

Full wwPDB X-ray Structure Validation Report (i)

Oct 31, 2023 – 12:23 PM JST

PDB ID	:	5D0F
Title	:	Crystal Structure of the Candida Glabrata Glycogen Debranching Enzyme
		(E564Q) in complex with maltopentaose
Authors	:	Zhai, L.; Xiang, S.
Deposited on	:	2015-08-03
Resolution	:	3.30 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\;DIFFRACTION$

The reported resolution of this entry is 3.30 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R_{free}	130704	1149 (3.34-3.26)
Clashscore	141614	1205 (3.34-3.26)
Ramachandran outliers	138981	1183 (3.34-3.26)
Sidechain outliers	138945	1182 (3.34-3.26)
RSRZ outliers	127900	1115 (3.34-3.26)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain
1	А	1528	3% 72% 25% •
1	В	1528	4%
2	С	4	100%
2	Е	4	100%
2	Н	4	100%
2	I	4	100%
			Continued on next page

Conti	nuea jron	<i>i</i> previous	page		
Mol	Chain	Length		Quality of chain	
	17	4			
2	K	4		100%	
9	D	-			
3	D	5		100%	
3	G	5		100%	
3	J	5		100%	
3	М	5	20%	60%	20%
4	F	3		100%	
4	L	3		67%	33%

 α tia d fa .

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
3	GLC	G	1	-	-	-	Х
3	GLC	М	5	-	-	-	Х

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 25070 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Uncharacterized protein.

Mol	Chain	Residues		A	toms			ZeroOcc	AltConf	Trace
1	А	1526	Total 12278	C 7830	N 2066	O 2330	S 52	0	0	0
1	В	1526	Total 12278	C 7830	N 2066	O 2330	${ m S}{52}$	0	0	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	564	GLN	GLU	engineered mutation	UNP Q6FSK0
В	564	GLN	GLU	engineered mutation	UNP Q6FSK0

• Molecule 2 is an oligosaccharide called alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
2	С	4	Total C O 45 24 21	0	0	0
2	Е	4	Total C O 44 24 20	0	0	0
2	Н	4	Total C O 44 24 20	0	0	0
2	Ι	4	Total C O 45 24 21	0	0	0
2	K	4	Total C O 44 24 20	0	0	0

• Molecule 3 is an oligosaccharide called alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
3	D	5	Total C O 56 30 26	0	0	0
3	G	5	Total C O 56 20	0	0	0
2	T	5	56 30 26 Total C O	0	0	0
0	J		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	0
3	М	5	$\begin{array}{cccc} 100a1 & C & O \\ 56 & 30 & 26 \end{array}$	0	0	0

• Molecule 4 is an oligosaccharide called alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose.

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	Trace
4	F	3	Total C 34 18	O 16	0	0	0
4	L	3	Total C 34 18	O 16	0	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Uncharacterized protein

• Molecule 2: alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose

Chain C:	100%	

GLC1 GLC2 GLC3 GLC4

• Molecule 2: alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose

Chain E:

100%

GLC1 GLC2 GLC3 GLC3 GLC4

• Molecule 2: alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose

100%

GLC1 GLC2 GLC3 GLC3 GLC4

• Molecule 2: alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose

Chain I:	100%	
800 600 600 600 600 600 600 600 600 600		

• Molecule 2: alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose

Chain K:

100%

GLC1 GLC2 GLC3 GLC4

 \bullet Molecule 3: alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose

100%

GLC1 GLC2 GLC3 GLC4 GLC5

 \bullet Molecule 3: alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose

Chain G:

100%

GLC1 GLC2 GLC3 GLC4 GLC5

• Molecule 3: alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose

Chain J: 100%

GLC1 GLC2 GLC3 GLC3 GLC4 GLC5

• Molecule 3: alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose

Chain M:	20%	60%	20%
er.c1 er.c2 er.c3 er.c4 er.c4 er.c5			
• Molecule 4: e	alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranos	se-(1-4)-alpha-D-glucopyranos
Chain F:		100%	
GL C1 GL C2 GL C3 GL C3			

• Molecule 4: alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranos e

Chain L:

67%

33%

GLC1 GLC2 GLC3

4 Data and refinement statistics (i)

Property	Value	Source
Space group	C 1 2 1	Depositor
Cell constants	158.07Å 202.01Å 135.24Å	Depositor
a, b, c, α , β , γ	90.00° 101.32° 90.00°	Depositor
Bosolution (Å)	49.05 - 3.30	Depositor
Resolution (A)	49.05 - 3.30	EDS
% Data completeness	95.8 (49.05-3.30)	Depositor
(in resolution range)	95.9(49.05 - 3.30)	EDS
R _{merge}	(Not available)	Depositor
R_{sym}	0.09	Depositor
$< I/\sigma(I) > 1$	$2.18 (at 3.33 \text{\AA})$	Xtriage
Refinement program	PHENIX 1.9_1692	Depositor
B B.	0.192 , 0.228	Depositor
n, n_{free}	0.197 , 0.230	DCC
R_{free} test set	3072 reflections $(5.13%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	85.3	Xtriage
Anisotropy	0.512	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.28 , 32.7	EDS
L-test for $twinning^2$	$ < L >=0.48, < L^2>=0.31$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.93	EDS
Total number of atoms	25070	wwPDB-VP
Average B, all atoms $(Å^2)$	93.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.02% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: GLC

