

Full wwPDB X-ray Structure Validation Report (i)

Sep 19, 2023 – 02:03 AM EDT

PDB ID	:	5BV2
Title	:	Crystal structure of E. coli HPII catalase variant
Authors	:	Wang, J.; Lomkalin, I.V.
Deposited on	:	2015-06-04
Resolution	:	1.53 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.35.1
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.35.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 1.53 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	Similar resolution
	$(\# {\it Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
R_{free}	130704	2556 (1.56-1.52)
Clashscore	141614	2634 (1.56-1.52)
Ramachandran outliers	138981	$2580 \ (1.56-1.52)$
Sidechain outliers	138945	2577 (1.56-1.52)
RSRZ outliers	127900	2524 (1.56-1.52)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	Р	753	90%	9%	•
1	Q	753	% 91%	8%	••
1	R	753	^{2%} 91%	8%	•
1	S	753	% 91%	7%	••

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
3	GOL	Р	802	-	-	Х	-
3	GOL	R	802	-	-	Х	-
3	GOL	S	802	-	-	Х	-
5	PGE	R	807	-	-	Х	-
6	PEG	Р	814	-	-	Х	-
6	PEG	Р	817	-	-	Х	-

residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

2 Entry composition (i)

There are 10 unique types of molecules in this entry. The entry contains 53930 atoms, of which 24516 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues			Aton	ns		ZeroOcc	AltConf	Trace	
1	р	747	Total	С	Η	Ν	Ο	\mathbf{S}	103	93	0
1		141	11980	3836	5945	1059	1125	15	105	20	0
1 0	746	Total	С	Н	Ν	Ο	S	106	20	0	
1	I Q	740	12077	3864	6005	1065	1128	15	100	29	0
1	D	747	Total	С	Н	Ν	Ο	S	106	02	0
	(4)	11933	3824	5920	1050	1124	15	100	23	0	
1 S	747	Total	С	Н	Ν	Ο	S	107	20	0	
		12118	3875	6028	1069	1131	15	107	32	0	

• Molecule 1 is a protein called Catalase HPII.

There are 24 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Р	99	ASP	SER	conflict	UNP P21179
Р	283	SER	GLU	conflict	UNP P21179
Р	372	ASN	LYS	conflict	UNP P21179
Р	565	SER	GLU	conflict	UNP P21179
Р	710	VAL	ILE	conflict	UNP P21179
Р	750	SER	LYS	conflict	UNP P21179
Q	99	ASP	SER	conflict	UNP P21179
Q	283	SER	GLU	conflict	UNP P21179
Q	372	ASN	LYS	conflict	UNP P21179
Q	565	SER	GLU	conflict	UNP P21179
Q	710	VAL	ILE	conflict	UNP P21179
Q	750	SER	LYS	conflict	UNP P21179
R	99	ASP	SER	conflict	UNP P21179
R	283	SER	GLU	conflict	UNP P21179
R	372	ASN	LYS	conflict	UNP P21179
R	565	SER	GLU	conflict	UNP P21179
R	710	VAL	ILE	conflict	UNP P21179
R	750	SER	LYS	conflict	UNP P21179
S	99	ASP	SER	conflict	UNP P21179
S	283	SER	GLU	conflict	UNP P21179
S	372	ASN	LYS	conflict	UNP P21179

Continu	Continueu from precious page										
Chain	Residue	Modelled	Actual	Comment	Reference						
S	565	SER	GLU	conflict	UNP P21179						
S	710	VAL	ILE	conflict	UNP P21179						
\mathbf{S}	750	SER	LYS	$\operatorname{conflict}$	UNP P21179						

• Molecule 2 is CIS-HEME D HYDROXYCHLORIN GAMMA-SPIROLACTONE (three-letter code: HDD) (formula: $C_{34}H_{32}FeN_4O_5$).

Mol	Chain	Residues		Atoms					ZeroOcc	AltConf						
9	2 P	1	Total	С	Fe	Η	Ν	Ο	1	0						
		1	75	34	1	31	4	5	L	0						
0	2 Q	0	0	0	0	0		1	Total	С	Fe	Η	Ν	Ο	1	0
		1	75	34	1	31	4	5	1	0						
0	D	R 1	Total	С	Fe	Η	Ν	Ο	1	0						
	Z R		75	34	1	31	4	5	L	0						
2 S	1	Total	С	Fe	Η	Ν	Ο	1	0							
		75	34	1	31	4	5	L	U							

• Molecule 3 is GLYCEROL (three-letter code: GOL) (formula: $C_3H_8O_3$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	
3	D	1	Total C H O	0	0	
5	1	T	14 3 8 3	0	0	
3	р	1	Total C H O	9	0	
0	T	I	14 3 8 3		0	
3	Q	1	Total C H O	0	0	
		1	14 3 8 3	0	0	
3	Q	1	Total C H O	2	0	
	<u> </u>	-	14 3 8 3			
3	Q	1	Total C H O	2	0	
	~~	-		_	Ŭ	
3	R	1	Total C H O	0	0	
3	R.	R	1	Total C H O	2	0
		_		_		
3	R	1	Total C H O	2	0	
		_				
3	S	1	Total C H O	0	0	
		_			-	
3	S	1	Total C H O	2	0	
	~	-			, , , , , , , , , , , , , , , , , , ,	
3	S	1	Total C H O	2	0	
			14 3 8 3	_	Ŭ	

• Molecule 4 is 1,2-ETHANEDIOL (three-letter code: EDO) (formula: $C_2H_6O_2$).

Mol	Chain	Residues	A	ton	ns		ZeroOcc	AltConf			
4	П	1	Total	С	Η	0	1	0			
4	Р	1	10	2	6	2		0			
4	р	1	Total	С	Н	0	1	0			
4	Г	L	10	2	6	2		0			
4	р	1	Total	С	Η	0	1	0			
4	Г	L	10	2	6	2		0			
4	р	1	Total	С	Η	0	1	0			
4	Г	L	10	2	6	2		0			
4	D	1	Total	С	Η	0	1	0			
4	1	T	10	2	6	2	L	0			
4	D	1	Total	С	Η	0	1	0			
4	1	T	10	2	6	2	1	0			
4	Р	1	Total	С	Н	0	1	0			
4	T	T	10	2	6	2					
1	Р	р	Р	Р	1	Total	С	Η	Ο	1	0
т	I	I	10	2	6	2	I	0			
4	р	Р	Р	1	Total	С	Η	Ο	0	0	
	1	T	10	2	6	2	0	0			
1	0	1	Total	С	Η	Ο	1	0			
т	હ	I	10	2	6	2	1	0			
4	0	1	Total	С	Η	Ο	1	0			
т	्य 	I	10	2	6	2	1	0			
1	0	1	Total	С	Η	Ο	1	0			
	4 V	1	10	2	6	2	1	U			
4	4 Q	Q	1	Total	\mathbf{C}	Η	0	1	0		
			1	10	2	6	2		U		
4	0		Total	С	Η	Ο	1	0			
- T	<u>۷</u>	1 I	10	2	6	2		0			

Continued from previous page...

Mol	Chain	Residues	A	Atoms			ZeroOcc	AltConf				
4	0	1	Total	С	Η	0	1	0				
4	Q	1	10	2	6	2		0				
4	0	1	Total	С	Η	0	1	0				
4	Q	1	10	2	6	2	L	0				
4	0	1	Total	С	Η	0	1	0				
4	Q	1	10	2	6	2		0				
4	0	1	Total	С	Η	Ο	1	0				
	Q	I	10	2	6	2	1	0				
4	0	1	Total	С	Η	Ο	1	0				
1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	I	10	2	6	2	1	0				
4	0	1	Total	С	Η	Ο	1	0				
1	<u>بر</u>	~	1	10	2	6	2	-	0			
4	0	1	Total	С	Η	Ο	1	0				
1	1 &	1	10	2	6	2	-	0				
4	0	1	Total	С	Η	Ο	1	0				
	Q	I	10	2	6	2	1	0				
4	0	0	1	Total	С	Η	Ο	1	0			
1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ŧ	10	2	6	2	1	0				
1	0	1	Total	С	Η	Ο	1	0				
т	Q	1	10	2	6	2	1	0				
4	0	1	Total	С	Η	Ο	1	0				
	~~	1	10	2	6	2	±	0				
4	0	1	Total	С	Η	Ο	1	0				
Т	Ч.		10	2	6	2	L	0				
4	B	1	Total	С	Η	Ο	1	0				
	10	I	10	2	6	2	±	0				
1	B	1	Total	С	Η	Ο	1	0				
	10	I	10	2	6	2	±	0				
4	B	1	Total	С	Η	Ο	1	0				
1	10	1	10	2	6	2	-	0				
4	B	1	Total	С	Η	Ο	1	0				
	10	I	10	2	6	2	1	0				
4	S	1	Total	С	Η	Ο	1	0				
	5	I	10	2	6	2	1	0				
4	S	1	Total	С	Η	Ο	1	0				
		1	10	2	6	2		0				
4	4 S	1	Total	С	Η	Ο	1	0				
T			10	2	6	2		0				
1	4 S	C	C	C	C	Q 1	Total	С	H	O	1	0
±		1	10	2	6	2		0				
1	Q	1	Total	С	Η	0	1	0				
4	L L		10	2	6	2		U				

Continued	from	nrevious	naae
Continucu	JIOIII	previous	page

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	
4	C	1	Total	С	Η	Ο	1	0	
4 5	1	10	2	6	2	L	0		
4	q	1	Total	С	Η	Ο	1	0	
4	G	1	10	2	6	2			
4	C	C 1	Total	С	Η	Ο	1	0	
4 5	1	10	2	6	2		0		
4	S	S 1	Total	С	Η	Ο	1	0	
			10	2	6	2	L	0	

• Molecule 5 is TRIETHYLENE GLYCOL (three-letter code: PGE) (formula: $C_6H_{14}O_4$).

Mol	Chain	Residues	At	oms		ZeroOcc	AltConf
5	Р	1	Total C 24 (C H 6 14	0 4	1	0
5	R	1	Total (24 (C H 6 14	0 4	1	0
5	R	1	Total 0 24 0	C H 6 14	0 4	1	0

• Molecule 6 is DI(HYDROXYETHYL)ETHER (three-letter code: PEG) (formula: $C_4H_{10}O_3$).

