	S	0	0	0
55	U W	239	2079	1322	383	370	4	U	0	0
22	DW	250	Total	С	Ν	0	S	0	0	0
55	DW	239	2079	1322	383	370	4	0	0	0

• Molecule 34 is a protein called 40S RIBOSOMAL PROTEIN RPS30E.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
24		74	Total	С	Ν	Ο	S	0	0	0
04	АЛ	14	599	376	124	96	3	0	0	0
24	DV	74	Total	С	Ν	0	S	0	0	0
04	DA	14	599	376	124	96	3	0	0	0
24	CV	74	Total	С	Ν	0	S	0	0	0
04	UΛ	14	599	376	124	96	3	0	0	0
24	DV	74	Total	С	Ν	Ο	S	0	0	0
34	DA	(4	599	376	124	96	3	U	0	

• Molecule 35 is a protein called 40S RIBOSOMAL PROTEIN S6.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace	
		222	Total	С	Ν	0	\mathbf{S}	0	0	0
- 55	AI	220	1826	1157	340	318	11	0	0	0
25	BV	222	Total	С	Ν	0	\mathbf{S}	0	0	0
- 55	DI	228	1826	1157	340	318	11	0	0	0
25	CV	222	Total	С	Ν	0	S	0	0	0
- 55		228 228	1826	1157	340	318	11	0	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
35	DY	228	Total 1826	C 1157	N 340	0 318	S 11	0	0	0

• Molecule 36 is a protein called 40S RIBOSOMAL PROTEIN RPS21E.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
26	Δ7	07	Total	С	Ν	0	S	0	0	0
- 30	AL	91	747	458	139	146	4	0	0	0
26	P 7	07	Total	С	Ν	0	S	0	0	0
- 30	DZ	91	747	458	139	146	4	0	0	0
26	C7	07	Total	С	Ν	0	S	0	0	0
- 30	UΔ	91	747	458	139	146	4	0	0	0
26	DZ	07	Total	С	Ν	0	S	0	0	0
- 30	DZ	91	747	458	139	146	4	0	0	0

• Molecule 37 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
37	A5	1	Total Zn 1 1	0	0
37	A6	1	Total Zn 1 1	0	0
37	A9	1	Total Zn 1 1	0	0
37	AN	1	Total Zn 1 1	0	0
37	В5	1	Total Zn 1 1	0	0
37	B6	1	Total Zn 1 1	0	0
37	B9	1	Total Zn 1 1	0	0
37	BN	1	Total Zn 1 1	0	0
37	C5	1	Total Zn 1 1	0	0
37	C6	1	Total Zn 1 1	0	0
37	C9	1	Total Zn 1 1	0	0
37	CN	1	Total Zn 1 1	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
37	D5	1	Total Zn 1 1	0	0
37	D6	1	Total Zn 1 1	0	0
37	D9	1	Total Zn 1 1	0	0
37	DN	1	Total Zn 1 1	0	0

• Molecule 38 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
38	AA	79	Total Mg 79 79	0	0
38	ВА	79	TotalMg7979	0	0
38	CA	79	TotalMg7979	0	0
38	DA	79	Total Mg 79 79	0	0

• Molecule 39 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
39	AA	474	Total O 474 474	0	0
39	ВА	474	Total O 474 474	0	0
39	C2	2	Total O 2 2	0	0
39	C4	2	Total O 2 2	0	0
39	C5	3	Total O 3 3	0	0
39	CA	467	Total O 467 467	0	0
39	DA	474	Total O 474 474	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

Note EDS failed to run properly.

• Molecule 1: TRANSLATION INITIATION FACTOR EIF-1A FAMILY PROTEIN

• Molecule 3:	40S RIBOSOMAL PROTEI	N S8	
Chain B2:	65%	28%	7%
MET 62 K10 K11 K12 M13 M18 M18	R22 R24 R24 R25 R25 R25 R25 R26 R31 R31 R34 R34 R34 R34 R34 R34 R34 R36 R34 R36 R34 R36 R34 R36 R36 R36 R36 R36 R36 R36 R36 R36 R37 R37 R37 R37 R37 R37 R37 R37 R37 R37	R52 857 857 857 853 865 865 865 865 865 865 873 874 873 874 873 874 873 874 873	T84 K85 186 V89 V89 194 E97 L98
T101 T102 T103 L104 V105 S108 S108 E111 T112	H124 136 137 137 137 137 134 144 144 144 144 144 144 144 144 144	R171 1172 1173 1174 0175 1176 1176 8177 8177 8178 818 0184 0184 1191 1191 1191	L196 L203 L204 K208
• Molecule 3:	40S RIBOSOMAL PROTEI	N S8	
Chain C2:	64%	28%	7%
MET G2 K10 K12 K12 M18 M18	R22 R22 R25 R25 R26 R26 R26 R31 R31 R36 R34 R37 R36 R34 R37 R36 R34 R36 R34 R36 R34 R36 R34 R36 R34 R36 R34 R36 R36 R36 R36 R36 R36 R36 R36 R36 R36	R52 N56 R57 R57 R53 R62 R65 R65 R67 C58 R57 S74 S74 S73 S74 S75 S75 S75 S75 S75 S75 S75 S75 S75 S75	T84 K85 186 V89 194 L94 L98
T101 7102 7103 1104 7105 8108 8108 8111 1112	H124 1136 1136 1136 1137 1136 1136 1146 1146 1148 1146 1148 1148 1148 114	R171 L172 L173 A174 A174 T177 S177 S177 S177 S177 C176 C134 C136 C134 C136 C136 C136 C136 C136 C136 C136 C136	L196 L203 Q204 K208
• Molecule 3:	40S RIBOSOMAL PROTEI	N S8	
Chain D2:	64%	29%	7%
MET G2 R5 R1 R1 R12 R12 R17	M18 H21 H21 H23 H23 H24 H25 H25 H25 H25 H25 H25 H25 H25 H25 H25	849 151 151 850 857 864 867 168 867 168 873 873 873	E78 R82 R82 R83 R83 R85 R85 R85 R85 R86 R86 194
E97 1101 K102 T103 T103 V104 V106 S108	E111 1112 H124 H124 H126 V137 V137 V137 V137 K143 K144 K144 V1446 V1446 V1446 R143 R150 R153	F167 R171 1173 1173 1175 1176 1176 1176 8178 8178 8178 8186 8183 6184 R185	K194 K194 L196 L203 Q204 K208
• Molecule 4:	40S RIBOSOMAL PROTEI	N RPS7E	
Chain A3:	58%	35%	7% •
MET A2 L3 A4 K5 K5 K9 K9 K9	113 114 115 115 116 117 119 117 124 127 124 123 135 135 135 135 135 135 135 135 135 13	141 141 145 150 150 153 153 163 163 163 163 163 163 163 163 163 16	L73 L74 L80 L80 L88 L88 F93 F94
T95 A96 E101 S102 K103 H108 K109 S110	R113 P114 P114 R116 S116 R117 V121 V122 V122 V122 D128 D128 D128 D128 D128 D128 D128 D	R140 1144 1144 1145 1145 1146 1146 1148 1152 1152 1153 1164 1161 1163 1163 1163 1163 1163 116	T171 7174 7174 7175 7178 7178 7179 7183
K190 T191 F192 K197 K197			
• Molecule 4:	40S RIBOSOMAL PROTEI	N RPS7E	
Chain B3:	60%	31%	8% •
MET L 3 L 3 A 2 A 2 F 6 F 6 K 8 K 9 K 9 K 9	T13 113 115 115 115 115 113 113 113 113 1	141 141 141 141 150 150 153 153 153 153 153 153 153 153 153 153	\$69 Y70 L73 L73 L74 L88 L88 V92

W O R L D W I D E PROTEIN DATA BANK

• Molecule 4: 40S RIBOSOMAL PROTEIN RPS7E

K190 T191 F192 H193 T194 F195 K196 K197

 \bullet Molecule 4: 40S RIBOSOMAL PROTEIN RPS7E

Chain D3:	5	58%	35%	7% •
MET A2 L3 A4 K6 F6 H7 K8 K8	N 113 115 115 115 115 115 115 113 123 123 123 123	427 834 138 138 138 138 138 138 138 140 140 140 140 150 150 150	N54 L62 L62 L63 V65 V65 S69 Y70 Y70 L73 L73	L88 192 F93 F94 T95 E101 S102
K103 K106 K109 S110 R113	R114 8116 8116 8116 8116 8112 122 122 122 122 122 122 122 122	1129 1129 1131 1132 1133 1133 1133 1133	R152 1153 7165 7165 1163 8166 8166 8166 8166 717	Y174 Y174 T178 T179 T179 F180 F181 T183 T183
K190 T191 F192 K196 K197				
• Molecule	5: 40S RIBOSOM	IAL PROTEIN S3A		
Chain A4: '	46%	28%	6%	21%
Chain A4:	46% 1150 117 117 117 117 117 117 117 117 117 11	122 123 123 123 123 123 123 123 123 123	K47 148 L49 V55 S53 S53 R57 K57 K57 V67	21% 177 177 177 177 177 177 177 1
Chain A4:	190 191 192 192 1710	1000 1100 1100 1110 1110 1110 1110 111	K131 K47 T132 T48 Y136 V6 Y136 V5 Y139 V5 Y140 V5 Y147 V5 Y147 V5	K148 K148 1149 A151
Chain A4: 110 11	MIC W40 LE0 1176 191 LV8 1176 192 LU1 1178 192 LL0 1178 192 LL1 1178 192 LL1 1178 192 LL1 1178 192 LL1 1178 195 LL1 1200 1101 LV5 1200 1101 LV5 1210 L105 L105	L213 L213 L214 L214 L214 L215 L216 R1108 R229 R220 R220 R220 R220 R220 R220 R226 R123 R120 R123 R120 R123 R120 R126 R123 R120 R126 R123 R120 R126 R120 R126 R126 R120 R126 R120 R126 R120 R120 R120 R120 R120 R120 R120 R120	THR K131 LVS K131 LLE K132 LLE K132 LLU K133 LLU K133 LLU K133 LLU K133 LLU K133 L143 L143 L143 L143 L15 K147 V140 L15 K147 V16 V5 V5 V5 V6 V6 V6 V6 V6 V6 V6 V6	CLY K148 V68 CLU T149 E69 LVS S150 S70 ALA A151 T71 ALA A151 T71 A15 A151 T71 A15 A151 T71 A15 A151 T71 A15 A151 T71 A15 A156 D74 A15 A156 T71 A15 A156 T71 A156 T71 A

