

wwPDB X-ray Structure Validation Summary Report (i)

Aug 23, 2023 – 12:44 PM EDT

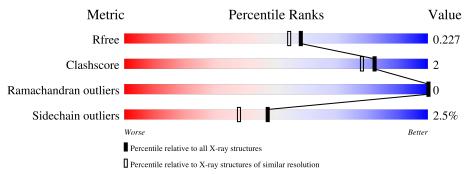
PDB ID	:	3C4M
Title	:	Structure of human parathyroid hormone in complex with the extracellular
		domain of its G-protein-coupled receptor (PTH1R)
Authors	:	Pioszak, A.A.; Xu, H.E.
Deposited on	:	2008-01-30
Resolution	:	1.95 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:


MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.35
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.35

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 1.95 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	130704	2580 (1.96-1.96)
Clashscore	141614	2705 (1.96-1.96)
Ramachandran outliers	138981	2678 (1.96-1.96)
Sidechain outliers	138945	2678 (1.96-1.96)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain					
1	А	539	81% 5%	• 13%				
1	В	539	80% 6%	• 13%				
2	С	21	86%	14%				
2	D	21	95%	5%				
3	Е	2	50% 50%					
3	F	2	100%					

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 8349 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Fusion protein of Maltose-binding periplasmic protein and Parathyroid hormone/parathyroid hormone-related peptide receptor.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
1	А	469	Total 3684	C 2366		O 693	S 13	0	0	0
1	В	469	Total 3681	C 2363	N 612	O 693	S 13	0	0	0