Mol	Chain	Residues	A	ton	ns		ZeroOcc	AltConf	
6	Р	1	Total	С	Η	0	1	0	
0	1	L	17	4	10	3	T	0	
6	6 P	1	Total	С	Η	Ο	1	0	
0		T	17	4	10	3	T		
6	р	1	Total	С	Η	Ο	1	0	
0	T	T	17	4	10	3	T	0	
6	р	1	Total	С	Η	Ο	1	0	
0	0 1	1	17	4	10	3	T		
6	6 Q	1	Total	С	Η	Ο	1	0	
0		I	17	4	10	3	T	0	
6	0	1	Total	С	Η	Ο	1	0	
0	પ	L	17	4	10	3	1		
6	0	1	Total	С	Η	Ο	1	0	
0	પ	I	17	4	10	3	1	0	
6	0	1	Total	С	Η	Ο	1	0	
0	Q	T	17	4	10	3	T	0	
6	S	1	Total	С	Η	0	1	0	
		1	17	4	10	3	T	U	
6	6 8	C 1	Total	С	Η	0	1	0	
	C C	L	17	4	10	3	T		

• Molecule 7 is SULFATE ION (three-letter code: SO4) (formula: O_4S).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	Р	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	S	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0

• Molecule 8 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
8	R	1	Total Mg 1 1	0	0
8	S	1	Total Mg 1 1	0	0

• Molecule 9 is TETRAETHYLENE GLYCOL (three-letter code: PG4) (formula: $C_8H_{18}O_5$).

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf
Q	В	1	Total	С	Η	0	1	0
9	10	1	31	8	18	5	1	

• Molecule 10 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
10	Р	1171	Total O 1171 1171	0	0
10	Q	1196	Total O 1196 1196	0	0
10	R	1087	Total H O 1093 6 1087	5	0
10	S	1227	Total H O 1233 6 1227	5	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Catalase HPII

• Molecule 1: Catalase HPII

4 Data and refinement statistics (i)

Property	Value	Source
Space group	C 1 2 1	Depositor
Cell constants	161.79Å 171.33Å 122.48Å	Depositor
a, b, c, α , β , γ	90.00° 121.55° 90.00°	Depositor
Resolution(A)	50.00 - 1.53	Depositor
Resolution (A)	48.62 - 1.53	EDS
% Data completeness	71.8 (50.00-1.53)	Depositor
(in resolution range)	71.8 (48.62 - 1.53)	EDS
R _{merge}	0.07	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.17 (at 1.53 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.8.0073	Depositor
P. P.	0.082 , 0.132	Depositor
$\mathbf{n}, \mathbf{n}_{free}$	0.084 , 0.133	DCC
R_{free} test set	15186 reflections (4.97%)	wwPDB-VP
Wilson B-factor $(Å^2)$	13.3	Xtriage
Anisotropy	0.042	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.37, 59.0	EDS
L-test for twinning ²	$ < L >=0.50, < L^2>=0.33$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.99	EDS
Total number of atoms	53930	wwPDB-VP
Average B, all atoms $(Å^2)$	18.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.81% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MG, PGE, GOL, PEG, PG4, HDD, SO4, EDO

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles		
		RMSZ	# Z > 5	RMSZ	# Z > 5	
1	Р	0.43	0/6270	0.68	5/8523~(0.1%)	
1	Q	0.44	0/6331	0.65	2/8607~(0.0%)	
1	R	0.43	0/6245	0.63	1/8485~(0.0%)	
1	S	0.44	0/6349	0.65	3/8622~(0.0%)	
All	All	0.43	0/25195	0.65	11/34237~(0.0%)	

There are no bond length outliers.

All (11) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	Р	377[A]	ARG	NE-CZ-NH1	-12.04	114.28	120.30
1	Р	377[B]	ARG	NE-CZ-NH1	-12.04	114.28	120.30
1	Р	377[A]	ARG	NE-CZ-NH2	11.13	125.86	120.30
1	Р	377[B]	ARG	NE-CZ-NH2	11.13	125.86	120.30
1	Q	725[A]	ASP	C-N-CA	5.74	134.35	122.30
1	Q	725[B]	ASP	C-N-CA	5.74	134.35	122.30
1	S	726[A]	GLY	C-N-CA	5.56	135.60	121.70
1	S	726[B]	GLY	C-N-CA	5.56	135.60	121.70
1	R	369	ARG	NE-CZ-NH2	5.44	123.02	120.30
1	Р	155	ASP	CB-CG-OD1	5.29	123.06	118.30
1	S	631	LYS	CB-CA-C	-5.07	100.27	110.40

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	Р	6035	5945	5939	85	0
1	Q	6072	6005	6007	72	0
1	R	6013	5920	5914	78	1
1	S	6090	6028	6030	81	0
2	Р	44	31	31	8	0
2	Q	44	31	31	7	0
2	R	44	31	31	7	0
2	S	44	31	31	9	0
3	Р	12	16	16	6	0
3	Q	18	24	24	1	0
3	R	18	24	23	13	0
3	S	18	24	24	4	0
4	Р	36	54	54	6	0
4	Q	68	102	102	5	2
4	R	16	24	24	1	0
4	S	36	54	54	4	0
5	Р	10	14	14	0	0
5	R	20	28	28	8	0
6	Р	28	40	40	21	0
6	Q	28	40	40	3	0
6	S	14	20	20	3	0
7	Р	5	0	0	0	0
7	S	5	0	0	0	0
8	R	1	0	0	0	0
8	S	1	0	0	0	0
9	R	13	18	18	0	0
10	Р	1171	0	0	26	0
10	Q	1196	0	0	22	0
10	R	1087	6	0	26	1
10	S	1227	6	0	37	0
All	All	29414	24516	24495	319	3

atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 6.

All (319) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:Q:449[B]:HIS:CD2	1:Q:451[B]:MET:CE	1.77	1.61

5BV2)
------	---

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:Q:392:HIS:ND1	1:Q:415:TYR:CB	1.86	1.38
1:S:392:HIS:ND1	1:S:415:TYR:CB	1.86	1.36
1:R:392:HIS:ND1	1:R:415:TYR:CB	1.87	1.35
1:P:392:HIS:ND1	1:P:415:TYR:CB	1.88	1.35
1:P:392:HIS:ND1	1:P:415:TYR:HB2	0.94	1.26
1:Q:392:HIS:ND1	1:Q:415:TYR:HB2	0.92	1.25
1:R:392:HIS:ND1	1:R:415:TYR:HB2	0.94	1.24
1:S:392:HIS:ND1	1:S:415:TYR:HB2	0.93	1.23
1:Q:449[B]:HIS:NE2	1:Q:451[B]:MET:CE	2.01	1.20
1:P:449[A]:HIS:CE1	10:P:902:HOH:O	1.95	1.18
6:P:814:PEG:H21	10:S:1356:HOH:O	1.42	1.17
1:Q:449[B]:HIS:NE2	1:Q:451[B]:MET:HE3	1.56	1.17
1:Q:449[B]:HIS:CD2	1:Q:451[B]:MET:HE2	1.57	1.15
1:R:449[A]:HIS:CE1	10:R:902:HOH:O	1.97	1.14
1:S:377[B]:ARG:HH11	1:S:377[B]:ARG:HG2	1.05	1.14
1:P:663:ASP:OD1	6:P:817:PEG:H31	1.48	1.12
1:Q:392:HIS:CE1	1:Q:415:TYR:HB2	1.87	1.10
1:S:392:HIS:CE1	1:S:415:TYR:HB2	1.85	1.09
1:S:449[A]:HIS:CE1	10:S:905:HOH:O	2.03	1.09
1:R:392:HIS:CE1	1:R:415:TYR:HB2	1.87	1.09
1:P:392:HIS:CE1	1:P:415:TYR:HB2	1.88	1.09
1:Q:449[B]:HIS:CE1	10:Q:908:HOH:O	2.04	1.09
1:Q:449[B]:HIS:CD2	1:Q:451[B]:MET:HE3	1.63	1.08
1:R:377[B]:ARG:HG2	1:R:377[B]:ARG:HH11	1.06	1.08
1:P:740:ARG:HE	6:P:817:PEG:H41	1.23	1.02
1:Q:449[B]:HIS:CD2	1:Q:451[B]:MET:HE1	1.94	1.00
1:P:478:LYS:NZ	10:P:901:HOH:O	1.93	0.99
1:Q:449[B]:HIS:HD2	1:Q:451[B]:MET:HE2	0.90	0.98
1:Q:377[B]:ARG:HH21	1:Q:377[B]:ARG:HG2	1.31	0.95
1:P:740:ARG:HE	6:P:817:PEG:C4	1.81	0.93
1:S:377[B]:ARG:HG2	1:S:377[B]:ARG:NH1	1.77	0.92
1:Q:449[B]:HIS:NE2	1:Q:451[B]:MET:HE1	1.83	0.91
1:Q:449[B]:HIS:HD2	1:Q:451[B]:MET:CE	1.44	0.90
1:P:377[A]:ARG:HG2	1:P:377[A]:ARG:HH21	1.36	0.89
1:S:191[B]:THR:HG21	10:S:1520:HOH:O	1.71	0.89
1:P:682:ASN:OD1	1:P:707[B]:THR:HG21	1.73	0.88
1:S:377[B]:ARG:NE	10:S:901:HOH:O	1.95	0.88
1:Q:682:ASN:OD1	1:Q:707[A]:THR:HG21	1.75	0.87
1:R:267:ARG:CZ	10:R:937:HOH:O	2.22	0.87
1:P:663:ASP:OD1	6:P:817:PEG:C3	2.23	0.87
1:S:682:ASN:OD1	1:S:707[A]:THR:HG21	1.74	0.87

