

Oct 19, 2024 – 06:09 PM EDT

PDB ID 9CAI : EMDB ID EMD-45392 : Title : High-resolution C. elegans 80S ribosome structure - class 1 Authors Sehgal, E.; Serrao, V.H.B.; Arribere, J. : Deposited on 2024-06-17 : 2.59 Å(reported) Resolution : Based on initial model · .

This is a Full wwPDB EM Validation Report for a publicly released PDB entry. We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev113
Mogul	:	2022.3.0, CSD as543be (2022)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.59 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Matria	Whole archive	EM structures
Metric	$(\# { m Entries})$	$(\# {\rm Entries})$
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415
RNA backbone	6643	2191

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	AA	276	11% 69% 6'	%	25%
2	CA	260	93%		• •
3	DA	76	37% 76%		24%
4	AB	257	5%	5%	18%
5	CB	401	96%		••
6	AC	272	5%	•	21%
7	AD	247	83%		• 15%
8	AE	259	63%		5% •

Continued on next page...

Mol	Chain	Length	Quality of chain	Quality of chain									
9	A7	119	94%		6%								
10	A8	153	78%	16	% • 5%								
11	B2	1754	64%	21%	16%								
12	A5	3510	6 9%	17%	14%								
13	AR	130	48%		8% 7%								
14	AK	149	37% 59%	38%									
15	AW	130	95%		5% •								
16	AS	154	89%		7% •								
17	AT	146	90%		6% •								
18	Aa	117		7%	15%								
19	Af	163	31% 26% • 69%										
20	AO	152	5%		• 11%								
21	AI	208	88%		11%								
22	AF	210	5% 83%	5%	5 12%								
23	AM	140	84%	6%	16%								
24	AV	88	19%		5% 8%								
25	AN	151	95%		5%								
26	AZ	117	58% •	39%									
27	Ad	56	95%										
28	AY	131	77% 92%		• 6%								
29	AU	117	44%	•	15%								
30	AG	246	43% 85%		8% 7%								
31	Ab	83	94%		5%•								
32	AP	151	21%	7%	15%								
33	Ac	65	95%		5%								

Continued from previous page...

Continued on next page...

Mol	Chain	Length	Quality of chain							
34	Ae	130	31% 32% • 65%							
35	AX	143	91%	7%						
36	ΔΤ.	155	14%	70/ 00/						
- 50	AL	100	59%	7% 8%						
37	AJ	189	85%	8% 6%						
38	AQ	144	92%	6% •						
39	AH	194	90%	9% •						
40	CF	244	86%	• 13%						
41	\mathbf{CS}	180	98%	••						
42	CV	140	89%	• 9%						
43	CU	130	71% 6%	23%						
44	CL	207	<mark>6%</mark> 95%							
45	CG	265	80% •	17%						
46	CI	914	72%							
40	UI	214	98%	•						
47	CO	202	95%	•						
48	CC	345	92%	5% •						
49	Ch	123	93%	7%•						
50	CE	217	5% 61% • 36%							
51	Co	105	93%							
52	Cf	124	92%	• 6%						
53	Ci	104	<mark>6%</mark> 98%	•						
54	Cl	51	94%							
55	CN	204	99%	·						
56	Ca	145	94%	5% •						
57	Ср	91	91%	5% •						
58	CM	135	95%							

Continued from previous page...

Continued on next page...

Mol	Chain	Length	Quality of chain							
			5%							
59	Cc	115	80% •	17%						
60	СН	189	95%	5% •						
61	CY	142	89%	• 7%						
62	CR	198	93%	5% •						
63	Cb	62	^{6%} 79% 5%	16%						
64	CQ	188	97%	• •						
65	CT	161	93%	6% •						
66	CD	293	95%							
67	CZ	136	96%							
68	СР	187	• 79% •	18%						
69	Cn	22	9%	5%						
70	Cg	110	94%	• 5%						
71	Ck	70	94%							
72	Cm	128	34% 40% 60%							
73	Cd	122	7%	• 14%						
74	Ce	134	90%	6% •						
75	CW	159	15% 54% • 45%							
76	Сј	92	95%							
77	CJ	196	89%	6% 5%						
78	CX	146	80% .	18%						
79	DC	10	40%	20%						

Continued from previous page...

2 Entry composition (i)

There are 81 unique types of molecules in this entry. The entry contains 330203 atoms, of which 141530 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Small ribosomal subunit protein uS2.

Mol	Chain	Residues			AltConf	Trace				
1	AA	207	Total 3264	C 1035	Н 1652	N 281	0 289	S 7	0	0

• Molecule 2 is a protein called Large ribosomal subunit protein uL2.

Mol	Chain	Residues			AltConf	Trace				
2	CA	249	Total 3875	C 1178	Н 1980	N 391	O 321	${ m S}{ m 5}$	0	0

• Molecule 3 is a RNA chain called tRNA.

Mol	Chain	Residues			AltConf	Trace				
3	DA	76	Total 2448	C 725	H 821	N 294	O 532	Р 76	0	0

There are 3 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
DA	74	С	U	conflict	GB 351064414
DA	75	С	G	conflict	GB 351064414
DA	76	А	U	conflict	GB 351064414

• Molecule 4 is a protein called Small ribosomal subunit protein eS1.

Mol	Chain	Residues			AltConf	Trace				
4	AB	210	Total 3453	C 1071	Н 1769	N 298	O 307	S 8	0	0

• Molecule 5 is a protein called Large ribosomal subunit protein uL3.

Mol	Chain	Residues				AltConf	Trace			
5	CB	395	Total	С	Н	Ν	Ο	\mathbf{S}	0	0
0	UD	000	6478	2016	3300	605	547	10	0	0

• Molecule 6 is a protein called Small ribosomal subunit protein uS5.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
6	AC	215	Total 3389	C 1062	Н 1735	N 293	O 292	S 7	0	0

• Molecule 7 is a protein called Small ribosomal subunit protein uS3.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
7	AD	211	Total 3343	C 1029	Н 1706	N 308	0 291	S 9	0	0

• Molecule 8 is a protein called Small ribosomal subunit protein eS4.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
8	AE	255	Total 4120	C 1277	Н 2107	N 382	0 347	S 7	0	0

• Molecule 9 is a RNA chain called 5S rRNA.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
9	A7	119	Total 3810	C 1131	Н 1281	N 447	O 833	Р 118	0	0

• Molecule 10 is a RNA chain called 5.8S rRNA.

Mol	Chain	Residues			Ator	\mathbf{ns}			AltConf	Trace
10	A8	146	Total 4679	C 1390	Н 1568	N 551	O 1025	Р 145	0	0

• Molecule 11 is a RNA chain called 18S rRNA.

Mol	Chain	Residues			Ato	\mathbf{ms}			AltConf	Trace
11	B2	1476	Total 47369	C 14078	H 15858	N 5637	O 10320	Р 1476	0	0

• Molecule 12 is a RNA chain called 28S rRNA.

Mol	Chain	Residues			Ato	ms			AltConf	Trace
12	A5	3022	Total 96979	C 28814	Н 32467	N 11522	O 21154	P 3022	0	0

• Molecule 13 is a protein called Small ribosomal subunit protein eS17.

Mol	Chain	Residues			Atom	S			AltConf	Trace
13	AR	121	Total 1985	C 604	Н 1009	N 183	O 184	${ m S}{ m 5}$	0	0

• Molecule 14 is a protein called Plectin/S10 N-terminal domain-containing protein.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
14	AK	93	Total 1555	C 509	Н 786	N 124	0 135	S 1	0	0

• Molecule 15 is a protein called Ribosomal Protein, Small subunit.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
15	AW	129	Total 2110	С 654	Н 1082	N 193	0 177	$\frac{S}{4}$	0	0

• Molecule 16 is a protein called Small ribosomal subunit protein uS13.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
16	AS	148	Total 2453	C 754	Н 1248	N 237	O 209	${S \atop 5}$	0	0

• Molecule 17 is a protein called Small ribosomal subunit protein eS19.

Mol	Chain	Residues			Atom	S			AltConf	Trace
17	AT	140	Total 2260	С 704	Н 1149	N 213	0 193	S 1	0	0

• Molecule 18 is a protein called Small ribosomal subunit protein eS26.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
18	Aa	99	Total 1631	C 496	Н 828	N 172	0 129	S 6	0	0

• Molecule 19 is a protein called Ubiquitin-like protein 1-ribosomal protein eS31 fusion protein.

Mol	Chain	Residues		A	Atoms	5			AltConf	Trace
19	Af	50	Total 789	C 246	H 392	N 77	O 69	$\frac{S}{5}$	0	0

• Molecule 20 is a protein called Small ribosomal subunit protein uS11.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
20	AO	135	Total 2063	C 624	H 1049	N 200	O 185	${ m S}{ m 5}$	0	0

• Molecule 21 is a protein called Small ribosomal subunit protein eS8.

Mol	Chain	Residues			Atoms	S			AltConf	Trace
21	AI	207	Total 3391	C 1044	Н 1723	N 326	O 296	S 2	0	0

• Molecule 22 is a protein called Small ribosomal subunit protein uS7.

Mol	Chain	Residues			Atom	.S			AltConf	Trace
22	AF	185	Total 2969	C 914	Н 1515	N 275	O 259	S 6	0	0

• Molecule 23 is a protein called Small ribosomal subunit protein eS12.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
23	AM	117	Total 1808	$\begin{array}{c} \mathrm{C} \\ 565 \end{array}$	Н 904	N 162	0 170	${f S}{7}$	0	0

• Molecule 24 is a protein called Small ribosomal subunit protein eS21.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
24	AV	81	Total 1239	C 378	H 622	N 114	O 120	$\frac{S}{5}$	0	0

• Molecule 25 is a protein called Small ribosomal subunit protein uS15.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
25	AN	151	Total 2514	C 769	Н 1297	N 236	O 206	S 6	0	0

• Molecule 26 is a protein called Small ribosomal subunit protein eS25.

Mol	Chain	Residues		_	Atom	s			AltConf	Trace
26	AZ	71	Total 1165	C 363	H 601	N 100	O 99	$\frac{S}{2}$	0	0

• Molecule 27 is a protein called Small ribosomal subunit protein uS14.

Mol	Chain	Residues		A	Atom	S			AltConf	Trace
27	Ad	55	Total 895	C 284	Н 443	N 93	0 71	${f S}$ 4	0	0

• Molecule 28 is a protein called Small ribosomal subunit protein eS24.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
28	AY	123	Total 2085	C 637	Н 1093	N 188	0 165	${S \over 2}$	0	0

• Molecule 29 is a protein called Small ribosomal subunit protein uS10.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
29	AU	100	Total 1650	C 500	Н 854	N 154	0 138	$\frac{S}{4}$	0	0

• Molecule 30 is a protein called Small ribosomal subunit protein eS6.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
30	AG	228	Total 3791	C 1159	Н 1954	N 350	0 321	S 7	0	0

• Molecule 31 is a protein called Small ribosomal subunit protein eS27.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
31	Ab	82	Total 1305	C 404	Н 663	N 119	0 111	S 8	0	0

• Molecule 32 is a protein called Small ribosomal subunit protein uS19.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
32	AP	128	Total 2112	C 658	Н 1090	N 189	O 169	S 6	0	0

• Molecule 33 is a protein called Small ribosomal subunit protein eS28.

Mol	Chain	Residues		_	AltConf	Trace				
33	Ac	65	Total 1069	C 314	Н 549	N 106	O 98	$\frac{S}{2}$	0	0

• Molecule 34 is a protein called Ubiquitin-like domain-containing protein.

Mol	Chain	Residues		At	AltConf	Trace			
34	Ae	45	Total 752	C 219	Н 388	N 84	O 61	0	0

• Molecule 35 is a protein called Small ribosomal subunit protein uS12.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
35	AX	140	Total 2242	C 691	Н 1150	N 212	0 186	${ m S} { m 3}$	0	0

• Molecule 36 is a protein called Small ribosomal subunit protein uS17.

