

wwPDB EM Validation Summary Report (i)

Jan 1, 2023 – 11:22 PM JST

PDB ID : 7CPU EMDB ID EMD-30432 : Title Cryo-EM structure of 80S ribosome from mouse kidney : Authors Huo, Y.G.; He, X.; Jiang, T.; Qin, Y.; Guo, X.J.; Sha, J.H. : Deposited on 2020-08-08 : 2.82 Å(reported) Resolution : Based on initial model 6 EK0·

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 43
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.31.3

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.82 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive}\ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	LA	257	93%	•••
2	SA	295	65% 5%	30%
3	LB	403	9 5%	•••
4	SB	264	5%	• 19%
5	LC	419	80%	6% 14%
6	LD	297	94%	5%•
7	LE	296	7% 73% 5%	22%
8	LF	270	77%	• 21%

Mol	Chain	Length	Quality of chain	
9	LG	266	80% 6%	<i>6</i> 14%
10	LH	192	92%	7% •
11	LI	214	90%	• 6%
12	LI	178	20 %	7%
12		211		776 •
1.0		211	90%	8% •
14		217	60% • 37%	
15	LN	204	97%	•
16	LO	203	94%	5%•
17	LP	184	78% 6%	16%
18	LQ	188	97%	••
19	LR	196	•• 84%	5% 11%
20	LS	176	93%	6% •
21	LT	160	95%	5%
22	LU	128	73% 5%	22%
23	LV	140	89%	• 7%
24	LW	157	39% 61%	
25	LX	156	• 72%	24%
26	LY	145	84%	7% 9%
27	LZ	136	95%	• •
28	La	148	94%	5%•
29	Lb	160	• 57% 5% 38%	
30	Lc	115	• 78% •	18%
31	Ld	125	5% 84%	• 14%
32	Le	135	93%	• 5%
33	Lf	110	94%	5%•

Mol	Chain	Length	Quality of chain	
34	Lg	117	90%	• 6%
35	Lh	123	97%	
36	Li	105	 90%	7% •
37	Lj	97	82% 6%	6 11%
38	Lk	70	96%	
39	Lm	128	40% 60%	
40	Ln	25	96%	
41	Lo	106	92%	6% •
42	Lp	92	97%	
43	Lr	137	88%	• 9%
44	L5	4731		5%
45	L7	120	85%	15%
46	L8	158	78%	21% •
47	S2	1870	65% 23%	11%
48	SD	243	41%	7% 9%
49	SE	263	88%	10% ·
50	SF	204	10% 79% 8%	12%
51	SH	194	84%	9% 7%
52	SI	208	15% 79% 9%	12%
53	SK	165	40% 50% 5% 45%	
54	SL	158	6% 77% 9%	15%
55	SP	145	10% 79% •	19%
56	\mathbf{SQ}	146	87%	8% 5%
57	SR	135	36%	13% •
58	SS	152	85%	7% 8%

Mol	Chain	Length	Quality of chain
59	ST	145	9% 91% 6% •
60	SU	119	45% 69% 11% 20%
61	SV	83	90% 6% •
62	SX	143	6% 90% 7% ·
63	Sa	115	77% 9% 14%
64	Sc	69	16% 71% 7% 22%
65	Sd	56	9% 91% 5% •
66	Sg	317	75% 12% 13%
67	SC	293	€ 69% • 27%
68	SG	249	73% 8% 18%
69	SJ	194	63% 8% 29%
70	SN	151	93% 7% ·
71	SO	151	83% 6% 11%
72	SW	130	92% 7% •
73	SY	133	73% 10% 17%
74	SZ	125	53% 5% 42%
75	Sb	84	89% 10% •
76	Se	133	9% 34% • 64%
77	S6	75	<u>25%</u> 55% 44%
78	Ll	51	92% 6% ·

2 Entry composition (i)

There are 81 unique types of molecules in this entry. The entry contains 206288 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called 60S ribosomal protein L8.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	LA	248	Total 1898	C 1189	N 389	0 314	S 6	0	0

• Molecule 2 is a protein called 40S ribosomal protein SA.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	SA	207	Total 1636	C 1042	N 288	0 298	S 8	0	0

• Molecule 3 is a protein called 60S ribosomal protein L3.

Mol	Chain	Residues		At	AltConf	Trace			
3	LB	397	Total 3202	C 2039	N 603	0 546	S 14	0	0

• Molecule 4 is a protein called 40S ribosomal protein S3a.

Mol	Chain	Residues		At	AltConf	Trace			
4	SB	213	Total 1729	C 1098	N 309	O 308	S 14	0	0

• Molecule 5 is a protein called 60S ribosomal protein L4.

Mol	Chain	Residues		At	AltConf	Trace			
5	LC	362	Total 2891	C 1819	N 577	0 480	S 15	0	0

• Molecule 6 is a protein called 60S ribosomal protein L5.

Mol	Chain	Residues		At	AltConf	Trace			
6	LD	293	Total 2385	C 1506	N 440	0 425	S 14	0	0

• Molecule 7 is a protein called 60S ribosomal protein L6.

Mol	Chain	Residues		At	AltConf	Trace			
7	LE	231	Total 1874	C 1195	N 358	0 317	${f S}$ 4	0	0

• Molecule 8 is a protein called 60S ribosomal protein L7.

Mol	Chain	Residues		Ate	AltConf	Trace			
8	m LF	214	Total 1771	C 1139	N 337	0 287	S 8	0	0

• Molecule 9 is a protein called 60S ribosomal protein L7a.

Mol	Chain	Residues		Atoms					Trace
9	LG	229	Total 1848	C 1179	N 354	0 311	${S \atop 4}$	0	0

• Molecule 10 is a protein called 60S ribosomal protein L9.

Mol	Chain	Residues		At	oms	AltConf	Trace		
10	LH	190	Total 1519	C 956	N 284	0 273	S 6	0	0

• Molecule 11 is a protein called 60S ribosomal protein L10.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
11	LI	201	Total 1633	C 1037	N 316	0 268	S 12	0	0

• Molecule 12 is a protein called 60S ribosomal protein L11.

Mol	Chain	Residues	Atoms					AltConf	Trace
12	LJ	171	Total 1371	C 866	N 255	0 244	S 6	0	0

• Molecule 13 is a protein called 60S ribosomal protein L13.

Mol	Chain	Residues		Ate			AltConf	Trace	
13	LL	206	Total 1667	C 1043	N 343	0 277	$\frac{S}{4}$	0	0

• Molecule 14 is a protein called 60S ribosomal protein L14.

Mol	Chain	Residues		At	oms			AltConf	Trace
14	LM	136	Total 1125	C 721	N 218	0 179	${ m S} 7$	0	0

• Molecule 15 is a protein called 60S ribosomal protein L15.

Mol	Chain	Residues		Ate	AltConf	Trace			
15	LN	203	Total 1701	C 1072	N 359	O 266	$\frac{S}{4}$	0	0

• Molecule 16 is a protein called 60S ribosomal protein L13a.

Mol	Chain	Residues	Atoms					AltConf	Trace
16	LO	201	Total 1640	C 1055	N 320	O 259	S 6	0	0

• Molecule 17 is a protein called 60S ribosomal protein L17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
17	LP	154	Total 1251	C 782	N 243	O 217	S 9	0	0

• Molecule 18 is a protein called 60S ribosomal protein L18.