A23ASN-linkerUNP POAEX9A24ALA-linkerUNP POAEX9A25ALA-linkerUNP POAEX9A26ALA-linkerUNP POAEX9A27GLU-linkerUNP POAEX9A28PHE-linkerUNP POAEX9A188HIS-expression tagUNP POAEX9A189HIS-expression tagUNP POAEX9A190HIS-expression tagUNP POAEX9A191HIS-expression tagUNP POAEX9A192HIS-expression tagUNP POAEX9A193HIS-expression tagUNP POAEX9B23ASN-linkerUNP POAEX9B25ALA-linkerUNP POAEX9B26ALA-linkerUNP POAEX9B28PHE-linkerUNP POAEX9B28PHE-linkerUNP POAEX9B188HIS-expression tagUNP POAEX9B189HIS-expression tagUNP POAEX9B189HIS-expression tagUNP POAEX9B189HIS-expression tagUNP POAEX9B189HIS-expression tagUNP POAEX9B189HIS- <th>Chain</th> <th>Residue</th> <th>Modelled</th> <th>Actual</th> <th>Comment</th> <th>Reference</th>	Chain	Residue	Modelled	Actual	Comment	Reference
A24ALA-linkerUNP POAEX9A25ALA-linkerUNP POAEX9A26ALA-linkerUNP POAEX9A27GLU-linkerUNP POAEX9A28PHE-linkerUNP POAEX9A188HIS-expression tagUNP POAEX9A189HIS-expression tagUNP POAEX9A190HIS-expression tagUNP POAEX9A190HIS-expression tagUNP POAEX9A191HIS-expression tagUNP POAEX9A192HIS-expression tagUNP POAEX9A193HIS-expression tagUNP POAEX9B-345MET-initiating methionineUNP POAEX9B23ASN-linkerUNP POAEX9B26ALA-linkerUNP POAEX9B26ALA-linkerUNP POAEX9B28PHE-linkerUNP POAEX9B188HIS-expression tagUNP POAEX9B189HIS-expression tagUNP POAEX9B189HIS-expression tagUNP POAEX9B189HIS-expression tagUNP POAEX9B190HIS-expression tagUNP POAEX9B189	А	-345	MET	-	initiating methionine	UNP P0AEX9
A25ALA-linkerUNP POAEX9A26ALA-linkerUNP POAEX9A27GLU-linkerUNP POAEX9A28PHE-linkerUNP POAEX9A188HIS-expression tagUNP POAEX9A189HIS-expression tagUNP POAEX9A190HIS-expression tagUNP POAEX9A190HIS-expression tagUNP POAEX9A191HIS-expression tagUNP POAEX9A192HIS-expression tagUNP POAEX9A193HIS-expression tagUNP POAEX9B-345MET-initiating methionineUNP POAEX9B23ASN-linkerUNP POAEX9B24ALA-linkerUNP POAEX9B26ALA-linkerUNP POAEX9B28PHE-linkerUNP POAEX9B188HIS-expression tagUNP POAEX9B189HIS-expression tagUNP POAEX9B189HIS-expression tagUNP POAEX9B189HIS-expression tagUNP POAEX9B190HIS-expression tagUNP POAEX9B190HIS-expression tagUNP POAEX9 <td>А</td> <td>23</td> <td>ASN</td> <td>-</td> <td>linker</td> <td>UNP P0AEX9</td>	А	23	ASN	-	linker	UNP P0AEX9
A26ALA-linkerUNP P0AEX9A27GLU-linkerUNP P0AEX9A28PHE-linkerUNP P0AEX9A188HIS-expression tagUNP P0AEX9A189HIS-expression tagUNP P0AEX9A190HIS-expression tagUNP P0AEX9A191HIS-expression tagUNP P0AEX9A192HIS-expression tagUNP P0AEX9A193HIS-expression tagUNP P0AEX9B-345MET-initiating methionineUNP P0AEX9B23ASN-linkerUNP P0AEX9B24ALA-linkerUNP P0AEX9B26ALA-linkerUNP P0AEX9B28PHE-linkerUNP P0AEX9B188HIS-expression tagUNP P0AEX9B189HIS-expression tagUNP P0AEX9B189HIS-expression tagUNP P0AEX9B189HIS-expression tagUNP P0AEX9B189HIS-expression tagUNP P0AEX9B190HIS-expression tagUNP P0AEX9B190HIS-expression tagUNP P0AEX9	А	24	ALA	-	linker	UNP P0AEX9