PRO GIUN GIUN GIUN AIA AIAN LEU LEU LEU LEU CIN

 \bullet Molecule 5: 40S RIBOSOMAL PROTEIN S3A

• Molecule 6: 40S RIBOSOMAL PROTEIN RPS26E

• Molecule 6: 40S RIBOSOMAL PROTEIN RPS26E

• Molecule 6: 40S RIBOSOMAL PROTEIN RPS26E

• Molecule 7: 40S RIBOSOMAL PROTEIN S27

• Molecule 7: 40S RIBOSOMAL PROTEIN S27

• Molecule 8:	40S RIBOSOMA	L PROTEIN RPS10E	
Chain D7:	39%	20% •	38%
MET H3 V4 L5 L5 K6 K6 R10 R11	112 113 116 116 117 117 128 721 721 721 721 723 721 723 721 723 723 723 723 723 723 723 723 723 723	138 136 136 140 146 146 146 146 146 146 148 146 148 148 148 148 148 148 148 148 148 148	F54 IS8 168 168 168 168 168 168 168 170 178 178 178 178 178 178 178
G81 A84 F92 F92	K102 GLU GLU GLU GLU GLU GLU PRO ARG ARG CLU ARG CLU CLU	LYS LYS GLY GLY GLY ARG GLY ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	VAL ARC ARC ARC ARC ARC ARC ARG ARG ALA ALA ALA ALA ALA ALA ALA ALA ALA AL
ALA GLN GLY GLY ASN GLU FLR PRO ALA ALA GLN	GIU		
• Molecule 9:	40S RIBOSOMA	L PROTEIN RPS25E	
Chain A8:	33%	19% •	45%
MET GLY CLYS GLN GLN PRO ALA GLY GLY CLYS	LYS LYS LYS LYS LYS LYS ALA ALA ALA ALA ALA ALA ALA ALA	LYS GLY GLY GLY CLYS CLY CLYS CLY ALA LYS ALA LYS V39 V39	N40 H41 A42 V43 E51 E51 E51 E51 E51 K47 K62 K62 K62 K62 K62 K62 V63 V63 V63
V70 E71 K72 L73 L73 K74 V75 N76 G77 S78 S78 L79	A50 R81 M84 K95 K95 V96 N99 N104 Y105	V111 V111 THR THR ALA ALA ALA ALA ALA ALA ALA CLY GLY GLY GLN	GLN SER LYS CLYS CLYS GLY ALA ALA ALA CLU CLU CLU CLU ALA
• Molecule 9:	40S RIBOSOMA	L PROTEIN RPS25E	2
Chain B8:	32%	20% •	45%
MET GLY CLYS CLN CLN PRO PRO ALA ALA GLY CLN LYS	THR THR CVS CUU CUU ALA ALA ALA ALA ALA CUN	LLYS CLY CLYS CLYS CLY CLYS CLY TRP TRP TRP LYS CLY CLY CLYS CLY CLYS CLY CLYS CLY CLYS CLY CLYS CLY CLYS CLY CLYS CLY CLYS CLYS	M40 H41 H42 V43 E51 E51 154 V50 V60 V60 V63 V63 V63 V63 V63 V63 V63 V63 V63 V63
V70 E71 K72 L73 L73 K74 V75 N76 G77 S78 S78 L79	A80 R81 R81 R84 84 84 84 84 84 0 84 0 100 8400	V104 V104 V111 THR HIA ALA ALA ALA ALA ALA ALA ALA ALA ALA A	LYS GLM GLM GLM GLM GLM ALA ALA ALA ALA ALA ALA ALA ALA GLU GLU GLM GLM
• Molecule 9:	40S RIBOSOMA	L PROTEIN RPS25E	
Chain C8:	33%	19% ·	45%
MET GLY GLN GLN PRO ALA ALA GLY GLN LYS	LYS LYS LYS LYS LYS ALA ALA ALA ALA ALA ALA ALA ALA	LYS CLYS CLYS CLYS CLYS CLYS CLYS CLYS C	H41 H41 A42 A42 F44 F44 F46 F46 F46 F51 F54 F65 F65 F65 F65 F65 F65 F65 F65 F65 F65
K72 L73 K74 K76 V76 077 C77 C78 S78 L79 A80 R81	M84 K91 K91 E94 K96 N96 N96 Q102 Q102	V104 Y105 Y111 Y111 HR HR ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	LYS GLN GLN GLN GLN GLN SER LYS GLN ALA ALA ASP GLU CLU CLU GLU GLN ALA
• Molecule 9:	40S RIBOSOMA	L PROTEIN RPS25E	
Chain D8:	29%	22% ·	45%

V69 V70 E71 K72 L73 L73 K74 V75 V75 S77 S77 S78 S80	N81 N94 K91 K95 K95 K98 K98 N99	q102 W103 Y104 Y105	1108 V111 V111 THR THR ALA ALA ALA ALA ALA ALA	GLY CLYS CLYS CLYS CLN CLN CLN CLN CLN CLN CLN ALA ALA ALA ALA ALA ALA ALA ALA CLU CLYS CLU CLU
VAL GLN ALA				
• Molecule 10: 4	0S RIBOSOMA	L PROT	EIN RPS31E	
Chain A9:	30%	19%		51%
MET GLN VAL VAL CYS CLN CLN GLU GLU GLU CLN	LYS THR THR LEU GLU GLU GLV VAL SER VAL LEU	ASP LEU LYS SER GLN ILE	SER GLN ASP ASP CLV CLV CLV ASP ASP MET MET	VAL VAL ASN ASN CITY PHE PHE PHE CILU VAL CILU VAL ASP ASP VAL
THR TYR TYR TYR IEU IEU IEU GLY GLY	K7 4 K7 4 K7 5 S7 9 S7 9 T83 K83 K83 K83 K83 K83 K87 K87	H88 T93 L95	198 1103 1103 1103 1103 1103 1103 1103 110	110 120 120 123 1128 1128 1128 1128 1128 1138 1138
L141 K142 D144 L152 K156 K156 GLY GLY	ALA ALA ASP ALA ALA GLY GLY GLY GLY CYS	LYS ASP ALA LYS GLY GLY	LYS LYS LYS	
• Molecule 10: 4	0S RIBOSOMA	L PROT	EIN RPS31E	
Chain B9:	27%	21%		51%
MET GLN VAL CAN GLN LYS LEU GLU GLU GLU	LYS THR THR LEU GLU GLU GLU SER SER LEU	ASP LEU LYS SER GLN TLE	SER GLN GLN MET GLV GLV GLU ILE ASP MET MET THR	VAL ASN ASN ASN CLY PHE THE PHIC THE CLU CLU CLEU VAL CLEU VAL ASP ASP VAL
THR TYR TYR TYR LEU LEU LEU GLY GLY	K75 K75 K76 K77 K78 K78 S79 Y80 Y83 K83 K83 K83	T86 K87 H88 H88 T93 K94	Las F100 1101 1103 1103 1106 1106 1106 1106 1	L111 L111 0112 0113 0113 C116 C116 C120 F123 F123 F123 F123 F123 F123 F123 F123
Y133 K136 C137 C137 L139 D144 V157 K157 K157 K157	GLY ALA ALA ALA ALA ALA ALA GLY GLY ALA ALA ALA	GLY LYS LYS ASP ALA LYS	LYS LYS CLYS CLYS CLYS CLYS CLYS	
• Molecule 10: 4	0S RIBOSOMA	L PROT	EIN RPS31E	
Chain C9:	32%	16%		51%
MET GLN VAL VAL CAL CAL CAL CAL CLY GLU GLU CALV	LYS THR THR THR LEU GLU GLU GLV GLY SER VAL LEU	ASP LFU LYS SER GLN TLE	SER GLN MET MET GLV GLV GLV ILE ASP MET MET MET	VALU ASN ASN ASN ASN CLY TLE PRO ASN ASN CLU LEU VAL CLU VAL ASP ASP VAL VAL VAL
THR TYR TYR SER LEU LEU LEU CLY GLY GLY	K / 7 K / 7	K 87 H 88 T 93 K 94 L 95	Y101 K102 E103 B104 N106 G107 G112 G112	C110 C120 C120 C120 C121 C123 C123 C123 C123 C123 C137 C137 C137 C137 C137 C137 C137 C13
K142 1143 1143 CLY CLY ALA ALA ALA ALA ALA ALA ALA ALA	ALY ALA GLY GLY GLY GLY CLYS LYS LYS ALA ALA ALA LYS LYS	GLY LYS CLY GLY LYS LYS CLY		
• Molecule 10: 4	0S RIBOSOMA	L PROT	EIN RPS31E	
Chain D9:	28%	19%	•••	51%
MET GLN VAL CTHR CTHR LYS LYS CLU GLU GLU GLU	LYS TYR THR LEU GLU GLU GLU GLY THR SER VAL LEU	ASP LEU LYS SER GLN TLE	SER GLN ASP MET GLV GLU ILE ASP MET MET THR	VAL ASN ASN ASN ASN PHE TILE PRO ASN CLEU VAL THR ASP ASP VAL VAL

Chain AA:	34%	36%	23% 5% •	
A1 A2 C4 C4 C4 C4 C1 C5 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	0112 0112 0115 0115 0115 0115 0120 020 020 020 020 020	028 029 033 033 034 034 034 034 044 044 044 044	652 652 055 055 055 055 055 065 065 065 065 065	A69
UT0 UT1 G72 G72 A73 A73 C75 G77 G77 A80 A81	682 184 184 185 685 685 685 685 685 690 692 692 693 699 610	A102 C103 A104 G105 G105 A100 A110 G111 U113 U113 U112 U121	A125 U124 U124 A126 A126 A128 G128 C134 C133 G133 G135 G135 G136 G137 G136	C144
G147 G147 C148 U149 M150 U155 U155 U155	0157 0158 0159 0160 0161 0164 0164 0165 0166 0166 0166 0166 0166 0166	U171 U173 A173 A173 C179 C178 C180 C180 C186 U187 U187 U187 U187 U187 U187 U187	C190 C190 C190 C199 C199 C199 C199 C199	G209
A210 U211 U213 U213 U213 U214 U214 A215 C218 C218 C218 C218	A221 U222 C222 C225 C225 A226 A226 A228 A228 C228 A230 U231 C228 C228 A230 U231 U233 C228 C228 C228 C228 C228 C228 C228 C	A235 U237 U237 0237 6238 6240 6244 0244 0245 4245 A245 A245 A245 A255 A255 A255	2267 2267 2265 2265 2266 2266 2266 2266	-
278 4282 4283 4289 4289 4290 6291 6293 7293	U295 U295 C299 U302 C299 U302 U302 C305 C305 C305 C305 C305 C311	(311) (311) (311) (311) (311) (311) (311) (311) (311) (312) (322) (322) (322) (322) (322) (322) (323) (32) (32	A332 (333) (333) (334) (341) (341) (341) (341) (341) (341) (341) (341) (355) (355) (355) (355) (355) (355) (355) (355)	-
U359 U360 A361 A361 C368 A369 U370 U371	6374 6375 6377 6377 6377 6378 6380 6380 6380 6380 6381 6381 6381 6381 6381	4392 (3394 (3394 (3394 (3394 (3394 (3394 (3394 (3394 (3394 (3394) (340) (340) (340) (340) (340) (340) (340) (340) (340) (340) (340) (340) (340) (340) (340) (340) (340) (340) (341	0415 0416 0417 0421 0422 0422 0426 0426 0426 0426 0426 0426	A437
C440 C441 C441 C441 V442 A443 V446 C445 C447 C446 C447	6451 6452 6453 6455 6459 6465 7461 7465 6464 7465 7466 7466 7466	4469 6470 6475 6475 6475 6475 6475 6473 6479 6479 6479 6479 6483 0482 0488 0488 0488 0488 0488 0488 0488	6488 0491 0492 0492 0496 0496 0496 0496 0496 0496 0496 0496	G507
A508 A511 A511 C512 C512 A513 U515 U515 U515 U517 A519 A519	U523 4527 4527 4528 6530 6533 4533 4533 4535 4535 4535 4535	46.38 U539 U541 0542 0542 0544 0544 0544 0544 0544 0554 055	U557 0558 0558 0558 0556 0560 0560 0570 0571 0573 0571 0573 0573 0573 0573 0573 0573 0573 0573	U576
C577 C578 A585 A586 A586 A588 A588 A588 A588 A58	U597 A599 A599 U605 U605 0607 C608 C608 C608	A613 A614 A615 A615 A615 A615 G618 G618 G622 U626 G627 U626 G627 G629 A629 A629	0635 0634 0635 0635 0635 0641 0642 0642 0642 0642 0642 0642 0642 0643 0643 0643 0651 0651 0651	<mark>0654</mark>
C655 C655 C658 C658 C658 C658 C664 C664 C663 C663 C663 A664	A666 0667 0667 0669 0669 0670 A671 A673 A673 A673 A675 0677 0677 0677	00000000000000000000000000000000000000		A
G G G G A 720 A 723 A 723 A 723 A 723 A 723 A 723 A 723 A 723	U726 U727 U728 U729 V739 A739 A738 A738 A738 A738 A738 A738 A738	UT51 CT53 CT53 CT53 CT55 CT55 CT55 CT55 CT55	4771 4772 4776 4776 4781 4785 4787 4789 4789 4789 4789 4789 4789 4789	A795
U796 A797 A797 G798 G799 A800 U802 A803 A803 A803 G804 G805	C908 U811 U813 U813 U815 U815 G817 G817 U819 U820 U820 U820	U223 G225 G225 A333 A334 A334 U335 U335 A344 U335 A344 C345 G345 G345 G345 G345	C343 A449 A449 A550 A554 C355 C355 A559 A559 A559 A559 A555 A559 A555 A	A872
(873 0875 0875 0877 0877 0877 0877 0879 0881 0881 0882 0883	A884 0887 0887 0887 0889 0889 0889 08891 08894 0894 0895 0895 0895 0895	0000 0000 0000 0000 0000 0000 0000 0000 0000	6920 6920 6921 6922 6923 6933 6933 1936 0936 0936 0936 0936	U942

