

wwPDB X-ray Structure Validation Summary Report (i)

Dec 4, 2023 - 06:17 am GMT

PDB ID : 2CD8

Title: Crystal structure of YC-17-bound cytochrome P450 PikC (CYP107L1)

Authors: Yermalitskaya, L.I.; Kim, Y.; Sherman, D.H.; Waterman, M.R.; Podust, L.M.

Deposited on : 2006-01-20

Resolution : 1.70 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
https://www.wwpdb.org/validation/2017/XrayValidationReportHelp
with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity : FAILED

Mogul : 1.8.4, CSD as 541be (2020)

Xtriage (Phenix) : 1.13

EDS : 2.36

buster-report : 1.1.7 (2018)

Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)

Refmac : 5.8.0158

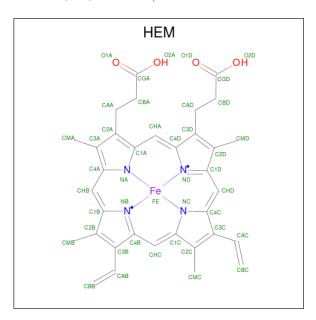
CCP4 : 7.0.044 (Gargrove)

Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996)

Validation Pipeline (wwPDB-VP) : 2.36

 ${\tt PERCENTILES\ INFOmissing INFO}$

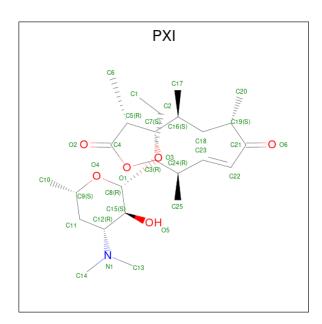
1 Entry composition (i)


There are 4 unique types of molecules in this entry. The entry contains 6456 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called CYTOCHROME P450 MONOOXYGENASE.

\mathbf{Mol}	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace	
1	A	392	Total 3024	C 1904	N 543	O 564	S 13	0	0	1
1	В	393	Total 3027	C 1910	N 545	O 559	S 13	0	0	1


• Molecule 2 is PROTOPORPHYRIN IX CONTAINING FE (three-letter code: HEM) (formula: C₃₄H₃₂FeN₄O₄).

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf		
2	Λ	1	Total	С	Fe	N	О	0	0	
	A	1	43	34	1	4	4	0		
9	В	D	1	Total	С	Fe	N	О	0	0
		1	43	34	1	4	4	0		

• Molecule 3 is 4-{[4-(DIMETHYLAMINO)-3-HYDROXY-6-METHYLTETRAHYDRO-2H-PYRAN-2-YL]OXY}-12-ETHYL-3,5,7,11-TETRAMETHYLOXACYCLODODEC-9-ENE-2,8-DIONE (three-letter code: PXI) (formula: $C_{25}H_{43}NO_6$).

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf
3	A	1	Total 32				0	0
3	В	1	Total 32	_		_	0	0

• Molecule 4 is water.

Mo	Chain	Residues	Atoms	ZeroOcc	AltConf
4	A	139	Total O 139 139	0	0
4	В	116	Total O 116 116	0	0

MolProbity failed to run properly - this section is therefore empty.

2 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	58.40Å 92.10Å 67.57Å	Depositor
a, b, c, α , β , γ	90.00° 89.99° 90.00°	Depositor
Resolution (Å)	39.84 - 1.70	Depositor
Resolution (A)	39.84 - 1.65	EDS
% Data completeness	90.6 (39.84-1.70)	Depositor
(in resolution range)	95.3 (39.84-1.65)	EDS
R_{merge}	0.08	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	2.24 (at 1.65Å)	Xtriage
Refinement program	CNS 1.1	Depositor
D.D.	0.290 , 0.333	Depositor
R, R_{free}	0.292 , 0.335	DCC
R_{free} test set	8535 reflections (10.05%)	wwPDB-VP
Wilson B-factor (Å ²)	20.1	Xtriage
Anisotropy	0.298	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.34, 22.6	EDS
L-test for twinning ²	$< L > = 0.38, < L^2> = 0.21$	Xtriage
Estimated twinning fraction	0.447 for h,-k,-l	Xtriage
F_o, F_c correlation	0.95	EDS
Total number of atoms	6456	wwPDB-VP
Average B, all atoms (Å ²)	23.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 4.61% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of <|L|>, $<L^2>$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

3 Model quality (i)

3.1 Standard geometry (i)

MolProbity failed to run properly - this section is therefore empty.