A27GLU-linkerUNP POAEX9A28PHE-linkerUNP POAEX9A188HIS-expression tagUNP POAEX9A189HIS-expression tagUNP POAEX9A190HIS-expression tagUNP POAEX9A191HIS-expression tagUNP POAEX9A192HIS-expression tagUNP POAEX9A192HIS-expression tagUNP POAEX9A193HIS-expression tagUNP POAEX9B-345MET-initiating methionineUNP POAEX9B23ASN-linkerUNP POAEX9B24ALA-linkerUNP POAEX9B26ALA-linkerUNP POAEX9B27GLU-linkerUNP POAEX9B188HIS-expression tagUNP POAEX9B189HIS-expression tagUNP POAEX9B189HIS-expression tagUNP POAEX9B189HIS-expression tagUNP POAEX9B190HIS-expression tagUNP POAEX9B190HIS-expression tagUNP POAEX9	А	25	ALA	-	linker	UNP P0AEX9
A28PHE-linkerUNP POAEX9A188HIS-expression tagUNP POAEX9A189HIS-expression tagUNP POAEX9A190HIS-expression tagUNP POAEX9A191HIS-expression tagUNP POAEX9A192HIS-expression tagUNP POAEX9A193HIS-expression tagUNP POAEX9B-345MET-initiating methionineUNP POAEX9B23ASN-linkerUNP POAEX9B24ALA-linkerUNP POAEX9B25ALA-linkerUNP POAEX9B26ALA-linkerUNP POAEX9B28PHE-linkerUNP POAEX9B188HIS-expression tagUNP POAEX9B189HIS-expression tagUNP POAEX9B190HIS-expression tagUNP POAEX9	А	26	ALA	-	linker	UNP P0AEX9
A188HIS-expression tagUNP POAEX9A189HIS-expression tagUNP POAEX9A190HIS-expression tagUNP POAEX9A191HIS-expression tagUNP POAEX9A192HIS-expression tagUNP POAEX9A193HIS-expression tagUNP POAEX9B-345MET-initiating methionineUNP POAEX9B23ASN-linkerUNP POAEX9B24ALA-linkerUNP POAEX9B26ALA-linkerUNP POAEX9B27GLU-linkerUNP POAEX9B28PHE-linkerUNP POAEX9B189HIS-expression tagUNP POAEX9B189HIS-expression tagUNP POAEX9B190HIS-expression tagUNP POAEX9	А	27	GLU	-	linker	UNP POAEX9
A189HIS-expression tagUNP POAEX9A190HIS-expression tagUNP POAEX9A191HIS-expression tagUNP POAEX9A192HIS-expression tagUNP POAEX9A193HIS-expression tagUNP POAEX9B-345MET-initiating methionineUNP POAEX9B23ASN-linkerUNP POAEX9B24ALA-linkerUNP POAEX9B25ALA-linkerUNP POAEX9B26ALA-linkerUNP POAEX9B27GLU-linkerUNP POAEX9B28PHE-linkerUNP POAEX9B188HIS-expression tagUNP POAEX9B189HIS-expression tagUNP POAEX9B190HIS-expression tagUNP POAEX9	А	28	PHE	-	linker	UNP POAEX9
A190HIS-expression tagUNP POAEX9A191HIS-expression tagUNP POAEX9A192HIS-expression tagUNP POAEX9A193HIS-expression tagUNP POAEX9B-345MET-initiating methionineUNP POAEX9B23ASN-linkerUNP POAEX9B24ALA-linkerUNP POAEX9B25ALA-linkerUNP POAEX9B26ALA-linkerUNP POAEX9B28PHE-linkerUNP POAEX9B188HIS-expression tagUNP POAEX9B189HIS-expression tagUNP POAEX9B180HIS-expression tagUNP POAEX9B190HIS-expression tagUNP POAEX9	А	188	HIS	-	expression tag	UNP P0AEX9
A191HIS-expression tagUNP POAEX9A192HIS-expression tagUNP POAEX9A193HIS-expression tagUNP POAEX9B-345MET-initiating methionineUNP POAEX9B23ASN-linkerUNP POAEX9B24ALA-linkerUNP POAEX9B25ALA-linkerUNP POAEX9B26ALA-linkerUNP POAEX9B28PHE-linkerUNP POAEX9B188HIS-expression tagUNP POAEX9B189HIS-expression tagUNP POAEX9B190HIS-expression tagUNP POAEX9	А	189	HIS	-	expression tag	UNP POAEX9