Mol	Chain	Residues			Atom	.S			AltConf	Trace
36	AL	143	Total 2380	C 736	Н 1222	N 223	0 194	${ m S}{ m 5}$	0	0

• Molecule 37 is a protein called Small ribosomal subunit protein uS4.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
37	AJ	177	Total 3060	C 936	Н 1592	N 288	O 243	S 1	0	0

• Molecule 38 is a protein called Small ribosomal subunit protein uS9.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
38	AQ	140	Total 2305	C 715	Н 1181	N 215	0 193	S 1	0	0

• Molecule 39 is a protein called Small ribosomal subunit protein eS7.

Mol	Chain	Residues		A	AltConf	Trace			
39	AH	192	Total 3187	C 993	Н 1643	N 280	O 271	0	0

• Molecule 40 is a protein called Large ribosomal subunit protein uL30.

Mol	Chain	Residues			AltConf	Trace				
40	CF	213	$\begin{array}{c} \text{Total} \\ 3534 \end{array}$	C 1119	Н 1791	N 320	O 302	${S \over 2}$	0	0

• Molecule 41 is a protein called Large ribosomal subunit protein eL20.

Mol	Chain	Residues			Atom	S			AltConf	Trace
41	CS	179	Total 2976	C 936	Н 1506	N 278	O 250	S 6	0	0

• Molecule 42 is a protein called Large ribosomal subunit protein uL14.

Mol	Chain	Residues			AltConf	Trace				
42	CV	128	Total 1991	C 614	Н 1020	N 182	O 169	S 6	0	0

• Molecule 43 is a protein called Large ribosomal subunit protein eL22.

Mol	Chain	Residues			AltConf	Trace				
43	CU	100	Total 1692	C 532	Н 868	N 147	0 144	S 1	0	0

• Molecule 44 is a protein called Large ribosomal subunit protein eL13.

Mol	Chain	Residues			AltConf	Trace				
44	CL	204	Total 3388	C 1025	Н 1740	N 338	O 283	${ m S} { m 2}$	0	0

• Molecule 45 is a protein called Large ribosomal subunit protein eL8.

Mol	Chain	Residues			AltConf	Trace				
45	CG	221	Total 3680	C 1123	H 1892	N 354	O 309	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 46 is a protein called Large ribosomal subunit protein uL16.

Mol	Chain	Residues			AltConf	Trace				
46	CI	213	Total 3485	C 1083	Н 1756	N 343	O 290	S 13	0	0

• Molecule 47 is a protein called Large ribosomal subunit protein uL13.

Mol	Chain	Residues			AltConf	Trace				
47	СО	201	Total 3328	C 1031	Н 1714	N 314	0 264	${S \atop 5}$	0	0

• Molecule 48 is a protein called Large ribosomal subunit protein uL4.

Mol	Chain	Residues			AltConf	Trace				
48	CC	335	Total 5420	C 1675	Н 2769	N 521	0 449	S 6	0	0

• Molecule 49 is a protein called Large ribosomal subunit protein uL29.

Mol	Chain	Residues			AltConf	Trace				
49	Ch	122	Total 2094	C 618	Н 1105	N 201	O 169	S 1	0	0

• Molecule 50 is a protein called Large ribosomal subunit protein eL6.

Mol	Chain	Residues			AltConf	Trace				
50	CE	139	Total 2311	С 727	Н 1195	N 203	0 185	S 1	0	0

• Molecule 51 is a protein called Large ribosomal subunit protein eL42.

Mol	Chain	Residues			AltConf	Trace				
51	Co	102	Total 1739	C 522	Н 902	N 174	0 135	S 6	0	0

• Molecule 52 is a protein called Large ribosomal subunit protein eL33.

Mol	Chain	Residues		Α	toms			AltConf	Trace
52	Cf	117	Total 1901	C 594	Н 971	N 183	0 153	0	0

• Molecule 53 is a protein called Large ribosomal subunit protein eL36.

Mol	Chain	Residues			AltConf	Trace				
53	Ci	104	Total 1754	C 521	Н 918	N 176	0 137	${ m S} { m 2}$	0	0

• Molecule 54 is a protein called Large ribosomal subunit protein eL39.

Mol	Chain	Residues		ŀ	Atom	s			AltConf	Trace
54	Cl	50	Total 922	С 276	Н 487	N 93	O 63	${ m S} { m 3}$	0	0

• Molecule 55 is a protein called Large ribosomal subunit protein eL15.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
55	CN	203	Total 3463	C 1068	Н 1763	N 358	0 272	${ m S} { m 2}$	0	0

• Molecule 56 is a protein called Large ribosomal subunit protein uL15.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
56	Ca	144	Total 2299	С 717	Н 1163	N 232	0 183	$\frac{S}{4}$	0	0

• Molecule 57 is a protein called Large ribosomal subunit protein eL43.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
57	Ср	88	Total 1404	$\begin{array}{c} \mathrm{C} \\ 425 \end{array}$	Н 726	N 134	0 113	${f S}{f 6}$	0	0

• Molecule 58 is a protein called Large ribosomal subunit protein eL14.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
58	CM	132	Total 2204	C 668	Н 1151	N 205	0 178	${ m S} { m 2}$	0	0

• Molecule 59 is a protein called Large ribosomal subunit protein eL30.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
59	Cc	96	Total 1497	C 464	Н 762	N 129	0 137	${S \atop 5}$	0	0

• Molecule 60 is a protein called Large ribosomal subunit protein uL6.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
60	СН	188	Total 3081	C 954	H 1577	N 278	O 266	S 6	0	0

• Molecule 61 is a protein called Large ribosomal subunit protein uL24.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
61	CY	132	Total 2181	C 651	Н 1131	N 219	0 176	$\frac{S}{4}$	0	0

• Molecule 62 is a protein called Large ribosomal subunit protein eL19.

Mol	Chain	Residues			Atom	5			AltConf	Trace
62	CR	194	Total 3384	C 1012	Н 1746	N 349	О 274	${ m S} { m 3}$	0	0

• Molecule 63 is a protein called 60S ribosomal protein L29.

Mol	Chain	Residues		A	Atom	s			AltConf	Trace
63	Cb	52	Total 892	C 268	Н 460	N 94	O 69	S 1	0	0

• Molecule 64 is a protein called Large ribosomal subunit protein eL18.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
64	CQ	187	Total 3023	C 918	Н 1550	N 299	0 255	S 1	0	0

• Molecule 65 is a protein called Large ribosomal subunit protein eL21.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
65	СТ	160	Total	С	Н	Ν	0	\mathbf{S}	0	0
	01	100	2621	806	1338	256	218	3	Ū	Ŭ

• Molecule 66 is a protein called Large ribosomal subunit protein uL18.

Mol	Chain	Residues			Atom	5			AltConf	Trace
66	CD	289	Total 4701	C 1468	Н 2373	N 430	0 428	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 67 is a protein called Large ribosomal subunit protein eL27.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
67	CZ	135	Total 2301	C 716	Н 1199	N 200	0 184	${ m S} { m 2}$	0	0

• Molecule 68 is a protein called Large ribosomal subunit protein uL22.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
68	CP	154	Total 2506	C 780	Н 1257	N 249	0 215	${f S}{5}$	0	0

• Molecule 69 is a protein called eL41.

Mol	Chain	Residues		ŀ	Atom	S			AltConf	Trace
69	Cn	22	Total 461	C 128	Н 252	N 54	O 25	${ m S} { m 2}$	0	0

• Molecule 70 is a protein called Large ribosomal subunit protein eL34.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
70	Cg	104	Total 1759	C 526	Н 922	N 170	O 139	${ m S} { m 2}$	0	0

• Molecule 71 is a protein called Large ribosomal subunit protein eL38.

Mol	Chain	Residues			Atom	S			AltConf	Trace
71	Ck	69	Total 1181	C 359	Н 622	N 100	O 99	S 1	0	0

• Molecule 72 is a protein called Ubiquitin-ribosomal protein eL40 fusion protein.

Mol	Chain	Residues		A	Atoms	S			AltConf	Trace
72	Cm	51	Total 874	C 258	Н 456	N 86	O 69	${ m S}{ m 5}$	0	0

• Molecule 73 is a protein called Large ribosomal subunit protein eL31.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
73	Cd	105	Total 1770	C 544	Н 903	N 169	0 151	${ m S} { m 3}$	0	0

• Molecule 74 is a protein called Large ribosomal subunit protein eL32.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
74	Ce	128	Total 2160	C 652	Н 1119	N 216	O 169	${S \atop 4}$	0	0

• Molecule 75 is a protein called Large ribosomal subunit protein eL24.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
75	CW	88	Total 1447	C 442	Н 745	N 140	0 118	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 76 is a protein called Ribosomal protein L37.

Mol	Chain	Residues			Atom	ns			AltConf	Trace
76	Сј	88	Total 1433	C 431	Н 727	N 154	0 117	S 4	0	0

• Molecule 77 is a protein called Large ribosomal subunit protein uL5B.

Mol	Chain	Residues			Atom	S			AltConf	Trace
77	CJ	186	Total 3062	C 952	H 1555	N 281	O 269	${ m S}{ m 5}$	0	0

• Molecule 78 is a protein called Large ribosomal subunit protein uL23B.

Mol	Chain	Residues	Atoms						AltConf	Trace
78	CX	119	Total 1958	C 606	Н 1004	N 181	0 166	S 1	0	0

• Molecule 79 is a RNA chain called mRNA.

Mol	Chain	Residues	Atoms						AltConf	Trace
79	DC	10	Total 301	C 90	Н 101	N 20	O 80	Р 10	0	0

• Molecule 80 is SPERMIDINE (three-letter code: SPD) (formula: $C_7H_{19}N_3$).

Mol	Chain	Residues	Atoms	AltConf
80	A5	1	Total C N 10 7 3	0

• Molecule 81 is 4-{(2R)-2-[(1S,3S,5S)-3,5-dimethyl-2-oxocyclohexyl]-2-hydroxyethyl}piperidi ne-2,6-dione (three-letter code: 3HE) (formula: $C_{15}H_{23}NO_4$).

Mol	Chain	Residues	Atoms					AltConf
Q1	15	1	Total	С	Η	Ν	Ο	0
01	AJ	1	43	15	23	1	4	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Small ribosomal subunit protein uS2

GLU GLU GLU ALA ASN ASN PRO PRO PRO CLN SER SER SER TRP

• Molecule 2: Large ribosomal subunit protein uL2

• Molecule 25: Small ribosomal subunit protein uS15

• Molecule 50:	Large ribosomal subunit protein eL	6
Chain CE:	61%	• 36%
MET VAL GLY CLYS LYS ARG ASN LEU PRO PRO VAL TLE SER	ARG PHE ASP ASP ASP ASP ASP ASP ASP ASC ALA ARG ALA ARG ALA ARG ALA ARG ALA ARG ALA ARG ALA ARG ARG ARG ARG ARG ARG ARG ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	PHE FHE LYS ASP ASP ALA ALA ALA ALA ALA ALA ASN ASN ASN ASN ASN ASN ASN ASN ASN AS
HIS SER K63 T64 N130 M130 C133	V135 K135 K135 K146 K146 K146 CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	E170
• Molecule 51:	Large ribosomal subunit protein eL	42
Chain Co:	93%	
MET V2 G14 K15 Y27 Y27	K77 BHE PHE	
• Molecule 52:	Large ribosomal subunit protein eL	33
Chain Cf:	92%	• 6%
MET ALA ASP ASP ALA VAL ALA RS R9 P10	1124 1124	
• Molecule 53:	Large ribosomal subunit protein eL	36
Chain Ci:	98%	
M1 R83 R100 K101 A102 H103 K104		
• Molecule 54:	Large ribosomal subunit protein eL	39
Chain Cl:	94%	
MET S2 F8 F8 R21 L51		
• Molecule 55:	Large ribosomal subunit protein eL	15
Chain CN:	99%	·
MET G2 R26 8171 R204		
• Molecule 56:	Large ribosomal subunit protein uI	.15
Chain Ca:	94%	5%•

WORLDWIDE PROTEIN DATA BANK

• Molecule 57: Large ribosomal subunit protein eL43

6% •

CLY GLY

• Molecule 63: 60S ribosomal protein L29

• Molecule 64: Large ribosomal subunit protein eL18

Chain CQ:						
MET G2	K19	K65	E107	F1 <mark>38</mark>	R176	N188

• Molecule 65: Large ribosomal subunit protein eL21

• Molecule 66: Large ribosomal subunit protein uL18

95%

K282 A283 L284 L285 L286 q287 L286 q287 L288 K289 E290 q291 q291 q292 Q2U

• Molecule 67: Large ribosomal subunit protein eL27

 Chain CZ:
 96%
 .