A150	A151	0153	G154	0155 1156	G157		C160 U161	A162	A163	0164 A165	C166	A167	0168 G169	C170	U171	U172 A173	A174	Aut. 711	01770 0178	C179	C180	0181 0182	G183	U184 0105	C185 C186	U187	G188 C189	G190	A191 C192	C193	G194 G195	A196	C198	G199	4201	U202	A205	U206	A208	G209 A210	U211 A212
U213	U214 A215	G216	A217	C218 C219	A220	A221	U222 C223		A226	6228 C228	A 2 2 9	A230	U231 G232	U233	G234	A235 11236	U237	G238	A239 G240	A241	U242	6243 A244	A245	U246	C.24 /	A250	A253	A254	U256	G257	Add A	G262	N264	C265	4260 A267	G268	0270	U271	0273 A273	C274	G278
A282	A283		U289	A290	G292	U293	U294 U295		C299	U302	A303	U304 2007	C305 A306	G307		U311 C312	G313	A314	0315 6316	G317	U318	A319 G320	U321	G322	0323 A324		G327 G328	A329	0330 0331	A332	C333	G338	G341	U342	6344	24,00	604/	A350	C352	G353 G354	U359
U360	A361 C360	G363	G364	368 368	A369	U370	U371	G374	G375	G377	A378	A379	G381 G381	-	C384	4388	G389	A390	A391 A392	C393	G394	C402		C405	0406 A407	C408	G409 G410		G413 G414	G415	C416 A417	G418	4420	G421	G423	A424	6426 G426	A427	A420 A429	A430 U431	U432
C436	A437	C440		A443 A444	N111 U445	U446	C447 A448		G451	6453		G459	A460 C461	-	G464	A465 A466	A467	U468	A469 G470	C471	A472	6474		G477	G479 G479	A480	A481 A482	C483	0484 0485	A486	C48/ G488	U489	0491	C492	0493 A494	C495	6490 6497	C498	N433 U500	0501 0502	A503 A504
A505	U506 GE07	A508		A511 C512	A513	G514	U515 G516	U517	A518	ATON	U523	C524	A527	G528	C529	G530 A531	G532	G533	A534 A535	C536	A537	A538 U539	U540	G541	G542 A543	G544	A548	A549	G550 U551	C552	4553 U554	11007	G558	C559 C560	0000 A561	01170	G571	U572	A574	U575 U576	C577 C578 C578
-	A585 A586	U587	A588	6289	A593	U594	A595 U596	U597	A 598	ADdd	U603	G604	U605 U606	G607	C608	II61	U612	A613	A615 A615	A616	A617	6018	C621	G622	G628	A629	A630 C631	U632	0634 C634	U635	4636 U637	C E A J	7505	C645	4040 U647	U648	C650	G651	4032 U653	U654 C655	G656 U657
C658	G659 11660	G661	U662	ARGE	A666	C667	0668 0669	G670	010 1	40/3 U674	A675	C676	G677 U678	U679	U680	G681 C682	A	A	CA	ũ	A	A A	A	n	5 6	5 5	5 5	n ::	- U	Ä	ם ני	5 5	• D	D C	J 53	Å	00	n	⊈ U	5 5	d A G719
U720	A721 A722		A725	0/26	U728	U729	A738	A739	0 7 1 1	0/43	G749	U750	0752 C752	C753	A754	G755	A758	G759	G/60 U761	U762	U763	U / 64 A 765	G766		6770 A771	A772	C775	A776		C781	G785	A786	A789		G793	A794	A/ 90 U796	A797	6190 G799	A800 C801	U802 A803
A804	<u>6805</u>	C808	A809	U810 11811	U812	U813	A814 U815	U816	G817	U819	U820	C821	U822 U823	G824	G825	4833	A834	U835	U839	A840	A841	0842 A843	G844	G845	G846 A847	C848	A849 G850		6854	G857	A859	U860	4862	G863 11864	0004 A865	<u>1866</u>	A872	G873	00/ 1 C875	A876 G877	A878 G879
G880	0881	A883	A884	A885 II886	U887	C888	0889 U890	G891	G892	A893 U894	U895	U896	A897 U898		G902	6903 4904	C905	U906	A907 A908	C 909	U910	A911 A912	U913	G914	G 920	C921	N922 U923		CAZQ	A931	4932 A933	U934	U936	U937 11036	0000	A941	094.2 094.3	A944	C947	A948 A949	C953
954	955 956	957	958	and a second	963		966	968	969	971	972	973 571	975 975	976	977	978 979	980	981	982	984	985		994	995 200	997	998	1000	1001	1003	1004	1006	1007	1009	1010	1012	1013	1014	1017	1019	1020	1024 1025
26	127 A	A	31 G	13.7 13.3	34	35	36 A	33	A A	42 A	144 G	M45 A	146	49 A	50 U		53 6	N A	156 A	57 C		900 090	61 C	62 0	163 A	65 A	0 0 0	70 A	72 A	A	CC	0 000 000	81 U	82 62	84 C		19.2 A		98 08	5	0 0 0 0 0 0 0 0
C10	010	2	A1C		A1C	A10	010 G10	010		010	C10	G10	610	C1C	C10	G10 1110	A1C	010		G10	A1C	A1C A1C	U10	C1C	AICAL	A1C	U1C	U10	G10 G10		OTO	G10	<u>610</u>	G10	A10	0.111	010 A10			G10	U11 U11
A1110	A1111 A1112	G1113	G1114	AIII5 A1116	U1117	U1118	G1119 A1120	C1121	G1122	A1124	A1125	C1126	C1131	A1132	C1133	C1134 A1135	G1136	A1137	61138 G1139	U1140	G1141	G1142 A1143	A1144	C1145	C1146 U1147	G1148	G1149 G1150	G1151	01152 01153	U1154	A1155 A1156	U1157	U1159	G1160	C1162	U1163	01104 A1165	A1166	A1168	C1169 G1170	G1171 G1172
G1173	A1174 A1175	A1176		C1181	C1185	G1186	C1187 A1188	A1189	0	CTIAZ	A1198	G1199	G1200 G1201	A1202	U1203	01204 G1205	A1206	C1207	A1208 G1209	A1210	U1211	01212 G1213	A1214	G1215	A1216 G1217	C1218	01219 C1220	U1221	U1222 U1223	C1224	01225 01226	G1227	U1229	U1230	U1232	U1233	01234 G1235	G1236	107 15	01241 01242	G1245

• Molecule 11: 18S ribosomal RNA

C440	C441	0443 A443	A444	0440 11446	C447	A448	G451	A452	6400	G459	A460	C401	G464	A465	A467	U468	A469	C471	A472	A473 G474	C475	0476 04775	G477 G478	G479	A480 A481	A482	C483	U484 U485	A486	C487 G488	U489	0490 U491	C492	0493 A494	C495	G496	649/ C498	A499	Upon	A503	A504 A505	U506
G507	A508	A511	C512	6514 6514	U515	G516 11517	4518	A519	U523		A527	G529 C529	G530	A531	G533	A534	A535 7536	A537	A538	U539 U540	G541	G542	A543 G544	G545	G546	A548	A549	G550 U551	C552	A553 U554		000 / G558	C559	C560 A561	1004	G570	U572	A573	A574 U575	U576	C577 C578	2
A585	A586	A588	G589	A5.9.3	U594	115.97	A598	A599	U603	G604	U605	0000 G607	C608	1704	U612	A613	A614 A615	A616	A617	G618 C619	U620	C621	77.99	G628	A629	C631	U632	U633 C634	U635	0636 0637	U638	C039 A640	G641	G642	C645	A646	U648	U649	C650 G651	A652	U653 U654	CGEE
G656	U657 C658	G659	U660	1001 11662	G663	A664 A665	A666	C667	0000 0009	G670	5 2 2 3	A6/3 U674	A675	C676	u678	U679	U680 C681	C682	Å	A	0	n ·	A A	A	A	0 0	5	9 0	U	n	0	u ¤	n	5 5	ņ	D C	ט ט	Ä	n c	n	A ت	, ლ
IJ	A 6710		A722	A7.25	U7.26	U727 1728	U7 29	A730		A738	A739	U743		G7 49	0751	C752	C753	G755		A758 G759	G760	U761	U763	U764	A765 C766		G770	A771 A772		A776 U777	0201		G785	A786 A787	U788	A789	G792	G7 93	A7 94 A7 95	U7.96	A7.97 G7.98	G1 99
A800	C801	A803	A804	0000	C808		U811	U812	0613 A814	U815	U816	G818	<mark>U819</mark>	U820	U822	U823	6824		A833	A834 11835		U839	A840 A841	U842	A843 C844	G845	G846	A847 C848	A849	G 850	G854	G857	C858	A859 11860	U861	A862	0864 U864	A865	U866	A872	G873 11874	C875
A876	G877	G879	G880	1001 (3887	A883	A884 A885	0886	U887	0000 U889	068U	G891	4893	U894	U895	0690 A897	U898		G902	G903	A 904 C 905	906N	A907	C909	U910	A911 A912	U913	-	G920 C921	A922	C928	1004	G932	A933	0934 6935	0336	U937	0300	A941	0942 0943	A944	C.947	A948
A949	705 3	G954	A955	A957	G958	C 96 0	6963		A900 U967	C968	A969	A970	G972	A973	G975	A976	1977 7978		A981	0982 A983	C984	C985	0986 0987	C988	6889	C994	<mark>U995</mark>	0996 A997	A998	C999 U1000	A1001	A1003	A1004	A1005 C1006	U1007	A1008	A1010	C1011	C1012 G1013	A1014	C1017	G1018
31019	31020	31024	31025	11027	G1028	61.029 41.030	A1031	01032 1032	A1033 A1034	A1035	U1036	1038 01038		G1042	01043 01044	G1045	31046	C1 049	C1050	31051 11052	A1053	U1 05 4	990 LE	A1059	A1060	C1062	A1063	A1064 A1065		01069 01070	U1071	a10/2	U1076	G1 07 9	31080	G1081	31083 31083		U1092 A1093		A1098 31099	
1108	1109	111	112	114	115	116	118	119	121	1122	1123	125	1126		132	1133	134	1136	1137	138	140	141 121	142	144	145	1147	1148	149 1150	151	152 153	154	1156	1157	158 159	1160	161	162	1164	L165 L166	167	1 68 1 69	170
5		H A	N N		A:					.5	0	A	5	č		C			A A	A S				A					0			A A	5			A C		C C	A A	5		3
G1171	G1172	A1174	A1175		C1181	G1182 A1183	G1184	C1185	C1187	A1186	A1189	A1191	C1192		G1196	G1200	G1201	U1203	U1204	G1205 A1206	C1207	A1208	G1208	U1211	01212	A1214	G121E	A1216 G1217	C1218	01219 C1220		C1224	U122E	01226 61227	A1228	U1229	C1231	U1232	01230 01234	G123E	G1236 G1237	
U1241	G1242	G1245	C1246	A1 24 / 111 248	G1249	G1250 C1251	C1252	G1253	C1256	U1257	U1258	U1262	G1263	G1264	01265 G1266		G1269 111 270	G1271	A1272	01273	G1276	U1277	U1279	G1280	G1281	20210	U1286	01287 C1288	C1289	G1290 U1291	U1292	A1293 A1294	C1295	G1296 A1297	A1298	C1299	41300 A1301	G1302	A1303 C1304	C1305	U1306 111307	
C1311	U1312		A1316	C1318	U1319	A1320 G1321	U1322	C1323	C1326	U1327	U1328	01330 U1330	A1331	A1332	N1334		G1339	U1342	G1343	01344 A1345	C1346	U1347	01348 C1349	U1350	U1351 A1352	G1353	A1354	G1355 G1356	G1357	A1358 C1359	U1360	01362	U1363	G1364 111365	G1366	C1367	A1369	U1370	A1371 A1372	G1373	G1379	G1380
A1381	A1382	U1384	U1385	01387 A1387	A1388	G1389 G1390	C1391	A1392	A1393 U1394	A1395	A1396	C139/ A1398	G1399	G1400	01401 C1402	<mark>U1403</mark>	G1404	G1406	A1407	01408	C1412		A1415 G1416	A1417	C1418 C1419	01420	<mark>G14</mark> 21	C1424	G1425	G1426 C1427	C1428	G1423 C1430	A1431	C1432 61433	C1434	G1435	C1430 G1437	U1438	U1439 A1440	C1441	A1442 A1443	U1444
G1445	A1446	U1448	G1449	G1451	G1452	C1453	A1455	A1456	A1458		A1461	01463 U1463	U1464	C1465	U1467	G1468	01469	C1471	U1472	G1473 G1474	G1475	A1476	A14// G1478	G1479	U1480 A1481	TOETW	U1486	A1487 A1488	U1489	C1490 U1491	U1492	01494	U1495	A1496 A1497	U1498	A1499	C1501	•	01504 C1505	G1506	U1507 C1508	U1509