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	nd lengths	Bond angles		
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.81	2/12589~(0.0%)	1.00	20/17071~(0.1%)	
1	В	0.81	0/12589	1.00	26/17071~(0.2%)	
All	All	0.81	2/25178~(0.0%)	1.00	$46/34142 \ (0.1\%)$	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А	0	3
1	В	0	4
All	All	0	7

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	А	1071	TYR	CB-CG	5.10	1.59	1.51
1	А	832	GLU	CD-OE2	5.09	1.31	1.25

All (46) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	В	1474	ARG	NE-CZ-NH1	8.80	124.70	120.30
1	В	1469	ARG	NE-CZ-NH1	8.47	124.54	120.30
1	В	61	ARG	NE-CZ-NH1	7.97	124.29	120.30
1	В	1014	ARG	NE-CZ-NH2	-7.81	116.40	120.30
1	А	1469	ARG	NE-CZ-NH1	7.79	124.19	120.30
1	А	1474	ARG	NE-CZ-NH1	7.31	123.96	120.30
1	А	1014	ARG	NE-CZ-NH2	-7.18	116.71	120.30

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	В	640	ASP	CB-CG-OD2	-6.93	112.06	118.30
1	А	533	ARG	NE-CZ-NH2	-6.92	116.84	120.30
1	В	533	ARG	NE-CZ-NH2	-6.91	116.85	120.30
1	В	79	ARG	NE-CZ-NH1	6.65 123.63		120.30
1	А	61	ARG	NE-CZ-NH1	6.47	123.53	120.30
1	В	1014	ARG	NE-CZ-NH1	6.43	123.52	120.30
1	А	1488	ALA	N-CA-CB	6.30	118.91	110.10
1	В	984	ARG	N-CA-CB	6.25	121.86	110.60
1	В	1469	ARG	NE-CZ-NH2	-6.25	117.17	120.30
1	А	1014	ARG	NE-CZ-NH1	6.24	123.42	120.30
1	В	553	ARG	NE-CZ-NH2	-6.09	117.26	120.30
1	А	954	ARG	NE-CZ-NH2	-5.98	117.31	120.30
1	В	1488	ALA	N-CA-CB	5.98	118.47	110.10
1	А	739	ARG	NE-CZ-NH2	-5.96	117.32	120.30
1	А	1127	ARG	NE-CZ-NH1	5.95	123.28	120.30
1	А	640	ASP	CB-CG-OD1	5.92	123.63	118.30
1	А	5	ARG	NE-CZ-NH2	-5.62	117.49	120.30
1	В	1115	LEU	CA-CB-CG	5.59	128.15	115.30
1	В	841	ASP	CB-CG-OD2	5.57	123.31	118.30
1	В	1123	ARG	NE-CZ-NH1	5.52	123.06	120.30
1	В	5	ARG	NE-CZ-NH2	-5.51	117.55	120.30
1	В	739	ARG	NE-CZ-NH2	-5.50	117.55	120.30
1	В	553	ARG	NE-CZ-NH1	5.46	123.03	120.30
1	В	989	ARG	CG-CD-NE	-5.46	100.33	111.80
1	А	1115	LEU	CA-CB-CG	5.46	127.85	115.30
1	А	533	ARG	NE-CZ-NH1	5.43	123.02	120.30
1	В	51	LEU	CA-CB-CG	-5.33	103.03	115.30
1	А	1127	ARG	NE-CZ-NH2	-5.33	117.64	120.30
1	А	1469	ARG	NE-CZ-NH2	-5.31	117.65	120.30
1	В	78	ASP	CB-CG-OD1	5.25	123.03	118.30
1	А	1127	ARG	CG-CD-NE	5.22	122.76	111.80
1	В	1489	GLY	N-CA-C	5.15	125.98	113.10
1	В	989	ARG	NE-CZ-NH2	-5.13	117.73	120.30
1	А	1489	GLY	N-CA-C	5.10	125.84	113.10
1	В	79	ARG	NE-CZ-NH2	-5.08	117.76	120.30
1	В	640	ASP	CB-CG-OD1	5.06	122.86	118.30
1	А	608	ARG	NE-CZ-NH1	5.06	122.83	120.30
1	А	309	TRP	CA-CB-CG	-5.04	104.13	113.70
1	В	7	LEU	CA-CB-CG	5.03	126.87	115.30

Continued from previous page...