 Image: Solution of the second seco

• Molecule 69: eL41				
Chain Cn:	95%		5%	
M R21 K22				
• Molecule 70: Large	ribosomal subunit pro	otein eL34		
Chain Cg:	94%		• 5%	
MET S2 S2 S2 S2 S2 NG K67 V103 V104 V104 C128 C128 C128 C128 C128 C128 C128 C128				
• Molecule 71: Large	ribosomal subunit pro	otein eL38		
Chain Ck:	94%			1
MET P2 P2 P3 P3 N30 N30 N48 N48 N48	D51 D51 K52 K52 K55 C57 Q58 P61 P61 P63 Q53 Q63			
• Molecule 72: Ubiqui	tin-ribosomal protein	eL40 fusion pro	otein	
Chain Cm:	40%	60%		-
LU LU LU LU LU LU LU LU LU LU LU LU LU	AL LUALLA LLA LLA LLA SLU SLU LLA LLA LLA LLLE LLLE LLLE LLN SV SV SV SV SV SV SV SV SV SV SV SV SV	JYS BLU BLY CLE PRO PRO ASP BLN ANG ANG	HE HE ILA ILA ILV ILA ILV ILA ILV ILA ILA ILA ILA ILA ILA	ISBR ISB ISN
ZOHAVHEHEOHEHEHO				
ILE GLN LYS SER THR THR THR THR LEU VAL LEU ARG ARG CLY GLY	11.E 178 279 831 183 831 183 884 884 084 087 886 886	N90 C91 C91 C92 K93 C96 R97 K97	R102 L103 P104 P105 R105 A107 S108 N109 C110	R111 K112 K113 K114 C115 C115 C115 C115 S119 S119 S119 S119 S119 S119 S112
1123 K124 K125 L127 K128				
• Molecule 73: Large	ribosomal subunit pro	tein eL31		
Chain Cd:	84%		• 14%	
MET PRO LYS CUYS CUV CVS SER SER THR THR THR S34 S34	S85 1991 1992 1993 1993 1995 1995 198 198 118 118 188 188 188 188 188 188	CLU GLU		
• Molecule 74: Large	ribosomal subunit pro	otein eL32		
Chain Ce:	90%		6% •	

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	145659	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	TFS KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	40.94	Depositor
Minimum defocus (nm)	500	Depositor
Maximum defocus (nm)	2000	Depositor
Magnification	Not provided	
Image detector	GATAN K3 BIOCONTINUUM (6k x 4k)	Depositor
Maximum map value	2.035	Depositor
Minimum map value	-1.231	Depositor
Average map value	-0.000	Depositor
Map value standard deviation	0.066	Depositor
Recommended contour level	0.199	Depositor
Map size (Å)	441.99997, 441.99997, 441.99997	wwPDB
Map dimensions	680, 680, 680	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.65, 0.65, 0.65	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: SPD, $3\mathrm{HE}$

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	AA	0.26	0/1645	0.51	0/2230	
2	CA	0.25	0/1932	0.58	0/2593	
3	DA	0.32	1/1819~(0.1%)	0.73	0/2833	
4	AB	0.25	0/1710	0.52	0/2294	
5	CB	0.26	0/3247	0.54	0/4355	
6	AC	0.26	0/1689	0.49	0/2289	
7	AD	0.26	0/1659	0.54	0/2226	
8	AE	0.27	0/2053	0.58	0/2767	
9	A7	0.24	0/2826	0.73	0/4402	
10	A8	0.27	0/3477	0.78	1/5416~(0.0%)	
11	B2	0.26	0/35236	0.77	1/54876~(0.0%)	
12	A5	0.52	12/72151~(0.0%)	0.85	38/112424~(0.0%)	
13	AR	0.26	0/988	0.56	0/1328	
14	AK	0.28	0/790	0.53	0/1072	
15	AW	0.26	0/1043	0.57	0/1399	
16	AS	0.25	0/1225	0.56	0/1641	
17	AT	0.25	0/1135	0.51	0/1524	
18	Aa	0.25	0/819	0.59	0/1097	
19	Af	0.25	0/404	0.54	0/540	
20	AO	0.26	0/1027	0.60	0/1377	
21	AI	0.27	0/1698	0.59	0/2277	
22	AF	0.24	0/1475	0.54	0/1986	
23	AM	0.25	0/917	0.55	0/1231	
24	AV	0.29	0/625	0.57	0/842	
25	AN	0.26	0/1240	0.55	0/1658	
26	AZ	0.25	0/572	0.51	0/770	
27	Ad	0.26	0/464	0.59	0/615	
28	AY	0.26	0/1008	0.56	0/1344	
29	AU	0.27	0/808	0.64	0/1090	
30	AG	0.27	0/1863	0.58	0/2483	
31	Ab	0.28	0/655	0.54	0/880	
32	AP	0.26	0/1041	0.53	0/1391	

Mal	Chain	B	ond lengths	Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
33	Ac	0.26	0/521	0.63	0/695	
34	Ae	0.25	0/367	0.63	0/480	
35	AX	0.26	0/1112	0.54	0/1487	
36	AL	0.27	0/1182	0.58	0/1591	
37	AJ	0.26	0/1490	0.60	0/1991	
38	AQ	0.27	0/1143	0.57	0/1529	
39	AH	0.27	0/1572	0.57	0/2114	
40	CF	0.26	0/1782	0.51	0/2402	
41	CS	0.26	0/1505	0.55	0/2026	
42	CV	0.27	0/985	0.55	0/1319	
43	CU	0.28	0/838	0.53	0/1126	
44	CL	0.25	0/1673	0.57	0/2235	
45	CG	0.26	0/1816	0.56	0/2443	
46	CI	0.25	0/1767	0.59	0/2362	
47	CO	0.26	0/1645	0.53	0/2198	
48	CC	0.25	0/2706	0.55	0/3649	
49	Ch	0.24	0/995	0.55	0/1318	
50	CE	0.27	0/1140	0.51	0/1530	
51	Co	0.26	0/850	0.56	0/1118	
52	Cf	0.26	0/953	0.58	0/1283	
53	Ci	0.26	0/845	0.55	0/1119	
54	Cl	0.24	0/443	0.59	0/582	
55	CN	0.25	0/1741	0.59	0/2328	
56	Ca	0.25	0/1166	0.53	0/1561	
57	Ср	0.26	0/687	0.57	0/915	
58	CM	0.26	0/1062	0.56	0/1418	
59	Cc	0.26	0/744	0.50	0/1004	
60	CH	0.26	0/1528	0.57	0/2058	
61	CY	0.25	0/1065	0.60	0/1421	
62	CR	0.25	0/1658	0.58	0/2201	
63	Cb	0.24	0/439	0.50	0/578	
64	CQ	0.25	0/1498	0.58	0/2012	
65	CT	0.26	0/1308	0.58	0/1755	
66	CD	0.26	0/2368	0.53	0/3179	
67	CZ	0.27	0/1123	0.52	0/1497	
68	CP	0.25	0/1277	0.54	0/1717	
69	Cn	0.26	0/210	0.78	0/266	
70	Cg	0.26	0/847	0.60	0/1136	
71	Ck	0.30	0/565	0.54	0/748	
72	Cm	0.24	0/423	0.55	0/557	
73	Cd	0.25	0/881	0.55	0/1184	
74	Ce	0.25	0/1057	0.59	0/1407	
75	CW	0.26	0/712	0.56	0/949	

Mal	Chain	Bond lengths		Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
76	Cj	0.25	0/720	0.60	0/956	
77	CJ	0.26	0/1533	0.57	0/2052	
78	CX	0.25	0/972	0.51	0/1310	
79	DC	0.16	0/219	0.77	0/336	
All	All	0.37	13/202374~(0.0%)	0.73	40/296392~(0.0%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
15	AW	0	1

All (13) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
12	A5	3465	U	C2-N3	56.56	1.77	1.37
12	A5	3465	U	N3-C4	49.44	1.82	1.38
12	A5	3465	U	N1-C2	42.53	1.76	1.38
12	A5	3465	U	N1-C6	38.47	1.72	1.38
12	A5	3462	С	C1'-N1	36.83	2.04	1.48
12	A5	3462	С	N1-C6	35.40	1.58	1.37
12	A5	3465	U	C4-C5	30.14	1.70	1.43
12	A5	3465	U	C5-C6	29.66	1.60	1.34
12	A5	3462	С	N1-C2	23.70	1.63	1.40
3	DA	1	G	OP3-P	-10.63	1.48	1.61
12	A5	3462	С	N3-C4	-7.57	1.28	1.33
12	A5	3462	Ċ	C4-C5	-6.54	1.37	1.43
12	A5	3462	C	C2'- $C1$ '	6.21	1.60	1.53

All (40) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
12	A5	3462	С	C6-N1-C2	-95.10	82.26	120.30
12	A5	3462	С	C5-C6-N1	42.23	142.11	121.00
12	A5	3462	С	N1-C2-N3	29.06	139.54	119.20
12	A5	3462	С	N3-C4-C5	-23.73	112.41	121.90
12	A5	3462	С	N3-C2-O2	-22.96	105.83	121.90
12	A5	3462	С	C2-N1-C1'	16.84	137.33	118.80
12	A5	3462	С	C6-N1-C1'	16.30	140.36	120.80
12	A5	3462	С	O4'-C1'-N1	11.75	117.60	108.20

EMD-45392,	9CAI
------------	------

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
12	A5	600	U	OP1-P-O3'	-11.56	79.77	105.20
12	A5	588	G	OP1-P-O3'	-10.87	81.29	105.20
12	A5	3388	U	OP1-P-O3'	-10.84	81.34	105.20
12	A5	239	U	OP2-P-O3'	-10.82	81.40	105.20
12	A5	588	G	OP2-P-O3'	-9.95	83.31	105.20
12	A5	3388	U	OP2-P-O3'	-9.84	83.55	105.20
12	A5	3462	С	N1-C1'-C2'	9.75	126.67	114.00
12	A5	239	U	OP1-P-O3'	-9.40	84.51	105.20
12	A5	3465	U	N1-C2-N3	-9.12	109.43	114.90
12	A5	600	U	OP2-P-O3'	-8.24	87.08	105.20
12	A5	240	G	OP1-P-OP2	7.97	131.56	119.60
12	A5	601	G	OP1-P-OP2	7.83	131.34	119.60
12	A5	3465	U	C6-N1-C2	7.63	125.58	121.00
12	A5	3462	С	N1-C2-O2	-7.12	114.63	118.90
12	A5	133	U	C2-N1-C1'	6.95	126.04	117.70
12	A5	3389	U	OP1-P-OP2	6.93	130.00	119.60
12	A5	589	U	OP1-P-OP2	6.85	129.87	119.60
12	A5	3462	С	C5-C4-N4	6.73	124.91	120.20
12	A5	3462	С	N3-C4-N4	6.69	122.68	118.00
12	A5	1567	G	O4'-C1'-N9	6.66	113.53	108.20
12	A5	3462	С	C4-C5-C6	6.36	120.58	117.40
12	A5	3462	С	C2-N3-C4	6.35	123.07	119.90
12	A5	1680	U	C2-N1-C1'	5.91	124.79	117.70
12	A5	2218	С	N3-C2-O2	-5.77	117.86	121.90
10	A8	112	A	O4'-C1'-N9	5.52	112.61	108.20
12	A5	600	U	C2-N1-C1'	5.44	124.23	117.70
12	A5	639	G	C4-N9-C1'	5.32	133.42	126.50
11	B2	1429	U	C2-N1-C1'	5.31	124.07	117.70
12	A5	3465	U	C6-N1-C1'	-5.22	113.89	121.20
12	A5	3321	A	P-O3'-C3'	5.04	125.75	119.70
12	A5	639	G	C8-N9-C1'	-5.02	120.48	127.00
12	A5	1627	G	O4'-C1'-N9	5.00	112.20	108.20