• Molecule 13: 40S R	IBOSOMAL PROT	EIN RPS3E		
Chain AC:	60%		29%	5% 6%
MET ASP LVS LVS 15 14 R15 R15 R10 K11 K11 V15 V15 L24	F28 529 529 533 133 133 133 133 133 133 133 133 133	K49 749 151 151 K57 K57 Q60 V64 E65	K68 F75 L76 Q77 K78 K78 F80	681 182 188 187 187 698 698
A101 0104 0105 0115 0115 0115 1118 1118 1125 1125 0132	G136 C137 C137 C137 E138 S142 S142 K146 K146 K151 K151	C158 7159 7159 7163 7164 7165 7165 7165 7165 7165	A174 V175 V178 M185 G186 V187	K188 V189 L193 E196 K201 K202
F203 (204 (204 1209 P210 P211 P211 P211 1221 1221 T222 T222 F226	R228 CU CU CU CU CU CU CU CU CU CU CU CU CU	1		
• Molecule 13: 40S R	IBOSOMAL PROT	EIN RPS3E		
Chain BC:	60%		29%	5% 6%
MET ASP ASP ASP ASP T4 T5 ASP N10 K11 K11 F14 F14 F14	F28 S29 C133 C133 C133 C133 C133 C133 C133 C13	K48 T49 E50 K57 K57 V64	K68 K70 F75 L76 C77 K78 K78	F80 681 782 187 187 698 698 698
A101 4104 4104 7106 7106 7108 712 7125 7125 7125 7125	6136 6137 6137 6137 6137 1140 1140 1140 1146 1146 1146 1146 1146	q157 (158 (158 (159 (162 (163 (163 (165 (165 (165 (165 (165	1171 A174 V175 V178 Q182 G183	1184 M185 G186 V187 V189 V189 L193
E196 K201 K202 F203 F203 F203 F204 D211 P211 F217 F217 F217	E226 1227 7227 810 810 610 610 610 810 810 810 810 810 810 810	GLN GLN GLN		
• Molecule 13: 40S R	IBOSOMAL PROT	EIN RPS3E		
Chain CC:	58%		31%	5% 6%
MET LASP LASP LASP LASP LASP RIJ KIJ KIJ KIJ VI5 VI5 VI5	L24 L24 L22 R33 L32 L32 L32 A35 A35 A35 A35 A35 A35 A35 A35 A35 A35	P46 T47 T48 T49 E50 E51 K57 K57 K57	V64 K68 H69 K70 L76 L76 Q77	K78 R79 F80 F81 F81 F82 D85 D85 D85 D85 T87
698 4101 4104 7104 7104 7106 7108 7112 7112 7112 7121	1125 1125 1132 1136 1136 1138 1138 1138 1138 1138 1138	Q147 Q147 Q148 Q148 Q151 Q153 Q158 Q158 C159 C152 C162 C162	0164 0165 0166 1167 1171 1171 1171 1171 1171 1171	V178 1184 M185 G186 V187 V187 V189
L193 E196 F197 R201 R203 F203 F203 F203 F203 F210 F210 F210 F210 F211 V213	H2 16 H2 16 1221 1222 1222 1222 1222 1223 1223 12	PRO ALA GLN GLN GLN GLN GLN GLN GLN		
• Molecule 13: 40S R	IBOSOMAL PROT	EIN RPS3E		
Chain DC:	57%		32%	5% 6%
MET ASP ASP ASP ASP ASP ASP ASP K13 K11 K11 K13 K13 K13 F14 F14 F14 F14 F14 F14 F14 F14 F14 F14	F28 529 531 133 133 133 133 133 133 133 133 133	747 749 749 151 151 151 060 060 060	K68 F75 L76 Q77 K78 K78 R79 F80	681 Y82 D86 Q86 187 187 N90
G98 A101 A101 V105 N109 L1112 L1112 L1113 A121	1125 1125 1132 1134 1141 1141 1145 1145 1146 1146 1146	K151 K151 R157 Q157 Q157 Q157 C161 1161 C162 C163 C164 G164	0165 P166 K167 L171 A174 V175	V.178 V.178 K.181 M.185 G.186 V.187 V.187 V.187

• Molecule 14: 40S RIBOSOMAL PROTEIN RPS9E

• Molecule 15: 40S RIBOSOMAL PROTEIN RPS2E

 \bullet Molecule 15: 40S RIBOSOMAL PROTEIN RPS2E

 \bullet Molecule 17: 40S RIBOSOMAL PROTEIN RPS5E

• Molecule 17: 40S RIBOSOMAL PROTEIN RPS5E

• Molecule 18: 40S RIBOSOMAL PROTEIN RPS22E

 \bullet Molecule 24: 40S RIBOSOMAL PROTEIN RPS29E

Chain CN:	58%	33%	7% •
MET N3 N3 N3 N3 N3 N3 N3 N3 N3 N3	R26 R26 R31 R31 R32 R33 R35 R35 R35 R35 R35 R35 R35 R35 R35	K53 R55 R55	
• Molecule 24: 40S	RIBOSOMAL PROTEIN	RPS29E	
Chain DN:	58%	33%	7% •
MET P2 R7 R7 H9 H9 S11 S11 S17 S17 S17	V22 C23 C23 R26 R26 R32 N32 N33 N33 N33 N33 N35 N33 N35 N33 N35 N35	H48 B5 B5	
• Molecule 25: 40S	RIBOSOMAL PROTEIN	RPS13E	
Chain AO:	59%	37%	••
MET MET 83 83 83 83 83 95 83 80 81 811 113 113 113 814 812 812 813 814 814 814 814 814 814 814 814 814 814	G15 L18 L18 P25 R26 R26 R26 R26 R26 R26 R57 R57 R57 R57 R57 R57 R57 R57 R57 R57	q64 V65 V65 R66 F67 F67 F67 K72 K72 K72 K73 K79 K79 K79 K79 K79 K79 K79 K79 K79 K79	1 88 1 88 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
R101 K102 H103 E104 E105 R106 R106 R106 L118 L118 V120	E121 E121 8122 8123 8126 8127 8128 8128 8128 8128 8128 8128 8128	d153	
• Molecule 25: 40S	RIBOSOMAL PROTEIN	RPS13E	
Chain BO:	58%	37%	5%•
MET 62 62 63 83 84 65 65 612 612 612 612 113 113 113	G15 816 816 118 118 825 825 825 825 825 843 734 735 867 869 059 059	P65 P65 Q64 V65 R65 F67 F67 F67 T73 T73 T73 C72 C82 C82 C82 C83 C83 C83 C83 C83 C83 C83 C83 C83 C83	P84 Q85 E86 E88 D89 D89 D89 D89 C95 K95
A97 R101 K102 K103 H103 E104 E104 R106 K106 K109 K109 K113 L113	V120 V120 S122 S122 R122 L125 L125 L125 L125 N145 N144 A145 A145 A146 A146 A146	V152 0153	
• Molecule 25: 40S	RIBOSOMAL PROTEIN	RPS13E	
Chain CO:	59%	36%	• •
MET G 2 G 2 G 2 M 4 G 6 G 1 C 11 C 11 C 11 C 11 C 11 C 11 C 11	615 816 816 118 118 118 725 735 735 735 743 743 743 743 743 743 743 743 743 743	102 064 105 105 105 173 173 173 173 173 173 173 173 173 173	P87 E88 E88 E88 E88 E88 E88 E88 K96 K96 K96 A97
K102 H103 L104 E106 R106 M107 M107 M107 K109 K109 L111 L119 L119 L119 S122	R123 R126 1127 8128 8128 8128 8128 8148 M144 M144 1147 1147 1147 1151 0153		
• Molecule 25: 40S	RIBOSOMAL PROTEIN	RPS13E	
Chain DO:	58%	37%	• •
	W O		

 \bullet Molecule 26: 40S RIBOSOMAL PROTEIN S24

 \bullet Molecule 26: 40S RIBOSOMAL PROTEIN S24

 End
 End</t

 \bullet Molecule 26: 40S RIBOSOMAL PROTEIN S24

• Molecule 26: 40S RIBOSOMAL PROTEIN S24

 Chain DP:
 62%
 34%
 ...

 1
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2</td

R102 F105 F105 F106 F106 K108 K108 K128 L124 L124 K128 K128 K128 K128 K128 F149 F146 F146 F149 F146

• Molecule 27: 40S RIBOSOMAL PROTEIN RPS11E

Chain AQ: 57% 34% 8%

National Sector of the sector

• Molecule 27: 40S RIBOSOMAL PROTEIN RPS11E

Chain BQ: 55% 36% 8% •

 \bullet Molecule 27: 40S RIBOSOMAL PROTEIN RPS11E

Chain CQ: 59% 32% 9% ·

• Molecule 27: 40S RIBOSOMAL PROTEIN RPS11E

 Chain DQ:
 58%
 32%
 9%

 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8

 \bullet Molecule 28: 40S RIBOSOMAL PROTEIN RACK1

• Molecule 29: 40S RIBOSOMAL PROTEIN RPS15E

 \bullet Molecule 30: 40S RIBOSOMAL PROTEIN RPS19E

• Molecule 31: 40S RIBOSOMAL PROTEIN RPS12E

 \bullet Molecule 33: 40S RIBOSOMAL PROTEIN RPS4E

• Molecule 35: 40S RIBOSOMAL PROTEIN S6 Chain BY: 45% 29% 22% • Molecule 35: 40S RIBOSOMAL PROTEIN S6 Chain CY: 46% 28% 22% 1182 1183 1184 1184 2185 2185 • Molecule 35: 40S RIBOSOMAL PROTEIN S6 Chain DY: 46% 29% 22%

• Molecule 36: 40S RIBOSOMAL PROTEIN RPS21E

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	209.99Å 471.55 Å 298.54 Å	Depositor
a, b, c, α , β , γ	90.00° 91.02° 90.00°	Depositor
Resolution (Å)	49.75 - 3.70	Depositor
% Data completeness	91.0 (49.75-3.70)	Depositor
(in resolution range)	51.0 (45.10 5.10)	Depositor
R _{merge}	0.15	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.43 (at 3.67 \text{\AA})$	Xtriage
Refinement program	PHENIX (PHENIX.REFINE)	Depositor
R, R_{free}	0.202 , 0.229	Depositor
Wilson B-factor $(Å^2)$	97.6	Xtriage
Anisotropy	0.570	Xtriage
L-test for twinning ²	$< L >=0.45, < L^2>=0.28$	Xtriage
Estimated twinning fraction	0.045 for h,-k,-l	Xtriage
Total number of atoms	315512	wwPDB-VP
Average B, all atoms $(Å^2)$	138.0	wwPDB-VP

EDS failed to run properly - this section is therefore incomplete.

