

Full wwPDB X-ray Structure Validation Report (i)

Sep 26, 2023 – 06:40 PM EDT

PDB ID : 6CE2

Title : Crystal structure of Myotoxin I (MjTX-I) from Bothrops moojeni complexed

to inhibitor suramin

Authors: Salvador, G.H.M.; Fontes, M.R.M.

Deposited on : 2018-02-10

Resolution : 2.15 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at

https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity : 4.02b-467

Mogul : 1.8.5 (274361), CSD as541be (2020)

Xtriage (Phenix) : 1.13

EDS : 2.35.1

buster-report : 1.1.7 (2018)

Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)

 $Refmac \quad : \quad 5.8.0158$

CCP4 : 7.0.044 (Gargrove)

Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996)

Validation Pipeline (wwPDB-VP) : 2.35.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X- $RAY\ DIFFRACTION$

The reported resolution of this entry is 2.15 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	Similar resolution
Metric	$(\# ext{Entries})$	$(\# ext{Entries}, ext{ resolution range}(ext{Å}))$
R_{free}	130704	1479 (2.16-2.16)
Clashscore	141614	1585 (2.16-2.16)
Ramachandran outliers	138981	1560 (2.16-2.16)
Sidechain outliers	138945	1559 (2.16-2.16)
RSRZ outliers	127900	1456 (2.16-2.16)

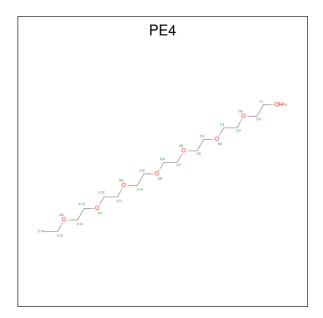
The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	A	121	5% 83%	15%	.
1	В	121	7% 86%	13%	

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 2181 atoms, of which 0 are hydrogens and 0 are deuteriums.

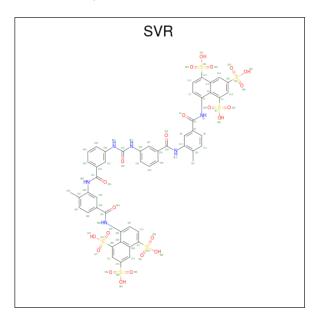
In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.


• Molecule 1 is a protein called Basic phospholipase A2 homolog 1.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
1	Λ	121	Total	С	N	О	S	0	0	0
1	Λ	121	940	581	168	176	15	0	U	U
1	B	121	Total	С	N	О	S	0	0	0
1	Ъ	121	942	583	168	176	15	0	U	0

There are 4 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
A	19	VAL	ALA	conflict	UNP P82114
A	67	ASN	ASP	conflict	UNP P82114
В	19	VAL	ALA	conflict	UNP P82114
В	67	ASN	ASP	conflict	UNP P82114

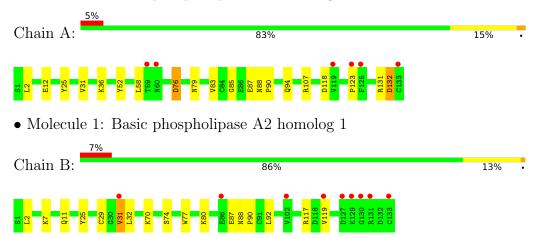

• Molecule 2 is $2-\{2-[2-(2-ETHOXY-ETHOXY)-ETHOXY]-ETHOXY\}$ -ETHOXY}-ETHOXY}-ETHOXY}-ETHOXY}-ETHOXY}-ETHOXY}-ETHOXY}-ETHOXY

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	A	1	Total C O 16 10 6	0	0
2	В	1	Total C O 16 10 6	0	0

• Molecule 3 is 8,8'-[CARBONYLBIS[IMINO-3,1-PHENYLENECARBONYLIMINO(4-MET HYL-3,1-PHENYLENE)CARBONYLIMINO]]BIS-1,3,5-NAPHTHALENETRISULFON IC ACID (three-letter code: SVR) (formula: $C_{51}H_{40}N_6O_{23}S_6$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf		
2	В	1	Total	С	N	О	S	0	0
)	Ъ	1	86	51	6	23	6	0	U

• Molecule 4 is water.


Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	A	92	Total O 92 92	0	0
4	В	89	Total O 89 89	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Basic phospholipase A2 homolog 1

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 21 21 21	Depositor
Cell constants	48.75Å 60.28Å 102.28Å	Donogitor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Resolution (Å)	25.57 - 2.15	Depositor
rtesolution (A)	25.57 - 2.14	EDS
% Data completeness	98.2 (25.57-2.15)	Depositor
(in resolution range)	98.2 (25.57-2.14)	EDS
R_{merge}	0.15	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	3.89 (at 2.15Å)	Xtriage
Refinement program	PHENIX 1.12_2829	Depositor
R, R_{free}	0.221 , 0.249	Depositor
It, It free	0.223 , 0.207	DCC
R_{free} test set	821 reflections (4.88%)	wwPDB-VP
Wilson B-factor (\mathring{A}^2)	28.4	Xtriage
Anisotropy	0.502	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.35, 62.2	EDS
L-test for twinning ²	$ < L >=0.49, < L^2>=0.32$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.92	EDS
Total number of atoms	2181	wwPDB-VP
Average B, all atoms (Å ²)	38.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 6.08% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of <|L|>, $<L^2>$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: PE4, SVR

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bond	angles
IVIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	A	0.28	0/956	0.52	0/1281
1	В	0.27	0/958	0.49	0/1284
All	All	0.27	0/1914	0.51	0/2565

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a maintain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	A	0	1
1	В	0	1
All	All	0	2

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (2) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	A	123	PRO	Peptide
1	В	119	VAL	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	A	940	0	912	16	0
1	В	942	0	919	13	0
2	A	16	0	21	3	0
2	В	16	0	21	2	0
3	В	86	0	40	10	0
4	A	92	0	0	2	0
4	В	89	0	0	1	0
All	All	2181	0	1913	35	0

The all-atom clash score is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clash score for this structure is 9.

All (35) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

A., 1	A	Interatomic	Clash
Atom-1	Atom-2	${\rm distance} \ (\mathring{\rm A})$	$\begin{array}{c} \textbf{overlap (Å)} \\ 0.81 \\ 0.76 \\ 0.76 \\ 0.76 \\ 0.74 \\ 0.64 \\ 0.64 \\ 0.62 \\ 0.61 \\ 0.58 \\ 0.58 \\ 0.58 \\ 0.58 \\ 0.55 \\$
2:A:201:PE4:H51	3:B:202:SVR:H38	1.63	0.81
1:B:7:LYS:HE2	2:B:201:PE4:H71	1.67	0.76
1:A:131:ARG:NH1	4:A:302:HOH:O	2.14	0.76
1:A:85:GLY:O	1:A:87:GLU:OE1	2.05	0.74
1:B:11:GLN:HB3	1:B:77:TRP:CZ3	2.32	0.64
1:A:76:ASP:OD1	1:A:83:VAL:HB	1.98	0.64
3:B:202:SVR:O35	4:B:301:HOH:O	2.14	0.64
3:B:202:SVR:O78	3:B:202:SVR:N63	2.33	0.62
1:A:132:ASP:OD1	1:A:132:ASP:N	2.32	0.61
1:A:131:ARG:NE	1:A:131:ARG:HA	2.18	0.58
3:B:202:SVR:S17	3:B:202:SVR:N1	2.76	0.58
1:B:31:VAL:HG23	1:B:32:LEU:HG	1.84	0.58
1:B:77:TRP:CE2	1:B:80:LYS:HA	2.40	0.57
1:A:25:TYR:HA	1:A:118:ASP:HA	1.88	0.56
1:A:12:GLU:O	1:A:107:ARG:HG3	2.07	0.55
1:A:88:ASN:HB2	1:A:90:PRO:HD2	1.89	0.55
1:A:31:VAL:HG13	1:B:2:LEU:HD23	1.89	0.55
1:A:58:LEU:HD21	1:A:94:GLN:HB3	1.89	0.54
1:A:52:TYR:HA	1:A:58:LEU:HD12	1.89	0.53
2:A:201:PE4:H51	3:B:202:SVR:C38	2.34	0.53
1:A:2:LEU:HD22	2:A:201:PE4:H62	1.89	0.52
3:B:202:SVR:N1	3:B:202:SVR:O23	2.38	0.52
1:B:25:TYR:HB3	1:B:29:CYS:HB2	1.91	0.52
1:B:88:ASN:HB2	1:B:90:PRO:HD2	1.93	0.51
1:B:7:LYS:NZ	2:B:201:PE4:H51	2.26	0.51
1:A:131:ARG:HA	1:A:131:ARG:HE	1.75	0.50
1:A:79:ASN:N	4:A:301:HOH:O	2.13	0.49

Continued on next page...

Continued from previous page...