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
15	AW	28	ARG	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles	
1	AA	203/276~(74%)	195 (96%)	8 (4%)	0	100	100
2	CA	247/260~(95%)	238 (96%)	9 (4%)	0	100	100
4	AB	208/257~(81%)	205 (99%)	3 (1%)	0	100	100
5	CB	393/401~(98%)	389~(99%)	4 (1%)	0	100	100
6	AC	213/272 (78%)	211 (99%)	2 (1%)	0	100	100
7	AD	209/247~(85%)	206 (99%)	3 (1%)	0	100	100
8	AE	253/259~(98%)	244 (96%)	9 (4%)	0	100	100
13	AR	119/130~(92%)	116 (98%)	3 (2%)	0	100	100
14	AK	91/149~(61%)	88 (97%)	3 (3%)	0	100	100
15	AW	127/130~(98%)	124 (98%)	3 (2%)	0	100	100
16	AS	146/154~(95%)	140 (96%)	6 (4%)	0	100	100
17	AT	138/146~(94%)	132 (96%)	6 (4%)	0	100	100
18	Aa	97/117~(83%)	95~(98%)	2 (2%)	0	100	100
19	Af	48/163~(29%)	43 (90%)	5 (10%)	0	100	100
20	AO	133/152~(88%)	127 (96%)	6 (4%)	0	100	100
21	AI	205/208~(99%)	196 (96%)	9 (4%)	0	100	100
22	AF	181/210~(86%)	174 (96%)	6 (3%)	1 (1%)	22	43
23	AM	113/140~(81%)	100 (88%)	13 (12%)	0	100	100
24	AV	79/88~(90%)	75 (95%)	4 (5%)	0	100	100
25	AN	$\overline{149/151}\ (99\%)$	148 (99%)	1 (1%)	0	100	100
26	AZ	69/117~(59%)	68 (99%)	1 (1%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
27	Ad	53/56~(95%)	53 (100%)	0	0	100	100
28	AY	121/131~(92%)	115 (95%)	6 (5%)	0	100	100
29	AU	98/117~(84%)	96 (98%)	2 (2%)	0	100	100
30	AG	226/246~(92%)	221 (98%)	5 (2%)	0	100	100
31	Ab	80/83~(96%)	76 (95%)	4 (5%)	0	100	100
32	AP	126/151~(83%)	120 (95%)	6 (5%)	0	100	100
33	Ac	63/65~(97%)	59 (94%)	4 (6%)	0	100	100
34	Ae	41/130~(32%)	40 (98%)	1 (2%)	0	100	100
35	AX	138/143~(96%)	137 (99%)	1 (1%)	0	100	100
36	AL	141/155~(91%)	137 (97%)	4 (3%)	0	100	100
37	AJ	175/189~(93%)	165 (94%)	10 (6%)	0	100	100
38	AQ	138/144 (96%)	136 (99%)	2 (1%)	0	100	100
39	AH	190/194~(98%)	176 (93%)	14 (7%)	0	100	100
40	CF	211/244~(86%)	202 (96%)	9 (4%)	0	100	100
41	CS	177/180~(98%)	170 (96%)	7 (4%)	0	100	100
42	CV	126/140~(90%)	126 (100%)	0	0	100	100
43	CU	98/130~(75%)	95 (97%)	3 (3%)	0	100	100
44	CL	202/207~(98%)	200 (99%)	2 (1%)	0	100	100
45	CG	217/265~(82%)	212 (98%)	5 (2%)	0	100	100
46	CI	211/214~(99%)	209 (99%)	2 (1%)	0	100	100
47	CO	199/202~(98%)	197 (99%)	2 (1%)	0	100	100
48	CC	333/345~(96%)	327 (98%)	6 (2%)	0	100	100
49	Ch	120/123~(98%)	118 (98%)	2 (2%)	0	100	100
50	CE	135/217~(62%)	127 (94%)	8 (6%)	0	100	100
51	Со	100/105~(95%)	97 (97%)	3 (3%)	0	100	100
52	Cf	115/124~(93%)	112 (97%)	3 (3%)	0	100	100
53	Ci	102/104~(98%)	97 (95%)	5 (5%)	0	100	100
54	Cl	48/51 (94%)	48 (100%)	0	0	100	100
55	CN	201/204~(98%)	196 (98%)	5 (2%)	0	100	100
56	Ca	142/145~(98%)	136 (96%)	6 (4%)	0	100	100
57	Ср	86/91 (94%)	82 (95%)	4 (5%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
58	CM	130/135~(96%)	126 (97%)	4 (3%)	0	100	100
59	Cc	94/115~(82%)	94 (100%)	0	0	100	100
60	СН	186/189~(98%)	180 (97%)	6 (3%)	0	100	100
61	CY	130/142~(92%)	125 (96%)	5 (4%)	0	100	100
62	CR	192/198~(97%)	190 (99%)	2 (1%)	0	100	100
63	Cb	50/62~(81%)	45 (90%)	5 (10%)	0	100	100
64	CQ	185/188~(98%)	181 (98%)	4 (2%)	0	100	100
65	СТ	158/161~(98%)	155 (98%)	3 (2%)	0	100	100
66	CD	287/293~(98%)	278 (97%)	9 (3%)	0	100	100
67	CZ	133/136~(98%)	131 (98%)	2 (2%)	0	100	100
68	CP	152/187~(81%)	149 (98%)	3 (2%)	0	100	100
69	Cn	20/22~(91%)	20 (100%)	0	0	100	100
70	Cg	102/110~(93%)	101 (99%)	1 (1%)	0	100	100
71	Ck	67/70~(96%)	66 (98%)	1 (2%)	0	100	100
72	Cm	49/128 (38%)	49 (100%)	0	0	100	100
73	Cd	103/122~(84%)	99 (96%)	4 (4%)	0	100	100
74	Ce	126/134~(94%)	122 (97%)	4 (3%)	0	100	100
75	CW	84/159~(53%)	83 (99%)	1 (1%)	0	100	100
76	Cj	86/92~(94%)	84 (98%)	2 (2%)	0	100	100
77	CJ	184/196~(94%)	182 (99%)	2 (1%)	0	100	100
78	CX	117/146 (80%)	116 (99%)	1 (1%)	0	100	100
All	All	10469/11907~(88%)	10172 (97%)	296 (3%)	1 (0%)	100	100

All (1) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
22	AF	86	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	AA	172/228~(75%)	155 (90%)	17 (10%)	6 13
2	CA	191/202~(95%)	185 (97%)	6 (3%)	35 62
4	AB	191/228~(84%)	177 (93%)	14 (7%)	11 25
5	CB	335/338~(99%)	326 (97%)	9 (3%)	40 66
6	AC	175/202~(87%)	165 (94%)	10 (6%)	17 37
7	AD	173/204~(85%)	166 (96%)	7 (4%)	27 52
8	AE	218/221~(99%)	205 (94%)	13 (6%)	16 35
13	AR	111/118 (94%)	101 (91%)	10 (9%)	8 16
14	AK	82/122~(67%)	77 (94%)	5 (6%)	15 34
15	AW	110/111 (99%)	105 (96%)	5 (4%)	23 47
16	AS	130/134~(97%)	119 (92%)	11 (8%)	8 18
17	AT	116/120~(97%)	107 (92%)	9 (8%)	10 22
18	Aa	84/94 (89%)	76 (90%)	8 (10%)	7 14
19	Af	42/134 (31%)	35 (83%)	7 (17%)	2 3
20	AO	103/115~(90%)	97 (94%)	6 (6%)	17 36
21	AI	172/173~(99%)	149 (87%)	23 (13%)	3 6
22	AF	156/172~(91%)	146 (94%)	10 (6%)	14 32
23	AM	94/108~(87%)	85 (90%)	9 (10%)	7 14
24	AV	68/75~(91%)	64 (94%)	4 (6%)	16 35
25	AN	130/130~(100%)	123 (95%)	7 (5%)	18 39
26	AZ	62/98~(63%)	59 (95%)	3 (5%)	21 44
27	Ad	46/47~(98%)	44 (96%)	2 (4%)	25 49
28	AY	107/112~(96%)	104 (97%)	3 (3%)	38 65
29	AU	90/104 (86%)	85 (94%)	5 (6%)	17 38
30	AG	195/212~(92%)	176 (90%)	19 (10%)	6 14
31	Ab	75/76~(99%)	71 (95%)	4 (5%)	19 40
32	AP	108/128 (84%)	97 (90%)	11 (10%)	6 12
33	Ac	58/58~(100%)	55 (95%)	3 (5%)	19 41
34	Ae	37/107~(35%)	33 (89%)	4 (11%)	5 10
35	AX	115/118 (98%)	105 (91%)	10 (9%)	8 17
36	AL	126/136~(93%)	115 (91%)	11 (9%)	8 17

analysed, and the total number of residues.

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
37	AJ	160/167~(96%)	144 (90%)	16 (10%)	6	13
38	AQ	115/119~(97%)	107~(93%)	8~(7%)	12	27
39	AH	170/172~(99%)	153~(90%)	17~(10%)	6	13
40	CF	184/210~(88%)	182~(99%)	2(1%)	70	86
41	\mathbf{CS}	156/157~(99%)	153~(98%)	3~(2%)	52	75
42	CV	101/107~(94%)	97~(96%)	4 (4%)	27	52
43	CU	92/116~(79%)	84 (91%)	8 (9%)	8	17
44	CL	167/170~(98%)	159~(95%)	8 (5%)	21	44
45	CG	192/228~(84%)	184 (96%)	8 (4%)	25	50
46	CI	179/180~(99%)	175~(98%)	4 (2%)	47	72
47	CO	165/166~(99%)	156 (94%)	9~(6%)	18	38
48	CC	279/286~(98%)	262 (94%)	17 (6%)	15	34
49	Ch	106/107~(99%)	98~(92%)	8 (8%)	11	24
50	CE	122/188~(65%)	115~(94%)	7~(6%)	17	37
51	Co	90/93~(97%)	86~(96%)	4 (4%)	24	48
52	Cf	95/99~(96%)	92~(97%)	3~(3%)	34	60
53	Ci	86/86~(100%)	84~(98%)	2(2%)	45	71
54	Cl	46/47~(98%)	44 (96%)	2(4%)	25	49
55	CN	172/173~(99%)	170~(99%)	2(1%)	67	85
56	Ca	116/117~(99%)	109~(94%)	7~(6%)	16	35
57	Ср	68/71~(96%)	63~(93%)	5(7%)	11	24
58	CM	111/114~(97%)	107~(96%)	4 (4%)	30	56
59	Cc	80/95~(84%)	76~(95%)	4(5%)	20	43
60	CH	167/168~(99%)	158~(95%)	9~(5%)	18	39
61	CY	114/123~(93%)	108~(95%)	6~(5%)	19	40
62	CR	172/174~(99%)	162 (94%)	10 (6%)	17	36
63	Cb	47/56~(84%)	44 (94%)	3 (6%)	14	32
64	CQ	152/153~(99%)	147 (97%)	5(3%)	33	59
65	CT	135/136~(99%)	125~(93%)	10 (7%)	11	24
66	CD	239/242~(99%)	227~(95%)	12 (5%)	20	43
67	CZ	$119/\overline{120}~(99\%)$	114 (96%)	5 (4%)	25	50