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 1.57% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Mol Chain Bond le		ond lengths	I	Bond angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	A0	0.31	0/827	0.56	0/1103
1	B0	0.31	0/827	0.56	0/1103
1	C0	0.31	0/827	0.56	0/1103
1	D0	0.31	0/827	0.57	0/1103
2	A1	0.31	0/510	0.66	0/677
2	B1	0.30	0/510	0.65	0/677
2	C1	0.31	0/510	0.66	0/677
2	D1	0.28	0/510	0.65	0/677
3	A2	0.35	0/1717	0.62	0/2288
3	B2	0.33	0/1717	0.61	0/2288
3	C2	0.34	0/1717	0.61	0/2288
3	D2	0.32	0/1717	0.61	0/2288
4	A3	0.34	0/1656	0.60	0/2223
4	B3	0.34	0/1656	0.61	0/2223
4	C3	0.33	0/1656	0.60	0/2223
4	D3	0.32	0/1656	0.60	0/2223
5	A4	0.49	2/1703~(0.1%)	0.75	4/2284~(0.2%)
5	B4	0.42	0/1801	0.68	0/2417
5	C4	0.34	0/1801	0.67	0/2417
5	D4	0.54	4/1801~(0.2%)	0.70	2/2417~(0.1%)
6	A5	0.42	0/823	0.68	0/1100
6	B5	0.41	0/823	0.68	0/1100
6	C5	0.39	0/823	0.67	0/1100
6	D5	0.35	0/823	0.67	0/1100
7	A6	0.36	0/640	0.56	0/855
7	B6	0.39	0/640	0.56	0/855
7	C6	0.34	$0/\overline{640}$	0.54	0/855
7	D6	0.32	$0/\overline{640}$	0.55	0/855
8	A7	0.31	0/853	0.55	0/1148
8	B7	0.32	0/853	0.55	0/1148
8	C7	0.32	0/853	0.55	0/1148
8	D7	0.30	0/853	0.56	0/1148

4BTS

Mol Chain		Bond lengths		Bond angles	
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
9	A8	0.32	0/620	0.61	0/831
9	B8	0.36	0/620	0.62	0/831
9	C8	0.32	0/620	0.61	0/831
9	D8	0.31	0/620	0.62	0/831
10	A9	0.28	0/764	0.56	1/1007~(0.1%)
10	B9	0.29	0/764	0.54	1/1007~(0.1%)
10	C9	0.31	0/764	0.57	1/1007~(0.1%)
10	D9	0.31	0/764	0.67	1/1007~(0.1%)
11	AA	0.51	3/40993~(0.0%)	1.15	225/63880~(0.4%)
11	BA	0.51	1/40993~(0.0%)	1.14	222/63880~(0.3%)
11	CA	0.47	1/40993~(0.0%)	1.13	221/63880~(0.3%)
11	DA	0.44	1/40993~(0.0%)	1.12	219/63880~(0.3%)
12	AB	0.32	0/1652	0.59	0/2240
12	BB	0.31	0/1652	0.59	0/2240
12	CB	0.31	0/1652	0.59	0/2240
12	DB	0.29	0/1652	0.58	0/2240
13	AC	0.33	0/1846	0.59	1/2479~(0.0%)
13	BC	0.34	0/1846	0.59	1/2479~(0.0%)
13	CC	0.34	0/1846	0.59	1/2479~(0.0%)
13	DC	0.31	0/1846	0.58	1/2479~(0.0%)
14	AD	0.33	0/1501	0.65	0/2003
14	BD	0.33	0/1501	0.64	0/2003
14	CD	0.33	0/1501	0.64	0/2003
14	DD	0.33	0/1501	0.65	0/2003
15	AE	0.38	0/1864	0.63	0/2521
15	BE	0.37	0/1864	0.63	0/2521
15	CE	0.35	0/1864	0.62	0/2521
15	DE	0.35	0/1864	0.62	0/2521
16	AF	0.31	0/751	0.60	0/1010
16	BF	0.32	0/751	0.59	0/1010
16	CF	0.29	0/751	0.59	0/1010
16	DF	0.30	0/751	0.60	0/1010
17	AG	0.34	0/1546	0.63	1/2079~(0.0%)
17	BG	0.34	0/1546	0.63	1/2079~(0.0%)
17	CG	0.34	0/1546	0.63	1/2079~(0.0%)
17	DG	0.31	0/1546	0.62	1/2079~(0.0%)
18	AH	0.42	0/1058	0.74	1/1421~(0.1%)
18	BH	0.42	0/1058	0.75	1/1421~(0.1%)
18	CH	0.39	$0/105\overline{8}$	$0.7\overline{4}$	1/1421 (0.1%)
18	DH	0.36	0/1058	0.73	1/1421~(0.1%)
19	AI	0.34	0/1151	0.62	0/1540
19	BI	0.34	0/1151	0.61	0/1540
19	CI	0.34	0/1151	0.62	0/1540

a	ation Summary Report				
ł	Bond angles				
	# Z > 5				
	0/1540				
	0/1168				
	1/1168~(0.1%)				
	0/1168				
	0/1168				
	0/1452				
	$0/1\overline{452}$				
	0/1452				

Mal	Chain	Bond lengths		Bond angles	
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5
19	DI	0.31	0/1151	0.61	0/1540
20	AJ	0.38	1/868~(0.1%)	0.63	0/1168
20	BJ	0.39	1/868~(0.1%)	0.64	1/1168~(0.1%)
20	CJ	0.37	1/868~(0.1%)	0.63	0/1168
20	DJ	0.37	1/868~(0.1%)	0.63	0/1168
21	AK	0.38	0/1078	0.72	0/1452
21	BK	0.36	0/1078	0.71	0/1452
21	CK	0.34	0/1078	0.70	0/1452
21	DK	0.33	0/1078	0.70	0/1452
22	AL	0.36	0/1103	0.65	0/1471
22	BL	0.36	0/1103	0.66	0/1471
22	CL	0.35	0/1103	0.64	0/1471
22	DL	0.34	0/1103	0.64	0/1471
23	AM	0.29	0/1252	0.61	0/1680
23	BM	0.30	0/1252	0.61	0/1680
23	CM	0.29	0/1252	0.60	0/1680
23	DM	0.28	0/1252	0.60	0/1680
24	AN	0.36	0/465	0.63	0/619
24	BN	0.37	0/465	0.64	0/619
24	CN	0.32	0/465	0.62	0/619
24	DN	0.34	0/465	0.63	0/619
25	AO	0.36	0/1253	0.63	0/1677
25	BO	0.36	0/1253	0.64	0/1677
25	CO	0.34	0/1253	0.63	0/1677
25	DO	0.32	0/1253	0.62	0/1677
26	AP	0.31	0/1215	0.60	0/1626
26	BP	0.32	0/1215	0.61	0/1626
26	CP	0.30	0/1215	0.60	0/1626
26	DP	0.31	0/1215	0.60	0/1626
27	AQ	0.39	0/1290	0.66	0/1731
27	BQ	0.36	0/1290	0.67	0/1731
27	CQ	0.36	0/1290	0.66	0/1731
27	DQ	0.33	0/1290	0.65	0/1731
28	AR	0.31	0/2750	0.60	0/3726
28	BR	0.30	0/2750	0.61	0/3726
28	CR	0.30	0/2750	0.61	0/3726
28	DR	0.29	0/2750	0.60	0/3726
29	AS	0.27	0/1028	0.54	0/1374
29	BS	0.29	0/1028	0.55	0/1374
29	CS	0.28	0/1028	0.54	0/1374
29	DS	0.27	0/1028	0.54	0/1374
30	AT	0.34	0/1264	0.58	0/1698
30	BT	0.35	$0/1\overline{264}$	0.58	0/1698

Mal	Chain	В	ond lengths]	Bond angles
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
30	CT	0.32	0/1264	0.57	0/1698
30	DT	0.33	0/1264	0.57	0/1698
31	AU	0.28	0/961	0.56	0/1288
31	BU	0.29	0/961	0.56	0/1288
31	CU	0.29	0/961	0.56	0/1288
31	DU	0.30	0/961	0.58	0/1288
32	AV	0.32	0/981	0.59	0/1311
32	BV	0.30	0/981	0.56	0/1311
32	CV	0.32	0/981	0.56	0/1311
32	DV	0.30	0/981	0.57	0/1311
33	AW	0.36	0/2119	0.62	0/2849
33	BW	0.34	0/2119	0.62	0/2849
33	CW	0.34	0/2119	0.62	0/2849
33	DW	0.34	0/2119	0.62	0/2849
34	AX	0.29	0/612	0.54	0/812
34	BX	0.29	0/612	0.55	0/812
34	CX	0.28	0/612	0.54	0/812
34	DX	0.28	0/612	0.54	0/812
35	AY	0.31	0/1852	0.55	0/2462
35	BY	0.31	0/1852	0.55	0/2462
35	CY	0.31	0/1852	0.55	0/2462
35	DY	0.31	0/1852	0.55	0/2462
36	AZ	0.36	0/755	0.61	0/1013
36	BZ	0.35	0/755	0.61	0/1013
36	CZ	0.34	0/755	0.60	0/1013
36	DZ	0.33	0/755	0.61	0/1013
All	All	0.41	16/333578~(0.0%)	0.93	910/482983~(0.2%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
4	A3	0	1
4	B3	0	1
4	C3	0	1
4	D3	0	1
5	A4	0	1
5	B4	0	2
5	C4	0	2
5	D4	0	2

Mol	Chain	#Chirality outliers	#Planarity outliers
7	A6	0	1
7	B6	0	1
7	C6	0	1
7	D6	0	1
9	A8	0	1
9	B8	0	1
9	C8	0	1
9	D8	0	1
17	AG	0	1
17	BG	0	1
17	CG	0	1
17	DG	0	1
18	AH	0	2
18	BH	0	2
18	CH	0	2
18	DH	0	2
20	AJ	0	1
20	BJ	0	1
20	CJ	0	1
20	DJ	0	1
21	AK	0	1
21	BK	0	1
21	CK	0	1
21	DK	0	1
24	CN	0	1
25	AO	0	1
25	BO	0	1
25	CO	0	1
25	DO	0	1
29	AS	0	1
29	BS	0	1
29	CS	0	1
29	DS	0	2
31	AU	0	2
31	BU	0	2
31	CU	0	2
31	DU	0	2
32	DV	0	1
33	AW	0	1
33	BW	0	1
33	CW	0	1
33	DW	0	1

Mol	Chain	#Chirality outliers	#Planarity outliers
All	All	0	62

The worst 5 of 16 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
5	D4	31	TRP	NE1-CE2	-10.69	1.23	1.37
5	D4	31	TRP	CD1-NE1	8.48	1.52	1.38
5	A4	31	TRP	CG-CD1	7.86	1.47	1.36
11	DA	1586	А	O3'-P	7.60	1.70	1.61
5	D4	31	TRP	CD2-CE2	7.60	1.50	1.41

The worst 5 of 910 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
11	AA	515	U	N1-C2-O2	12.79	131.75	122.80
11	BA	515	U	N1-C2-O2	12.46	131.52	122.80
11	DA	515	U	N1-C2-O2	12.24	131.37	122.80
11	CA	515	U	N1-C2-O2	12.05	131.23	122.80
11	BA	1296	G	N3-C2-N2	-11.69	111.72	119.90

There are no chirality outliers.