Mol	Chain	Residues		At	oms	AltConf	Trace		
18	LQ	187	Total 1515	C 948	N 314	0 249	S 4	0	0

• Molecule 19 is a protein called 60S ribosomal protein L19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
19	LR	174	Total 1457	C 901	N 316	0 231	${ m S} 9$	0	0

• Molecule 20 is a protein called 60S ribosomal protein L18a.

Mol	Chain	Residues		\mathbf{A}	toms		AltConf	Trace	
20	LS	175	Total 1451	C 924	N 283	0 234	S 10	0	0

• Molecule 21 is a protein called 60S ribosomal protein L21.

Mol	Chain	Residues		At	oms			AltConf	Trace
21	LT	160	Total 1307	C 829	N 253	O 218	${ m S} 7$	0	0

• Molecule 22 is a protein called 60S ribosomal protein L22.

Mol	Chain	Residues		At	oms	AltConf	Trace		
22	LU	100	Total 817	C 523	N 143	0 149	${S \over 2}$	0	0

• Molecule 23 is a protein called 60S ribosomal protein L23.

Mol	Chain	Residues		At	oms	AltConf	Trace		
23	LV	130	Total 973	C 615	N 183	0 170	${ m S}{ m 5}$	0	0

• Molecule 24 is a protein called 60S ribosomal protein L24.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
24	TW	62	Total	С	Ν	Ο	\mathbf{S}	0	0
24		02	519	332	101	83	3	0	0

• Molecule 25 is a protein called 60S ribosomal protein L23a.

Mol	Chain	Residues		At	oms	AltConf	Trace		
25	LX	118	Total 967	C 618	N 181	O 167	S 1	0	0

• Molecule 26 is a protein called 60S ribosomal protein L26.

Mol	Chain	Residues		At	oms	AltConf	Trace		
26	LY	132	Total 1102	C 692	N 223	0 184	${ m S} { m 3}$	0	0

• Molecule 27 is a protein called 60S ribosomal protein L27.

Mol	Chain	Residues		At	oms	AltConf	Trace		
27	LZ	135	Total 1107	C 714	N 208	0 182	${ m S} { m 3}$	0	0

• Molecule 28 is a protein called 60S ribosomal protein L27a.

Mol	Chain	Residues		At	oms			AltConf	Trace
28	La	147	Total 1164	C 736	N 239	0 185	$\frac{S}{4}$	0	0

• Molecule 29 is a protein called 60S ribosomal protein L29.

Mol	Chain	Residues	Atoms					AltConf	Trace
29	Lb	99	Total 807	$\begin{array}{c} \mathrm{C} \\ 505 \end{array}$	N 174	0 124	$\frac{S}{4}$	0	0

• Molecule 30 is a protein called 60S ribosomal protein L30.

Mol	Chain	Residues		At	oms	AltConf	Trace		
30	Lc	94	Total 732	C 465	N 130	0 131	S 6	0	0

• Molecule 31 is a protein called 60S ribosomal protein L31.

Mol	Chain	Residues		At	oms		AltConf	Trace	
31	Ld	108	Total 896	C 566	N 172	0 156	${ m S} { m 2}$	0	0

• Molecule 32 is a protein called 60S ribosomal protein L32.

Mol	Chain	Residues		At	oms	AltConf	Trace		
32	Le	128	Total 1053	C 667	N 216	0 165	${ m S}{ m 5}$	0	0

• Molecule 33 is a protein called 60S ribosomal protein L35a.

Mol	Chain	Residues		At	oms	AltConf	Trace		
33	Lf	109	Total 876	C 555	N 174	0 143	${f S}$ 4	0	0

• Molecule 34 is a protein called 60S ribosomal protein L34.

Mol	Chain	Residues		At	oms	AltConf	Trace		
34	Lg	110	Total 873	C 546	N 180	0 141	S 6	0	0

• Molecule 35 is a protein called 60S ribosomal protein L35.

Mol	Chain	Residues		At	oms	AltConf	Trace		
35	Lh	122	Total 1015	C 643	N 204	O 167	S 1	0	0

• Molecule 36 is a protein called 60S ribosomal protein L36.

Mol	Chain	Residues		At	oms	AltConf	Trace		
36	Li	102	Total 832	C 521	N 177	O 129	${f S}{5}$	0	0

• Molecule 37 is a protein called 60S ribosomal protein L37.

Mol	Chain	Residues		At	oms	AltConf	Trace		
37	Lj	86	Total 705	C 434	N 155	0 111	${ m S}{ m 5}$	0	0

• Molecule 38 is a protein called 60S ribosomal protein L38.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
38	Lk	69	Total 568	C 365	N 103	O 99	S 1	0	0

• Molecule 39 is a protein called Ubiquitin-60S ribosomal protein L40.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
39	Lm	51	Total 419	C 260	N 88	O 65	S 6	0	0

• Molecule 40 is a protein called 60S ribosomal protein L41.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
40	Ln	25	Total	C 145	N 64	O 27	S 3	0	0
40	Ln	25	239	145	64	27	3	0	

• Molecule 41 is a protein called 60S ribosomal protein L36a.

Mol	Chain	Residues		At	oms			AltConf	Trace
41	Lo	103	Total 842	C 528	N 172	0 136	${f S}{f 6}$	0	0

• Molecule 42 is a protein called 60S ribosomal protein L37a.

Mol	Chain	Residues		At	oms	AltConf	Trace		
42	Lp	91	Total 708	$\begin{array}{c} \mathrm{C} \\ 445 \end{array}$	N 136	O 120	${ m S} 7$	0	0

• Molecule 43 is a protein called 60S ribosomal protein L28.

Mol	Chain	Residues		At	oms			AltConf	Trace
43	Lr	124	Total 994	C 616	N 206	0 167	${ m S}{ m 5}$	0	0

• Molecule 44 is a RNA chain called Mus musculus 28S ribosomal RNA.

Mol	Chain	Residues			Atoms						
44	L5	3539	Total 75867	C 33789	N 13863	O 24677	Р 3538	0	0		

• Molecule 45 is a RNA chain called Mus musculus 5S ribosomal RNA.

Mol	Chain	Residues		A		AltConf	Trace		
45	L7	120	Total 2558	C 1141	N 456	0 842	Р 119	0	0

• Molecule 46 is a RNA chain called Mus musculus 5.8S ribosomal RNA.

Mol	Chain	Residues		Α	toms			AltConf	Trace
46	L8	156	Total 3314	C 1480	N 585	O 1094	Р 155	0	0

• Molecule 47 is a RNA chain called Mus musculus 18S ribosomal RNA.

Mol	Chain	Residues		1	AltConf	Trace			
47	S2	1656	Total 35228	C 15723	N 6313	O 11537	Р 1655	0	0

• Molecule 48 is a protein called 40S ribosomal protein S3.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
48	SD	222	Total 1726	C 1100	N 310	O 309	S 7	0	0

• Molecule 49 is a protein called 40S ribosomal protein S4, X isoform.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
49	SE	258	Total 2050	C 1311	N 381	O 350	S 8	0	0

• Molecule 50 is a protein called 40S ribosomal protein S5.

Mol	Chain	Residues		At	oms			AltConf	Trace
50	SF	179	Total 1416	C 888	N 262	O 259	${f S}{7}$	0	0

• Molecule 51 is a protein called 40S ribosomal protein S7.

Mol	Chain	Residues		At	oms			AltConf	Trace
51	SH	180	Total 1449	C 924	N 266	0 258	S 1	0	0

• Molecule 52 is a protein called 40S ribosomal protein S8.