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
68	CP	130/159~(82%)	124 (95%)	6 (5%)	23	46
69	Cn	20/20~(100%)	19~(95%)	1 (5%)	20	43
70	Cg	92/98~(94%)	91~(99%)	1 (1%)	70	86
71	Ck	63/64~(98%)	60~(95%)	3~(5%)	21	44
72	Cm	47/115~(41%)	47 (100%)	0	100	100
73	Cd	96/112~(86%)	94~(98%)	2(2%)	48	73
74	Ce	111/117~(95%)	103~(93%)	8 (7%)	12	26
75	CW	73/128~(57%)	71 (97%)	2(3%)	40	66
76	Cj	73/77~(95%)	72~(99%)	1 (1%)	62	82
77	CJ	160/170~(94%)	148 (92%)	12 (8%)	11	24
78	CX	103/124~(83%)	101 (98%)	2(2%)	52	75
All	All	9037/10049~(90%)	8522 (94%)	515 (6%)	20	37

All (515) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	AA	2	SER
1	AA	8	SER
1	AA	37	TYR
1	AA	100	PHE
1	AA	117	LYS
1	AA	122	LEU
1	AA	128	ARG
1	AA	146	SER
1	AA	158	ASP
1	AA	169	ARG
1	AA	186	ARG
1	AA	191	ARG
1	AA	195	PHE
1	AA	197	LEU
1	AA	201	GLU
1	AA	203	MET
1	AA	210	ARG
2	CA	71	THR
2	CA	125	VAL
2	CA	184	ARG
2	CA	190	LYS
2	CA	245	ARG

Mol	Chain	Res	Type
2	CA	247	ARG
4	AB	23	PHE
4	AB	36	MET
4	AB	40	ARG
4	AB	90	GLN
4	AB	122	ASN
4	AB	134	ARG
4	AB	146	ASN
4	AB	152	SER
4	AB	158	LYS
4	AB	160	ARG
4	AB	164	SER
4	AB	172	LYS
4	AB	184	SER
4	AB	197	LYS
5	CB	38	SER
5	CB	66	LYS
5	CB	143	LYS
5	CB	298	ASN
5	CB	304	PHE
5	CB	326	ASP
5	CB	331	ARG
5	CB	338	LYS
5	CB	388	LYS
6	AC	95	CYS
6	AC	100	ASP
6	AC	159	VAL
6	AC	163	ARG
6	AC	188	MET
6	AC	202	SER
6	AC	232	PHE
6	AC	244	TYR
6	AC	245	SER
6	AC	260	SER
7	AD	34	ASP
7	AD	92	LYS
7	AD	104	CYS
7	AD	108	ARG
7	AD	150	LYS
7	AD	158	LEU
7	AD	209	HIS
8	AE	1	MET

Mol	Chain	Res	Type
8	AE	5	LYS
8	AE	18	MET
8	AE	20	ASP
8	AE	46	PHE
8	AE	86	MET
8	AE	102	TYR
8	AE	135	VAL
8	AE	157	ASP
8	AE	164	SER
8	AE	171	SER
8	AE	199	ARG
8	AE	255	MET
13	AR	3	ARG
13	AR	5	ARG
13	AR	72	LYS
13	AR	84	TYR
13	AR	85	MET
13	AR	87	GLU
13	AR	92	ASP
13	AR	100	LYS
13	AR	102	ASP
13	AR	118	ASN
14	AK	49	SER
14	AK	52	SER
14	AK	60	PHE
14	AK	68	TYR
14	AK	88	VAL
15	AW	22	LYS
15	AW	23	ARG
15	AW	60	LYS
15	AW	96	SER
15	AW	118	ARG
16	AS	17	ASN
16	AS	38	ARG
16	AS	49	ASP
16	AS	61	GLU
16	AS	65	ASP
16	AS	78	LYS
16	AS	83	PHE
16	AS	135	HIS
16	AS	142	LYS
16	AS	144	ARG

Mol	Chain	Res	Type
16	AS	145	THR
17	AT	3	ARG
17	AT	17	LYS
17	AT	18	SER
17	AT	26	SER
17	AT	35	SER
17	AT	106	GLN
17	AT	120	LYS
17	AT	125	SER
17	AT	133	ASP
18	Aa	10	ARG
18	Aa	26	CYS
18	Aa	42	ARG
18	Aa	51	ARG
18	Aa	55	ASP
18	Aa	57	SER
18	Aa	66	LYS
18	Aa	87	ARG
19	Af	94	LEU
19	Af	99	TYR
19	Af	107	LYS
19	Af	110	ARG
19	Af	112	ARG
19	Af	132	ARG
19	Af	140	ASP
20	AO	66	ASP
20	AO	105	ARG
20	AO	115	SER
20	AO	143	ARG
20	AO	147	ARG
20	AO	152	LEU
21	AI	6	ASP
21	AI	7	SER
21	AI	36	THR
21	AI	53	GLU
21	AI	56	ARG
21	AI	61	ASP
21	AI	64	ASN
21	AI	66	SER
21	AI	75	LYS
21	AI	76	THR
21	AI	98	LYS

Mol	Chain	Res	Type
21	AI	105	ASP
21	AI	119	LEU
21	AI	121	LEU
21	AI	132	GLU
21	AI	139	LYS
21	AI	141	ARG
21	AI	142	SER
21	AI	144	HIS
21	AI	146	MET
21	AI	153	GLN
21	AI	203	ARG
21	AI	206	LYS
22	AF	31	LEU
$\overline{22}$	AF	37	SER
22	AF	38	ASP
22	AF	43	ASP
22	AF	61	ARG
22	AF	76	GLU
22	AF	100	LYS
22	AF	104	GLU
22	AF	142	ARG
22	AF	190	SER
23	AM	30	LEU
23	AM	31	ARG
23	AM	34	HIS
23	AM	50	LEU
23	AM	76	LEU
23	AM	101	LYS
23	AM	104	LYS
23	AM	109	ARG
23	AM	136	PHE
$2\overline{4}$	AV	35	ASP
24	AV	42	GLU
$2\overline{4}$	AV	53	ARG
24	AV	66	SER
25	AN	3	ARG
$\overline{25}$	AN	4	MET
25	AN	9	LYS
25	AN	58	HIS
25	AN	77	SER
25	AN	133	ARG
25	AN	151	SER

Mol	Chain	Res	Type
26	AZ	72	ARG
26	AZ	76	ARG
26	AZ	107	ARG
27	Ad	9	SER
27	Ad	49	ASP
28	AY	39	ASP
28	AY	90	ARG
28	AY	116	LYS
29	AU	24	THR
29	AU	25	SER
29	AU	50	LYS
29	AU	98	ARG
29	AU	115	ARG
30	AG	4	ASN
30	AG	20	GLU
30	AG	22	LYS
30	AG	33	SER
30	AG	63	MET
30	AG	81	GLN
30	AG	110	SER
30	AG	126	ASP
30	AG	139	SER
30	AG	143	LYS
30	AG	148	THR
30	AG	149	LYS
30	AG	159	THR
30	AG	162	LYS
30	AG	175	LYS
30	AG	194	GLN
30	AG	196	ARG
30	AG	218	LYS
30	AG	220	GLU
31	Ab	30	SER
31	Ab	64	CYS
31	Ab	70	LYS
31	Ab	73	LEU
32	AP	20	LYS
32	AP	29	ASP
32	AP	36	ARG
32	AP	37	GLU
32	AP	56	LYS
32	AP	57	ARG

Mol	Chain	Res	Type
32	AP	58	LYS
32	AP	70	LYS
32	AP	76	LEU
32	AP	128	SER
32	AP	144	SER
33	Ac	1	MET
33	Ac	53	THR
33	Ac	56	GLU
34	Ae	95	LYS
34	Ae	111	ARG
34	Ae	112	ARG
34	Ae	128	SER
35	AX	25	LYS
35	AX	38	SER
35	AX	45	SER
35	AX	68	LYS
35	AX	103	SER
35	AX	105	PHE
35	AX	108	SER
35	AX	127	ASN
35	AX	139	GLU
35	AX	140	ARG
36	AL	45	ARG
36	AL	46	ASP
36	AL	49	GLU
36	AL	51	THR
36	AL	57	CYS
36	AL	66	ARG
36	AL	81	ARG
36	AL	86	ARG
36	AL	110	CYS
36	AL	129	ARG
36	AL	138	ASN
37	AJ	39	LYS
37	AJ	41	GLU
37	AJ	44	ARG
37	AJ	57	ARG
37	AJ	65	LYS
37	AJ	69	ARG
37	AJ	71	PHE
37	AJ	82	LYS
37	AJ	91	MET

Mol	Chain	Res	Type
37	AJ	103	ASP
37	AJ	114	PHE
37	AJ	126	ARG
37	AJ	135	ARG
37	AJ	137	ARG
37	AJ	157	ASP
37	AJ	159	SER
38	AQ	7	SER
38	AQ	56	VAL
38	AQ	60	ARG
38	AQ	61	PHE
38	AQ	103	LYS
38	AQ	116	SER
38	AQ	127	SER
38	AQ	144	ARG
39	AH	10	LYS
39	AH	14	LYS
39	AH	29	ASP
39	AH	34	ASP
39	AH	41	LYS
39	AH	44	TYR
39	AH	50	GLU
39	AH	53	LEU
39	AH	57	SER
39	AH	69	LYS
39	AH	89	ARG
39	AH	104	GLN
39	AH	112	GLN
39	AH	134	VAL
39	AH	143	ARG
39	AH	149	ASP
39	AH	194	PHE
40	CF	40	LYS
40	CF	152	LYS
41	CS	52	SER
41	$\overline{\mathrm{CS}}$	66	SER
41	CS	79	LYS
42	CV	35	LYS
42	CV	87	GLN
42	CV	113	LYS
42	CV	138	SER
43	CU	18	LYS

Mol	Chain	Res	Type
43	CU	27	CYS
43	CU	40	ASP
43	CU	64	LYS
43	CU	70	SER
43	CU	71	LYS
43	CU	109	LYS
43	CU	110	ASN
44	CL	63	GLN
44	CL	82	LYS
44	CL	129	LYS
44	CL	130	LYS
44	CL	136	LYS
44	CL	138	ASP
44	CL	164	ASP
44	CL	184	LYS
45	CG	29	LYS
45	CG	35	LYS
45	CG	49	LYS
45	CG	80	THR
45	CG	116	ARG
45	CG	118	ARG
45	CG	190	SER
45	CG	244	SER
46	CI	35	ASP
46	CI	61	SER
46	CI	162	ARG
46	CI	208	LYS
47	CO	19	ARG
47	CO	32	ASP
47	CO	52	LYS
47	CO	57	SER
47	CO	117	LYS
47	CO	120	HIS
47	CO	132	ARG
47	CO	136	CYS
47	CO	167	TYR
48	CC	94	MET
48	CC	121	TYR
48	CC	125	SER
48	CC	154	SER
48	CC	155	ASP
48	CC	171	ARG

Mol	Chain	Res	Type
48	CC	187	ARG
48	CC	254	SER
48	CC	260	ASP
48	CC	275	LYS
48	CC	278	SER
48	CC	287	SER
48	CC	291	ARG
48	CC	294	ARG
48	CC	303	ARG
48	CC	316	ARG
48	CC	336	ARG
49	Ch	5	LYS
49	Ch	22	ASP
49	Ch	32	ARG
49	Ch	42	SER
49	Ch	45	SER
49	Ch	66	LYS
49	Ch	89	ARG
49	Ch	111	SER
50	CE	126	SER
50	CE	135	LYS
50	CE	146	LYS
50	CE	167	THR
50	CE	170	GLU
50	CE	175	ASP
50	CE	177	LYS
51	Со	13	ASP
51	Со	27	TYR
51	Co	70	ARG
51	Co	77	LYS
52	Cf	9	ARG
52	Cf	48	ASN
52	Cf	81	THR
53	Ci	83	ARG
53	Ci	100	ARG
$5\overline{4}$	Cl	8	PHE
54	Cl	21	ARG
55	CN	26	ARG
55	CN	171	SER
56	Ca	16	SER
56	Ca	26	ARG
56	Ca	42	ARG