5BV2

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:R:377[B]:ARG:HG2	1:R:377[B]:ARG:NH1	1.84	0.86
1:P:267[C]:ARG:NH1	10:P:903:HOH:O	2.09	0.86
1:S:37[A]:ARG:NH1	10:S:903:HOH:O	2.10	0.83
1:S:152:PHE:HB3	1:S:191[B]:THR:HG23	1.60	0.82
1:Q:435[B]:ARG:NH2	10:Q:906:HOH:O	2.15	0.79
1:R:449[A]:HIS:NE2	10:R:902:HOH:O	2.08	0.79
1:P:449[A]:HIS:NE2	10:P:902:HOH:O	2.05	0.79
1:R:745:ILE:HG12	5:R:807:PGE:H2	1.67	0.76
1:S:267[B]:ARG:NH2	10:S:906:HOH:O	2.17	0.76
1:S:377[B]:ARG:HH11	1:S:377[B]:ARG:CG	1.89	0.76
1:S:552:LEU:HD11	1:S:571:LEU:HD23	1.67	0.76
1:S:191[B]:THR:HG22	10:S:1063:HOH:O	1.86	0.75
1:P:740:ARG:NE	6:P:817:PEG:H41	2.01	0.75
1:S:37[A]:ARG:NE	10:S:903:HOH:O	2.19	0.75
4:S:805:EDO:H22	10:S:910:HOH:O	1.88	0.74
1:R:294:LYS:HG2	10:R:1602:HOH:O	1.87	0.73
1:P:753:ALA:O	6:P:814:PEG:H22	1.89	0.72
1:S:37[A]:ARG:CZ	10:S:903:HOH:O	2.38	0.72
1:Q:435[B]:ARG:CZ	10:Q:906:HOH:O	2.38	0.72
1:S:229:ILE:HG22	6:S:816:PEG:H21	1.71	0.71
1:S:532[A]:SER:OG	10:S:902:HOH:O	2.04	0.71
1:Q:294[C]:LYS:HG2	10:Q:1640:HOH:O	1.91	0.70
1:R:377[B]:ARG:HH11	1:R:377[B]:ARG:CG	1.96	0.69
1:Q:532[A]:SER:OG	10:Q:902:HOH:O	2.06	0.69
1:Q:59:ASP:OD1	10:Q:903:HOH:O	2.11	0.68
1:R:532[A]:SER:OG	10:R:903:HOH:O	2.10	0.68
1:S:449[A]:HIS:NE2	10:S:905:HOH:O	2.15	0.67
1:S:294:LYS:HG2	10:S:1653:HOH:O	1.96	0.66
10:Q:916:HOH:O	1:S:73[A]:LYS:HE3	1.95	0.66
2:S:801:HDD:C1B	3:S:802:GOL:H31	2.25	0.66
1:S:27[B]:ASP:OD2	10:S:904:HOH:O	2.12	0.66
1:Q:137:TYR:CE1	1:Q:374[B]:VAL:CG1	2.78	0.65
1:P:532[A]:SER:OG	10:P:904:HOH:O	2.11	0.65
1:P:294[A]:LYS:HG2	10:P:1627:HOH:O	1.96	0.65
1:S:152:PHE:HB3	1:S:191[B]:THR:CG2	2.28	0.64
1:P:624:LYS:HD3	10:P:1916:HOH:O	1.97	0.64
1:P:294[B]:LYS:HG2	10:P:1627:HOH:O	1.97	0.64
1:S:726[A]:GLY:HA3	1:S:728:PHE:H	1.59	0.64
1:P:449[B]:HIS:CG	1:R:449[B]:HIS:CG	2.47	0.63
1:R:748:ILE:HD11	5:R:807:PGE:H22	1.80	0.63
1:P:469:TRP:CE3	1:P:471:ARG:HG3	2.34	0.63

5BV2

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:P:23:LYS:HA	10:P:972:HOH:O	1.99	0.63
1:R:749:ASP:OD1	4:R:803:EDO:H22	1.98	0.63
1:S:725[A]:ASP:O	1:S:726[A]:GLY:O	2.16	0.62
1:P:690:LYS:HZ3	6:P:814:PEG:H11	1.64	0.62
1:R:37:ARG:NH1	10:R:907:HOH:O	2.32	0.62
1:Q:449[B]:HIS:NE2	10:Q:908:HOH:O	2.17	0.62
2:Q:801:HDD:HBC1	2:Q:801:HDD:HMC1	1.82	0.62
1:P:740:ARG:HH21	6:P:817:PEG:C3	2.12	0.61
1:P:468:ASN:O	1:P:471:ARG:HG2	2.00	0.61
1:Q:73[A]:LYS:CD	10:S:1579:HOH:O	2.49	0.61
1:P:440:TYR:O	1:R:73[A]:LYS:HE2	2.01	0.61
1:Q:435[B]:ARG:NE	10:Q:906:HOH:O	2.34	0.61
4:S:805:EDO:C2	10:S:910:HOH:O	2.47	0.60
1:R:24:PRO:HD3	10:R:932:HOH:O	2.02	0.60
1:P:37[A]:ARG:NH1	10:P:911:HOH:O	2.33	0.60
1:Q:267[B]:ARG:NH1	10:Q:912:HOH:O	2.34	0.60
1:S:335[B]:GLU:OE1	1:S:369[B]:ARG:NH1	2.34	0.60
1:S:335[B]:GLU:OE1	1:S:369[B]:ARG:CZ	2.49	0.60
1:R:468:ASN:O	1:R:471:ARG:HG2	2.03	0.59
1:P:305:ASP:OD2	6:P:814:PEG:H11	2.03	0.59
1:P:678:ASN:HD22	4:P:807:EDO:H11	1.68	0.59
1:R:666:ILE:HD11	1:R:732:LEU:HD22	1.85	0.59
1:S:469:TRP:CE3	1:S:471:ARG:HG3	2.38	0.59
2:S:801:HDD:HMB1	2:S:801:HDD:HBB1	1.84	0.59
1:R:128:HIS:NE2	3:R:802:GOL:H2	2.18	0.58
1:P:121:ARG:CZ	1:S:126[A]:ILE:HD12	2.32	0.58
1:S:468:ASN:O	1:S:471:ARG:HG2	2.02	0.58
1:Q:468:ASN:O	1:Q:471:ARG:HG2	2.03	0.58
1:R:254[B]:MET:HG2	1:R:511:PHE:HD2	1.69	0.58
1:Q:73[A]:LYS:HD3	10:S:1579:HOH:O	2.04	0.58
2:S:801:HDD:HMC1	2:S:801:HDD:HBC1	1.86	0.58
1:P:740:ARG:NE	6:P:817:PEG:C4	2.61	0.57
1:P:128:HIS:NE2	3:P:802:GOL:H2	2.19	0.57
1:P:126[B]:ILE:HD12	1:S:121:ARG:CZ	2.34	0.57
1:Q:121:ARG:CZ	1:R:126[A]:ILE:HD12	2.35	0.57
1:R:716:GLU:HG2	10:R:951:HOH:O	2.05	0.57
1:Q:126[A]:ILE:HD12	1:R:121:ARG:CZ	2.35	0.57
1:P:660:LEU:O	6:P:817:PEG:H12	2.05	0.57
1:P:740:ARG:HH21	6:P:817:PEG:C4	2.18	0.56
1:Q:169:VAL:HG13	3:Q:802:GOL:H11	1.85	0.56
1:S:478[B]:LYS:NZ	10:S:916:HOH:O	2.39	0.56

JDVZ

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:Q:469:TRP:CE3	1:Q:471:ARG:HG3	2.39	0.56
1:P:678:ASN:HD22	4:P:807:EDO:C1	2.18	0.56
1:R:352:ASP:HA	3:R:809:GOL:H32	1.86	0.56
1:R:23:LYS:HA	10:R:932:HOH:O	2.04	0.56
1:R:214:PHE:CE1	3:R:802:GOL:H31	2.41	0.56
1:P:214:PHE:CE1	3:P:802:GOL:H31	2.41	0.55
1:P:121:ARG:NH2	1:S:126[A]:ILE:HD12	2.20	0.55
1:R:469:TRP:CE3	1:R:471:ARG:HG3	2.41	0.55
1:Q:377[B]:ARG:HG2	1:Q:377[B]:ARG:NH2	2.06	0.55
1:S:303:VAL:HG21	4:S:804:EDO:C1	2.37	0.55
1:P:305:ASP:OD2	6:P:814:PEG:C1	2.55	0.54
1:R:747[A]:LYS:HE3	10:R:905:HOH:O	2.06	0.54
1:R:214:PHE:HZ	3:R:802:GOL:H32	1.72	0.54
10:Q:1348:HOH:O	1:S:73[A]:LYS:HE2	2.06	0.54
1:R:254[B]:MET:HG2	1:R:511:PHE:CD2	2.42	0.54
2:P:801:HDD:HBB1	2:P:801:HDD:HMB1	1.90	0.54
1:S:303:VAL:HG21	4:S:804:EDO:H12	1.89	0.53
1:Q:126[A]:ILE:HD12	1:R:121:ARG:NH2	2.23	0.53
1:P:267[C]:ARG:NE	10:P:908:HOH:O	2.42	0.53
2:R:801:HDD:HBB1	2:R:801:HDD:HMB1	1.90	0.53
1:S:377[B]:ARG:NH2	10:S:901:HOH:O	2.41	0.53
1:R:158:LYS:HB3	10:R:962:HOH:O	2.09	0.53
1:Q:121:ARG:NH2	1:R:126[A]:ILE:HD12	2.23	0.52
5:R:807:PGE:H1	10:R:919:HOH:O	2.09	0.52
1:P:126[B]:ILE:HD12	1:S:121:ARG:NH2	2.24	0.52
1:P:267[C]:ARG:CD	10:P:908:HOH:O	2.57	0.52
1:P:751:ILE:HB	10:P:1579:HOH:O	2.08	0.52
1:P:267[C]:ARG:HD3	10:P:908:HOH:O	2.09	0.52
1:P:377[A]:ARG:HG2	1:P:377[A]:ARG:NH2	2.10	0.52
1:R:126[A]:ILE:CG2	2:R:801:HDD:HMD2	2.39	0.52
1:S:205[B]:ILE:HD13	1:S:251:HIS:CG	2.45	0.52
1:P:24:PRO:HD3	10:P:972:HOH:O	2.09	0.52
1:S:377[B]:ARG:CZ	10:S:901:HOH:O	2.47	0.52
3:R:809:GOL:H32	10:R:1067:HOH:O	2.10	0.52
2:P:801:HDD:HBC1	2:P:801:HDD:HMC1	1.92	0.52
2:R:801:HDD:C1B	3:R:802:GOL:H12	2.40	0.52
1:R:126[A]:ILE:HG23	2:R:801:HDD:HMD2	1.92	0.52
1:P:556:GLN:NE2	10:P:922:HOH:O	2.43	0.51
2:Q:801:HDD:HBB1	2:Q:801:HDD:HMB1	1.93	0.51
1:R:214:PHE:CZ	3:R:802:GOL:H32	2.44	0.51
1:R:128:HIS:CD2	3:R:802:GOL:H2	2.45	0.51