Atom-1	Atom-2	$\begin{array}{c} {\rm Interatomic} \\ {\rm distance} \ ({\rm \AA}) \end{array}$	Clash overlap (Å)
1:B:2:LEU:HD22	3:B:202:SVR:H44	1.78	0.48
1:A:36:LYS:HE2	1:A:131:ARG:HG2	1.97	0.47
1:B:87:GLU:HB2	1:B:92:LEU:HB2	1.97	0.46
3:B:202:SVR:N63	3:B:202:SVR:S73	2.88	0.46
1:B:2:LEU:CD2	3:B:202:SVR:H44	2.30	0.45
1:A:2:LEU:HD21	3:B:202:SVR:O32	2.18	0.42
1:B:74:SER:OG	1:B:87:GLU:OE2	2.34	0.41
1:B:25:TYR:HA	1:B:117:ARG:O	2.21	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perc	entiles
1	A	119/121 (98%)	114 (96%)	5 (4%)	0	100	100
1	В	119/121 (98%)	113 (95%)	5 (4%)	1 (1%)	19	12
All	All	238/242 (98%)	227 (95%)	10 (4%)	1 (0%)	34	29

All (1) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	В	31	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	A	103/107 (96%)	101 (98%)	2 (2%)	57 61
1	В	104/107 (97%)	103 (99%)	1 (1%)	76 81
All	All	207/214 (97%)	204 (99%)	3 (1%)	67 72

All (3) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	A	76	ASP
1	A	132	ASP
1	В	70	LYS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (2) such sidechains are listed below:

Mol	Chain	Res	Type
1	A	11	GLN
1	A	48	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

3 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the

expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Res	Res Link	Bond lengths			Bond angles		
MIOI	туре	Chain	nes	Lilik	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
2	PE4	В	201	-	15,15,23	0.63	0	14,14,22	0.24	0
2	PE4	A	201	-	15,15,23	0.59	0	14,14,22	0.28	0
3	SVR	В	202	-	89,93,93	2.25	23 (25%)	129,145,145	1.47	18 (13%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	PE4	В	201	-	-	7/13/13/21	-
2	PE4	A	201	-	-	4/13/13/21	-
3	SVR	В	202	-	-	12/76/76/76	0/8/8/8

All (23) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\text{\AA})$	Ideal(A)
3	В	202	SVR	C43-N44	6.64	1.51	1.37
3	В	202	SVR	C46-N44	6.59	1.55	1.41
3	В	202	SVR	C13-N19	6.31	1.53	1.41
3	В	202	SVR	C61-N63	5.68	1.50	1.35
3	В	202	SVR	C76-S83	5.20	1.88	1.77
3	В	202	SVR	C55-N53	4.50	1.50	1.41
3	В	202	SVR	C15-C10	-4.49	1.35	1.43
3	В	202	SVR	C51-N53	4.27	1.47	1.35
3	В	202	SVR	C26-N19	4.25	1.47	1.35
3	В	202	SVR	C43-N41	3.93	1.45	1.37
3	В	202	SVR	C39-N41	3.88	1.49	1.41
3	В	202	SVR	C59-C57	3.42	1.57	1.51
3	В	202	SVR	C58-C61	2.99	1.56	1.50
3	В	202	SVR	C12-C15	2.98	1.41	1.37
3	В	202	SVR	C2-N1	2.91	1.43	1.35
3	В	202	SVR	C22-S31	2.78	1.83	1.77
3	В	202	SVR	C33-C26	2.75	1.55	1.50
3	В	202	SVR	C18-C22	2.50	1.43	1.39
3	В	202	SVR	O45-C43	-2.49	1.18	1.23
3	В	202	SVR	C5-C2	2.45	1.55	1.50
3	В	202	SVR	C65-N63	2.42	1.47	1.41
3	В	202	SVR	O32-C26	-2.29	1.18	1.23

Continued on next page...

Continued from previous page...

Mol	Chain	Res	Type	Atoms	${f Z}$	$\operatorname{Observed}(\text{\AA})$	$\operatorname{Ideal}(ext{\AA})$
3	В	202	SVR	O35-S31	2.25	1.55	1.43