	Chain	Residues		At	oms	AltConf	Trace		
52	SI	183	Total	C 043	N 203	0 258	S 5	0	0

• Molecule 53 is a protein called 40S ribosomal protein S10.

Mol	Chain	Residues		At	oms	AltConf	Trace		
53	SK	90	Total 760	C 495	N 135	0 124	S 6	0	0

• Molecule 54 is a protein called 40S ribosomal protein S11.

Mol	Chain	Residues		At	oms			AltConf	Trace
54	SL	135	Total 1110	C 708	N 207	0 189	S 6	0	0

• Molecule 55 is a protein called 40S ribosomal protein S15.

Mol	Chain	Residues		At	oms			AltConf	Trace
55	SP	118	Total 981	C 625	N 183	0 166	S 7	0	0

• Molecule 56 is a protein called 40S ribosomal protein S16.

Mol	Chain	Residues		At	oms			AltConf	Trace
56	SQ	139	Total 1109	C 704	N 210	0 192	${ m S} { m 3}$	0	0

• Molecule 57 is a protein called 40S ribosomal protein S17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
57	SR	131	Total 1064	C 668	N 198	0 194	$\frac{S}{4}$	0	0

• Molecule 58 is a protein called 40S ribosomal protein S18.

Mol	Chain	Residues		At	oms			AltConf	Trace
58	SS	140	Total 1157	C 728	N 231	0 197	S 1	0	0

• Molecule 59 is a protein called 40S ribosomal protein S19.

Mol	Chain	Residues		At	oms			AltConf	Trace
59	ST	140	Total 1090	C 681	N 212	0 195	${S \over 2}$	0	0

• Molecule 60 is a protein called 40S ribosomal protein S20.

Mol	Chain	Residues		At	oms	AltConf	Trace		
60	SU	95	Total 753	C 471	N 142	0 136	$\begin{array}{c} \mathrm{S} \\ 4 \end{array}$	0	0

• Molecule 61 is a protein called 40S ribosomal protein S21.

Mol	Chain	Residues		At	oms			AltConf	Trace
61	SV	80	Total 610	C 373	N 114	0 118	${ m S}{ m 5}$	0	0

• Molecule 62 is a protein called 40S ribosomal protein S23.

Mol	Chain	Residues		At	oms			AltConf	Trace
62	SX	139	Total 1080	C 682	N 214	0 181	${ m S} { m 3}$	0	0

• Molecule 63 is a protein called 40S ribosomal protein S26.

Mol	Chain	Residues		At	oms			AltConf	Trace
63	Sa	99	Total 800	C 497	N 168	0 130	${ m S}{ m 5}$	1	0

• Molecule 64 is a protein called 40S ribosomal protein S28.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
64	Sc	54	Total 416	C 257	N 80	0 77	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 65 is a protein called 40S ribosomal protein S29.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
65	Sd	54	Total 455	C 284	N 93	O 73	${ m S}{ m 5}$	0	0

• Molecule 66 is a protein called Receptor of activated protein C kinase 1.

Mol	Chain	Residues		At	oms			AltConf	Trace
66	Sg	276	Total 2148	C 1357	N 378	O 401	S 12	0	0

• Molecule 67 is a protein called 40S ribosomal protein S2.

Mol	Chain	Residues		At	AltConf	Trace			
67	SC	215	Total 1673	C 1085	N 288	O 291	S 9	1	0

• Molecule 68 is a protein called 40S ribosomal protein S6.

Mol	Chain	Residues		At		AltConf	Trace		
68	SG	204	Total 1645	C 1029	N 330	O 280	S 6	0	0

• Molecule 69 is a protein called 40S ribosomal protein S9.

Mol	Chain	Residues		At	oms	AltConf	Trace		
69	SJ	138	Total 1162	C 743	N 230	0 187	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 70 is a protein called 40S ribosomal protein S13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
70	SN	150	Total 1208	С 773	N 229	O 205	S 1	0	0

• Molecule 71 is a protein called 40S ribosomal protein S14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
71	SO	134	Total 1002	C 612	N 197	0 187	S 6	0	0

• Molecule 72 is a protein called 40S ribosomal protein S15a.

Mol	Chain	Residues		At	oms	AltConf	Trace		
72	SW	129	Total 1034	C 659	N 193	0 176	S 6	0	0

• Molecule 73 is a protein called 40S ribosomal protein S24.

Mol	Chain	Residues		At	oms			AltConf	Trace
73	SY	110	Total 891	C 565	N 173	0 149	${S \atop 4}$	0	0

• Molecule 74 is a protein called 40S ribosomal protein S25.

Mol	Chain	Residues		At	oms			AltConf	Trace
74	SZ	72	Total 574	C 368	N 104	0 101	S 1	0	0

• Molecule 75 is a protein called 40S ribosomal protein S27.

Mol	Chain	Residues		At	oms	AltConf	Trace		
75	Sb	83	Total 651	C 408	N 121	0 115	${ m S} 7$	0	0

• Molecule 76 is a protein called 40S ribosomal protein S30.

Mol	Chain	Residues		Ato	\mathbf{ms}		AltConf	Trace	
76	Se	48	Total 384	C 234	N 86	O 63	S 1	0	0

• Molecule 77 is a RNA chain called tRNA.

Mol	Chain	Residues		A	toms		AltConf	Trace	
77	$\mathbf{S6}$	75	Total 1604	C 717	N 298	O 515	Р 74	0	0

• Molecule 78 is a protein called Ribosomal protein L39.

Mol	Chain	Residues	Atoms					AltConf	Trace
78	Ll	50	Total	C	N 09	O 64	S 1	0	0
			444	281	98	04	T		

• Molecule 79 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
79	LN	1	Total Mg 1 1	0
79	LP	1	Total Mg 1 1	0
79	LT	1	Total Mg 1 1	0
79	LV	1	Total Mg 1 1	0
79	Le	1	Total Mg 1 1	0
79	Lf	1	Total Mg 1 1	0
79	L5	173	Total Mg 173 173	0
79	m L7	3	Total Mg 3 3	0
79	L8	5	Total Mg 5 5	0
79	S2	82	Total Mg 82 82	0
79	SF	1	Total Mg 1 1	0
79	Sd	1	$\begin{array}{ccc} \overline{\text{Total}} & \overline{\text{Mg}} \\ 1 & 1 \end{array}$	0

• Molecule 80 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
80	Lg	1	Total Zn 1 1	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
80	Lj	1	Total Zn 1 1	0
80	Lm	1	Total Zn 1 1	0
80	Lo	1	Total Zn 1 1	0
80	Lp	1	Total Zn 1 1	0
80	Sa	1	Total Zn 1 1	0
80	Sd	1	Total Zn 1 1	0

• Molecule 81 is water.