3.2 Too-close contacts (i)

MolProbity failed to run properly - this section is therefore empty.

3.3 Torsion angles (i)

3.3.1 Protein backbone (i)

MolProbity failed to run properly - this section is therefore empty.

3.3.2 Protein sidechains (i)

MolProbity failed to run properly - this section is therefore empty.

3.3.3 RNA (i)

MolProbity failed to run properly - this section is therefore empty.

3.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

3.5 Carbohydrates (i)

There are no monosaccharides in this entry.

3.6 Ligand geometry (i)

4 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond

length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	True	Chain	Res	Link Bond lengths				Bond angles		
MIOI	Type			LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
2	HEM	A	419	1	41,50,50	1.68	9 (21%)	45,82,82	1.19	6 (13%)
2	HEM	В	419	1	41,50,50	1.58	7 (17%)	45,82,82	1.41	8 (17%)
3	PXI	В	420	-	33,33,33	2.03	5 (15%)	40,47,47	2.11	12 (30%)
3	PXI	A	420	-	33,33,33	1.87	7 (21%)	40,47,47	2.08	9 (22%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	HEM	A	419	1	-	1/12/54/54	-
2	HEM	В	419	1	-	1/12/54/54	-
3	PXI	В	420	-	-	15/43/59/59	0/1/2/2
3	PXI	A	420	_	-	16/43/59/59	0/1/2/2

The worst 5 of 28 bond length outliers are listed below:

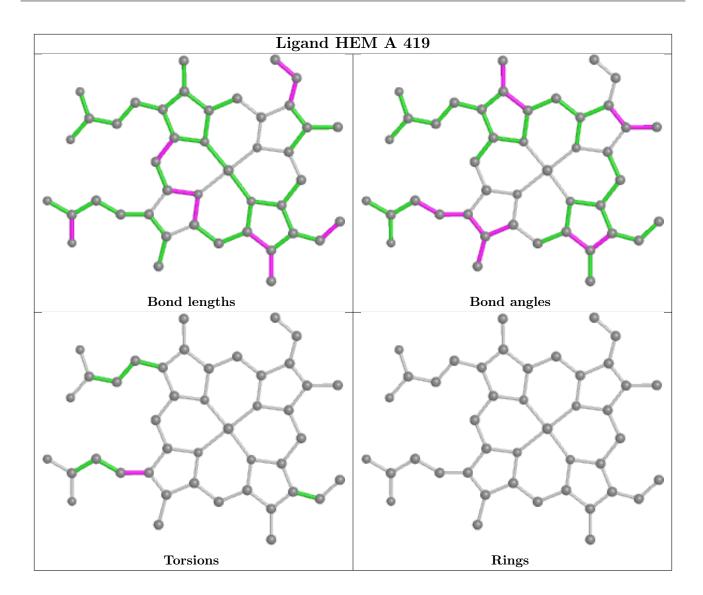
Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$\operatorname{Observed}(\text{\AA})$	$\operatorname{Ideal}(\text{\AA})$
3	В	420	PXI	C19-C21	6.45	1.62	1.51
3	В	420	PXI	C16-C7	5.87	1.63	1.53
3	A	420	PXI	C19-C21	5.70	1.61	1.51
3	A	420	PXI	C16-C7	4.59	1.61	1.53
2	В	419	HEM	C3C-CAC	-4.46	1.38	1.47

The worst 5 of 35 bond angle outliers are listed below:

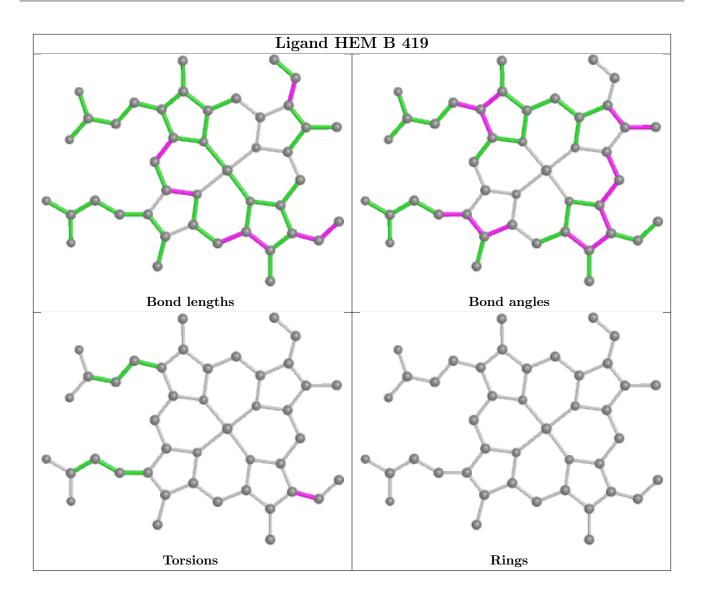
Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$Observed(^o)$	$\mathrm{Ideal}(^{o})$
3	A	420	PXI	C3-O1-C4	7.61	129.32	117.89
3	В	420	PXI	C3-O1-C4	6.88	128.21	117.89
3	A	420	PXI	O3-C7-C5	-6.01	100.68	111.14
3	В	420	PXI	O3-C7-C5	-5.49	101.59	111.14
3	В	420	PXI	C7-C5-C4	3.57	117.30	110.01

There are no chirality outliers.

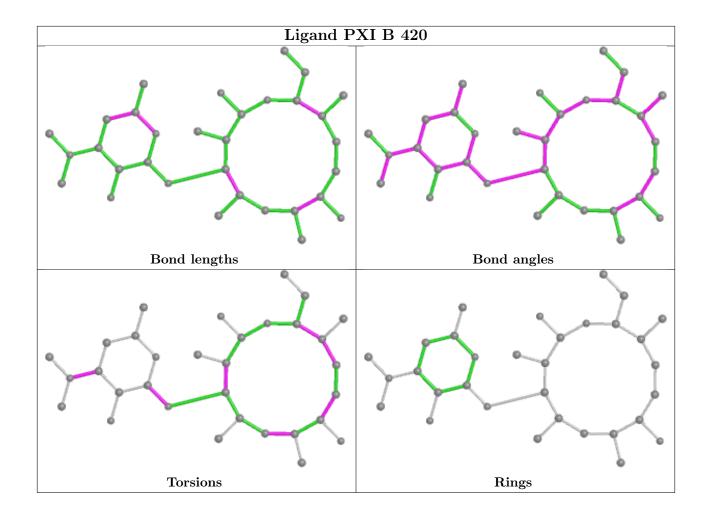
5 of 33 torsion outliers are listed below:

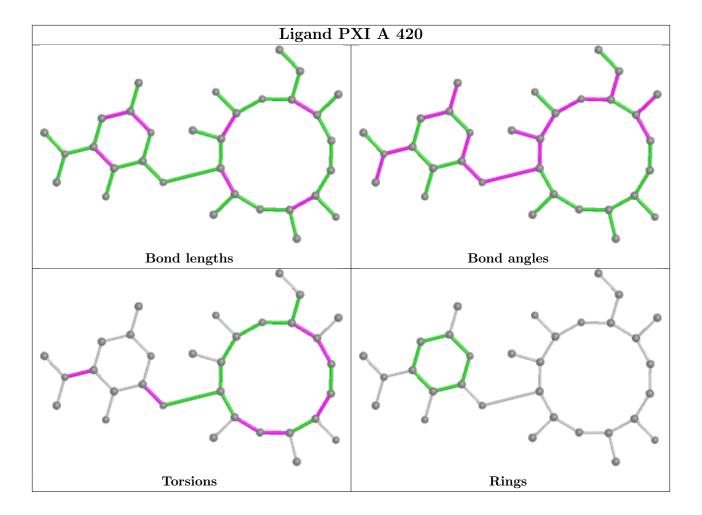

Mol	Chain	Res	Type	Atoms
3	A	420	PXI	C23-C24-C3-O1
3	A	420	PXI	C11-C12-N1-C13
3	A	420	PXI	C11-C12-N1-C14
3	A	420	PXI	C15-C12-N1-C13
3	A	420	PXI	C15-C12-N1-C14

There are no ring outliers.