JDVZ

	f i geni	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:P:126[B]:ILE:CG2	2:P:801:HDD:HMD2	2.41	0.51
1:P:306:GLU:OE2	6:P:817:PEG:H22	2.11	0.51
1:R:690[A]:LYS:HE2	5:R:807:PGE:H62	1.93	0.50
1:S:205[B]:ILE:HD13	1:S:251:HIS:ND1	2.26	0.50
1:Q:452:GLY:HA3	1:S:73[A]:LYS:HE3	1.93	0.50
1:Q:556:GLN:HG2	10:Q:1179:HOH:O	2.11	0.50
1:P:285:LYS:NZ	10:P:924:HOH:O	2.45	0.50
1:S:126[A]:ILE:CG2	2:S:801:HDD:HMD2	2.40	0.50
1:Q:8:ASN:HB2	1:Q:9:PRO:CD	2.42	0.50
1:S:169:VAL:HG13	3:S:802:GOL:H11	1.94	0.50
1:Q:126[A]:ILE:CG2	2:Q:801:HDD:HMD2	2.41	0.50
2:P:801:HDD:C1B	3:P:802:GOL:H12	2.41	0.50
1:R:690[A]:LYS:HE2	5:R:807:PGE:C6	2.41	0.50
2:R:801:HDD:HBC1	2:R:801:HDD:HMC1	1.94	0.49
1:P:73[A]:LYS:HE2	10:P:1184:HOH:O	2.12	0.49
10:Q:1581:HOH:O	1:S:416[B]:THR:HG21	2.13	0.49
1:P:274:ILE:HD12	2:P:801:HDD:HMB1	1.95	0.49
1:P:690:LYS:HG3	10:P:1579:HOH:O	2.11	0.49
1:Q:294[C]:LYS:NZ	10:Q:926:HOH:O	2.45	0.49
1:R:60:THR:HB	1:R:377[B]:ARG:HD2	1.95	0.48
1:R:214:PHE:HE1	3:R:802:GOL:H31	1.78	0.48
1:S:274:ILE:HD12	2:S:801:HDD:HMB1	1.95	0.48
6:P:814:PEG:C3	10:S:934:HOH:O	2.61	0.48
1:Q:137:TYR:CE1	1:Q:374[B]:VAL:HG13	2.47	0.48
2:S:801:HDD:NB	3:S:802:GOL:H31	2.27	0.48
1:P:440:TYR:O	1:R:73[A]:LYS:CE	2.61	0.48
1:S:369[A]:ARG:NH1	10:S:918:HOH:O	2.41	0.48
1:R:214:PHE:CZ	3:R:802:GOL:C3	2.96	0.48
4:Q:807:EDO:C2	1:R:12:HIS:HD2	2.26	0.48
1:P:126[B]:ILE:HG23	2:P:801:HDD:HMD2	1.96	0.48
1:P:364:LEU:HB3	6:P:815:PEG:H12	1.96	0.48
1:P:749[B]:ASP:OD1	1:P:750:SER:N	2.47	0.48
1:R:549:HIS:HD2	10:R:1812:HOH:O	1.97	0.48
1:S:126[A]:ILE:HG23	2:S:801:HDD:HMD2	1.95	0.48
1:P:621:LYS:HD3	10:P:1895:HOH:O	2.13	0.47
1:R:126[A]:ILE:CG2	2:R:801:HDD:CMD	2.92	0.47
1:S:267[B]:ARG:NH2	10:S:925:HOH:O	2.47	0.47
6:P:814:PEG:H12	1:S:313:ARG:HH22	1.78	0.47
1:Q:73[A]:LYS:HD2	10:S:1579:HOH:O	2.14	0.47
1:R:666:ILE:HD11	1:R:732:LEU:CD2	2.44	0.47
1:S:392:HIS:ND1	1:S:415:TYR:CG	2.77	0.47

$5B^{v}$	V2
----------	----

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:Q:126[A]:ILE:HG23	2:Q:801:HDD:HMD2	1.95	0.47
1:Q:274:ILE:HD12	2:Q:801:HDD:HMB1	1.96	0.47
1:P:749[B]:ASP:OD1	10:P:906:HOH:O	2.20	0.47
1:Q:229:ILE:HG22	6:Q:822:PEG:H21	1.96	0.47
1:R:274:ILE:HD12	2:R:801:HDD:HMB1	1.95	0.47
1:P:37[A]:ARG:HD2	10:P:911:HOH:O	2.15	0.47
1:Q:201:ASN:CG	2:Q:801:HDD:HMB2	2.35	0.47
3:R:809:GOL:C3	10:R:1067:HOH:O	2.63	0.47
1:Q:8:ASN:HB2	1:Q:9:PRO:HD2	1.97	0.46
1:R:267:ARG:NH1	10:R:916:HOH:O	2.42	0.46
5:R:807:PGE:H52	5:R:807:PGE:H3	1.44	0.46
1:S:201:ASN:CG	2:S:801:HDD:HMB2	2.36	0.46
1:P:7:LYS:HB3	1:P:9:PRO:HD2	1.97	0.46
1:Q:137:TYR:CZ	1:Q:374[B]:VAL:CG1	2.97	0.46
1:S:60:THR:HB	1:S:377[B]:ARG:HD3	1.98	0.46
1:P:704:PHE:O	1:P:707[A]:THR:HG22	2.16	0.46
1:S:7:LYS:HB3	1:S:9:PRO:HD2	1.98	0.46
1:Q:595[B]:ASP:OD2	10:Q:909:HOH:O	2.20	0.46
1:S:7:LYS:HD2	10:S:1703:HOH:O	2.16	0.46
1:Q:60:THR:C	1:Q:61:ARG:HG2	2.36	0.46
1:R:682:ASN:HB3	1:R:707[A]:THR:HG21	1.97	0.46
1:P:592:ALA:HA	4:P:804:EDO:H22	1.97	0.45
1:P:128:HIS:CD2	3:P:802:GOL:H2	2.51	0.45
1:R:214:PHE:HZ	3:R:802:GOL:C3	2.29	0.45
1:P:201:ASN:CG	2:P:801:HDD:HMB2	2.37	0.45
1:R:13:GLN:NE2	10:R:930:HOH:O	2.50	0.45
1:R:372[B]:ASN:ND2	10:R:904:HOH:O	2.23	0.45
1:P:128:HIS:NE2	3:P:802:GOL:C2	2.80	0.45
1:P:214:PHE:HE1	3:P:802:GOL:H31	1.80	0.45
1:S:267[B]:ARG:HG3	10:S:1405:HOH:O	2.16	0.45
1:Q:213:LYS:HD3	1:R:92:GLN:HA	1.99	0.44
1:Q:626:LYS:HE2	4:Q:819:EDO:C2	2.47	0.44
1:S:126[A]:ILE:CG2	2:S:801:HDD:CMD	2.95	0.44
1:P:264:ARG:HD3	6:P:817:PEG:H32	1.99	0.44
1:P:621:LYS:CD	10:P:1895:HOH:O	2.65	0.44
1:R:267:ARG:NE	10:R:912:HOH:O	2.50	0.44
1:R:267:ARG:HG3	10:R:1108:HOH:O	2.18	0.44
1:S:142:LYS:HE2	10:S:1604:HOH:O	2.17	0.44
6:S:817:PEG:H31	10:S:1768:HOH:O	2.16	0.44
1:Q:126[A]:ILE:CG2	2:Q:801:HDD:CMD	2.95	0.44
6:Q:822:PEG:O1	10:Q:904:HOH:O	2.11	0.44

5BV2

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:P:92:GLN:HA	1:S:213:LYS:HD3	2.00	0.43	
1:S:214:PHE:CZ	3:S:802:GOL:H2	2.53	0.43	
1:P:740:ARG:HE	6:P:817:PEG:H42	1.76	0.43	
1:R:626:LYS:HE2	10:R:1862:HOH:O	2.18	0.43	
1:R:704:PHE:O	1:R:707[B]:THR:HG22	2.18	0.43	
1:P:126[B]:ILE:CG2	2:P:801:HDD:CMD	2.97	0.43	
1:Q:235:ALA:O	6:Q:822:PEG:H31	2.18	0.43	
1:R:392:HIS:ND1	1:R:415:TYR:CG	2.78	0.43	
1:P:740:ARG:HH21	6:P:817:PEG:H32	1.82	0.42	
1:Q:137:TYR:CZ	1:Q:374[B]:VAL:HG11	2.54	0.42	
1:S:207:PHE:O	1:S:249:THR:HA	2.20	0.42	
1:P:213:LYS:HD3	1:S:92:GLN:HA	2.01	0.42	
1:Q:61:ARG:HD2	10:Q:1537:HOH:O	2.19	0.42	
1:R:128:HIS:NE2	3:R:802:GOL:C2	2.83	0.42	
1:P:592:ALA:HA	4:P:804:EDO:H12	2.00	0.42	
1:Q:36:HIS:CD2	1:Q:37[D]:ARG:HG2	2.55	0.42	
1:R:207:PHE:O	1:R:249:THR:HA	2.18	0.42	
1:R:475:PRO:HB2	5:R:808:PGE:H3	2.00	0.42	
1:P:126[B]:ILE:HG12	1:S:117:PHE:CZ	2.55	0.42	
1:Q:54[B]:SER:OG	1:Q:377[B]:ARG:NH1	2.52	0.42	
1:S:556[A]:GLN:NE2	10:S:941:HOH:O	2.52	0.42	
1:S:707[A]:THR:CG2	10:S:1639:HOH:O	2.67	0.42	
1:S:549:HIS:HD2	10:S:1920:HOH:O	2.02	0.42	
1:P:461:GLU:HA	1:P:462:PRO:C	2.40	0.42	
1:R:461:GLU:HA	1:R:462:PRO:C	2.40	0.42	
1:P:39:ALA:N	1:P:48[B]:GLN:OE1	2.53	0.42	
1:P:158:LYS:HA	4:P:808:EDO:H21	2.01	0.42	
1:Q:634:TYR:O	1:Q:653:THR:HA	2.20	0.42	
1:S:478[B]:LYS:HG2	1:S:479:ARG:HG2	2.02	0.42	
1:P:207:PHE:O	1:P:249:THR:HA	2.20	0.41	
1:R:7:LYS:HB3	1:R:9:PRO:HD2	2.02	0.41	
1:P:128:HIS:CE1	1:P:169:VAL:HG22	2.55	0.41	
4:Q:807:EDO:H21	1:R:12:HIS:HD2	1.84	0.41	
1:S:461:GLU:HA	1:S:462:PRO:C	2.40	0.41	
1:Q:461:GLU:HA	1:Q:462:PRO:C	2.40	0.41	
1:Q:126[A]:ILE:HD13	1:R:120:GLU:HB2	2.03	0.41	
1:Q:478[A]:LYS:HG2	10:Q:987:HOH:O	2.20	0.41	
1:Q:493:LYS:NZ	10:Q:941:HOH:O	2.53	0.41	
1:Q:626:LYS:HE2	4:Q:819:EDO:H21	2.02	0.41	
1:Q:117:PHE:CZ	1:R:126[A]:ILE:HG12	2.56	0.41	
1:Q:479:ARG:NE	10:Q:924:HOH:O	2.52	0.41	