Mol	Chain	Residues	Atoms	AltConf
81	LB	1	Total O 1 1	0
81	LH	1	Total O 1 1	0
81	LI	2	Total O 2 2	0
81	La	2	Total O 2 2	0
81	L5	9	Total O 9 9	0
81	S2	3	Total O 3 3	0
81	SV	1	Total O 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 60S ribosomal protein L8

 \bullet Molecule 5: 60S ribosomal protein L4

Chain LC:	80%	6%	14%
MET ALA B56 B56 W67 W67 W67 M95 M95 M100 R110 X122 X131	1144 1144 1156 1156 1156 1157 1157 1157 1157 1156 1157 1157	K259 2290 8295 K352	E355 A355 A355 A355 A355 A360 A360 A362 A362 A362 A362
K3664 SER CUU CAU VAL VAL VAL PAO CUV CLU CUV CUV ALA ALA ALA ALA ALA ALA ALA ALA CUV CUV CUV CUV CUV CUV CUV CUV CUV CUV	ASP ALA ALA ALA LYS CJN CJN CJN CJN CJN CJN CJN CJN CJN CJN	GLU LYS LYS LYS PRO PRO GLU GLU	LYS LYS PRO ALA ALA
• Molecule 6: 60S ribosomal prote	in L5		
Chain LD:	94%		5%•
MET C2 C2 C3 V7 V3 V3 V3 V3 V3 V3 V3 V3 V3 V3	4222 N235 R259 R259 R259 R250 M250 R291 R291 R291 R293 R293 R293 R293 R293 R293 R293 R293	SER	
• Molecule 7: 60S ribosomal prote	in L6		
Chain LE: 7	3%	5% 22	%
MET ALIA ALIA GLUY CLUY CLYS ALIA ARP ARP ARP ARP ALIA ALIA ALIA ALIA ALIA	ARG ARG PRO ARG ARG ALA ALA ALA LYS LYS LYS HIS PRO LYS CLY CLY LYS LYS LYS TYS LYS ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	PRO LYS LYS ALA LYS P49 P49	K79 TYR SER ALA ALA LYS LYS LYS
VAL LIYS L	V202 D2 13 D2 13 V229 V229 L239 N231 P233 P233 P233 P233 P235 P233 P235 P233 P235 P235	E239 1240 F241 D242 T243 E244	K245 € E246 € B262 € L263 € S281 5281
• Molecule 8: 60S ribosomal prote	in L7		
Chain LF:	77%	• 21	%
MET GLU ALLA VAL PRO PRO CLU TVAL LYS LYS LYS VAL PRO PRO CLY VAL LYS LYS LYS LYS LYS CLY SAL ALA ALA ALA ALA ALA ALA ALA ALA ALA	PR0 LVS LLVS LLVS LLVS LLVS LLVS LLVS PR0 PR0 PR0 PR0 PR0 LLVS LLVS LLVS LLVS LLVS	ARG ARG ASN PHE ALA GLU LEU LYS	VAL LYS LRG LEU LEU ARG ARG ARG S124 S124
E174 L201 D254 N270 N270			
• Molecule 9: 60S ribosomal prote	in L7a		
Chain LG:	80%	6%	14%
MET PRO LYS CLYS CLYS CLYS CLYS CLYS CLYS CLYS	LVS VZT 152 R53 R53 R53 R53 F151 K111 L114 L114 R117	4118 €119 K120 LYS ALA ALA GLY	A GLY A GLY V A L PRU T PRU T

 \bullet Molecule 10: 60S ribosomal protein L9

Chain LH:	92% 7% •	
M1 E14 V16 K21 K21 G22 R23	K61 K61 R54 R54 L111 L111 L112 S135 S135 S135 R173 R173 A190 A190 A190 A190	
• Molecule 11	1: 60S ribosomal protein L10	
Chain LI:	90% • 6%	
MET G2 R21 V43 E66 E66	ALA LEU SER CYS ALA ALA ALA ARG CLY ALA ARG CLY ALA ARG CLY ALA ARG CLY ALA ARG CLY ALA ARG CLY ALA ASP ASP ASP ASP ASP ASP ASP ASP ASP AS	
• Molecule 12	2: 60S ribosomal protein L11	
Chain LJ:	89% 7% ·	
MET ALA ALA GLN GLN CLN GC KB	L15 E41 E41 C72 C72 C72 S122 S122 S122 C150 C150 C150 C150 C150 C150 C150 C150	
• Molecule 13	3: 60S ribosomal protein L13	
Chain LL:	90% 8% ·	
MET A2 K16 R45 V64 R65 R65	Hi57 194 194 194 194 103 103 103 1140	
• Molecule 14	4: 60S ribosomal protein L14	
Chain LM:	60% · 37%	
MET V25 D32 E78	194 194 1135 1135 1136 1136 1136 1136 1136 1136	PRO ALA GLN
LYS ALA ALA GLY GLN CLYS ALA ALA PRO PRO	ALA LYS GLY GLY GLY GLY GLY GLY GLN CLY CLYS ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	
• Molecule 18	5: 60S ribosomal protein L15	
Chain LN:	97% .	

• Molecule 16:	60S ribosomal protein L13a	
Chain LO:	94% 5%	b •
MET ALA E3 C4 R31 I43 I43 R94	L105 L141 L141 L141 L141 L145 L141 L145 L141 L145 L145	
• Molecule 17:	60S ribosomal protein L17	
Chain LP:	78% 6% 16%	-
MET V2 N10 S14 C15 S17 S17 S20	V24 V24 V24 V24 V24 V25 U33 V24 V24 V25 U33 V25 V25 V25 V25 V25 V25 V25 V25 V25 V25	
• Molecule 18:	60S ribosomal protein L18	
Chain LQ:	97%	•••
MET 62 R14 L27 S41 R68 R68		
• Molecule 19:	60S ribosomal protein L19	
Chain LR:	84% 5% 11%	-
MET S13 S13 N36 E91	L106 H152 H152 H152 H152 H157 H165 H165 H165 H176 H173 H	
• Molecule 20:	60S ribosomal protein L18a	
Chain LS:	93% 6%	·
MET K2 C16 T19 N36 V48	L82 T90 8148 8148 1169 1169	
• Molecule 21:	60S ribosomal protein L21	
Chain LT:	95% 5%	%
M1 L27 K36 M45 V76 S99	S104 K117 E118 A119 A124 A160	
• Molecule 22:	60S ribosomal protein L22	
Chain LU:	73% 5% 22%	-

MET MET ALA ALA PRO CITY CITYS	
• Molecule 23: 60S ribosomal protein L23	
Chain LV: 89% .	7%
MET SER LYS ARG ARG CLY SER SER SER SER F1 E7 L72 A140	
• Molecule 24: 60S ribosomal protein L24	
Chain LW: 39% 61%	_
M1 GLN GLN GLN GLN GLN GLN GLN GLN	LYS GLU ALA LYS LYS ALA LYS LYS
ALA ALA SER LYS SER THR ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	
\bullet Molecule 25: 60S ribosomal protein L23a	
Chain LX: 72% · 24%	_
MET ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	
• Molecule 26: 60S ribosomal protein L26	
Chain LY: 84% 7%	9%
M 812 812 812 812 812 812 811 811	
• Molecule 27: 60S ribosomal protein L27	
Chain LZ: 95%	•••
MET 833	
\bullet Molecule 28: 60S ribosomal protein L27a	
Chain La: 94%	5%•
MET 82 83 84 84 84 84 84 84 84 84 84 84	
• Molecule 29: 60S ribosomal protein L29	