Mol	Chain	Res	Type
56	Ca	59	ARG
56	Ca	75	VAL
56	Ca	79	TRP
56	Ca	116	GLU
57	Ср	11	VAL
57	Ср	21	SER
57	Ср	25	MET
57	Ср	62	LYS
57	Ср	87	ARG
58	CM	54	ASP
58	CM	63	LYS
58	CM	77	PHE
58	CM	78	ASP
59	Cc	53	ASN
59	Cc	67	MET
59	Cc	104	SER
59	Cc	105	ASP
60	CH	8	ASP
60	CH	28	THR
60	CH	96	HIS
60	CH	123	ARG
60	CH	128	GLU
60	CH	135	SER
60	CH	168	LYS
60	CH	169	ASP
60	CH	183	THR
61	CY	2	LYS
61	CY	28	ARG
61	CY	61	ARG
61	CY	73	TYR
61	CY	92	SER
61	CY	111	ASP
62	CR	33	SER
62	CR	43	ARG
62	CR	62	ARG
62	CR	68	GLU
62	CR	105	LEU
62	CR	108	ARG
62	CR	131	ASN
62	CR	151	ARG
62	CR	164	ASP
62	CR	189	SER

Mol	Chain	Res	Type
63	Cb	7	HIS
63	Cb	46	SER
63	Cb	49	ASN
64	CQ	19	LYS
64	CQ	65	LYS
64	CQ	107	GLU
64	CQ	138	PHE
64	CQ	176	ARG
65	CT	18	ASP
65	CT	26	HIS
65	CT	28	SER
65	CT	50	LYS
65	CT	63	ARG
65	CT	99	SER
65	CT	104	ASP
65	CT	116	ARG
65	CT	117	LYS
65	CT	120	LYS
66	CD	33	ARG
66	CD	40	ASP
66	CD	89	LYS
66	CD	185	GLU
66	CD	220	ARG
66	CD	223	SER
66	CD	225	PHE
66	CD	233	ASP
66	CD	241	LYS
66	CD	261	SER
66	CD	268	ARG
66	CD	281	LYS
67	CZ	6	LYS
67	CZ	34	SER
67	CZ	64	LYS
67	CZ	98	LYS
67	CZ	105	SER
68	CP	3	LYS
68	CP	7	SER
68	CP	8	ARG
68	CP	15	LYS
68	CP	102	SER
68	CP	155	LYS
69	Cn	15	ARG

Mol	Chain	Res	Type
70	Cg	67	ARG
71	Ck	9	LYS
71	Ck	40	SER
71	Ck	51	ASP
73	Cd	34	SER
73	Cd	85	SER
74	Ce	8	LYS
74	Ce	28	ARG
74	Ce	43	ARG
74	Ce	61	SER
74	Ce	75	LYS
74	Ce	91	SER
74	Ce	93	LYS
74	Ce	112	GLU
75	CW	47	ARG
75	CW	66	GLN
76	Cj	25	SER
77	CJ	9	GLU
77	CJ	11	ARG
77	CJ	35	GLU
77	CJ	39	ARG
77	CJ	70	ARG
77	CJ	104	GLU
77	CJ	136	ASP
77	CJ	153	ARG
77	CJ	157	ARG
77	CJ	165	GLU
77	CJ	175	GLN
77	CJ	187	LYS
78	CX	82	ASP
78	CX	129	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (18) such sidechains are listed below:

Mol	Chain	Res	Type
5	CB	213	GLN
5	CB	298	ASN
7	AD	5	GLN
7	AD	25	ASN
14	AK	28	ASN
14	AK	34	ASN
15	AW	56	HIS

Mol	Chain	Res	Type
23	AM	124	ASN
23	AM	140	ASN
25	AN	36	GLN
30	AG	194	GLN
37	AJ	155	HIS
47	CO	180	GLN
47	CO	184	ASN
52	Cf	48	ASN
$\overline{56}$	Ca	68	HIS
58	CM	97	GLN
60	CH	114	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
10	A8	144/153~(94%)	26 (18%)	0
11	B2	1457/1754~(83%)	338~(23%)	31 (2%)
12	A5	3005/3510~(85%)	572 (19%)	75 (2%)
3	DA	75/76~(98%)	17 (22%)	0
79	DC	9/10~(90%)	2(22%)	0
9	A7	118/119~(99%)	7~(5%)	0
All	All	4808/5622~(85%)	962~(20%)	106 (2%)

All (962) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
3	DA	4	U
3	DA	9	А
3	DA	16	U
3	DA	17	U
3	DA	19	G
3	DA	21	A
3	DA	22	G
3	DA	38	А
3	DA	46	G
3	DA	47	U
3	DA	55	U
3	DA	57	G
3	DA	58	А
3	DA	59	U
3	DA	61	С

Mol	Chain	Res	Type
3	DA	75	С
3	DA	76	А
9	A7	7	G
9	A7	53	U
9	A7	54	А
9	A7	64	G
9	A7	97	G
9	A7	100	А
9	A7	110	G
10	A8	21	G
10	A8	22	U
10	A8	23	U
10	A8	34	U
10	A8	35	С
10	A8	51	U
10	A8	52	U
10	A8	59	U
10	A8	62	С
10	A8	63	U
10	A8	77	А
10	A8	89	U
10	A8	93	G
10	A8	95	А
10	A8	100	С
10	A8	102	А
10	A8	104	С
10	A8	105	G
10	A8	110	G
10	A8	112	A
10	A8	113	С
10	A8	115	A
10	A8	116	A
10	A8	121	G
10	A8	122	С
10	A8	147	G
11	B2	5	С
11	B2	18	U
11	B2	34	A
11	B2	42	G
11	B2	43	A
11	B2	45	U
11	B2	47	A

Mol	Chain	Res	Type
11	B2	54	С
11	B2	57	G
11	B2	58	С
11	B2	65	U
11	B2	66	С
11	B2	67	А
11	B2	73	G
11	B2	94	G
11	B2	104	С
11	B2	106	С
11	B2	109	U
11	B2	111	U
11	B2	112	C
11	B2	116	G
11	B2	126	U
11	B2	128	G
11	B2	129	А
11	B2	130	U
11	B2	132	A
11	B2	137	G
11	B2	140	A
11	B2	142	U
11	B2	143	A
11	B2	152	А
11	B2	153	А
11	B2	154	U
11	B2	159	G
11	B2	160	С
11	B2	168	С
11	B2	169	С
11	B2	181	С
11	B2	184	G
11	B2	191	U
11	B2	227	G
11	B2	229	U
11	B2	232	С
11	B2	233	U
11	B2	234	С
11	B2	238	A
11	B2	241	A
11	B2	245	A
11	B2	249	U

Mol	Chain	Res	Type
11	B2	251	С
11	B2	254	U
11	B2	266	G
11	B2	270	С
11	B2	274	С
11	B2	296	С
11	B2	298	А
11	B2	302	G
11	B2	309	G
11	B2	317	G
11	B2	318	А
11	B2	332	U
11	B2	339	A
11	B2	340	A
11	B2	341	С
11	B2	350	A
11	B2	354	U
11	B2	357	G
11	B2	360	U
11	B2	370	G
11	B2	373	С
11	B2	380	А
11	B2	381	А
11	B2	382	С
11	B2	384	G
11	B2	396	А
11	B2	397	А
11	B2	401	A
11	B2	404	С
11	B2	406	G
11	B2	409	G
11	B2	412	G
11	B2	414	G
11	B2	419	U
11	B2	420	U
11	B2	$42\overline{4}$	C
11	B2	427	U
11	B2	430	U
11	B2	436	U
11	B2	442	A
11	B2	443	G
11	B2	446	A

Mol	Chain	Res	Type
11	B2	449	А
11	B2	453	А
11	B2	455	А
11	B2	492	G
11	B2	496	А
11	B2	502	А
11	B2	503	А
11	B2	522	G
11	B2	523	G
11	B2	524	А
11	B2	525	G
11	B2	531	A
11	B2	533	G
11	B2	538	G
11	B2	540	G
11	B2	541	С
11	B2	558	U
11	B2	561	А
11	B2	565	С
11	B2	570	А
11	B2	571	G
11	B2	587	С
11	B2	595	А
11	B2	596	А
11	B2	599	А
11	B2	600	G
11	B2	614	С
11	B2	617	G
11	B2	712	U
11	B2	713	U
11	B2	723	A
11	B2	724	A
11	B2	733	G
11	B2	734	C
11	B2	739	U
11	B2	742	A
11	B2	743	A
11	B2	747	C
11	B2	748	U
11	B2	749	U
11	B2	753	U
11	B2	754	G

Mol	Chain	Res	Type
11	B2	756	А
11	B2	778	A
11	B2	779	А
11	B2	820	A
11	B2	824	U
11	B2	826	А
11	B2	827	А
11	B2	829	А
11	B2	837	А
11	B2	838	С
11	B2	841	G
11	B2	851	U
11	B2	871	A
11	B2	877	U
11	B2	879	G
11	B2	880	A
11	B2	882	С
11	B2	883	G
11	B2	898	A
11	B2	900	А
11	B2	909	А
11	B2	910	U
11	B2	925	U
11	B2	931	А
11	B2	935	А
11	B2	952	G
11	B2	957	A
11	B2	969	U
11	B2	970	А
11	B2	976	С
11	B2	978	A
11	B2	991	А
11	B2	993	С
11	B2	996	U
11	B2	997	G
11	B2	1004	С
11	B2	1005	G
11	B2	1016	G
11	B2	1017	G
11	B2	1018	U
11	B2	1028	G
11	B2	1033	G

Mol	Chain	Res	Type
11	B2	1040	U
11	B2	1042	С
11	B2	1050	А
11	B2	1051	А
11	B2	1056	U
11	B2	1057	U
11	B2	1097	А
11	B2	1109	G
11	B2	1110	А
11	B2	1111	А
11	B2	1115	С
11	B2	1116	А
11	B2	1117	С
11	B2	1118	С
11	B2	1119	А
11	B2	1122	A
11	B2	1123	G
11	B2	1126	G
11	B2	1144	U
11	B2	1153	А
11	B2	1155	А
11	B2	1158	G
11	B2	1159	G
11	B2	1160	А
11	B2	1161	А
11	B2	1176	G
11	B2	1177	G
11	B2	1184	U
11	B2	1191	U
11	B2	1193	А
11	B2	1194	С
11	B2	1196	G
11	B2	1202	A
11	B2	1203	A
11	B2	1204	G
11	B2	1205	С
11	B2	1206	U
11	B2	1209	U
11	B2	1214	G
11	B2	1215	A
11	B2	1216	U
11	B2	1217	U

Mol	Chain	Res	Type
11	B2	1222	G
11	B2	1223	G
11	B2	1224	U
11	B2	1244	U
11	B2	1245	U
11	B2	1248	U
11	B2	1250	G
11	B2	1254	G
11	B2	1256	G
11	B2	1265	С
11	B2	1272	А
11	B2	1273	U
11	B2	1274	U
11	B2	1279	U
11	B2	1280	А
11	B2	1281	A
11	B2	1296	G
11	B2	1298	С
11	B2	1299	U
11	B2	1302	U
11	B2	1303	А
11	B2	1304	А
11	B2	1305	А
11	B2	1306	U
11	B2	1307	A
11	B2	1308	G
11	B2	1310	U
11	B2	1316	А
11	B2	1317	U
11	B2	1322	G
11	B2	1323	G
11	B2	1324	G
11	B2	1325	U
11	B2	1327	С
11	B2	1329	U
11	B2	1332	А
11	B2	1333	A
11	B2	1335	U
11	B2	1336	U
11	B2	1341	G
11	B2	1347	U
11	B2	1348	А