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:R:254[B]:MET:CG	1:R:511:PHE:CD2	3.04	0.41
1:Q:452:GLY:HA3	1:S:73[A]:LYS:CE	2.50	0.41
1:R:612:ARG:NH1	10:R:921:HOH:O	2.45	0.41
1:P:678:ASN:ND2	4:P:807:EDO:H11	2.32	0.41
1:Q:207:PHE:O	1:Q:249:THR:HA	2.20	0.41
1:Q:416[B]:THR:HG21	10:S:1600:HOH:O	2.21	0.41
1:S:634:TYR:O	1:S:653:THR:HA	2.21	0.41
1:P:556:GLN:HG2	10:P:1742:HOH:O	2.21	0.41
1:Q:92:GLN:HA	1:R:213:LYS:HD3	2.02	0.41
4:Q:803:EDO:C2	10:R:1589:HOH:O	2.69	0.41
1:R:23:LYS:CA	10:R:932:HOH:O	2.66	0.41
1:R:477:PRO:O	1:R:478[B]:LYS:HG3	2.21	0.41
1:S:267[B]:ARG:CZ	10:S:925:HOH:O	2.69	0.41
1:S:556[A]:GLN:NE2	10:S:946:HOH:O	2.53	0.41
1:S:707[A]:THR:HG22	10:S:1639:HOH:O	2.21	0.41
1:Q:285:LYS:NZ	10:Q:949:HOH:O	2.53	0.41
1:R:24:PRO:CD	10:R:932:HOH:O	2.65	0.41
1:S:128:HIS:HA	1:S:168:THR:O	2.21	0.41
1:S:478[A]:LYS:HG2	10:S:1686:HOH:O	2.19	0.41
1:P:294[B]:LYS:NZ	10:P:942:HOH:O	2.54	0.40
1:R:377[B]:ARG:NH2	10:R:901:HOH:O	2.54	0.40
1:S:726[B]:GLY:HA3	1:S:727:SER:HB3	2.02	0.40
10:P:1122:HOH:O	1:R:449[B]:HIS:HE1	2.02	0.40
1:Q:416[B]:THR:HG23	10:Q:1173:HOH:O	2.21	0.40
1:R:522:HIS:NE2	5:R:807:PGE:O2	2.51	0.40
1:S:37[A]:ARG:NH2	10:S:919:HOH:O	2.54	0.40
1:S:392:HIS:CG	1:S:415:TYR:CB	2.90	0.40
1:S:476:GLY:C	6:S:817:PEG:H42	2.42	0.40

All (3) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
4:Q:805:EDO:O1	4:Q:805:EDO:O1[2_656]	0.98	1.22
4:Q:805:EDO:O1	4:Q:805:EDO:HO1[2_656]	1.41	0.19
1:R:621:LYS:HZ3	10:R:1773:HOH:O[2_556]	1.51	0.09

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	Р	770/753~(102%)	751 (98%)	18 (2%)	1 (0%)	51	26
1	Q	778/753~(103%)	761~(98%)	16 (2%)	1 (0%)	51	26
1	R	769/753~(102%)	751 (98%)	17 (2%)	1 (0%)	51	26
1	S	780/753~(104%)	761~(98%)	17 (2%)	2(0%)	41	19
All	All	3097/3012~(103%)	3024 (98%)	68 (2%)	5 (0%)	47	24

All (5) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	S	727	SER
1	Р	75	SER
1	R	75	SER
1	S	75	SER
1	Q	75	SER

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	Р	655/636~(103%)	642~(98%)	13~(2%)	55 24
1	Q	662/636~(104%)	644~(97%)	18 (3%)	44 15
1	R	654/636~(103%)	640 (98%)	14 (2%)	53 22
1	S	664/636~(104%)	642~(97%)	22 (3%)	38 10
All	All	2635/2544~(104%)	2568~(98%)	67~(2%)	57 17

All ((67)	residues	with	a	non-rotameric	2 1	sidechain	are	listed	below
	· · · /									

Mol	Chain	Res	Type	
1	Р	7	LYS	
1	Р	21	GLU	
1	Р	185	PHE	
1	Р	191	THR	
1	Р	205	ILE	
1	Р	227	TRP	
1	Р	237	ASP	
1	Р	330[A]	ASP	
1	Р	330[B]	ASP	
1	Р	377[A]	ARG	
1	Р	377[B]	ARG	
1	Р	552	LEU	
1	Р	631	LYS	
1	Q	21	GLU	
1	Q	24	PRO	
1	Q	73[A]	LYS	
1	Q	73[B]	LYS	
1	Q	126[A]	ILE	
1	Q	126[B]	ILE	
1	Q	185	PHE	
1	Q	191	THR	
1	Q	205	ILE	
1	Q	227	TRP	
1	Q	237	ASP	
1	Q	377[A]	ARG	
1	Q	377[B]	ARG	
1	Q	552	LEU	
1	Q	597	ASP	
1	Q	631	LYS	
1	Q	707[A]	THR	
1	Q	707[B]	THR	
1	R	21	GLU	
1	R	73[A]	LYS	
1	R	73[B]	LYS	
1	R	73[C]	LYS	
1	R	185	PHE	
1	R	191	THR	
1	R	205	ILE	
1	R	227	TRP	
1	R	237	ASP	
1	R	377[A]	ARG	
1	R	377[B]	ARG	

	v	-	10
Mol	Chain	Res	Type
1	R	631	LYS
1	R	707[A]	THR
1	R	707[B]	THR
1	S	7	LYS
1	S	21	GLU
1	S	37[A]	ARG
1	S	37[B]	ARG
1	S	37[C]	ARG
1	S	73[A]	LYS
1	S	73[B]	LYS
1	S	73[C]	LYS
1	S	185	PHE
1	S	191[A]	THR
1	S	191[B]	THR
1	S	205[A]	ILE
1	S	205[B]	ILE
1	S	227	TRP
1	S	237	ASP
1	S	369[A]	ARG
1	S	369[B]	ARG
1	S	377[A]	ARG
1	S	377[B]	ARG
1	S	597	ASP
1	S	707[A]	THR
1	S	707[B]	THR

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (9) such sidechains are listed below:

Mol	Chain	Res	Type
1	Р	492	ASN
1	Р	549	HIS
1	Р	556	GLN
1	Q	11	GLN
1	Q	492	ASN
1	Q	549	HIS
1	R	549	HIS
1	S	492	ASN
1	S	549	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 72 ligands modelled in this entry, 2 are monoatomic - leaving 70 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Type	Chain	Dog	Link	Bo	ond leng	ths	E	Bond ang	gles
	Type	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
9	PG4	R	812	-	12,12,12	0.52	0	11,11,11	0.29	0
3	GOL	S	813	-	$5,\!5,\!5$	0.32	0	$5,\!5,\!5$	0.75	0
4	EDO	S	808	-	3,3,3	0.55	0	2,2,2	0.27	0
4	EDO	Q	815	-	3,3,3	0.56	0	2,2,2	0.06	0
4	EDO	Р	804	-	3,3,3	0.57	0	2,2,2	0.11	0
2	HDD	Q	801	3,1	41,52,52	1.62	8 (19%)	31,89,89	2.75	13 (41%)
6	PEG	Р	814	-	6,6,6	0.71	0	$5,\!5,\!5$	0.81	0
6	PEG	Q	822	-	6,6,6	0.42	0	$5,\!5,\!5$	0.30	0
4	EDO	Q	816	-	3,3,3	0.43	0	2,2,2	0.51	0
3	GOL	Q	802	2	$5,\!5,\!5$	0.55	0	$5,\!5,\!5$	0.50	0
2	HDD	Р	801	3,1	41,52,52	1.59	6 (14%)	31,89,89	2.59	11 (35%)
4	EDO	Q	806	-	3,3,3	0.56	0	2,2,2	0.12	0
3	GOL	S	812	-	$5,\!5,\!5$	0.56	0	$5,\!5,\!5$	0.69	0
4	EDO	Q	809	-	3,3,3	0.47	0	2,2,2	0.55	0
4	EDO	Q	814	-	3,3,3	0.37	0	2,2,2	0.85	0
4	EDO	Q	808	-	3,3,3	0.44	0	2,2,2	0.51	0
6	PEG	Q	824	-	6,6,6	0.51	0	5,5,5	0.41	0