Chain Lb:	57%	5%	38%		
MET A2 K15 K18 K33 K33 K55 K55	Ve5 S86 A67 A67 A67 A69 CLU A1A A1A LLA A1A A1A A1A A1A A1A A1A A1A	MET PRO K87 R107	R115 L116 C117 GLN R10 L17 PR0 L17S PR0 L17S VAL	GLN THR LYS ALA GLY ALA LYS	ALA PRO ALA LYS ALA
GLN ALA SER ALA PRO ALA GLN CLN CLN CLN CLY CLY CLY ALA	GLN ALA PRO CLYS CLY ALA ALA PRO LYS ALA ALA PRO PRO PRO				
• Molecule 30: 6	0S ribosomal protein L30				
Chain Lc:	78%		·	18%	
MET VAL ALA ALA ALA LYS LYS LYS LYS SER LYS SER LEU GLU	S13 M22 M22 V28 V28 M27 M27 M27 M27 GLU GLU GLU CLU LYS				
• Molecule 31: 6	i0S ribosomal protein L31				
Chain Ld:	84%		•	14%	
MET PRO PRO LYS LYS CLY GLY GLY LYS LYS LYS	ARG SER SER ALA 117 E96 E96 E96 E96 E96 E123 E123 ASN				
• Molecule 32: 6	i0S ribosomal protein L32				
Chain Le:	93%			• 5%	
MET A2 T17 L108 L129 ARG SER	ALD ALD ALD ALD ALD				
• Molecule 33: 6	i0S ribosomal protein L35a				
Chain Lf:	94%			5%•	
MET S2 C7 C7 C7 125 D37 B86 A86 A86 K87	11 11 10 10				
• Molecule 34: 6	0S ribosomal protein L34				
Chain Lg:	90%			• 6%	
MET V2 817 120 720 760 K69 K69 K13	A109 A111 GLN GLN GLN GLN GLN LYS LYS LYS				
• Molecule 35: 6	i0S ribosomal protein L35				
Chain Lh:	97%			••	

	•				•
MET	A2	K14	T37	S45	A123

 \bullet Molecule 36: 60S ribosomal protein L36

Chain Li:	90%	7% •
MET A2 L3 S22 S22 B46 B46	K62 D66 S91 A101 A102 K103 LVS LVS ASP	
• Molecule 3	7: 60S ribosomal protein L37	
Chain Lj:	82%	6% 11%
MET T12 K14 S32 S32	RS5 RS5 RS5 RS5 RS5 RS7 ALLA ALLA ALLA ALLA SER SER SER SER SER	
• Molecule 3	8: 60S ribosomal protein L38	
Chain Lk:	96%	
MET P2 R16 K29 K29	◆ •	
• Molecule 3	9: Ubiquitin-60S ribosomal protein L40	
Chain Lm:	40% 60%	
MET GLN TLE PHE VAL LYS LYS THR THR	LYS THR THR THR THR THR CUU CUU CUU CUU CUU CUU CUU CUU CUU CU	LYS GLN GLN GLU GLU GLV GLV THR THR LEU SER ASP ASN
ILE LYS GLN SER THR LEU LEU LEU VAX	LEU ARG ARG GLY GLY V127 LYS LYS	
• Molecule 4	0: 60S ribosomal protein L41	
Chain Ln:	96%	·
M1 R9 K25		
• Molecule 4	1: 60S ribosomal protein L36a	
Chain Lo:	92%	6% •
MET V2 V2 C7 T26 C77 C77 C77 C77 C77		

L D W I D E

• Molecule 63: 40S ribosomal protein S26

• Molecule 72: 40S ribe	osomal protein S15a			
Chain SW:	92%		7% •	
MET V2 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3	1 1 1 2 0			
• Molecule 73: 40S ribe	osomal protein S24			
Chain SY:	% 73%	10%	17%	
MET ASN ASN ASP ASP THR THR THR ARG ARG ASN ASN ASN ASN LEV	L18 126 726 128 128 833 833 833 843 841	E42 L44 A45 A45 M47 Y48 Y48 Y48 Y48 Y48 Y48 Y48 Y48 Y48 Y48	155 F56 F58 F62 H63 K68 K68	T70 G71 F72 Y76
S78 12/9 12/9 180 1055 183 183 183 183 183 183 183 183 183 183	102 102 102 102 102 102 102 102 112 112	A123		
• Molecule 74: 40S ribe	osomal protein S25			
Chain SZ:	53%	5% 42%		
MET PRO PRO LYS LYS ASP LYS LYS SER ALA CYS SER ALA ALA ALA ALA	LYS ASP ASP ASP ASP ASP ASN ASN CYS GLY GLY GLY CYS LYS LYS	TLPS SERP CLYS CLYS CLYS CLYS CLYS ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	K52 A53 A53 A55 K57 K57 C59 K60	N64
Y65 K66 L67 L67 E75 R76 R76 R76 R76 R78 R78 R78 C191 C191 C191 C191 C192 C192 C192 C192	L99 L99 S101 T113 CLY CLY CLY ALA ALA ALA ALA ALA ALA CLY GLY GLY	ASP		
• Molecule 75: 40S ribe	osomal protein $S27$			
Chain Sb:	89%		10% •	
MET P2 L3 A4 A4 A4 A26 D34 C3 C3 C3 C3 C3 C3 C40 C40	Y41 K42 K42 C56 C56 C56 C59 C59 C59 C59 C64 C64	1/4 F79 B33		
• Molecule 76: 40S ribe	osomal protein S30			
Chain Se: 34%	•	64%		
MET GLN CELN PHE VAL ARG ALA GLU CEU CEU CEU CEU CEU CEU CEU CEU CEU CE	GLN GLU THR VAL ALA ALA CLN TLE ILY ASP HIS ASP ALA SER LEU CLU CLU	ALA ALA PRO GLU GLN VAL VAL LEU ALA GLY FRO CLU GLU GLU	ASP GLU ALA ALA LEU CLEU GLY CYS GLY VAL CLU	
ALA LEU THR THR THR THR THR CLU CLU CLU CLU CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	GLY ST9 LL80 A81 A82 A94 K98 K100 K100 K100	H113 H114 H117 H117 H118 V119 V119 V119 PR0 THR PHE CLY	11 32 51 33	
• Molecule 77: tRNA				
Chain S6:	55%	44%		
	W O PRO	R L D W I D E FEIN DATA BANK		

MET

 \bullet Molecule 78: Ribosomal protein L39

Chain Ll: 92% 6% •

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	280287	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	NONE	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	60	Depositor
Minimum defocus (nm)	1000	Depositor
Maximum defocus (nm)	1500	Depositor
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor
Maximum map value	0.326	Depositor
Minimum map value	-0.162	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.012	Depositor
Recommended contour level	0.026	Depositor
Map size (Å)	416.0, 416.0, 416.0	wwPDB
Map dimensions	400, 400, 400	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.04, 1.04, 1.04	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	ond lengths	E	Bond angles
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
1	LA	0.42	0/1936	0.54	0/2596
2	SA	0.29	0/1673	0.48	0/2275
3	LB	0.39	0/3269	0.54	2/4375~(0.0%)
4	SB	0.29	0/1756	0.48	0/2350
5	LC	0.37	0/2945	0.52	1/3953~(0.0%)
6	LD	0.38	0/2431	0.48	0/3256
7	LE	0.34	0/1910	0.50	0/2562
8	LF	0.40	0/1805	0.48	0/2408
9	LG	0.34	0/1880	0.46	0/2531
10	LH	0.35	0/1537	0.51	0/2065
11	LI	0.37	0/1671	0.46	0/2230
12	LJ	0.33	0/1394	0.50	0/1864
13	LL	0.36	0/1698	0.48	0/2274
14	LM	0.37	0/1146	0.46	0/1531
15	LN	0.42	0/1746	0.50	0/2338
16	LO	0.39	0/1670	0.48	0/2232
17	LP	0.38	0/1277	0.49	0/1712
18	LQ	0.40	0/1539	0.51	0/2053
19	LR	0.32	0/1473	0.43	0/1947
20	LS	0.41	0/1491	0.50	1/2000~(0.1%)
21	LT	0.39	0/1335	0.47	0/1781
22	LU	0.33	0/831	0.48	0/1115
23	LV	0.38	0/987	0.50	0/1324
24	LW	0.39	0/532	0.46	0/708
25	LX	0.36	0/984	0.45	0/1323
26	LY	0.36	0/1119	0.46	0/1488
27	LZ	0.38	0/1130	0.47	0/1507
28	La	0.41	0/1193	0.48	0/1593
29	Lb	0.32	0/821	0.43	0/1082
30	Lc	0.38	0/742	0.51	0/996
31	Ld	0.37	0/911	0.49	0/1227
32	Le	0.40	0/1071	0.48	$0/1\overline{429}$