No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.





3.7 Other polymers (i)

There are no such residues in this entry.

3.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

4 Fit of model and data (i)

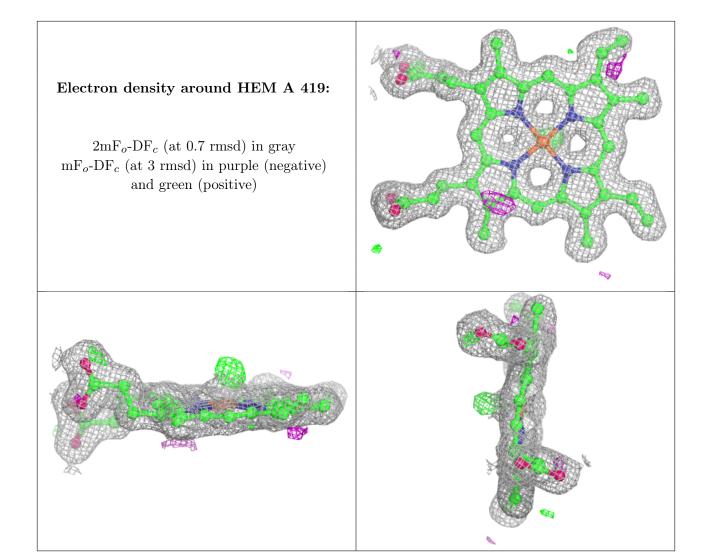
4.1 Protein, DNA and RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

4.2 Non-standard residues in protein, DNA, RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

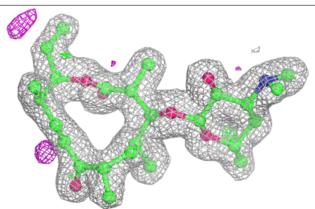
4.3 Carbohydrates (i)

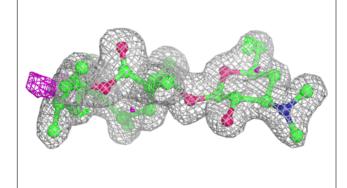

Unable to reproduce the depositors R factor - this section is therefore empty.

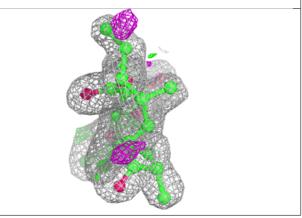
4.4 Ligands (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

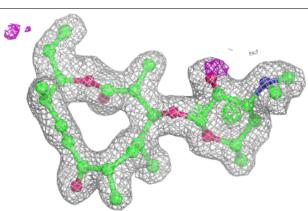


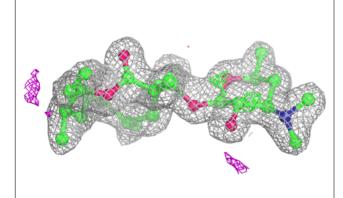

Electron density around HEM B 419: 2mF_o-DF_c (at 0.7 rmsd) in gray mF_o-DF_c (at 3 rmsd) in purple (negative) and green (positive)

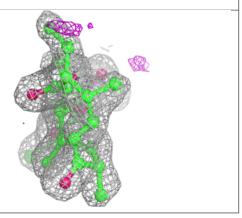


Electron density around PXI A 420:

 $2 \mathrm{mF}_o\text{-}\mathrm{DF}_c$ (at 0.7 rmsd) in gray $\mathrm{mF}_o\text{-}\mathrm{DF}_c$ (at 3 rmsd) in purple (negative) and green (positive)







Electron density around PXI B 420:

 $2 \mathrm{mF}_o\text{-DF}_c$ (at 0.7 rmsd) in gray $\mathrm{mF}_o\text{-DF}_c$ (at 3 rmsd) in purple (negative) and green (positive)

4.5 Other polymers (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