Mol	Chain	Res	Type
11	B2	1358	U
11	B2	1360	G
11	B2	1364	С
11	B2	1368	А
11	B2	1371	U
11	B2	1372	U
11	B2	1373	G
11	B2	1383	А
11	B2	1384	G
11	B2	1387	С
11	B2	1391	G
11	B2	1392	А
11	B2	1400	A
11	B2	1402	A
11	B2	1414	G
11	B2	1415	C
11	B2	1416	А
11	B2	1427	А
11	B2	1433	G
11	B2	1434	G
11	B2	1438	С
11	B2	1442	G
11	B2	1443	G
11	B2	1452	U
11	B2	1460	А
11	B2	1462	G
11	B2	1470	U
11	B2	1472	А
11	B2	1473	A
11	B2	1477	U
11	B2	1479	G
11	B2	1480	A
11	B2	1481	A
11	B2	1486	U
11	B2	1491	U
11	B2	1493	U
11	B2	1494	С
11	B2	1495	С
11	B2	1497	G
11	B2	1499	A
11	B2	1506	A
11	B2	1510	U

Mol	Chain	Res	Type
11	B2	1512	А
11	B2	1513	U
11	B2	1515	А
11	B2	1524	А
11	B2	1528	G
11	B2	1529	А
11	B2	1530	G
11	B2	1546	G
11	B2	1557	G
11	B2	1563	G
11	B2	1572	G
11	B2	1587	А
11	B2	1588	С
11	B2	1590	С
11	B2	1591	А
11	B2	1613	U
11	B2	1614	G
11	B2	1620	А
11	B2	1636	G
11	B2	1640	G
11	B2	1671	С
11	B2	1689	С
11	B2	1695	U
11	B2	1703	G
11	B2	1709	А
11	B2	1711	G
11	B2	1714	G
11	B2	1716	А
11	B2	1721	G
11	B2	1723	U
11	B2	1734	G
11	B2	1746	G
11	B2	1747	G
11	B2	1748	A
11	B2	1750	C
11	B2	1752	U
11	B2	1754	G
12	A5	12	C
12	A5	13	U
12	A5	22	A
12	A5	39	A
12	A5	42	A

Mol	Chain	Res	Type
12	A5	44	А
12	A5	48	U
12	A5	58	G
12	A5	59	А
12	A5	64	А
12	A5	65	А
12	A5	69	А
12	A5	73	А
12	A5	91	G
12	A5	109	G
12	A5	110	С
12	A5	119	G
12	A5	125	A
12	A5	133	U
12	A5	134	U
12	A5	135	G
12	A5	136	G
12	A5	137	С
12	A5	139	G
12	A5	140	С
12	A5	141	U
12	A5	149	G
12	A5	156	А
12	A5	157	U
12	A5	169	U
12	A5	178	G
12	A5	179	U
12	A5	183	А
12	A5	184	U
12	A5	189	G
12	A5	190	A
12	A5	193	U
12	A5	194	C
12	A5	195	C
12	A5	203	U
12	A5	204	G
12	A5	209	C
12	A5	211	U
12	A5	212	A
12	A5	226	G
12	A5	227	C
12	A5	238	C

Mol	Chain	Res	Type
12	A5	239	U
12	A5	240	G
12	A5	241	G
12	A5	247	G
12	A5	248	G
12	A5	252	U
12	A5	260	С
12	A5	261	G
12	A5	264	U
12	A5	272	G
12	A5	273	G
12	A5	275	G
12	A5	289	А
12	A5	290	A
12	A5	291	G
12	A5	301	A
12	A5	304	U
12	A5	305	G
12	A5	311	U
12	A5	314	A
12	A5	318	С
12	A5	329	А
12	A5	335	С
12	A5	336	G
12	A5	344	U
12	A5	345	G
12	A5	358	А
12	A5	368	G
12	A5	382	G
12	A5	404	G
12	A5	405	A
12	A5	408	A
12	A5	409	C
12	A5	424	G
12	A5	427	G
12	A5	428	A
12	A5	533	C
12	A5	536	G
12	A5	541	A
12	A5	542	G
12	A5	577	U
12	A5	578	С

Mol	Chain	Res	Type
12	A5	581	G
12	A5	585	G
12	A5	588	G
12	A5	590	А
12	A5	594	G
12	A5	598	С
12	A5	599	G
12	A5	600	U
12	A5	601	G
12	A5	635	С
12	A5	636	G
12	A5	638	С
12	A5	640	G
12	A5	641	U
12	A5	643	U
12	A5	644	G
12	A5	645	А
12	A5	647	А
12	A5	655	А
12	A5	656	С
12	A5	666	С
12	A5	678	А
12	A5	689	А
12	A5	706	А
12	A5	710	А
12	A5	712	А
12	A5	716	U
12	A5	720	А
12	A5	728	G
12	A5	729	С
12	A5	742	G
12	A5	745	А
12	A5	746	A
12	A5	747	G
12	A5	755	U
12	A5	756	С
12	A5	758	А
12	A5	759	A
12	A5	760	U
12	A5	763	G
12	A5	764	С
12	A5	767	A

Mol	Chain	Res	Type
12	A5	768	С
12	A5	791	U
12	A5	797	G
12	A5	816	G
12	A5	817	U
12	A5	821	U
12	A5	822	U
12	A5	823	G
12	A5	824	U
12	A5	834	G
12	A5	835	А
12	A5	836	G
12	A5	840	G
12	A5	854	С
12	A5	861	A
12	A5	872	A
12	A5	904	С
12	A5	916	U
12	A5	919	G
12	A5	929	U
12	A5	934	U
12	A5	935	G
12	A5	951	А
12	A5	961	А
12	A5	962	G
12	A5	963	G
12	A5	969	А
12	A5	971	G
12	A5	972	А
12	A5	978	C
12	A5	992	G
12	A5	999	С
12	A5	1001	U
12	A5	1014	С
12	A5	1015	U
$1\overline{2}$	A5	1016	C
12	A5	1017	A
12	A5	1029	U
12	A5	1032	C
12	A5	1034	G
12	A5	1036	C
12	A5	1039	U

Mol	Chain	Res	Type
12	A5	1056	А
12	A5	1060	A
12	A5	1064	G
12	A5	1101	А
12	A5	1103	С
12	A5	1118	А
12	A5	1119	А
12	A5	1123	G
12	A5	1125	А
12	A5	1126	G
12	A5	1135	G
12	A5	1144	С
12	A5	1145	А
12	A5	1150	G
12	A5	1151	А
12	A5	1156	G
12	A5	1168	G
12	A5	1169	G
12	A5	1181	А
12	A5	1183	G
12	A5	1196	U
12	A5	1205	А
12	A5	1211	А
12	A5	1220	U
12	A5	1224	G
12	A5	1229	U
12	A5	1232	С
12	A5	1233	U
12	A5	1234	U
12	A5	1244	G
12	A5	1245	A
12	A5	1250	С
12	A5	1253	U
12	A5	1261	G
12	A5	1264	G
12	A5	1272	U
12	A5	1273	U
12	A5	$1\overline{274}$	G
12	A5	1275	A
12	A5	$1\overline{278}$	G
12	A5	1279	С
12	A5	1339	А

Mol	Chain	Res	Type
12	A5	1354	A
12	A5	1357	U
12	A5	1359	G
12	A5	1360	А
12	A5	1361	U
12	A5	1368	U
12	A5	1375	G
12	A5	1377	G
12	A5	1383	U
12	A5	1420	G
12	A5	1430	А
12	A5	1440	U
12	A5	1441	С
12	A5	1448	G
12	A5	1449	U
12	A5	1453	G
12	A5	1467	G
12	A5	1496	G
12	A5	1499	G
12	A5	1502	С
12	A5	1511	А
12	A5	1512	G
12	A5	1546	А
12	A5	1548	G
12	A5	1553	G
12	A5	1567	G
12	A5	1568	А
12	A5	1573	U
12	A5	1604	А
12	A5	1606	U
12	A5	1612	А
12	A5	1614	G
12	A5	1615	С
12	A5	1619	G
12	A5	1620	U
12	A5	1621	A
12	A5	1626	С
12	A5	1627	G
12	A5	1628	G
12	A5	1650	U
12	A5	1651	C
12	A5	1655	G

Mol	Chain	Res	Type
12	A5	1658	U
12	A5	1659	G
12	A5	1663	А
12	A5	1664	А
12	A5	1665	А
12	A5	1670	А
12	A5	1671	U
12	A5	1681	А
12	A5	1701	А
12	A5	1704	U
12	A5	1725	С
12	A5	1738	U
12	A5	1739	С
12	A5	1749	U
12	A5	1750	A
12	A5	1772	A
12	A5	1775	U
12	A5	1776	U
12	A5	1777	U
12	A5	1780	U
12	A5	1781	С
12	A5	1787	U
12	A5	1795	С
12	A5	1796	G
12	A5	1810	U
12	A5	1811	G
12	A5	1817	G
12	A5	1833	U
12	A5	1837	U
12	A5	1839	С
12	A5	1840	С
12	A5	1842	A
12	A5	1843	A
12	A5	1845	A
12	A5	1851	G
12	A5	1853	G
12	A5	1862	G
12	A5	1868	U
12	A5	1870	G
12	A5	1874	U
12	A5	1875	C
12	A5	1876	U

Mol	Chain	Res	Type
12	A5	1882	С
12	A5	1887	С
12	A5	1891	А
12	A5	1893	A
12	A5	1904	G
12	A5	1908	А
12	A5	1910	U
12	A5	1913	U
12	A5	1914	U
12	A5	1915	U
12	A5	1932	А
12	A5	1935	U
12	A5	1938	G
12	A5	1939	C
12	A5	1948	U
12	A5	1959	С
12	A5	1971	G
12	A5	1972	А
12	A5	1973	U
12	A5	1979	А
12	A5	1999	G
12	A5	2205	А
12	A5	2215	G
12	A5	2216	U
12	A5	2218	С
12	A5	2225	А
12	A5	2226	G
12	A5	2235	А
12	A5	2244	U
12	A5	2246	А
12	A5	2248	А
12	A5	2249	А
12	A5	2253	A
12	A5	2262	A
12	A5	2273	G
12	A5	2281	A
12	A5	2308	U
12	A5	2309	G
12	A5	2310	A
12	A5	2311	А
12	A5	2312	U
12	A5	2313	G

Mol	Chain	Res	Type
12	A5	2326	А
12	A5	2333	G
12	A5	2337	G
12	A5	2352	G
12	A5	2358	А
12	A5	2359	А
12	A5	2361	U
12	A5	2375	G
12	A5	2376	G
12	A5	2382	А
12	A5	2384	А
12	A5	2410	G
12	A5	2411	С
12	A5	2413	U
12	A5	2416	A
12	A5	2418	G
12	A5	2437	U
12	A5	2439	U
12	A5	2474	G
12	A5	2475	А
12	A5	2476	А
12	A5	2477	С
12	A5	2478	G
12	A5	2488	А
12	A5	2496	G
12	A5	2500	А
12	A5	2503	G
12	A5	2505	А
12	A5	2506	G
12	A5	2507	А
12	A5	2514	U
12	A5	2538	G
12	A5	2547	С
12	A5	2609	А
12	A5	2610	С
12	A5	2611	U
12	A5	2612	С
12	A5	2619	U
12	A5	2620	A
12	A5	2625	G
12	A5	2631	A
$1\overline{2}$	A5	2633	А