A192HIS-expression tagUNP POAEX9A193HIS-expression tagUNP POAEX9B-345MET-initiating methionineUNP POAEX9B23ASN-linkerUNP POAEX9B24ALA-linkerUNP POAEX9B25ALA-linkerUNP POAEX9B26ALA-linkerUNP POAEX9B27GLU-linkerUNP POAEX9B28PHE-linkerUNP POAEX9B188HIS-expression tagUNP POAEX9B189HIS-expression tagUNP POAEX9B190HIS-expression tagUNP POAEX9	А	190	HIS	-	expression tag	UNP POAEX9
A193HIS-expression tagUNP POAEX9B-345MET-initiating methionineUNP POAEX9B23ASN-linkerUNP POAEX9B24ALA-linkerUNP POAEX9B25ALA-linkerUNP POAEX9B26ALA-linkerUNP POAEX9B27GLU-linkerUNP POAEX9B28PHE-linkerUNP POAEX9B188HIS-expression tagUNP POAEX9B189HIS-expression tagUNP POAEX9B190HIS-expression tagUNP POAEX9	А	191	HIS	-	expression tag	UNP P0AEX9
B-345MET-initiating methionineUNP POAEX9B23ASN-linkerUNP POAEX9B24ALA-linkerUNP POAEX9B25ALA-linkerUNP POAEX9B26ALA-linkerUNP POAEX9B27GLU-linkerUNP POAEX9B28PHE-linkerUNP POAEX9B188HIS-expression tagUNP POAEX9B189HIS-expression tagUNP POAEX9B190HIS-expression tagUNP POAEX9	А	192	HIS	-	expression tag	UNP POAEX9
B23ASN-linkerUNP P0AEX9B24ALA-linkerUNP P0AEX9B25ALA-linkerUNP P0AEX9B26ALA-linkerUNP P0AEX9B27GLU-linkerUNP P0AEX9B28PHE-linkerUNP P0AEX9B188HIS-expression tagUNP P0AEX9B189HIS-expression tagUNP P0AEX9B190HIS-expression tagUNP P0AEX9	А	193	HIS	-	expression tag	UNP P0AEX9
B24ALA-linkerUNP P0AEX9B25ALA-linkerUNP P0AEX9B26ALA-linkerUNP P0AEX9B27GLU-linkerUNP P0AEX9B28PHE-linkerUNP P0AEX9B188HIS-expression tagUNP P0AEX9B189HIS-expression tagUNP P0AEX9B190HIS-expression tagUNP P0AEX9	В	-345	MET	-	initiating methionine	UNP POAEX9
B25ALA-linkerUNP POAEX9B26ALA-linkerUNP POAEX9B27GLU-linkerUNP POAEX9B28PHE-linkerUNP POAEX9B188HIS-expression tagUNP POAEX9B189HIS-expression tagUNP POAEX9B190HIS-expression tagUNP POAEX9	В	23	ASN	-	linker	UNP POAEX9
B26ALA-linkerUNP P0AEX9B27GLU-linkerUNP P0AEX9B28PHE-linkerUNP P0AEX9B188HIS-expression tagUNP P0AEX9B189HIS-expression tagUNP P0AEX9B190HIS-expression tagUNP P0AEX9	В	24	ALA	-	linker	UNP POAEX9
B27GLU-linkerUNP P0AEX9B28PHE-linkerUNP P0AEX9B188HIS-expression tagUNP P0AEX9B189HIS-expression tagUNP P0AEX9B190HIS-expression tagUNP P0AEX9	В	25	ALA	-	linker	UNP POAEX9
B28PHE-linkerUNP P0AEX9B188HIS-expression tagUNP P0AEX9B189HIS-expression tagUNP P0AEX9B190HIS-expression tagUNP P0AEX9	В	26	ALA	-	linker	UNP P0AEX9
B188HIS-expression tagUNP P0AEX9B189HIS-expression tagUNP P0AEX9B190HIS-expression tagUNP P0AEX9	В	27	GLU	-	linker	UNP POAEX9
B189HIS-expression tagUNP P0AEX9B190HIS-expression tagUNP P0AEX9	В	28	PHE	-	linker	UNP P0AEX9
B 190 HIS - expression tag UNP POAEX9	В	188	HIS	-	expression tag	UNP P0AEX9
1 0	В	189	HIS	-	expression tag	UNP P0AEX9
B 191 HIS - expression tag UNP P0AEX9	В	190	HIS	-	expression tag	UNP POAEX9
	В	191	HIS	-	expression tag	UNP P0AEX9