5 of 62 planarity outliers are listed below:

Mol	Chain	Res	Type	Group
4	A3	131	LEU	Peptide
5	A4	71	THR	Peptide
7	A6	65	THR	Peptide
9	A8	99	ASN	Peptide
17	AG	73	PHE	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	A0	817	0	829	24	0
1	B0	817	0	829	48	0

	nuea jron	<i>i previous</i>		TT(addad)	Clasher	Comment Clasher
	Chain	Non-H	H(model)	H(added)	Clasnes	Symm-Clasnes
	CO	817	0	829	33	0
	DU	817	0	829	29	0
2	Al	511	0	544	24	0
2	BI	511	0	544	18	0
2	CI	511	0	544	23	1
2	DI	511	0	544	22	0
3	A2	1693	0	1795	75	1
3	B2	1693	0	1795	61	0
3	C2	1693	0	1795	65	0
3	D2	1693	0	1795	67	0
4	A3	1629	0	1708	63	0
4	B3	1629	0	1708	63	0
4	C3	1629	0	1708	64	0
4	D3	1629	0	1708	58	0
5	A4	1679	0	1762	60	0
5	B4	1775	0	1851	64	0
5	C4	1775	0	1851	60	0
5	D4	1775	0	1851	68	0
6	A5	812	0	854	46	0
6	B5	812	0	854	41	0
6	C5	812	0	854	40	0
6	D5	812	0	854	39	0
7	A6	632	0	646	28	0
7	B6	632	0	646	31	1
7	C6	632	0	646	29	0
7	D6	632	0	646	33	0
8	A7	833	0	844	37	0
8	B7	833	0	844	28	0
8	C7	833	0	844	36	0
8	D7	833	0	844	47	0
9	A8	615	0	660	25	0
9	B8	615	0	660	27	1
9	C8	615	0	660	20	0
9	D8	615	0	660	36	0
10	A9	751	0	807	55	0
10	B9	751	0	809	76	0
10	C9	751	0	809	41	0
10	D9	751	0	809	56	0
11	AA	36629	0	18413	1084	0
11	BA	36629	0	18413	1119	3
11	CA	36629	0	18413	1052	2
11	DA	36629	0	18413	1110	1

	nued fron	<i>i previous</i>		TT (11 1)		a al l
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
12	AB	1619	0	1623	70	0
12	BB	1619	0	1623	75	0
12	CB	1619	0	1623	66	0
12	DB	1619	0	1623	61	0
13	AC	1811	0	1907	64	0
13	BC	1811	0	1907	68	0
13	CC	1811	0	1907	78	0
13	DC	1811	0	1907	84	0
14	AD	1478	0	1569	74	0
14	BD	1478	0	1569	72	0
14	CD	1478	0	1569	65	0
14	DD	1478	0	1569	64	0
15	AE	1818	0	1853	76	0
15	BE	1818	0	1853	75	0
15	CE	1818	0	1853	80	0
15	DE	1818	0	1853	78	0
16	AF	736	0	722	16	0
16	BF	736	0	722	13	0
16	CF	736	0	722	14	0
16	DF	736	0	722	12	0
17	AG	1520	0	1572	58	0
17	BG	1520	0	1572	57	0
17	CG	1520	0	1572	52	0
17	DG	1520	0	1572	54	0
18	AH	1040	0	1096	42	0
18	BH	1040	0	1096	42	0
18	CH	1040	0	1096	49	0
18	DH	1040	0	1096	43	0
19	AI	1135	0	1204	46	0
19	BI	1135	0	1204	48	0
19	CI	1135	0	1204	47	0
19	DI	1135	0	1204	50	0
20	AJ	859	0	921	36	0
20	BJ	859	0	921	41	0
20	CJ	859	0	921	39	0
20	DJ	859	0	921	39	0
21	AK	1063	0	1088	62	0
21	BK	1063	0	1088	59	0
21	CK	1063	0	1088	57	0
21	DK	1063	0	1088	61	0
22	AL	1086	0	1156	46	0
22	BL	1086	0	1156	42	0

J fa α ntia

Mol	Chain	Non-H	page H(model)	H(added)	Clashes	Symm-Clashes
22	CL	1086	0	1156	18	
$\frac{22}{22}$		1086	0	1156	40	0
23	AM	1231	0	1276	57	0
$\frac{20}{23}$	BM	1231	0	1276	60	0
$\frac{20}{23}$	CM	1231	0	1276	55	0
$\frac{23}{23}$	DM	1231	0	1276	78	0
24	AN	454	0	453	32	0
24	BN	454	0	453	30	0
24	CN	454	0	453	27	0
24	DN	454	0	453	32	0
25	AO	1229	0	1338	47	0
25	BO	1229	0	1338	49	0
25	CO	1229	0	1338	48	0
25	DO	1229	0	1338	50	0
26	AP	1197	0	1285	45	0
26	BP	1197	0	1285	51	0
26	CP	1197	0	1285	41	1
26	DP	1197	0	1285	44	0
27	AQ	1267	0	1342	60	0
27	BQ	1267	0	1342	60	0
27	CQ	1267	0	1342	55	0
27	DQ	1267	0	1342	56	0
28	AR	2682	0	2629	104	0
28	BR	2682	0	2629	103	0
28	CR	2682	0	2629	116	0
28	DR	2682	0	2629	100	0
29	AS	1010	0	1059	42	0
29	BS	1010	0	1059	40	0
29	CS	1010	0	1059	39	0
29	DS	1010	0	1059	39	0
30	AT	1242	0	1290	52	0
30	BT	1242	0	1290	57	0
30	CT	1242	0	1290	50	0
30	DT	1242	0	1290	53	1
31	AU	952	0	993	50	0
31	BU	952	0	993	42	0
31	CU	952	0	993	37	0
31	DU	952	0	993	48	0
32	AV	968	0	1031	41	0
32	BV	968	0	1031	44	0
32	CV	968	0	1031	44	0
32	DV	968	0	1031	42	0

	nuea from	i previous		TT (11 1)		a al i
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
33	AW	2079	0	2151	85	0
33	BW	2079	0	2151	91	0
33	CW	2079	0	2151	87	0
33	DW	2079	0	2151	86	0
34	AX	599	0	651	19	0
34	BX	599	0	651	22	0
34	CX	599	0	651	21	0
34	DX	599	0	651	18	0
35	AY	1826	0	1954	72	0
35	BY	1826	0	1954	80	0
35	CY	1826	0	1954	67	0
35	DY	1826	0	1954	80	0
36	AZ	747	0	758	31	0
36	ΒZ	747	0	758	33	0
36	CZ	747	0	758	33	0
36	DZ	747	0	758	28	0
37	A5	1	0	0	0	0
37	A6	1	0	0	0	0
37	A9	1	0	0	0	0
37	AN	1	0	0	0	0
37	B5	1	0	0	0	0
37	B6	1	0	0	0	0
37	B9	1	0	0	0	0
37	BN	1	0	0	0	0
37	C5	1	0	0	0	0
37	C6	1	0	0	0	0
37	C9	1	0	0	0	0
37	CN	1	0	0	0	0
37	D5	1	0	0	0	0
37	D6	1	0	0	0	0
37	D9	1	0	0	0	0
37	DN	1	0	0	0	0
38	AA	79	0	0	0	0
38	BA	79	0	0	0	0
38	CA	79	0	0	0	0
38	DA	79	0	0	0	0
39	AA	474	0	0	51	0
39	BA	474	0	0	48	0
39	C2	2	0	0	0	0
39	C4	2	0	0	0	0
39	C5	3	0	0	1	0
39	CA	467	0	0	47	0

J fa α mtima

Continued from previous page...

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
39	DA	474	0	0	54	0
All	All	315512	0	247405	9487	6

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 17.

The worst 5 of 9487 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)	
10:B9:87:LYS:NZ	11:BA:1187:C:OP2	1.62	1.32	
11:DA:1377:A:OP2	17:DG:54:LYS:NZ	1.65	1.29	
11:BA:1377:A:OP2	17:BG:54:LYS:NZ	1.67	1.25	
11:DA:1214:A:OP1	29:DS:64:LYS:NZ	1.71	1.23	
9:D8:81:ARG:NH2	11:DA:1505:C:OP2	1.73	1.20	

The worst 5 of 6 symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)	
9:B8:47:LYS:NZ	11:BA:270:U:O2[2_556]	1.96	0.24	
7:B6:32:ASP:OD2	2:C1:35:LYS:NZ[1_556]	1.99	0.21	
11:CA:891:G:OP2	30:DT:122:ASN:ND2[1_455]	2.07	0.13	
3:A2:133:LYS:NZ	11:BA:1730:G:OP1[1_655]	2.10	0.10	
11:BA:229:A:OP2	26:CP:146:PHE:N[2_546]	2.19	0.01	

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles	
1	A0	97/211~(46%)	92~(95%)	5 (5%)	0	100	100
1	B0	97/211~(46%)	92~(95%)	5 (5%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	C0	97/211~(46%)	92~(95%)	5(5%)	0	100	100
1	D0	97/211~(46%)	91 (94%)	6 (6%)	0	100	100
2	A1	64/68~(94%)	62 (97%)	2(3%)	0	100	100
2	B1	64/68~(94%)	62 (97%)	2 (3%)	0	100	100
2	C1	64/68~(94%)	62 (97%)	2 (3%)	0	100	100
2	D1	64/68~(94%)	62 (97%)	2 (3%)	0	100	100
3	A2	205/208~(99%)	197 (96%)	8 (4%)	0	100	100
3	B2	205/208~(99%)	195 (95%)	10 (5%)	0	100	100
3	C2	205/208~(99%)	195 (95%)	10 (5%)	0	100	100
3	D2	205/208~(99%)	195 (95%)	10 (5%)	0	100	100
4	A3	194/197~(98%)	187 (96%)	7 (4%)	0	100	100
4	B3	194/197~(98%)	187 (96%)	7 (4%)	0	100	100
4	C3	194/197~(98%)	188 (97%)	6 (3%)	0	100	100
4	D3	194/197~(98%)	187 (96%)	7 (4%)	0	100	100
5	A4	207/265~(78%)	191 (92%)	14 (7%)	2 (1%)	15	51
5	B4	219/265~(83%)	202 (92%)	14 (6%)	3 (1%)	11	45
5	C4	219/265~(83%)	203 (93%)	13 (6%)	3 (1%)	11	45
5	D4	219/265~(83%)	203 (93%)	13 (6%)	3 (1%)	11	45
6	A5	98/119~(82%)	98 (100%)	0	0	100	100
6	B5	98/119~(82%)	98 (100%)	0	0	100	100
6	C5	98/119~(82%)	97 (99%)	1 (1%)	0	100	100
6	D5	98/119~(82%)	98 (100%)	0	0	100	100
7	A6	78/81~(96%)	71 (91%)	6 (8%)	1 (1%)	12	47
7	B6	78/81~(96%)	70 (90%)	7 (9%)	1 (1%)	12	47
7	C6	78/81~(96%)	71 (91%)	6 (8%)	1 (1%)	12	47
7	D6	78/81~(96%)	71 (91%)	6 (8%)	1 (1%)	12	47
8	A7	99/162~(61%)	94 (95%)	5 (5%)	0	100	100
8	B7	$99/\overline{162\ (61\%)}$	96~(97%)	3 (3%)	0	100	100
8	C7	99/162~(61%)	95 (96%)	4 (4%)	0	100	100
8	D7	99/162~(61%)	95~(96%)	4 (4%)	0	100	100
9	A8	77/143 (54%)	74 (96%)	3 (4%)	0	100	100