Mal	Trune	Chain	Dec	Tinle	Bo	ond leng	\mathbf{ths}	Bond angles		
IVIOI	Type	Chain	Res	LINK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
4	EDO	Q	811	-	3,3,3	0.57	0	2,2,2	0.06	0
7	SO4	Р	818	-	4,4,4	0.32	0	$6,\!6,\!6$	0.11	0
2	HDD	R	801	3,1	$41,\!52,\!52$	1.58	7 (17%)	31,89,89	2.65	13 (41%)
6	PEG	Р	815	-	$6,\!6,\!6$	0.39	0	$5,\!5,\!5$	0.37	0
4	EDO	Q	812	-	3, 3, 3	0.51	0	$2,\!2,\!2$	0.19	0
3	GOL	Р	813	-	$5,\!5,\!5$	0.51	0	$5,\!5,\!5$	0.45	0
2	HDD	S	801	3,1	$41,\!52,\!52$	1.65	6 (14%)	31,89,89	2.63	12 (38%)
4	EDO	Q	819	-	3,3,3	0.74	0	2,2,2	0.19	0
4	EDO	R	804	-	3,3,3	0.56	0	2,2,2	0.24	0
4	EDO	Q	810	-	3,3,3	0.44	0	2,2,2	0.50	0
6	PEG	Р	816	-	$6,\!6,\!6$	0.47	0	$5,\!5,\!5$	0.33	0
4	EDO	Р	811	-	3,3,3	0.37	0	2,2,2	0.37	0
6	PEG	Q	825	-	6,6,6	0.53	0	$5,\!5,\!5$	0.45	0
5	PGE	R	807	-	$9,\!9,\!9$	0.38	0	8,8,8	0.54	0
4	EDO	R	805	-	3,3,3	0.63	0	2,2,2	0.54	0
4	EDO	R	806	-	3,3,3	0.45	0	2,2,2	0.22	0
4	EDO	S	809	-	3,3,3	0.44	0	2,2,2	0.39	0
7	SO4	S	814	-	4,4,4	0.44	0	$6,\!6,\!6$	0.24	0
4	EDO	Q	804	-	3,3,3	0.34	0	2,2,2	0.44	0
4	EDO	S	804	-	3,3,3	0.36	0	2,2,2	0.39	0
5	PGE	R	808	-	$9,\!9,\!9$	0.60	0	8,8,8	0.39	0
4	EDO	Р	803	-	3,3,3	0.35	0	2,2,2	0.20	0
3	GOL	R	809	-	$5,\!5,\!5$	0.45	0	$5,\!5,\!5$	0.70	0
4	EDO	Q	818	-	3,3,3	0.45	0	$2,\!2,\!2$	0.38	0
4	EDO	Р	810	-	3, 3, 3	0.51	0	$2,\!2,\!2$	0.27	0
4	EDO	Р	807	-	3,3,3	0.44	0	$2,\!2,\!2$	0.16	0
4	EDO	Q	803	-	3, 3, 3	0.50	0	$2,\!2,\!2$	0.21	0
4	EDO	Q	807	-	3, 3, 3	0.64	0	$2,\!2,\!2$	0.43	0
4	EDO	S	811	-	3, 3, 3	0.51	0	$2,\!2,\!2$	0.25	0
4	EDO	Р	806	-	3, 3, 3	0.37	0	$2,\!2,\!2$	0.52	0
3	GOL	Р	802	2	$5,\!5,\!5$	0.70	0	$5,\!5,\!5$	1.21	1 (20%)
4	EDO	Q	817	-	3,3,3	0.49	0	2,2,2	0.24	0
6	PEG	Q	823	-	6,6,6	0.69	0	$5,\!5,\!5$	0.60	0
6	PEG	S	816	-	6,6,6	0.50	0	$5,\!5,\!5$	0.63	0
4	EDO	S	805	-	3,3,3	0.43	0	2,2,2	0.23	0
3	GOL	Q	820	-	$5,\!5,\!5$	0.47	0	$5,\!5,\!5$	0.32	0
4	EDO	Р	805	-	3,3,3	0.49	0	2,2,2	0.18	0
4	EDO	R	803	-	$3,\!3,\!3$	0.66	0	$2,\!2,\!2$	0.08	0
4	EDO	Q	805	-	3,3,3	0.69	0	$2,\!2,\!2$	0.11	0
3	GOL	R	802	2	$5,\!5,\!5$	0.48	0	$5,\!5,\!5$	1.13	0
4	EDO	S	810	-	3,3,3	0.55	0	2,2,2	0.19	0
6	PEG	S	817	-	$6,\!6,\!6$	0.70	0	$5,\!5,\!5$	0.72	0

Mal	Turne	Chain	Dec	Tink	Bond lengths			Bond angles		
	туре	Unam	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
3	GOL	Q	821	-	$5,\!5,\!5$	0.38	0	$5,\!5,\!5$	0.22	0
4	EDO	Р	809	-	3,3,3	0.64	0	2,2,2	0.41	0
4	EDO	Р	808	-	3,3,3	0.54	0	2,2,2	0.15	0
5	PGE	Р	812	-	9,9,9	0.55	0	8,8,8	0.60	0
3	GOL	R	810	-	$5,\!5,\!5$	0.44	0	$5,\!5,\!5$	0.77	0
4	EDO	S	803	-	3,3,3	0.43	0	2,2,2	0.39	0
4	EDO	S	807	-	3,3,3	0.49	0	2,2,2	0.11	0
3	GOL	S	802	2	$5,\!5,\!5$	0.73	0	$5,\!5,\!5$	0.41	0
6	PEG	Р	817	-	6,6,6	0.56	0	$5,\!5,\!5$	1.28	0
4	EDO	Q	813	-	3,3,3	0.43	0	2,2,2	0.32	0
4	EDO	S	806	-	3,3,3	0.55	0	2,2,2	0.16	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
9	PG4	R	812	-	-	5/10/10/10	-
3	GOL	S	813	-	-	2/4/4/4	-
4	EDO	S	808	-	-	1/1/1/1	-
4	EDO	Q	815	-	-	1/1/1/1	-
4	EDO	Р	804	-	-	1/1/1/1	-
2	HDD	Q	801	3,1	-	2/5/89/89	0/1/9/9
6	PEG	Р	814	-	-	3/4/4/4	-
6	PEG	Q	822	-	-	3/4/4/4	-
4	EDO	Q	816	-	-	0/1/1/1	-
3	GOL	Q	802	2	-	2/4/4/4	-
2	HDD	Р	801	3,1	-	2/5/89/89	0/1/9/9
4	EDO	Q	806	-	-	1/1/1/1	-
3	GOL	S	812	-	-	4/4/4/4	-
4	EDO	Q	809	-	-	0/1/1/1	-
4	EDO	Q	814	-	-	1/1/1/1	-
4	EDO	Q	808	-	_	1/1/1/1	-
6	PEG	Q	824	-	-	3/4/4/4	-
4	EDO	Q	811	-	-	1/1/1/1	-
2	HDD	R	801	3,1	-	2/5/89/89	$0\overline{/1/9/9}$
6	PEG	Р	815	-	-	2/4/4/4	-
4	EDO	Q	812	-	-	1/1/1/1	-
3	GOL	Р	813	-	-	1/4/4/4	-

5B	V	2

Mol	Type	Chain	\mathbf{Res}	Link	Chirals	Torsions	Rings
2	HDD	S	801	3,1	-	2/5/89/89	0/1/9/9
4	EDO	Q	819	_	_	1/1/1/1	_
4	EDO	R	804	_	-	1/1/1/1	-
4	EDO	Q	810	-	-	0/1/1/1	-
6	PEG	Р	816	-	-	$\frac{4}{4}/\frac{4}{4}$	-
4	EDO	Р	811	-	-	0/1/1/1	-
6	PEG	Q	825	-	-	3/4/4/4	-
5	PGE	R	807	-	-	6/7/7/7	-
4	EDO	R	805	-	-	1/1/1/1	-
4	EDO	R	806	-	-	1/1/1/1	-
4	EDO	S	809	-	-	0/1/1/1	_
4	EDO	Q	804	_	_	0/1/1/1	_
4	EDO	S	804	-	-	1/1/1/1	-
5	PGE	R	808	_	-	5/7/7/7	-
4	EDO	Р	803	-	-	1/1/1/1	-
3	GOL	R	809	-	-	2/4/4/4	-
4	EDO	Q	818	-	-	1/1/1/1	_
4	EDO	P	810	-	-	1/1/1/1	-
4	EDO	Р	807	-	-	1/1/1/1	-
4	EDO	Q	803	-	-	1/1/1/1	-
4	EDO	Q	807	-	-	0/1/1/1	-
4	EDO	S	811	-	-	0/1/1/1	-
4	EDO	Р	806	-	-	0/1/1/1	-
3	GOL	Р	802	2	-	2/4/4/4	-
4	EDO	Q	817	-	-	1/1/1/1	-
6	PEG	Q	823	-	-	3/4/4/4	-
6	PEG	S	816	-	-	2/4/4/4	-
4	EDO	S	805	-	-	1/1/1/1	-
3	GOL	Q	820	-	-	3/4/4/4	-
4	EDO	Р	805	-	-	1/1/1/1	-
4	EDO	R	803	-	-	0/1/1/1	-
4	EDO	Q	805	-	-	1/1/1/1	-
3	GOL	R	802	2	-	0/4/4/4	-
4	EDO	S	810	-	-	0/1/1/1	-
6	PEG	S	817	_	-	2/4/4/4	-
3	GOL	Q	821	-	-	0/4/4/4	-
4	EDO	Р	809	-	-	0/1/1/1	-
4	EDO	P	808	-	-	1/1/1/1	-
5	PGE	Р	812	-	-	6/7/7/7	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	GOL	R	810	-	-	2/4/4/4	-
4	EDO	S	803	-	-	0/1/1/1	-
4	EDO	S	807	-	-	1/1/1/1	-
3	GOL	S	802	2	-	2/4/4/4	-
6	PEG	Р	817	-	-	4/4/4/4	-
4	EDO	Q	813	-	-	1/1/1/1	-
4	EDO	S	806	-	-	1/1/1/1	-

All (27) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	S	801	HDD	O1D-CGD	5.86	1.45	1.35
2	Q	801	HDD	O1D-CGD	5.10	1.44	1.35
2	R	801	HDD	O1D-CGD	4.72	1.43	1.35
2	Р	801	HDD	O1D-CGD	4.36	1.42	1.35
2	R	801	HDD	C3B-C2B	3.97	1.45	1.40
2	Q	801	HDD	C3B-C2B	3.95	1.45	1.40
2	R	801	HDD	C3C-C2C	3.87	1.45	1.40
2	S	801	HDD	C3B-C2B	3.78	1.45	1.40
2	Р	801	HDD	C3B-C2B	3.76	1.45	1.40
2	Р	801	HDD	C3C-C2C	3.72	1.45	1.40
2	Q	801	HDD	C3C-C2C	3.47	1.45	1.40
2	S	801	HDD	C3C-C2C	3.21	1.44	1.40
2	Q	801	HDD	C2B-C1B	2.85	1.49	1.42
2	Р	801	HDD	C2A-C3A	2.84	1.46	1.37
2	S	801	HDD	C2A-C3A	2.78	1.45	1.37
2	R	801	HDD	C2A-C3A	2.77	1.45	1.37
2	Q	801	HDD	C2A-C3A	2.64	1.45	1.37
2	Р	801	HDD	C2B-C1B	2.50	1.48	1.42
2	Р	801	HDD	CAA-C2A	-2.36	1.48	1.52
2	S	801	HDD	C4C-CHD	2.32	1.47	1.41
2	S	801	HDD	C1A-CHA	2.31	1.47	1.41
2	R	801	HDD	C2B-C1B	2.27	1.47	1.42
2	Q	801	HDD	C1A-CHA	2.25	1.47	1.41
2	Q	801	HDD	C4C-CHD	2.20	1.47	1.41
2	Q	801	HDD	CAA-C2A	-2.16	1.48	1.52
2	R	801	HDD	C4C-CHD	2.10	1.46	1.41
2	R	801	HDD	C4A-CHB	2.05	1.46	1.41