There are 26 discrepancies between the modelled and reference sequences:

Continued on next page...

Continued from previous page...

Chain	Residue	Modelled	Actual	Comment	Reference
В	192	HIS	-	expression tag	UNP P0AEX9
В	193	HIS	-	expression tag	UNP P0AEX9

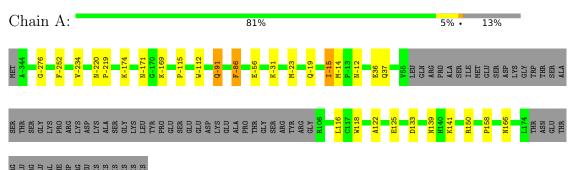
• Molecule 2 is a protein called Parathyroid hormone.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
2	2 C	91	Total	С	Ν	Ο	S	0	0	1
		21	179	113	35	30	1	0		
2	Л	D 91	Total	С	Ν	Ο	S	0	0	1
	2 D	21	179	113	35	30	1			

• Molecule 3 is an oligosaccharide called alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
3	Е	2	Total C C 23 12 11	0	0	0
3	F	2	Total C C 23 12 11	0	0	0

• Molecule 4 is water.


Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	330	Total O 330 330	0	0
4	В	230	Total O 230 230	0	0
4	С	6	Total O 6 6	0	0
4	D	14	Total O 14 14	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

 \bullet Molecule 1: Fusion protein of Maltose-binding periplasmic protein and Parathyroid hormone/parathyroid hormone-related peptide receptor

• Molecule 1: Fusion protein of Maltose-binding periplasmic protein and Parathyroid hormone/parathyroid hormone-related peptide receptor

Chain B:	80%	6% •	13%	
MET ALA LYS LYS LYS GLU GLU E-340 K-310	K- 298 F- 297 P- 296 P- 296 P- 294 F- 294 W- 283 W- 283 W- 283 W- 283 W- 284 F- 288 F- 288 W- 288 F- 2888 F- 2888 F- 2888 F- 2888 F- 2888 F- 2888 F- 2888 F- 2888 F- 2888	D-135 1-132 N-126 P-115	W-112 S-106 K-105	F-86 P-73
E-53 K-49 E-34 R-12	0-9 D14 D14 A2 A2 A2 A3 A3 A3 A3 A3 A3 A3 A3 A3 A3	LYS LYS ALA SER GLY LYS LEU TYR	PRO GLU GLU GLU	ASF LYS GLU ALA PRO
THR GLY SER ARG TYR ARG G105	M161 T175 ASN CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU			
• Molecule	2: Parathyroid hormone			
Chain C:	86%		14%	
L15 W23 N33 F34 NH235				
• Molecule	2: Parathyroid hormone			
Chain D:	95%		5%	
	WORLDWIDE			

L15 NH235

GLC1 GLC2

• Molecule 3: alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose

Chain E: 50% 50% 50% • Molecule 3: alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose Chain F: 100%

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	62.92Å 116.79Å 78.42Å	Depositor
a, b, c, α , β , γ	90.00° 108.80° 90.00°	Depositor
Resolution (Å)	50.00 - 1.95	Depositor
Resolution (A)	41.70 - 1.95	EDS
% Data completeness	97.9 (50.00-1.95)	Depositor
(in resolution range)	97.9 (41.70-1.95)	EDS
R _{merge}	0.06	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$2.43 (at 1.95 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.2.0019	Depositor
D D.	0.186 , 0.227	Depositor
R, R_{free}	0.187 , 0.227	DCC
R_{free} test set	3849 reflections $(5.03%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	31.0	Xtriage
Anisotropy	0.347	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.33, 39.4	EDS
L-test for twinning ²	$ \langle L \rangle = 0.50, \langle L^2 \rangle = 0.33$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.94	EDS
Total number of atoms	8349	wwPDB-VP
Average B, all atoms $(Å^2)$	39.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 5.80% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: GLC, $\rm NH2$

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bo	nd lengths	Bond angles		
IVIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.58	3/3780~(0.1%)	0.59	1/5134~(0.0%)	
1	В	0.47	0/3777	0.57	0/5131	
2	С	1.47	2/181~(1.1%)	0.63	0/241	
2	D	0.47	0/181	0.59	0/241	
All	All	0.57	5/7919~(0.1%)	0.58	1/10747~(0.0%)	

All (5) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	С	33	ASN	CG-OD1	15.13	1.57	1.24
2	С	33	ASN	CG-ND2	9.21	1.55	1.32
1	А	150	ARG	C-O	8.27	1.39	1.23
1	А	158	PRO	C-N	7.90	1.47	1.33
1	А	150	ARG	CZ-NH1	5.60	1.40	1.33

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$Observed(^{o})$	$Ideal(^{o})$
1	А	150	ARG	NE-CZ-NH2	-5.54	117.53	120.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	3684	0	3604	17	0
1	В	3681	0	3598	22	0
2	С	179	0	178	2	0
2	D	179	0	178	0	0
3	Ε	23	0	21	0	0
3	F	23	0	21	0	0
4	А	330	0	0	3	0
4	В	230	0	0	1	0
4	С	6	0	0	0	0
4	D	14	0	0	0	0
All	All	8349	0	7600	38	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 2.