All (18) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$Observed(^o)$	$\operatorname{Ideal}({}^o)$
3	В	202	SVR	C65-N63-C61	-6.17	110.34	128.64
3	В	202	SVR	C58-C61-N63	3.75	124.17	115.92
3	В	202	SVR	C20-C13-N19	3.61	124.43	118.81
3	В	202	SVR	C3-N1-C2	-3.11	119.42	128.64
3	В	202	SVR	C67-C65-N63	-3.11	114.71	123.29
3	В	202	SVR	C11-C6-C10	2.92	119.09	116.34
3	В	202	SVR	C66-C65-N63	2.75	124.67	120.58
3	В	202	SVR	C69-C66-C68	2.60	118.78	116.34
3	В	202	SVR	C8-C13-N19	-2.53	115.21	121.90
3	В	202	SVR	O64-C61-N63	-2.51	117.97	123.71
3	В	202	SVR	C60-C57-C55	2.45	119.75	117.44
3	В	202	SVR	C67-C70-C71	-2.42	118.75	121.66
3	В	202	SVR	O78-S73-O77	-2.35	100.64	112.86
3	В	202	SVR	O29-S21-O28	-2.19	101.48	112.86
3	В	202	SVR	O85-S83-O84	-2.17	101.13	111.54
3	В	202	SVR	O84-S83-C76	2.14	111.57	106.65
3	В	202	SVR	O36-S31-O35	-2.09	101.99	112.86
3	В	202	SVR	O82-S75-O80	-2.09	101.54	111.54

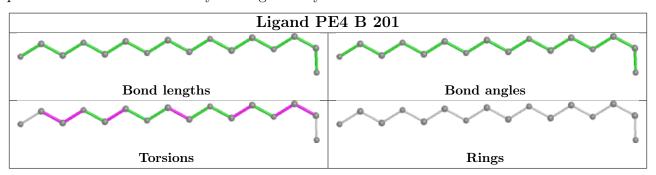
There are no chirality outliers.

All (23) torsion outliers are listed below:

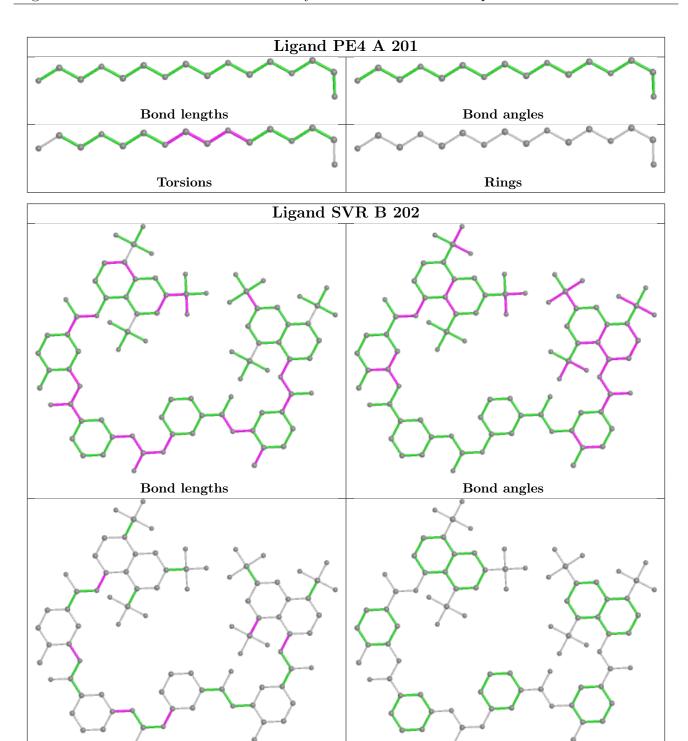
Mol	Chain	Res	Type	Atoms
3	В	202	SVR	C66-C69-S73-O79
2	В	201	PE4	O6-C10-C9-O5
3	В	202	SVR	C48-C46-N44-C43
3	В	202	SVR	C47-C46-N44-C43
2	В	201	PE4	O3-C5-C6-O4
2	A	201	PE4	O3-C5-C6-O4
2	В	201	PE4	O2-C3-C4-O3
3	В	202	SVR	C37-C39-N41-C43
3	В	202	SVR	C42-C39-N41-C43
2	В	201	PE4	O4-C7-C8-O5
2	В	201	PE4	O1-C1-C2-O2
3	В	202	SVR	C66-C69-S73-O77
3	В	202	SVR	C66-C69-S73-O78
3	В	202	SVR	C67-C65-N63-C61

Continued on next page...

Continued from previous page...


Mol	Chain	Res	Type	Atoms
2	A	201	PE4	C6-C5-O3-C4
2	В	201	PE4	C10-C9-O5-C8
2	В	201	PE4	C1-C2-O2-C3
3	В	202	SVR	C74-C69-S73-O79
2	A	201	PE4	C5-C6-O4-C7
3	В	202	SVR	C74-C69-S73-O77
3	В	202	SVR	C7-C3-N1-C2
2	A	201	PE4	C3-C4-O3-C5
3	В	202	SVR	C8-C13-N19-C26

There are no ring outliers.