Mal	Chain	Chain Bond lengths		I	Bond angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
33	Lf	0.41	0/895	0.54	0/1198
34	Lg	0.37	0/883	0.51	0/1178
35	Lh	0.33	0/1023	0.44	0/1350
36	Li	0.32	0/843	0.45	0/1115
37	Lj	0.40	0/720	0.50	0/952
38	Lk	0.34	0/574	0.44	0/760
39	Lm	0.35	0/425	0.45	0/564
40	Ln	0.30	0/240	0.44	0/305
41	Lo	0.37	0/855	0.49	0/1128
42	Lp	0.38	0/718	0.49	0/953
43	Lr	0.37	0/1009	0.48	0/1353
44	L5	0.71	1/84865~(0.0%)	0.87	62/132368~(0.0%)
45	L7	0.70	0/2858	0.82	0/4455
46	L8	0.69	0/3701	0.82	2/5766~(0.0%)
47	S2	0.43	0/39386	0.83	36/61368~(0.1%)
48	SD	0.28	0/1754	0.52	0/2362
49	SE	0.27	0/2092	0.50	0/2816
50	SF	0.27	0/1436	0.45	0/1930
51	SH	0.27	0/1470	0.48	0/1968
52	SI	0.28	0/1526	0.48	0/2038
53	SK	0.28	0/780	0.48	0/1046
54	SL	0.31	0/1130	0.49	0/1514
55	SP	0.29	0/1000	0.48	0/1335
56	SQ	0.30	0/1126	0.51	0/1506
57	SR	0.28	0/1078	0.48	0/1447
58	\mathbf{SS}	0.28	0/1175	0.45	0/1575
59	ST	0.27	0/1108	0.45	0/1486
60	SU	0.27	0/762	0.50	0/1023
61	SV	0.28	0/616	0.49	0/825
62	SX	0.30	0/1097	0.50	0/1464
63	Sa	0.32	0/816	0.47	0/1093
64	Sc	0.28	0/418	0.57	0/562
65	Sd	0.29	0/466	0.42	0/618
66	Sg	0.26	0/2199	0.55	0/2989
67	SC	0.30	0/1712	0.48	0/2314
68	SG	0.27	0/1666	0.50	0/2222
69	SJ	0.26	0/1178	0.51	0/1574
70	SN	0.29	0/1232	0.43	0/1656
71	SO	0.29	0/1015	0.51	0/1361
72	SW	0.30	0/1051	0.49	0/1406
73	SY	0.27	0/907	0.46	0/1204
74	SZ	0.29	0/580	0.49	0/780
75	Sb	0.27	0/665	0.46	0/891

Mal	Chain	Bo	ond lengths	Bond angles		
1VIOI		RMSZ	# Z > 5	RMSZ	# Z > 5	
76	Se	0.26	0/386	0.50	0/504	
77	S6	0.38	0/1795	0.96	4/2798~(0.1%)	
78	Ll	0.65	0/454	0.60	0/599	
All	All	0.54	1/221588~(0.0%)	0.74	108/325844~(0.0%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	LA	0	1
3	LB	0	2
10	LH	0	1
12	LJ	0	1
14	LM	0	1
50	SF	0	1
59	ST	0	1
61	SV	0	1
68	SG	0	1
All	All	0	10

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
44	L5	1338	А	N9-C4	-5.93	1.34	1.37

The worst 5 of 108 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
44	L5	486	С	C2-N1-C1'	9.59	129.35	118.80
47	S2	1454	С	N1-C2-O2	8.86	124.22	118.90
47	S2	1419	С	N1-C2-O2	8.82	124.19	118.90
47	S2	1454	С	C2-N1-C1'	8.63	128.30	118.80
44	L5	2464	С	N1-C2-O2	8.56	124.04	118.90

There are no chirality outliers.

5 of 10 planarity outliers are listed below:

Mol	Chain	Res	Type	Group			
1	LA	13	GLY	Peptide			
Continued on next nage							

Continued from previous page...

Mol	Chain	Res	Type	Group
3	LB	16	PHE	Peptide
3	LB	258	HIS	Peptide
10	LH	173	ARG	Peptide
12	LJ	173	ILE	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	LA	246/257~(96%)	220 (89%)	26 (11%)	0	100	100
2	SA	205/295~(70%)	183~(89%)	22~(11%)	0	100	100
3	LB	395/403~(98%)	374~(95%)	21~(5%)	0	100	100
4	SB	211/264~(80%)	194 (92%)	17 (8%)	0	100	100
5	LC	360/419~(86%)	323~(90%)	36 (10%)	1 (0%)	41	70
6	LD	291/297~(98%)	271~(93%)	20~(7%)	0	100	100
7	LE	227/296~(77%)	201 (88%)	26 (12%)	0	100	100
8	$_{ m LF}$	212/270~(78%)	200 (94%)	12~(6%)	0	100	100
9	LG	225/266~(85%)	207~(92%)	18 (8%)	0	100	100
10	LH	188/192~(98%)	172 (92%)	16~(8%)	0	100	100
11	LI	197/214~(92%)	193~(98%)	4(2%)	0	100	100
12	LJ	169/178~(95%)	153~(90%)	16 (10%)	0	100	100
13	LL	204/211~(97%)	187 (92%)	17 (8%)	0	100	100
14	LM	$1\overline{34/217}~(62\%)$	125~(93%)	9~(7%)	0	100	100
15	LN	201/204~(98%)	190 (94%)	10(5%)	1 (0%)	29	59