The worst 5 of 38 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:A:122:ALA:HB3	1:A:125:GLU:HG3	1.69	0.73
1:A:-23:MET:O	1:A:-19:GLN:HG2	1.90	0.71
1:B:-135:ASP:OD1	1:B:-132:ILE:HG12	1.99	0.63
1:B:-141:HIS:HE1	4:B:263:HOH:O	1.86	0.58
4:A:309:HOH:O	2:C:15:LEU:HB2	2.04	0.56

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Analysed Favoured Allowed		Outliers	Perce	entiles
1	А	465/539~(86%)	454 (98%)	11 (2%)	0	100	100
1	В	465/539~(86%)	458 (98%)	7 (2%)	0	100	100

Continued on next page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	Percentiles	
2	С	19/21~(90%)	19 (100%)	0	0	100	100	
2	D	19/21~(90%)	19 (100%)	0	0	100	100	
All	All	968/1120~(86%)	950~(98%)	18 (2%)	0	100	100	

Continued from previous page...

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric Outliers		Percentiles		
1	А	381/442~(86%)	375~(98%)	6~(2%)	62 58		
1	В	381/442~(86%)	368~(97%)	13 (3%)	37 25		
2	С	20/20~(100%)	20 (100%)	0	100 100		
2	D	20/20~(100%)	19~(95%)	1 (5%)	24 11		
All	All	802/924~(87%)	782~(98%)	20~(2%)	47 38		

5 of 20 residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
1	В	-49	LYS
1	В	14	ASP
2	D	15	LEU
1	В	161	ASN
1	В	-310	LYS

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 12 such side chains are listed below:

Mol	Chain	Res	Type
1	В	-141	HIS
1	В	-126	ASN
2	D	33	ASN
1	В	-9	GLN
1	А	-91	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

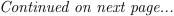
There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

4 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Mol Type		Res	Link	Bo	Bond lengths			Bond angles		
	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2	
3	GLC	Е	1	3	12,12,12	0.48	0	17,17,17	0.82	0	
3	GLC	Е	2	3	11,11,12	0.69	0	$15,\!15,\!17$	1.28	1 (6%)	
3	GLC	F	1	3	12,12,12	0.49	0	$17,\!17,\!17$	0.87	1 (5%)	
3	GLC	F	2	3	11,11,12	0.65	0	$15,\!15,\!17$	0.89	1 (6%)	


In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	GLC	Ε	1	3	-	0/2/22/22	0/1/1/1
3	GLC	Е	2	3	-	0/2/19/22	0/1/1/1
3	GLC	F	1	3	-	0/2/22/22	0/1/1/1
3	GLC	F	2	3	-	0/2/19/22	0/1/1/1

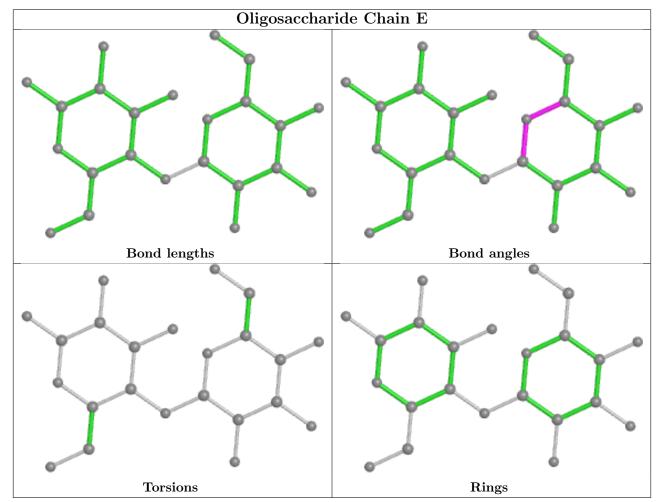
There are no bond length outliers.