Conti	nued fron	n previous page				_	
Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
9	B8	77/143~(54%)	73 (95%)	4(5%)	0	100	100
9	C8	77/143~(54%)	73 (95%)	4 (5%)	0	100	100
9	D8	77/143~(54%)	73 (95%)	4 (5%)	0	100	100
10	A9	91/189~(48%)	90 (99%)	1 (1%)	0	100	100
10	B9	91/189~(48%)	89 (98%)	2 (2%)	0	100	100
10	C9	91/189~(48%)	89 (98%)	2(2%)	0	100	100
10	D9	91/189~(48%)	89 (98%)	1 (1%)	1 (1%)	14	50
12	AB	199/241~(83%)	197 (99%)	2(1%)	0	100	100
12	BB	199/241~(83%)	197 (99%)	2 (1%)	0	100	100
12	CB	199/241~(83%)	197 (99%)	2(1%)	0	100	100
12	DB	199/241~(83%)	197 (99%)	2(1%)	0	100	100
13	AC	226/243~(93%)	213 (94%)	13~(6%)	0	100	100
13	BC	226/243~(93%)	214 (95%)	12~(5%)	0	100	100
13	CC	226/243~(93%)	214 (95%)	12~(5%)	0	100	100
13	DC	226/243~(93%)	214 (95%)	12~(5%)	0	100	100
14	AD	178/181~(98%)	174 (98%)	4 (2%)	0	100	100
14	BD	178/181~(98%)	174 (98%)	4 (2%)	0	100	100
14	CD	178/181~(98%)	175 (98%)	3 (2%)	0	100	100
14	DD	178/181~(98%)	174 (98%)	4 (2%)	0	100	100
15	AE	227/296~(77%)	211 (93%)	15 (7%)	1 (0%)	34	69
15	BE	227/296~(77%)	212 (93%)	14 (6%)	1 (0%)	34	69
15	CE	227/296~(77%)	211 (93%)	15 (7%)	1 (0%)	34	69
15	DE	227/296~(77%)	212 (93%)	14 (6%)	1 (0%)	34	69
16	AF	87/101~(86%)	82 (94%)	5~(6%)	0	100	100
16	BF	87/101~(86%)	82 (94%)	5~(6%)	0	100	100
16	CF	87/101~(86%)	82 (94%)	5~(6%)	0	100	100
16	DF	87/101~(86%)	82 (94%)	5 (6%)	0	100	100
17	AG	$190/\overline{200}~(\overline{95\%})$	178 (94%)	11 (6%)	1 (0%)	29	66
17	BG	$190/\overline{200}~(95\%)$	178 (94%)	12 (6%)	0	100	100
17	CG	$190/\overline{200}~(\overline{95\%})$	179 (94%)	9(5%)	2 (1%)	14	50
17	DG	190/200~(95%)	178 (94%)	10 (5%)	2(1%)	14	50

L D W I D E

Continued from	previous	page	
			_

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
18	AH	127/130~(98%)	112 (88%)	14 (11%)	1 (1%)	19	56
18	BH	127/130~(98%)	111 (87%)	15 (12%)	1 (1%)	19	56
18	CH	127/130~(98%)	112 (88%)	14 (11%)	1 (1%)	19	56
18	DH	127/130~(98%)	112 (88%)	14 (11%)	1 (1%)	19	56
19	AI	141/145~(97%)	132 (94%)	9 (6%)	0	100	100
19	BI	141/145~(97%)	131 (93%)	10 (7%)	0	100	100
19	CI	141/145~(97%)	132 (94%)	9 (6%)	0	100	100
19	DI	141/145~(97%)	132 (94%)	9 (6%)	0	100	100
20	AJ	106/120~(88%)	104 (98%)	2 (2%)	0	100	100
20	BJ	106/120~(88%)	105 (99%)	1 (1%)	0	100	100
20	CJ	106/120~(88%)	104 (98%)	2 (2%)	0	100	100
20	DJ	106/120~(88%)	104 (98%)	2 (2%)	0	100	100
21	AK	138/151~(91%)	133 (96%)	5 (4%)	0	100	100
21	BK	138/151~(91%)	134 (97%)	4 (3%)	0	100	100
21	CK	138/151~(91%)	133 (96%)	5 (4%)	0	100	100
21	DK	138/151~(91%)	133 (96%)	5 (4%)	0	100	100
22	AL	138/142~(97%)	126 (91%)	10 (7%)	2 (1%)	11	45
22	BL	138/142~(97%)	126 (91%)	10 (7%)	2 (1%)	11	45
22	CL	138/142~(97%)	127 (92%)	9 (6%)	2 (1%)	11	45
22	DL	138/142~(97%)	125 (91%)	11 (8%)	2 (1%)	11	45
23	AM	151/155~(97%)	138 (91%)	11 (7%)	2 (1%)	12	47
23	BM	151/155~(97%)	139 (92%)	10 (7%)	2 (1%)	12	47
23	CM	151/155~(97%)	138 (91%)	11 (7%)	2 (1%)	12	47
23	DM	151/155~(97%)	138 (91%)	11 (7%)	2 (1%)	12	47
24	AN	52/55~(94%)	49 (94%)	3 (6%)	0	100	100
24	BN	52/55~(94%)	50 (96%)	2 (4%)	0	100	100
24	CN	52/55~(94%)	49 (94%)	3 (6%)	0	100	100
24	DN	52/55~(94%)	49 (94%)	3 (6%)	0	100	100
25	AO	150/153~(98%)	140 (93%)	9 (6%)	1 (1%)	22	59
25	BO	150/153~(98%)	140 (93%)	9 (6%)	1 (1%)	22	59
25	CO	150/153~(98%)	140 (93%)	9 (6%)	1 (1%)	22	59

α \cdots 1	c		
Continued	trom	premous	naae
contraca	1.0110	proceedao	pagem

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentile	
25	DO	150/153~(98%)	140 (93%)	9 (6%)	1 (1%)	22	59
26	AP	146/149~(98%)	135~(92%)	11 (8%)	0	100	100
26	BP	146/149~(98%)	136~(93%)	10 (7%)	0	100	100
26	CP	146/149~(98%)	135~(92%)	11 (8%)	0	100	100
26	DP	146/149~(98%)	135~(92%)	11 (8%)	0	100	100
27	AQ	154/157~(98%)	148 (96%)	6 (4%)	0	100	100
27	BQ	154/157~(98%)	149~(97%)	5(3%)	0	100	100
27	CQ	154/157~(98%)	150 (97%)	4 (3%)	0	100	100
27	DQ	154/157~(98%)	149 (97%)	5(3%)	0	100	100
28	AR	336/343~(98%)	309 (92%)	25 (7%)	2 (1%)	25	62
28	BR	336/343~(98%)	308~(92%)	26 (8%)	2(1%)	25	62
28	CR	336/343~(98%)	308 (92%)	26 (8%)	2 (1%)	25	62
28	DR	336/343~(98%)	307 (91%)	27 (8%)	2 (1%)	25	62
29	AS	126/144~(88%)	122 (97%)	3 (2%)	1 (1%)	19	56
29	BS	126/144~(88%)	122 (97%)	3 (2%)	1 (1%)	19	56
29	CS	126/144~(88%)	122 (97%)	3 (2%)	1 (1%)	19	56
29	DS	126/144~(88%)	122 (97%)	3 (2%)	1 (1%)	19	56
30	AT	152/155~(98%)	145 (95%)	7 (5%)	0	100	100
30	BT	152/155~(98%)	144 (95%)	8 (5%)	0	100	100
30	CT	152/155~(98%)	145~(95%)	7(5%)	0	100	100
30	DT	152/155~(98%)	144 (95%)	8 (5%)	0	100	100
31	AU	122/126~(97%)	112 (92%)	10 (8%)	0	100	100
31	BU	122/126~(97%)	113 (93%)	9 (7%)	0	100	100
31	CU	122/126~(97%)	112 (92%)	10 (8%)	0	100	100
31	DU	122/126~(97%)	112 (92%)	10 (8%)	0	100	100
32	AV	117/130~(90%)	115 (98%)	2 (2%)	0	100	100
32	BV	$\overline{117/130} \ (90\%)$	116 (99%)	1 (1%)	0	100	100
32	CV	117/130~(90%)	114 (97%)	2 (2%)	1 (1%)	17	54
32	DV	$\overline{117/130} \ (90\%)$	115 (98%)	1 (1%)	1 (1%)	17	54
33	AW	257/259~(99%)	246 (96%)	11 (4%)	0	100	100
33	BW	$257/\overline{259}~(99\%)$	248 (96%)	9 (4%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles	
33	CW	257/259~(99%)	247~(96%)	10 (4%)	0	100	100
33	DW	257/259~(99%)	247~(96%)	10 (4%)	0	100	100
34	AX	72/80~(90%)	68~(94%)	4~(6%)	0	100	100
34	BX	72/80~(90%)	68~(94%)	4~(6%)	0	100	100
34	CX	72/80~(90%)	68~(94%)	4~(6%)	0	100	100
34	DX	72/80~(90%)	68 (94%)	4~(6%)	0	100	100
35	AY	226/293~(77%)	214 (95%)	11 (5%)	1 (0%)	34	69
35	BY	226/293~(77%)	214 (95%)	10 (4%)	2(1%)	17	54
35	CY	226/293~(77%)	214 (95%)	11 (5%)	1 (0%)	34	69
35	DY	226/293~(77%)	215~(95%)	10 (4%)	1 (0%)	34	69
36	AZ	95/97~(98%)	93~(98%)	2 (2%)	0	100	100
36	BZ	95/97~(98%)	93~(98%)	2(2%)	0	100	100
36	CZ	95/97~(98%)	93~(98%)	2 (2%)	0	100	100
36	DZ	95/97~(98%)	93~(98%)	2 (2%)	0	100	100
All	All	20528/23556~(87%)	19447 (95%)	1013 (5%)	68~(0%)	41	74

5 of 68 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
22	AL	3	VAL
25	AO	152	VAL
28	AR	48	ASP
22	BL	3	VAL
25	BO	152	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
1	A0	90/192~(47%)	82 (91%)	8~(9%)	9	37
1	B0	90/192~(47%)	82 (91%)	8 (9%)	9	37

Mol	Chain	Analysed	Rotameric Outliers		Perce	entiles
1	C0	90/192~(47%)	82 (91%)	8 (9%)	9	37
1	D0	90/192~(47%)	83 (92%)	7 (8%)	12	42
2	A1	55/57~(96%)	46 (84%)	9~(16%)	2	15
2	B1	55/57~(96%)	45 (82%)	10 (18%)	1	11
2	C1	55/57~(96%)	45 (82%)	10 (18%)	1	11
2	D1	55/57~(96%)	44 (80%)	11 (20%)	1	8
3	A2	184/185~(100%)	157 (85%)	27 (15%)	3	18
3	B2	184/185~(100%)	157 (85%)	27 (15%)	3	18
3	C2	184/185~(100%)	157 (85%)	27 (15%)	3	18
3	D2	184/185~(100%)	158 (86%)	26 (14%)	3	20
4	A3	182/183~(100%)	153 (84%)	29 (16%)	2	16
4	B3	182/183~(100%)	154 (85%)	28 (15%)	2	17
4	C3	182/183~(100%)	154 (85%)	28 (15%)	2	17
4	D3	182/183~(100%)	153 (84%)	29 (16%)	2	16
5	A4	187/225~(83%)	157 (84%)	30 (16%)	2	15
5	B4	197/225~(88%)	167 (85%)	30~(15%)	3	17
5	C4	197/225~(88%)	166 (84%)	31~(16%)	2	16
5	D4	197/225~(88%)	167~(85%)	30~(15%)	3	17
6	A5	90/107~(84%)	76 (84%)	14 (16%)	2	17
6	B5	90/107~(84%)	76 (84%)	14 (16%)	2	17
6	C5	90/107~(84%)	76 (84%)	14~(16%)	2	17
6	D5	90/107~(84%)	76 (84%)	14~(16%)	2	17
7	A6	71/72~(99%)	60 (84%)	11~(16%)	2	17
7	B6	71/72~(99%)	60 (84%)	11 (16%)	2	17
7	C6	71/72~(99%)	60 (84%)	11 (16%)	2	17
7	D6	71/72~(99%)	60 (84%)	11 (16%)	2	17
8	A7	91/136~(67%)	83 (91%)	8 (9%)	10	38
8	B7	91/136~(67%)	83 (91%)	8 (9%)	10	38
8	C7	91/136~(67%)	83 (91%)	8 (9%)	10	38
8	D7	91/136~(67%)	83 (91%)	8 (9%)	10	38
9	A8	70/109~(64%)	59 (84%)	11 (16%)	2	16