All (50) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	Q	801	HDD	O1D-CGD-O2D	9.17	128.99	120.80
2	R	801	HDD	O1D-CGD-O2D	7.72	127.69	120.80
2	S	801	HDD	O1D-CGD-O2D	7.67	127.65	120.80
2	Р	801	HDD	O1D-CGD-O2D	7.40	127.41	120.80
2	Р	801	HDD	C4A-C3A-C2A	-6.81	102.26	107.00
2	S	801	HDD	C4A-C3A-C2A	-6.64	102.38	107.00
2	R	801	HDD	C4A-C3A-C2A	-6.22	102.67	107.00
2	Q	801	HDD	C4A-C3A-C2A	-5.82	102.95	107.00
2	S	801	HDD	OND-C2D-CMD	-4.40	101.48	109.59
2	Q	801	HDD	CMB-C2B-C3B	4.06	132.27	124.68
2	Р	801	HDD	O1D-CGD-CBD	-3.88	106.28	110.19
2	R	801	HDD	OND-C2D-CMD	-3.87	102.46	109.59
2	S	801	HDD	O1D-CGD-CBD	-3.82	106.34	110.19
2	Р	801	HDD	OND-C2D-CMD	-3.81	102.58	109.59
2	R	801	HDD	CMB-C2B-C3B	3.49	131.22	124.68
2	Q	801	HDD	OND-C2D-CMD	-3.49	103.16	109.59
2	Р	801	HDD	C2D-C1D-CHD	-3.47	118.55	124.28
2	Q	801	HDD	O1D-CGD-CBD	-3.46	106.70	110.19
2	R	801	HDD	O1D-CGD-CBD	-3.44	106.72	110.19
2	R	801	HDD	C2D-C1D-CHD	-3.37	118.71	124.28
2	R	801	HDD	CAA-CBA-CGA	-3.25	104.64	113.76
2	Р	801	HDD	CMB-C2B-C3B	3.18	130.63	124.68
2	Q	801	HDD	C2D-C1D-CHD	-3.13	119.11	124.28
2	R	801	HDD	CMC-C2C-C3C	3.13	130.53	124.68
2	Q	801	HDD	CAA-CBA-CGA	-3.07	105.17	113.76
2	S	801	HDD	CAA-CBA-CGA	-3.06	105.18	113.76
2	S	801	HDD	CMB-C2B-C3B	3.04	130.37	124.68
2	Q	801	HDD	C1A-CHA-C4D	-3.03	124.11	130.12
2	Р	801	HDD	C3C-C4C-NC	3.02	113.11	109.21
2	S	801	HDD	CMA-C3A-C2A	2.93	130.47	124.94
2	S	801	HDD	C3C-C4C-NC	2.88	112.93	109.21
2	R	801	HDD	C1A-CHA-C4D	-2.82	124.53	130.12
2	Р	801	HDD	CMC-C2C-C3C	2.81	129.94	124.68
2	S	801	HDD	C2D-C1D-CHD	-2.76	119.73	124.28
2	Р	801	HDD	CAA-CBA-CGA	-2.62	106.40	113.76
2	S	801	HDD	C1A-CHA-C4D	-2.49	125.19	130.12
2	R	801	HDD	C2B-C3B-C4B	-2.47	105.17	106.90
2	R	801	HDD	C3C-C4C-NC	2.47	112.40	109.21
2	Q	801	HDD	CMC-C2C-C3C	2.44	129.24	124.68
2	S	801	HDD	CMC-C2C-C3C	2.44	129.24	124.68
2	Q	801	HDD	C4C-CHD-C1D	-2.42	125.32	130.12
2	Р	801	HDD	C4C-CHD-C1D	-2.41	125.34	130.12
2	Q	801	HDD	C3C-C4C-NC	2.41	112.33	109.21

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
2	\mathbf{S}	801	HDD	C3D-C4D-CHA	-2.26	117.63	124.34
2	Р	801	HDD	CMA-C3A-C2A	2.26	129.19	124.94
3	Р	802	GOL	O2-C2-C3	2.21	118.87	109.12
2	Q	801	HDD	CMA-C3A-C2A	2.11	128.92	124.94
2	R	801	HDD	CBA-CAA-C2A	-2.09	109.06	112.62
2	Q	801	HDD	C3D-C4D-CHA	-2.08	118.15	124.34
2	R	801	HDD	C4C-CHD-C1D	-2.03	126.10	130.12

There are no chirality outliers.

Mol	Chain	Res	Type	Atoms
3	Q	802	GOL	C1-C2-C3-O3
3	Q	820	GOL	O1-C1-C2-C3
3	R	809	GOL	C1-C2-C3-O3
3	S	802	GOL	C1-C2-C3-O3
3	S	812	GOL	O1-C1-C2-C3
3	S	812	GOL	C1-C2-C3-O3
3	S	812	GOL	O2-C2-C3-O3
3	S	813	GOL	C1-C2-C3-O3
5	R	807	PGE	C3-C4-O3-C5
5	R	807	PGE	O3-C5-C6-O4
6	Q	824	PEG	O2-C3-C4-O4
5	Р	812	PGE	O2-C3-C4-O3
5	Р	812	PGE	C6-C5-O3-C4
6	S	817	PEG	C1-C2-O2-C3
3	Q	820	GOL	O1-C1-C2-O2
3	R	809	GOL	O2-C2-C3-O3
3	S	802	GOL	O2-C2-C3-O3
6	Р	816	PEG	O2-C3-C4-O4
6	Р	817	PEG	O2-C3-C4-O4
6	Q	825	PEG	O1-C1-C2-O2
9	R	812	PG4	O2-C3-C4-O3
5	R	807	PGE	O2-C3-C4-O3
5	R	807	PGE	O1-C1-C2-O2
6	Р	814	PEG	O2-C3-C4-O4
6	Р	815	PEG	O2-C3-C4-O4
6	Q	823	PEG	O2-C3-C4-O4
3	Р	802	GOL	O1-C1-C2-C3
5	Р	812	PGE	O3-C5-C6-O4
5	R	808	PGE	O1-C1-C2-O2
6	Р	817	PEG	O1-C1-C2-O2

All (105) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
6	Q	824	PEG	O1-C1-C2-O2
3	Q	802	GOL	O2-C2-C3-O3
3	S	813	GOL	O2-C2-C3-O3
5	R	808	PGE	O3-C5-C6-O4
6	Q	822	PEG	O1-C1-C2-O2
4	P	805	EDO	O1-C1-C2-O2
4	Р	808	EDO	O1-C1-C2-O2
4	Q	808	EDO	O1-C1-C2-O2
4	Q	817	EDO	O1-C1-C2-O2
4	Q	819	EDO	O1-C1-C2-O2
4	R	806	EDO	O1-C1-C2-O2
4	S	804	EDO	O1-C1-C2-O2
4	S	805	EDO	O1-C1-C2-O2
4	S	808	EDO	O1-C1-C2-O2
5	Р	812	PGE	O1-C1-C2-O2
6	Р	815	PEG	O1-C1-C2-O2
9	R	812	PG4	O4-C7-C8-O5
3	S	812	GOL	O1-C1-C2-O2
9	R	812	PG4	O3-C5-C6-O4
4	Q	805	EDO	O1-C1-C2-O2
4	Q	806	EDO	O1-C1-C2-O2
4	Q	818	EDO	O1-C1-C2-O2
3	Р	802	GOL	O1-C1-C2-O2
6	S	817	PEG	O1-C1-C2-O2
4	R	804	EDO	O1-C1-C2-O2
4	S	806	EDO	O1-C1-C2-O2
6	Q	822	PEG	O2-C3-C4-O4
5	R	808	PGE	C3-C4-O3-C5
6	Р	814	PEG	C4-C3-O2-C2
9	R	812	PG4	C1-C2-O2-C3
6	Р	816	PEG	O1-C1-C2-O2
4	Q	813	EDO	01-C1-C2-O2
6	Р	816	PEG	C1-C2-O2-C3
6	Q	823	PEG	C4-C3-O2-C2
6	Р	817	PEG	C4-C3-O2-C2
6	S	816	PEG	O1-C1-C2-O2
6	Q	825	PEG	C4-C3-O2-C2
4	Р	804	EDO	O1-C1-C2-O2
4	S	807	EDO	O1-C1-C2-O2
3	R	810	GOL	O1-C1-C2-C3
2	Р	801	HDD	CAA-CBA-CGA-O2A
2	S	801	HDD	CAA-CBA-CGA-O2A

Continued from previous page...

Mol	Chain	Res	Type	Atoms
6	Q	825	PEG	C1-C2-O2-C3
2	Р	801	HDD	CAA-CBA-CGA-O1A
6	Р	816	PEG	C4-C3-O2-C2
5	R	808	PGE	O2-C3-C4-O3
2	Q	801	HDD	CAA-CBA-CGA-O1A
2	R	801	HDD	CAA-CBA-CGA-O1A
2	Q	801	HDD	CAA-CBA-CGA-O2A
5	R	808	PGE	C4-C3-O2-C2
2	R	801	HDD	CAA-CBA-CGA-O2A
4	Q	803	EDO	O1-C1-C2-O2
2	S	801	HDD	CAA-CBA-CGA-O1A
6	Р	817	PEG	C1-C2-O2-C3
6	S	816	PEG	C4-C3-O2-C2
4	Р	803	EDO	O1-C1-C2-O2
4	Q	811	EDO	O1-C1-C2-O2
4	Q	812	EDO	O1-C1-C2-O2
4	Q	814	EDO	O1-C1-C2-O2
4	Q	815	EDO	O1-C1-C2-O2
5	R	807	PGE	C1-C2-O2-C3
5	Р	812	PGE	C3-C4-O3-C5
6	Р	814	PEG	O1-C1-C2-O2
6	Q	823	PEG	C1-C2-O2-C3
6	Q	822	PEG	C1-C2-O2-C3
5	R	807	PGE	C6-C5-O3-C4
4	Р	807	EDO	O1-C1-C2-O2
4	Р	810	EDO	O1-C1-C2-O2
4	R	805	EDO	O1-C1-C2-O2
3	Р	813	GOL	O2-C2-C3-O3
3	R	810	GOL	O1-C1-C2-O2
5	Р	812	PGE	C1-C2-O2-C3
6	Q	824	PEG	C1-C2-O2-C3
9	R	812	PG4	C8-C7-O4-C6
3	Q	820	GOL	O2-C2-C3-O3

Continued from previous page...