All (3) bond angle outliers are listed below:

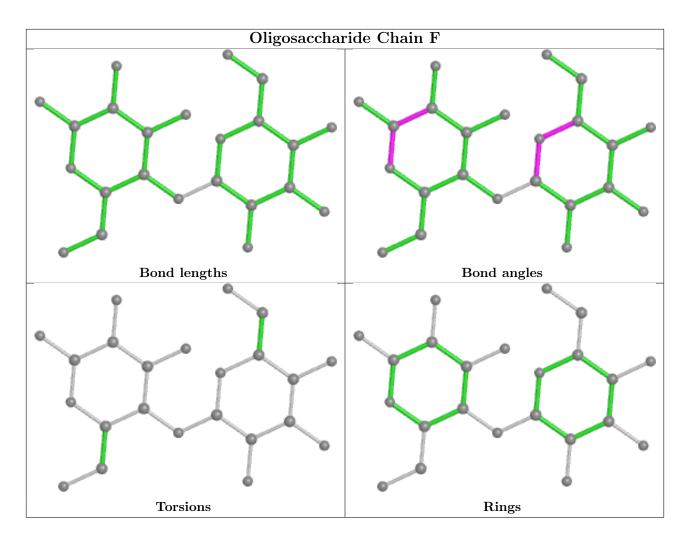
Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
3	Ε	2	GLC	C1-O5-C5	3.86	117.42	112.19

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	F	2	GLC	C1-O5-C5	2.53	115.62	112.19
3	F	1	GLC	O5-C1-C2	2.37	114.52	110.28


There are no chirality outliers.

There are no torsion outliers.


There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

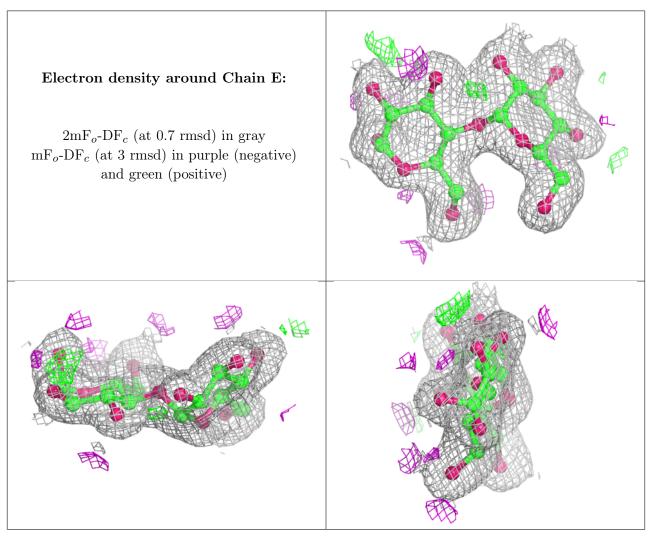
5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

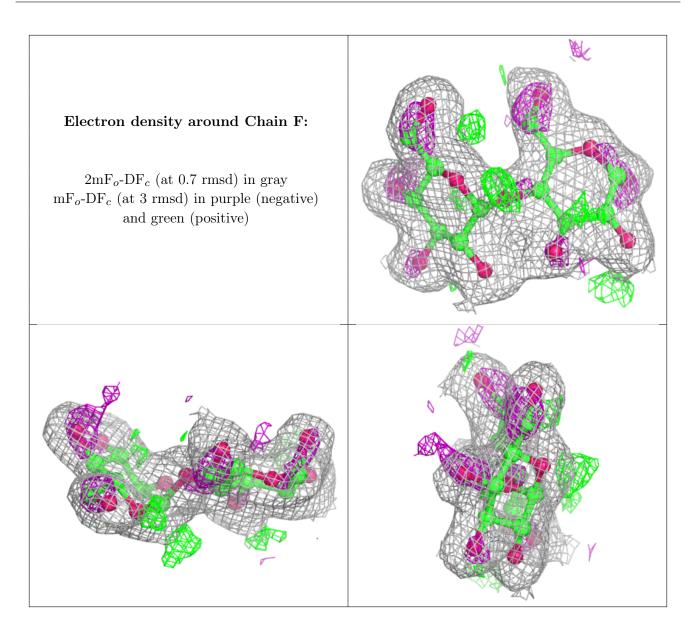
6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.


6.2 Non-standard residues in protein, DNA, RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.


6.3 Carbohydrates (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

The following is a graphical depiction of the model fit to experimental electron density for oligosaccharide. Each fit is shown from different orientation to approximate a three-dimensional view.

6.4 Ligands (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.5 Other polymers (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