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
16	LO	199/203~(98%)	192 (96%)	7 (4%)	0	100	100
17	LP	152/184~(83%)	142 (93%)	10 (7%)	0	100	100
18	LQ	185/188~(98%)	174 (94%)	11 (6%)	0	100	100
19	LR	172/196~(88%)	166 (96%)	6 (4%)	0	100	100
20	LS	173/176~(98%)	164 (95%)	9(5%)	0	100	100
21	LT	158/160~(99%)	153 (97%)	5 (3%)	0	100	100
22	LU	98/128~(77%)	86 (88%)	12 (12%)	0	100	100
23	LV	128/140 (91%)	118 (92%)	10 (8%)	0	100	100
24	LW	60/157~(38%)	56 (93%)	4 (7%)	0	100	100
25	LX	116/156~(74%)	110 (95%)	6 (5%)	0	100	100
26	LY	130/145~(90%)	124 (95%)	6 (5%)	0	100	100
27	LZ	133/136~(98%)	123 (92%)	10 (8%)	0	100	100
28	La	145/148~(98%)	132 (91%)	13 (9%)	0	100	100
29	Lb	95/160~(59%)	88 (93%)	7 (7%)	0	100	100
30	Lc	92/115~(80%)	85 (92%)	7 (8%)	0	100	100
31	Ld	106/125~(85%)	98 (92%)	8 (8%)	0	100	100
32	Le	126/135~(93%)	115 (91%)	11 (9%)	0	100	100
33	Lf	107/110~(97%)	102 (95%)	5 (5%)	0	100	100
34	Lg	108/117~(92%)	107 (99%)	1 (1%)	0	100	100
35	Lh	120/123~(98%)	118 (98%)	2(2%)	0	100	100
36	Li	100/105~(95%)	93 (93%)	7 (7%)	0	100	100
37	Lj	84/97~(87%)	78 (93%)	5 (6%)	1 (1%)	13	37
38	Lk	67/70~(96%)	64 (96%)	3 (4%)	0	100	100
39	Lm	49/128~(38%)	49 (100%)	0	0	100	100
40	Ln	23/25~(92%)	23 (100%)	0	0	100	100
41	Lo	101/106~(95%)	94 (93%)	7 (7%)	0	100	100
42	Lp	89/92~(97%)	85 (96%)	4 (4%)	0	100	100
43	Lr	122/137~(89%)	116 (95%)	6 (5%)	0	100	100
48	SD	$\overline{220/243}\ (90\%)$	192 (87%)	28 (13%)	0	100	100
49	SE	256/263~(97%)	222 (87%)	33 (13%)	1 (0%)	34	64
50	SF	175/204 (86%)	158 (90%)	17 (10%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
51	SH	176/194~(91%)	148 (84%)	28 (16%)	0	100	100
52	SI	179/208~(86%)	167~(93%)	12~(7%)	0	100	100
53	SK	86/165~(52%)	75 (87%)	11 (13%)	0	100	100
54	SL	131/158~(83%)	118 (90%)	13 (10%)	0	100	100
55	SP	116/145~(80%)	106 (91%)	10 (9%)	0	100	100
56	SQ	137/146~(94%)	117 (85%)	20 (15%)	0	100	100
57	SR	129/135~(96%)	117 (91%)	12 (9%)	0	100	100
58	SS	138/152~(91%)	120 (87%)	18 (13%)	0	100	100
59	ST	138/145~(95%)	126 (91%)	12 (9%)	0	100	100
60	SU	93/119~(78%)	84 (90%)	9 (10%)	0	100	100
61	SV	78/83~(94%)	71 (91%)	6 (8%)	1 (1%)	12	34
62	SX	137/143~(96%)	125~(91%)	12 (9%)	0	100	100
63	Sa	98/115~(85%)	90 (92%)	8 (8%)	0	100	100
64	Sc	52/69~(75%)	41 (79%)	11 (21%)	0	100	100
65	Sd	52/56~(93%)	47 (90%)	5(10%)	0	100	100
66	Sg	270/317~(85%)	213 (79%)	57 (21%)	0	100	100
67	\mathbf{SC}	214/293~(73%)	199~(93%)	14~(6%)	1 (0%)	29	59
68	SG	200/249~(80%)	180 (90%)	20 (10%)	0	100	100
69	SJ	130/194~(67%)	115 (88%)	15~(12%)	0	100	100
70	SN	148/151~(98%)	142 (96%)	6 (4%)	0	100	100
71	SO	132/151~(87%)	116 (88%)	16~(12%)	0	100	100
72	SW	127/130~(98%)	118 (93%)	9~(7%)	0	100	100
73	SY	108/133~(81%)	93~(86%)	15 (14%)	0	100	100
74	SZ	70/125~(56%)	59~(84%)	11 (16%)	0	100	100
75	Sb	81/84~(96%)	74 (91%)	7 (9%)	0	100	100
76	Se	44/133~(33%)	38~(86%)	6 (14%)	0	100	100
78	Ll	48/51~(94%)	46 (96%)	2(4%)	0	100	100
All	All	$10\overline{666}/12499~(85\%)$	9765 (92%)	895 (8%)	6 (0%)	54	80

5 of 6 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
61	SV	79	VAL
	<i>a</i>	1	

Continued from previous page...

Mol	Chain	Res	Type
37	Lj	21	ARG
49	SE	248	ILE
67	SC	78	LEU
15	LN	84	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	LA	190/199~(96%)	181 (95%)	9~(5%)	26	57
2	SA	173/242~(72%)	157 (91%)	16 (9%)	9	26
3	LB	344/348~(99%)	332~(96%)	12 (4%)	36	68
4	SB	194/229~(85%)	185 (95%)	9(5%)	27	58
5	LC	304/348~(87%)	279~(92%)	25~(8%)	11	31
6	LD	245/249~(98%)	231 (94%)	14 (6%)	20	49
7	LE	208/256~(81%)	193 (93%)	15 (7%)	14	37
8	LF	185/234~(79%)	180 (97%)	5(3%)	44	77
9	LG	197/223~(88%)	180 (91%)	17 (9%)	10	29
10	LH	169/171~(99%)	156 (92%)	13 (8%)	13	34
11	LI	171/181~(94%)	162 (95%)	9(5%)	22	52
12	LJ	144/149~(97%)	132 (92%)	12 (8%)	11	31
13	LL	173/178~(97%)	156 (90%)	17 (10%)	8	23
14	LM	116/157~(74%)	112 (97%)	4 (3%)	37	69
15	LN	171/172~(99%)	166~(97%)	5(3%)	42	74
16	LO	172/173~(99%)	162 (94%)	10 (6%)	20	48
17	LP	135/163~(83%)	124 (92%)	11 (8%)	11	32
18	LQ	$16\overline{4/165}\ (99\%)$	$1\overline{60}\ (98\%)$	4 (2%)	49	80
19	LR	$15\overline{4}/175~(88\%)$	144 (94%)	10 (6%)	17	43
20	LS	$15\overline{5}/156~(99\%)$	145 (94%)	10 (6%)	17	43

α \cdot \cdot \cdot	C		
Continued	trom	nremous	naae
Contentaca	<i>J</i> 10110	preciouo	page

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
21	LT	140/140~(100%)	132~(94%)	8~(6%)	20	49
22	LU	90/114~(79%)	83~(92%)	7~(8%)	12	33
23	LV	100/107~(94%)	95~(95%)	5 (5%)	24	55
24	LW	54/126~(43%)	54 (100%)	0	100	100
25	LX	106/133~(80%)	100 (94%)	6 (6%)	20	49
26	LY	123/135~(91%)	113 (92%)	10 (8%)	11	32
27	LZ	117/118~(99%)	111 (95%)	6 (5%)	24	54
28	La	120/121~(99%)	112 (93%)	8 (7%)	16	41
29	Lb	83/124~(67%)	75~(90%)	8 (10%)	8	24
30	Lc	79/97~(81%)	75~(95%)	4 (5%)	24	54
31	Ld	99/110 (90%)	96~(97%)	3 (3%)	41	73
32	Le	114/121~(94%)	111 (97%)	3 (3%)	46	78
33	Lf	88/89~(99%)	82 (93%)	6 (7%)	16	40
34	Lg	94/100~(94%)	89~(95%)	5 (5%)	22	52
35	Lh	109/110~(99%)	106~(97%)	3 (3%)	43	76
36	Li	86/89~(97%)	79~(92%)	7 (8%)	11	32
37	Lj	73/80~(91%)	68~(93%)	5 (7%)	16	40
38	Lk	64/65~(98%)	62~(97%)	2(3%)	40	72
39	Lm	47/116 (40%)	47 (100%)	0	100	100
40	Ln	24/24~(100%)	23~(96%)	1 (4%)	30	62
41	Lo	91/94~(97%)	85~(93%)	6 (7%)	16	42
42	Lp	74/75~(99%)	72 (97%)	2 (3%)	44	77
43	Lr	108/121~(89%)	104 (96%)	4 (4%)	34	66
48	SD	186/202~(92%)	170 (91%)	16 (9%)	10	29
49	SE	221/225~(98%)	196 (89%)	25 (11%)	6	17
50	SF	152/170~(89%)	136 (90%)	16 (10%)	7	20
51	SH	161/174~(92%)	143 (89%)	18 (11%)	6	18
52	SI	159/180~(88%)	140 (88%)	19 (12%)	5	15
53	SK	81/136 (60%)	73~(90%)	8 (10%)	8	22
54	SL	123/142~(87%)	109~(89%)	14 (11%)	5	17
55	SP	107/130~(82%)	103~(96%)	4 (4%)	34	66