Mol	Chain	Res	Type
12	A5	2636	А
12	A5	2656	U
12	A5	2658	G
12	A5	2659	А
12	A5	2666	А
12	A5	2672	А
12	A5	2684	G
12	A5	2685	С
12	A5	2686	А
12	A5	2694	U
12	A5	2698	С
12	A5	2705	А
12	A5	2706	С
12	A5	2707	A
12	A5	2718	G
12	A5	2719	G
12	A5	2726	G
12	A5	2731	G
12	A5	2738	А
12	A5	2764	U
12	A5	2768	А
12	A5	2786	А
12	A5	2789	G
12	A5	2791	А
12	A5	2797	U
12	A5	2801	А
12	A5	2803	А
12	A5	2806	А
12	A5	2808	А
12	A5	2814	А
12	A5	2815	А
12	A5	2816	А
12	A5	2826	G
12	A5	2840	G
12	A5	$2\overline{841}$	U
12	A5	2859	A
12	A5	2865	G
12	A5	$2\overline{874}$	A
12	A5	2882	A
12	A5	$2\overline{889}$	A
12	A5	2890	U
12	A5	2908	G

Mol	Chain	Res	Type
12	A5	2911	А
12	A5	2912	G
12	A5	2913	А
12	A5	2922	С
12	A5	2929	А
12	A5	2930	U
12	A5	2950	А
12	A5	2954	U
12	A5	2956	С
12	A5	2957	А
12	A5	2959	А
12	A5	2972	U
12	A5	2979	С
12	A5	2983	G
12	A5	2984	A
12	A5	2987	U
12	A5	2998	U
12	A5	2999	А
12	A5	3001	С
12	A5	3011	С
12	A5	3012	А
12	A5	3014	А
12	A5	3023	А
12	A5	3028	U
12	A5	3035	U
12	A5	3047	U
12	A5	3048	А
12	A5	3053	А
12	A5	3054	С
12	A5	3059	G
12	A5	3066	U
12	A5	3080	G
12	A5	3083	A
12	A5	3095	С
12	A5	3102	G
12	A5	3106	A
12	A5	3112	U
12	A5	3113	A
12	A5	3119	A
12	A5	3124	A
12	A5	3125	A
12	A5	3134	A

Mol	Chain	Res	Type
12	A5	3138	C
12	A5	3140	A
12	A5	3141	G
12	A5	3162	U
12	A5	3170	А
12	A5	3171	U
12	A5	3180	U
12	A5	3185	А
12	A5	3186	G
12	A5	3187	A
12	A5	3188	U
12	A5	3191	А
12	A5	3199	A
12	A5	3205	С
12	A5	3206	C
12	A5	3207	A
12	A5	3231	С
12	A5	3235	А
12	A5	3238	U
12	A5	3243	А
12	A5	3244	U
12	A5	3254	U
12	A5	3255	С
12	A5	3257	А
12	A5	3258	G
12	A5	3259	G
12	A5	3268	U
12	A5	3278	С
12	A5	3279	G
12	A5	3282	G
12	A5	3284	C
12	A5	3285	G
12	A5	3286	G
12	A5	3288	A
12	A5	3289	G
12	A5	3293	U
12	A5	3298	A
12	A5	3299	U
12	A5	3305	G
12	A5	3306	G
12	A5	3310	C
12	A5	3315	G

Mol	Chain	Res	Type
12	A5	3318	С
12	A5	3320	U
12	A5	3321	А
12	A5	3322	U
12	A5	3332	А
12	A5	3333	U
12	A5	3334	G
12	A5	3335	G
12	A5	3336	С
12	A5	3337	С
12	A5	3338	U
12	A5	3339	U
12	A5	3341	G
12	A5	3347	U
12	A5	3349	G
12	A5	3351	G
12	A5	3352	A
12	A5	3364	С
12	A5	3366	U
12	A5	3371	А
12	A5	3373	G
12	A5	3375	С
12	A5	3376	А
12	A5	3377	G
12	A5	3378	А
12	A5	3381	А
12	A5	3385	U
12	A5	3386	G
12	A5	3387	G
12	A5	3388	U
12	A5	3389	U
12	A5	3390	С
12	A5	3399	G
12	A5	3401	C
12	A5	3405	A
12	A5	3406	A
12	A5	3407	A
12	A5	3415	C
12	A5	3436	C
12	A5	3446	U
12	A5	3447	A
12	A5	3448	U

Mol	Chain	Res	Type
12	A5	3454	А
12	A5	3457	G
12	A5	3461	U
12	A5	3463	С
12	A5	3464	U
12	A5	3465	U
12	A5	3466	U
12	A5	3467	U
12	A5	3468	А
12	A5	3469	U
12	A5	3470	А
12	A5	3471	С
12	A5	3472	U
12	A5	3473	G
12	A5	3482	U
12	A5	3483	G
12	A5	3488	U
12	A5	3489	А
12	A5	3494	U
12	A5	3495	U
12	A5	3496	G
79	DC	4	U
79	DC	7	U

All (106) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
11	B2	128	G
11	B2	159	G
11	B2	228	U
11	B2	353	G
11	B2	356	С
11	B2	448	U
11	B2	711	U
11	B2	753	U
11	B2	879	G
11	B2	908	С
11	B2	1027	U
11	B2	1039	А
11	B2	1041	С
11	B2	1110	А
11	B2	1121	А

Mol	Chain	Res	Type
11	B2	1183	А
11	B2	1192	G
11	B2	1213	С
11	B2	1278	А
11	B2	1280	А
11	B2	1305	А
11	B2	1309	U
11	B2	1363	G
11	B2	1371	U
11	B2	1437	U
11	B2	1490	А
11	B2	1509	G
11	B2	1511	А
11	B2	1529	A
11	B2	1715	U
11	B2	1751	A
12	A5	12	С
12	A5	21	G
12	A5	133	U
12	A5	189	G
12	A5	194	С
12	A5	238	С
12	A5	251	C
12	A5	263	U
12	A5	288	А
12	A5	403	А
12	A5	576	G
12	A5	580	U
12	A5	589	U
12	A5	598	С
12	A5	635	C
12	A5	646	A
12	A5	711	А
12	A5	$75\overline{4}$	C
12	A5	759	А
12	A5	763	G
12	A5	816	G
12	A5	823	G
12	A5	834	G
12	A5	928	C
12	A5	971	G
12	A5	1035	G

Mol	Chain	Res	Type
12	A5	1118	А
12	A5	1144	С
12	A5	1150	G
12	A5	1155	С
12	A5	1649	G
12	A5	1650	U
12	A5	1658	U
12	A5	1737	U
12	A5	1844	А
12	A5	1861	U
12	A5	1875	С
12	A5	1907	U
12	A5	1909	U
12	A5	1912	A
12	A5	2608	G
12	A5	2609	A
12	A5	2610	С
12	A5	2630	А
12	A5	2658	G
12	A5	2790	А
12	A5	2955	С
12	A5	3047	U
12	A5	3139	G
12	A5	3234	U
12	A5	3256	А
12	A5	3257	А
12	A5	3258	G
12	A5	3277	С
12	A5	3281	U
12	A5	3283	U
12	A5	$3\overline{285}$	G
12	A5	3297	U
12	A5	3304	U
12	A5	3309	A
12	A5	3320	U
12	A5	3321	A
12	A5	3333	U
12	A5	3334	G
12	A5	3337	C
12	A5	3338	U
12	A5	3340	G
12	A5	3348	A

Continued from previous page...

Mol	Chain	Res	Type
12	A5	3365	U
12	A5	3374	С
12	A5	3375	С
12	A5	3376	А
12	A5	3377	G
12	A5	3389	U
12	A5	3460	G

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

2 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	Bo	ond leng	ths	B	ond ang	les
IVIOI	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
81	3HE	A5	3602	-	21,21,21	0.42	0	23,30,30	0.99	1 (4%)
80	SPD	A5	3601	-	$9,\!9,\!9$	0.33	0	8,8,8	0.82	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
81	3HE	A5	3602	-	-	2/8/36/36	0/2/2/2
80	SPD	A5	3601	-	-	1/7/7/7	-

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
81	A5	3602	3HE	C6-C5-C4	2.13	111.81	108.29

There are no chirality outliers.

All (3) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
81	A5	3602	3HE	C6-C5-C7-C8
81	A5	3602	3HE	C6-C5-C7-O3
80	A5	3601	SPD	C4-C5-N6-C7

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
12	A5	1

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	A5	3461:U	O3'	3462:C	Р	8.47

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-45392. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 340

Z Index: 340

6.2.2 Raw map

X Index: 340

Y Index: 340

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 317

Z Index: 266

6.3.2 Raw map

X Index: 0

Y Index: 0

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.199. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 836 $\rm nm^3;$ this corresponds to an approximate mass of 755 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.386 \AA^{-1}

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.386 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estim	Estimation criterion (FSC cut-off)			
resolution estimate (A)	0.143	0.5	Half-bit		
Reported by author	2.59	-	-		
Author-provided FSC curve	2.59	2.85	2.62		
Unmasked-calculated*	3.07	3.73	3.11		

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 3.07 differs from the reported value 2.59 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-45392 and PDB model 9CAI. Per-residue inclusion information can be found in section 3 on page 19.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.199 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.199).

9.4 Atom inclusion (i)

At the recommended contour level, 80% of all backbone atoms, 81% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.199) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.8070	0.5750
A5	0.8980	0.6140
A7	0.9460	0.6350
A8	0.9330	0.6220
AA	0.7030	0.5720
AB	0.7470	0.5860
AC	0.8250	0.6280
AD	0.5490	0.5360
AE	0.3460	0.1420
AF	0.7570	0.5840
AG	0.4570	0.3320
AH	0.4720	0.4430
AI	0.6510	0.4300
AJ	0.3230	0.1320
AK	0.3770	0.4860
AL	0.7690	0.5170
AM	0.0190	0.1640
AN	0.6800	0.5620
AO	0.8470	0.6110
AP	0.5890	0.5350
AQ	0.6900	0.5650
AR	0.4810	0.4810
AS	0.7000	0.5830
AT	0.6680	0.5650
AU	0.4830	0.4660
AV	0.6740	0.5490
AW	0.8980	0.6380
AX	0.7420	0.5140
AY	0.2280	0.0580
AZ	0.5700	0.5240
Aa	0.8450	0.6240
Ab	0.5510	0.4950
Ac	0.6520	0.5320
Ad	0.7560	0.5920
Ae	0.1700	0.1380

Chain	Atom inclusion	Q-score
Af	0.0600	0.1980
B2	0.8230	0.5530
CA	0.9500	0.6630
CB	0.9250	0.6580
CC	0.8810	0.6380
CD	0.7670	0.5860
CE	0.7810	0.5980
CF	0.8980	0.6440
CG	0.7280	0.5740
CH	0.7560	0.5900
CI	0.2900	0.4140
CJ	0.7130	0.5740
CL	0.8320	0.6220
CM	0.8570	0.6300
CN	0.9640	0.6610
CO	0.9150	0.6520
CP	0.9310	0.6580
CQ	0.9420	0.6590
CR	0.7550	0.5630
CS	0.9010	0.6410
СТ	0.8480	0.6250
CU	0.6660	0.5570
CV	0.9300	0.6580
CW	0.6780	0.5110
CX	0.8380	0.6190
CY	0.8690	0.6330
CZ	0.8320	0.6180
Ca	0.9290	0.6530
Cb	0.8260	0.6070
Cc	0.8390	0.6220
Cd	0.8590	0.6260
Се	0.8890	0.6420
Cf	0.9300	0.6560
Cg	0.8840	0.6380
Ch	0.8260	0.6170
Ci	0.8140	0.6110
Cj	0.9230	0.6460
Ck	0.6640	0.5690
Cl	0.8950	0.6460
Cm	0.2350	0.4620
Cn	0.7340	0.5880
l Co	0.8760	0.6500

Continued from previous page...

Chain	Atom inclusion	Q-score
Ср	0.9020	0.6480
DA	0.5330	0.4730
DC	0.5200	0.4420