Conti	nued fron	n previous page	Potomoria Outliera Pora		Dored	centiles	
	B8	70/100 (64%)	50(84%)	11 (16%)	2	16	<u>с</u>
0		70/109(64%)	50 (84%)	11(1070) 11(16%)	2	16	
0		70/109(64%)	50 (84%)	11(1070) 11(16%)	2	16	
9		$\frac{70}{109} (0470)$ 81/156 (52%)	$\frac{39(0470)}{75(02\%)}$	6 (7%)	12	10	
10	A9 D0	81/150(5270)	73(9370) 76(0407)	0(770)	10	44	
10	D9 C0	81/130(52%)	70(9470) 75(0207)	3(070)	10	49	
10	C9	81/100(52%)	73(93%)	0(7%)	13	44	
10	D9	81/156 (52%)	72 (89%)	9(11%)	6	28	
12	AB	180/211 (85%)	164 (91%)	16 (9%)	9	37	
12	BB	180/211 (85%)	164 (91%)	16 (9%)	9	37	
12	CB	180/211 (85%)	164 (91%)	16 (9%)	9	37	-
12	DB	180/211 (85%)	164 (91%)	16 (9%)	9	37	
13	AC	196/210~(93%)	178 (91%)	18 (9%)	9	36	
13	BC	196/210 (93%)	179 (91%)	17 (9%)	10	38	
13	CC	196/210~(93%)	179 (91%)	17 (9%)	10	38	
13	DC	196/210~(93%)	178~(91%)	18 (9%)	9	36	
14	AD	161/162~(99%)	129 (80%)	32~(20%)	1	8	
14	BD	161/162~(99%)	128 (80%)	33 (20%)	1	7	
14	CD	161/162~(99%)	129 (80%)	32 (20%)	1	8	
14	DD	161/162~(99%)	128 (80%)	33 (20%)	1	7	
15	AE	193/250~(77%)	169 (88%)	24 (12%)	4	24	
15	BE	193/250~(77%)	169 (88%)	24 (12%)	4	24	
15	CE	193/250~(77%)	169 (88%)	24 (12%)	4	24	
15	DE	193/250~(77%)	168 (87%)	25 (13%)	4	22	
16	AF	80/92~(87%)	76 (95%)	4 (5%)	24	55	
16	BF	80/92~(87%)	76 (95%)	4 (5%)	24	55	
16	CF	80/92~(87%)	76 (95%)	4 (5%)	24	55	
16	DF	80/92~(87%)	76 (95%)	4 (5%)	24	55	
17	AG	163/169 (96%)	145 (89%)	18 (11%)	6	29	
17	BG	163/169 (96%)	145 (89%)	18 (11%)	6	29	
17	CG	163/169 (96%)	144 (88%)	19 (12%)	5	26	
17	DG	163/169 (96%)	145 (89%)	18 (11%)	6	29	

4	Β	Τ	\mathbf{S}
4	В	1	S

Conti	nued from	n previous page	Determine	Ostlisses	D	
MOI	Chain	Analysed	Rotameric	Outliers	Perce	entiles
18	AH	116/117 (99%)	97 (84%)	19 (16%)	2	15
18	BH	116/117~(99%)	97 (84%)	19 (16%)	2	15
18	CH	116/117~(99%)	97 (84%)	19 (16%)	2	15
18	DH	116/117~(99%)	97 (84%)	19 (16%)	2	15
19	AI	120/122~(98%)	105 (88%)	15~(12%)	4	23
19	BI	120/122~(98%)	105 (88%)	15~(12%)	4	23
19	CI	120/122~(98%)	105 (88%)	15~(12%)	4	23
19	DI	120/122~(98%)	105 (88%)	15~(12%)	4	23
20	AJ	101/111~(91%)	91 (90%)	10 (10%)	8	32
20	BJ	101/111 (91%)	91 (90%)	10 (10%)	8	32
20	CJ	101/111 (91%)	91 (90%)	10 (10%)	8	32
20	DJ	101/111 (91%)	91 (90%)	10 (10%)	8	32
21	AK	$112/121 \ (93\%)$	97 (87%)	15~(13%)	4	21
21	BK	112/121~(93%)	98 (88%)	14 (12%)	4	23
21	CK	$112/121 \ (93\%)$	98 (88%)	14 (12%)	4	23
21	DK	112/121~(93%)	97 (87%)	15~(13%)	4	21
22	AL	112/114~(98%)	96 (86%)	16 (14%)	3	19
22	BL	112/114~(98%)	96 (86%)	16 (14%)	3	19
22	CL	112/114~(98%)	96 (86%)	16 (14%)	3	19
22	DL	112/114~(98%)	96 (86%)	16 (14%)	3	19
23	AM	133/135~(98%)	120 (90%)	13 (10%)	8	33
23	BM	133/135~(98%)	120 (90%)	13~(10%)	8	33
23	CM	133/135~(98%)	120 (90%)	13~(10%)	8	33
23	DM	133/135~(98%)	120 (90%)	13~(10%)	8	33
24	AN	48/49~(98%)	42 (88%)	6 (12%)	4	23
24	BN	48/49~(98%)	42 (88%)	6 (12%)	4	23
24	CN	48/49~(98%)	42 (88%)	6 (12%)	4	23
24	DN	48/49~(98%)	41 (85%)	7(15%)	3	18
25	AO	135/136~(99%)	118 (87%)	17 (13%)	4	23
25	BO	135/136~(99%)	118 (87%)	17 (13%)	4	23
25	CO	135/136~(99%)	118 (87%)	17 (13%)	4	23

Rotameric

Outliers

Percentiles

25	DO	135/136~(99%)	118 (87%)	17~(13%)	4	23
26	AP	133/134 (99%)	117 (88%)	16 (12%)	5	25
26	BP	133/134 (99%)	116 (87%)	17 (13%)	4	23
26	CP	133/134 (99%)	116 (87%)	17 (13%)	4	23
26	DP	133/134~(99%)	117 (88%)	16 (12%)	5	25
27	AQ	140/141 (99%)	122 (87%)	18 (13%)	4	22
27	BQ	140/141 (99%)	122 (87%)	18 (13%)	4	22
27	CQ	140/141 (99%)	122 (87%)	18 (13%)	4	22
27	DQ	140/141 (99%)	122 (87%)	18 (13%)	4	22
28	AR	291/295~(99%)	264 (91%)	27 (9%)	9	35
28	BR	291/295~(99%)	265 (91%)	26 (9%)	9	37
28	CR	291/295~(99%)	264 (91%)	27 (9%)	9	35
28	DR	291/295~(99%)	264 (91%)	27 (9%)	9	35
29	AS	108/117~(92%)	97 (90%)	11 (10%)	7	31
29	BS	108/117~(92%)	97 (90%)	11 (10%)	7	31
29	CS	108/117~(92%)	97 (90%)	11 (10%)	7	31
29	DS	108/117~(92%)	97 (90%)	11 (10%)	7	31
30	AT	133/134 (99%)	119 (90%)	14 (10%)	7	30
30	BT	133/134 (99%)	119 (90%)	14 (10%)	7	30
30	CT	133/134 (99%)	120 (90%)	13 (10%)	8	33
30	DT	133/134 (99%)	120 (90%)	13 (10%)	8	33
31	AU	103/104 (99%)	93 (90%)	10 (10%)	8	33
31	BU	103/104 (99%)	93 (90%)	10 (10%)	8	33
31	CU	103/104 (99%)	93 (90%)	10 (10%)	8	33
31	DU	103/104 (99%)	93 (90%)	10 (10%)	8	33
32	AV	$107/115 \ (93\%)$	97 (91%)	10 (9%)	9	35
32	BV	107/115 (93%)	97 (91%)	10 (9%)	9	35
32	CV	107/115 (93%)	98 (92%)	9 (8%)	11	40
32	DV	107/115 (93%)	98 (92%)	9 (8%)	11	40
33	AW	226/226~(100%)	194 (86%)	32 (14%)	3	20
33	BW	226/226~(100%)	194 (86%)	32 (14%)	3	20

 $Continued \ f\!rom \ previous \ page...$ Mol Chain

Analysed

Mol	Chain	Analysed	Rotameric	Outliers	Per	rce	entiles
33	CW	226/226~(100%)	194 (86%)	32 (14%)	4 V	3	20
33	DW	226/226~(100%)	194~(86%)	32~(14%)	، ر	3	20
34	AX	61/67~(91%)	54 (88%)	7~(12%)	1	5	27
34	BX	61/67~(91%)	54 (88%)	7 (12%)	1	5	27
34	CX	61/67~(91%)	55~(90%)	6 (10%)	5	8	33
34	DX	61/67~(91%)	54 (88%)	7 (12%)	! •	5	27
35	AY	197/244~(81%)	177~(90%)	20 (10%)	,	7	31
35	BY	197/244~(81%)	178 (90%)	19 (10%)	8	8	34
35	CY	197/244~(81%)	177 (90%)	20 (10%)	,	7	31
35	DY	197/244~(81%)	177 (90%)	20 (10%)	'	7	31
36	AZ	82/82~(100%)	74~(90%)	8 (10%)	8	8	33
36	ΒZ	82/82~(100%)	73~(89%)	9 (11%)	(6	29
36	CZ	$8\overline{2}/82~(100\%)$	75~(92%)	7~(8%)	1	0	40
36	DZ	82/82~(100%)	74 (90%)	8 (10%)	8	8	33
All	All	18158/20320 (89%)	$15\overline{963} (88\%)$	2195 (12%)	ļ	5	24

5 of 2195 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
14	DD	107	ARG
17	DG	139	MET
14	DD	104	LEU
28	DR	238	LEU
15	BE	160	THR

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 397 such side chains are listed below:

Mol	Chain	Res	Type
15	CE	75	HIS
32	CV	56	HIS
17	CG	90	ASN
26	CP	20	GLN
36	CZ	80	HIS

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
11	AA	1716/1753~(97%)	647 (37%)	149 (8%)
11	BA	1716/1753~(97%)	652~(37%)	148 (8%)
11	CA	1716/1753~(97%)	649 (37%)	149 (8%)
11	DA	1716/1753~(97%)	647 (37%)	149 (8%)
All	All	6864/7012~(97%)	2595~(37%)	595 (8%)

5 of 2595 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
11	AA	2	А
11	AA	3	С
11	AA	4	С
11	AA	8	U
11	AA	11	А

5 of 595 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
11	DA	213	U
11	DA	1462	U
11	DA	312	С
11	DA	211	U
11	DA	882	G

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 332 ligands modelled in this entry, 332 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

EDS failed to run properly - this section is therefore empty.

6.2 Non-standard residues in protein, DNA, RNA chains (i)

EDS failed to run properly - this section is therefore empty.

6.3 Carbohydrates (i)

EDS failed to run properly - this section is therefore empty.

6.4 Ligands (i)

EDS failed to run properly - this section is therefore empty.

6.5 Other polymers (i)

EDS failed to run properly - this section is therefore empty.