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
56	SQ	115/121~(95%)	103 (90%)	12 (10%)	7 20
57	SR	119/121 (98%)	102 (86%)	17 (14%)	3 9
58	SS	122/132~(92%)	111 (91%)	11 (9%)	9 27
59	ST	110/115~(96%)	103 (94%)	7 (6%)	17 44
60	SU	88/107 (82%)	75 (85%)	13 (15%)	3 9
61	SV	64/67~(96%)	61 (95%)	3 (5%)	26 57
62	SX	111/115~(96%)	101 (91%)	10 (9%)	9 27
63	Sa	87/98~(89%)	77 (88%)	10 (12%)	5 17
64	Sc	48/62~(77%)	43 (90%)	5 (10%)	7 20
65	Sd	48/49~(98%)	45 (94%)	3 (6%)	18 44
66	Sg	237/275~(86%)	198 (84%)	39 (16%)	2 6
67	SC	182/224 (81%)	171 (94%)	11 (6%)	19 47
68	SG	178/218~(82%)	158 (89%)	20 (11%)	6 18
69	SJ	126/168~(75%)	110 (87%)	16 (13%)	4 13
70	SN	130/131~(99%)	120 (92%)	10 (8%)	13 34
71	SO	104/119~(87%)	95~(91%)	9 (9%)	10 28
72	SW	112/113~(99%)	103 (92%)	9 (8%)	12 32
73	SY	93/115 (81%)	80 (86%)	13 (14%)	3 10
74	SZ	64/103~(62%)	58 (91%)	6 (9%)	8 25
75	Sb	75/76~(99%)	67~(89%)	8 (11%)	6 19
76	Se	39/106~(37%)	36 (92%)	3 (8%)	13 34
78	Ll	47/48~(98%)	44 (94%)	3 (6%)	17 44
All	All	9336/10619 (88%)	8642 (93%)	694 (7%)	17 36

5 of 694 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
56	SQ	89	SER
66	Sg	187	ASN
57	SR	87	GLU
56	SQ	67	ASP
62	SX	19	ASP

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 156 such side chains are listed below:

Mol	Chain	Res	Type
55	SP	41	GLN
68	SG	197	GLN
56	SQ	77	HIS
62	SX	61	GLN
73	SY	85	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
44	L5	3521/4731~(74%)	853~(24%)	19~(0%)
45	L7	119/120~(99%)	18 (15%)	0
46	L8	155/158~(98%)	32~(20%)	0
47	S2	1638/1870~(87%)	425 (25%)	9~(0%)
77	S6	74/75~(98%)	32~(43%)	4(5%)
All	All	5507/6954~(79%)	1360~(24%)	32~(0%)

5 of 1360 RNA backbone outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
44	L5	4	G
44	L5	13	U
44	L5	17	А
44	L5	21	G
44	L5	25	А

5 of 32 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
77	S6	19	G
77	S6	53	G
44	L5	3271	G
44	L5	2540	С
77	S6	54	А

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 278 ligands modelled in this entry, 278 are monoatomic - leaving 0 for Mogul analysis. There are no bond length outliers. There are no bond angle outliers. There are no chirality outliers. There are no torsion outliers. There are no ring outliers. No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-30432. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

Orthogonal projections (i) 6.1

6.1.1Primary map

The images above show the map projected in three orthogonal directions.

6.2Central slices (i)

6.2.1Primary map

X Index: 200

Y Index: 200

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 219

Y Index: 159

Z Index: 181

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.026. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1382 nm^3 ; this corresponds to an approximate mass of 1248 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.355 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-30432 and PDB model 7CPU. Per-residue inclusion information can be found in section 3 on page 19.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.026 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.026).

9.4 Atom inclusion (i)

At the recommended contour level, 83% of all backbone atoms, 83% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.026) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.8337	0.5800
L5	0.9054	0.5950
L7	0.9805	0.6350
L8	0.9241	0.6160
LA	0.9411	0.6470
LB	0.9261	0.6370
LC	0.9170	0.6310
LD	0.9018	0.6180
LE	0.8351	0.5930
m LF	0.9463	0.6470
LG	0.8502	0.6060
LH	0.9082	0.6220
LI	0.9242	0.6350
LJ	0.8414	0.5920
LL	0.8976	0.6180
LM	0.9374	0.6330
LN	0.9692	0.6540
LO	0.9370	0.6420
LP	0.9243	0.6410
LQ	0.9414	0.6510
LR	0.8491	0.6110
LS	0.9500	0.6510
LT	0.9034	0.6240
LU	0.8010	0.5750
LV	0.9223	0.6380
LW	0.9220	0.6360
LX	0.9021	0.6350
LY	0.9061	0.6300
LZ	0.8816	0.6120
La	0.9575	0.6520
Lb	0.8683	0.6130
Lc	0.8895	0.6130
Ld	0.8775	0.6240
Le	0.9450	0.6480
Lf	0.9597	0.6560

0.0 <0.0

1.0

Chain	Atom inclusion	Q-score
Lg	0.9200	0.6350
Lh	0.8930	0.6290
Li	0.8684	0.6110
Lj	0.9554	0.6430
Lk	0.7914	0.6040
Ll	0.9314	0.6430
Lm	0.9286	0.6360
Ln	0.8165	0.6030
Lo	0.9009	0.6360
Lp	0.8940	0.6370
Lr	0.9361	0.6330
S2	0.7821	0.5320
S6	0.5954	0.4350
SA	0.6803	0.5450
SB	0.7616	0.5770
SC	0.7795	0.5800
SD	0.4545	0.4910
SE	0.5973	0.4910
SF	0.6647	0.5500
SG	0.4534	0.4760
SH	0.4944	0.4990
SI	0.6349	0.5060
SJ	0.5544	0.4460
SK	0.3162	0.4500
SL	0.7614	0.5690
SN	0.7534	0.5840
SO	0.7903	0.5810
SP	0.7024	0.5480
SQ	0.6524	0.5310
SR	0.5193	0.5050
SS	0.6935	0.5600
ST	0.6975	0.5500
SU	0.4128	0.4550
SV	0.6818	0.5480
SW	0.8426	0.6000
SX	0.7498	0.5810
SY	0.4429	0.4160
SZ	0.5722	0.5180
Sa	0.8150	0.5910
Sb	0.6541	0.5470
Sc	0.6015	0.5180
Sd	0.7517	0.5660

Chain	Atom inclusion	Q-score
Se	0.5176	0.4890
Sg	0.3745	0.4500