There are no ring outliers.

27 monomers are involved in 104 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
4	Р	804	EDO	2	0
2	Q	801	HDD	7	0
6	Р	814	PEG	7	0
6	Q	822	PEG	3	0

Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	Q	802	GOL	1	0
2	Р	801	HDD	8	0
2	R	801	HDD	7	0
6	Р	815	PEG	1	0
2	S	801	HDD	9	0
4	Q	819	EDO	2	0
5	R	807	PGE	7	0
4	S	804	EDO	2	0
5	R	808	PGE	1	0
3	R	809	GOL	3	0
4	Р	807	EDO	3	0
4	Q	803	EDO	1	0
4	Q	807	EDO	2	0
3	Р	802	GOL	6	0
6	S	816	PEG	1	0
4	S	805	EDO	2	0
4	R	803	EDO	1	0
4	Q	805	EDO	0	2
3	R	802	GOL	10	0
6	S	817	PEG	2	0
4	Р	808	EDO	1	0
3	S	802	GOL	4	0
6	Р	817	PEG	13	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$<$ RSRZ $>$	#RSRZ>2		$\mathbf{OWAB}(\mathrm{\AA}^2)$	Q<0.9
1	Р	747/753~(99%)	-0.83	8 (1%) 80 8	3	8, 13, 30, 101	0
1	Q	746/753~(99%)	-0.80	7 (0%) 84 8	6	7, 13, 29, 73	0
1	R	747/753~(99%)	-0.72	16 (2%) 63 6	69	7, 14, 34, 95	0
1	S	747/753~(99%)	-0.82	4 (0%) 91 9	2	7,13,28,86	0
All	All	2987/3012 (99%)	-0.79	35 (1%) 79 8	83	7, 13, 30, 101	0

All (35) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	R	7	LYS	6.3
1	R	9	PRO	6.1
1	Р	7	LYS	5.9
1	Р	8	ASN	5.5
1	R	8	ASN	5.0
1	Q	726[A]	GLY	4.1
1	R	617	LEU	3.9
1	R	10	HIS	3.9
1	S	725[A]	ASP	3.8
1	Р	9	PRO	3.6
1	S	8	ASN	3.5
1	S	7	LYS	3.3
1	R	647	VAL	3.2
1	R	646	THR	3.2
1	Q	725[A]	ASP	3.1
1	S	726[A]	GLY	3.1
1	R	726	GLY	3.1
1	R	645	GLY	3.0
1	R	13	GLN	2.9
1	R	614	ALA	2.8
1	R	15	PRO	2.6

Mol	Chain	Res	Type	RSRZ
1	R	648	LEU	2.6
1	R	12	HIS	2.4
1	Q	13	GLN	2.4
1	Р	13	GLN	2.4
1	R	642	ALA	2.3
1	Р	596	GLY	2.3
1	Р	11	GLN	2.3
1	Q	16	LEU	2.2
1	Р	15	PRO	2.2
1	Р	10	HIS	2.2
1	Q	9	PRO	2.1
1	Q	596	GLY	2.1
1	R	11	GLN	2.1
1	Q	8	ASN	2.0

Continued from previous page...

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathbf{A}^2)$	Q < 0.9
4	EDO	Q	819	4/4	0.70	0.23	42,52,54,56	1
6	PEG	Q	824	7/7	0.73	0.34	38,52,73,74	1
3	GOL	S	812	6/6	0.75	0.22	32,58,64,67	2
4	EDO	Q	817	4/4	0.75	0.28	69,80,91,91	1
5	PGE	Р	812	10/10	0.76	0.37	50,74,84,84	1
9	PG4	R	812	13/13	0.80	0.40	50,71,80,82	1
4	EDO	R	806	4/4	0.82	0.67	58,76,90,95	1
4	EDO	S	811	4/4	0.83	0.28	51,73,76,78	1
4	EDO	Q	806	4/4	0.83	0.27	49,69,73,79	4

5 BV	$^{\prime}2$
------	--------------

Continued from previous page									
Mol	Type	Chain	Res	Atoms	RSCC	RSR	B -factors(A^2)	Q<0.9	
3	GOL	Q	820	6/6	0.84	0.34	48,62,69,71	2	
6	PEG	P	817	7/7	0.84	0.20	17,21,27,32	17	
4	EDO	S	806	4/4	0.84	0.21	42,56,62,68	1	
4	EDO	Q	815	4/4	0.84	0.26	45,70,82,83	1	
3	GOL	Q	821	6/6	0.85	0.47	59,77,85,106	2	
3	GOL	R	809	6/6	0.85	0.20	31,40,49,60	2	
5	PGE	R	808	10/10	0.86	0.45	36,62,103,104	1	
4	EDO	Q	816	4/4	0.86	0.18	34,41,54,57	1	
4	EDO	R	803	4/4	0.86	0.28	42,53,63,72	1	
4	EDO	Q	818	4/4	0.86	0.17	$52,\!55,\!67,\!68$	1	
6	PEG	Q	825	7/7	0.87	0.27	41,50,62,66	1	
6	PEG	S	817	7/7	0.87	0.23	$25,\!47,\!63,\!64$	1	
4	EDO	S	808	4/4	0.87	0.17	$30,\!39,\!52,\!52$	1	
6	PEG	Р	814	7/7	0.89	0.20	$29,\!38,\!48,\!52$	1	
4	EDO	Р	808	4/4	0.89	0.27	43,56,62,72	1	
4	EDO	Q	812	4/4	0.89	0.17	66,72,74,76	1	
6	PEG	Р	815	7/7	0.90	0.20	$35,\!42,\!51,\!52$	1	
4	EDO	Р	810	4/4	0.90	0.33	48,63,66,67	1	
4	EDO	Q	811	4/4	0.91	0.13	38,43,50,51	1	
3	GOL	S	802	6/6	0.92	0.17	15,18,30,34	14	
4	EDO	S	807	4/4	0.92	0.14	46,53,56,58	1	
4	EDO	Q	807	4/4	0.92	0.15	29,35,40,43	1	
4	EDO	S	810	4/4	0.92	0.17	32,42,52,52	1	
4	EDO	Q	809	4/4	0.92	0.26	34,40,43,44	1	
4	EDO	R	805	4/4	0.92	0.12	23,26,38,38	1	
4	EDO	Р	806	4/4	0.92	0.14	36,50,54,58	1	
4	EDO	Р	804	4/4	0.93	0.28	6,32,40,43	1	
3	GOL	Р	802	6/6	0.93	0.26	17,24,34,45	0	
6	PEG	Q	822	7/7	0.93	0.12	19,30,39,40	1	
3	GOL	R	810	6/6	0.93	0.14	22,27,39,55	2	
5	PGE	R	807	10/10	0.93	0.18	12,14,15,15	24	
6	PEG	S	816	7/7	0.93	0.13	21,27,38,39	1	
3	GOL	Q	802	6/6	0.93	0.18	16,22,35,38	0	
8	MG	S	815	1/1	0.93	0.27	49,49,49,49	0	
3	GOL	R	802	6/6	0.93	0.20	16,20,37,45	14	
4	EDO	R	804	$\frac{1}{4/4}$	0.94	0.17	32,49,53,57	1	
4	EDO	S	803	4/4	0.94	0.16	33,40,46,48	1	
3	GOL	S	813	6/6	0.94	0.14	19,25,34,45	2	
6	PEG	Р	816	7/7	0.94	0.28	47,59,69.69	1	
4	EDO	Q	808	4/4	0.95	0.11	22,26,29.32	1	
6	PEG	Q	823	7/7	0.95	0.11	18,33.55.56	1	
4	EDO	S	809	4/4	0.96	0.23	38,48,54,68	1	

Contin d fr onic

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B-factors(Å ²)	Q<0.9
4	EDO	Q	810	4/4	0.96	0.14	30,35,42,44	1
4	EDO	S	804	4/4	0.96	0.15	23,26,29,30	1
3	GOL	Р	813	6/6	0.96	0.13	16,24,43,50	2
4	EDO	Q	803	4/4	0.96	0.08	30,38,43,44	1
4	EDO	Р	809	4/4	0.96	0.12	$21,\!24,\!34,\!35$	1
4	EDO	Q	814	4/4	0.97	0.12	20,30,42,54	1
7	SO4	Р	818	5/5	0.97	0.11	35,37,49,51	5
4	EDO	Q	804	4/4	0.97	0.09	23,26,31,32	1
4	EDO	Q	813	4/4	0.97	0.25	35,38,51,54	1
4	EDO	Р	805	4/4	0.98	0.11	28,40,50,58	1
4	EDO	S	805	4/4	0.98	0.11	25,32,37,38	1
7	SO4	S	814	5/5	0.98	0.25	41,50,64,68	0
8	MG	R	811	1/1	0.98	0.17	41,41,41,41	0
4	EDO	Р	803	4/4	0.98	0.08	$23,\!28,\!29,\!29$	1
4	EDO	Р	807	4/4	0.98	0.17	32,35,45,46	1
2	HDD	S	801	44/44	0.99	0.08	$7,\!9,\!15,\!17$	1
2	HDD	Р	801	44/44	0.99	0.05	$7,\!9,\!15,\!20$	1
4	EDO	Q	805	4/4	0.99	0.08	23,33,69,69	1
2	HDD	Q	801	44/44	0.99	0.07	7,9,14,18	1
2	HDD	R	801	44/44	0.99	0.07	8,10,15,19	1
4	EDO	Р	811	4/4	0.99	0.06	$2\overline{5,30,38,40}$	0

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