3 monomers are involved in 13 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	В	201	PE4	2	0
2	A	201	PE4	3	0
3	В	202	SVR	10	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

Torsions

Rings

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ>2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	$\# \mathrm{RSRZ}{>}2$	$OWAB(Å^2)$	Q<0.9
1	A	121/121 (100%)	0.19	6 (4%) 28 37	23, 33, 58, 79	0
1	В	121/121 (100%)	0.31	9 (7%) 14 20	24, 35, 60, 85	0
All	All	242/242 (100%)	0.25	15 (6%) 20 27	23, 34, 60, 85	0

All (15) RSRZ outliers are listed below:

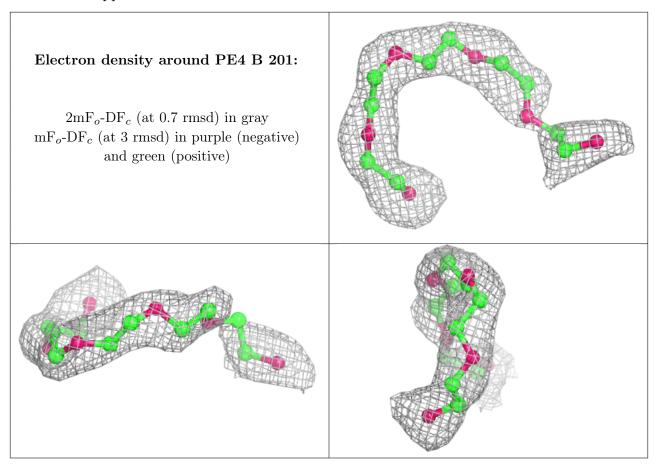
Mol	Chain	Res	Type	RSRZ
1	A	125	PHE	7.9
1	A	123	PRO	4.9
1	В	133	CYS	4.9
1	A	59	THR	4.9
1	A	119	VAL	3.6
1	В	130	GLY	3.5
1	В	131	ARG	3.4
1	В	119	VAL	3.4
1	В	31	VAL	3.2
1	A	133	CYS	2.8
1	В	86	GLU	2.7
1	В	129	LYS	2.5
1	В	102	VAL	2.4
1	В	127	ASP	2.2
1	A	60	ASN	2.2

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

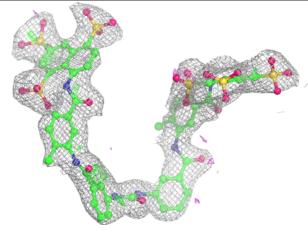
There are no monosaccharides in this entry.

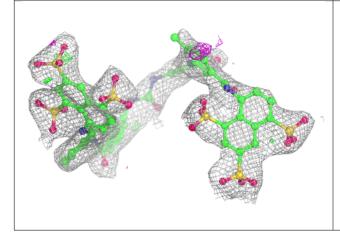


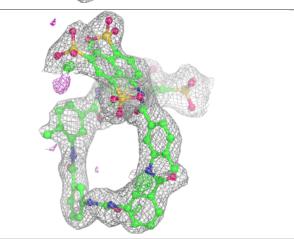
6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-}\mathbf{factors}(\mathbf{\mathring{A}}^2)$	Q < 0.9
2	PE4	В	201	16/24	0.83	0.17	35,49,58,60	0
3	SVR	В	202	86/86	0.85	0.17	26,47,87,92	0
2	PE4	A	201	16/24	0.91	0.23	34,40,52,56	0

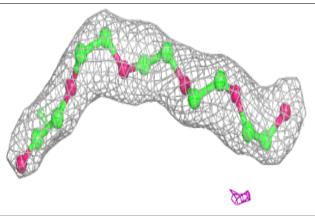

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

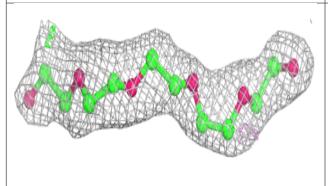


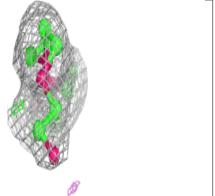


Electron density around SVR B 202:

 $2 \mathrm{mF}_o\text{-}\mathrm{DF}_c$ (at 0.7 rmsd) in gray $\mathrm{mF}_o\text{-}\mathrm{DF}_c$ (at 3 rmsd) in purple (negative) and green (positive)







Electron density around PE4 A 201:

 $2 {
m mF}_o {
m -DF}_c$ (at 0.7 rmsd) in gray ${
m mF}_o {
m -DF}_c$ (at 3 rmsd) in purple (negative) and green (positive)

6.5 Other polymers (i)

There are no such residues in this entry.