There are no chirality outliers.

All (7) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	А	1492	GLU	Peptide
1	А	306	LEU	Peptide
1	А	442	THR	Peptide
1	В	1492	GLU	Peptide
1	В	241	GLN	Peptide
1	В	306	LEU	Peptide
1	В	442	THR	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	12278	0	11962	192	0
1	В	12278	0	11962	192	0
2	С	45	0	39	0	0
2	Е	44	0	37	0	0
2	Н	44	0	37	0	0
2	Ι	45	0	39	0	0
2	K	44	0	37	0	0
3	D	56	0	48	0	0
3	G	56	0	48	0	0
3	J	56	0	48	0	0
3	М	56	0	48	1	0
4	F	34	0	30	0	0
4	L	34	0	30	1	0
All	All	25070	0	24365	383	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 8.

All (383) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:B:1158:ARG:O	1:B:1159:PHE:HD2	1.38	1.04
1:B:1158:ARG:O	1:B:1159:PHE:CD2	2.17	0.97
1:A:1062:ALA:O	1:A:1508:GLN:OE1	1.92	0.86
1:A:230:ASP:OD1	1:A:533:ARG:HD3	1.77	0.84

	AL O	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:B:230:ASP:OD1	1:B:533:ARG:HD3	1.79	0.83	
1:B:757:HIS:HB3	1:B:764:THR:HG22	1.62	0.82	
1:B:1482:ILE:HG12	1:B:1488:ALA:O	1.82	0.80	
1:A:1482:ILE:HG12	1:A:1488:ALA:O	1.82	0.79	
1:A:757:HIS:HB3	1:A:764:THR:HG22	1.66	0.78	
1:B:871:ASP:OD1	1:B:871:ASP:N	2.20	0.75	
1:B:1041:GLN:NE2	1:B:1488:ALA:HB3	2.07	0.70	
1:A:1439:ARG:HD2	1:A:1521:ASP:OD2	1.91	0.69	
1:A:282:PRO:HB3	1:A:294:VAL:HG22	1.74	0.69	
1:B:282:PRO:HB3	1:B:294:VAL:HG22	1.75	0.68	
1:B:1439:ARG:HD2	1:B:1521:ASP:OD2	1.94	0.68	
1:B:964:VAL:HG11	1:B:984:ARG:HB3	1.75	0.68	
1:A:629:ILE:HD13	1:A:631:GLU:HG2	1.76	0.67	
1:A:1041:GLN:NE2	1:A:1488:ALA:HB3	2.09	0.67	
1:A:1470:LYS:O	1:A:1474:ARG:HG3	1.94	0.67	
1:A:871:ASP:OD1	1:A:871:ASP:N	2.28	0.66	
1:B:1470:LYS:O	1:B:1474:ARG:HG3	1.97	0.65	
1:A:3:ALA:HB3	1:A:640:ASP:HB3	1.77	0.65	
1:B:783:LYS:HG2	1:B:857:GLN:HB3	1.80	0.64	
1:A:1165:TYR:O	1:A:1167:PRO:CD	2.46	0.64	
1:A:783:LYS:HG2	1:A:857:GLN:HB3	1.78	0.64	
1:A:66:TRP:CZ3	1:B:1458:ALA:HB2	2.32	0.64	
1:A:148:MET:HA	1:A:177:MET:O	1.98	0.63	
1:A:705:GLU:OE1	1:A:705:GLU:N	2.31	0.63	
1:B:1165:TYR:O	1:B:1167:PRO:CD	2.46	0.63	
1:B:148:MET:HA	1:B:177:MET:O	1.98	0.63	
1:A:704:ASP:OD2	1:A:732:LYS:HG3	1.99	0.63	
1:B:115:ASN:HB3	1:B:117:LYS:H	1.64	0.63	
1:B:1041:GLN:HE22	1:B:1488:ALA:HB3	1.64	0.63	
1:B:656:THR:HG22	1:B:657:ALA:N	2.15	0.62	
1:A:115:ASN:HB3	1:A:117:LYS:H	1.64	0.62	
1:A:365:GLU:HB2	1:A:368:SER:HB3	1.82	0.61	
1:B:704:ASP:OD2	1:B:732:LYS:HG3	2.01	0.61	
1:A:915:ALA:HA	1:A:962:TYR:OH	2.00	0.61	
1:B:365:GLU:HB2	1:B:368:SER:HB3	1.83	0.61	
1:B:1085:GLY:O	1:B:1089:THR:HB	2.01	0.61	
1:A:1041:GLN:HE22	1:A:1488:ALA:HB3	1.65	0.60	
1:B:169:ARG:NH1	1:B:701:TYR:OH	2.34	0.60	
1:B:684:LEU:HD11	1:B:860:ILE:HD12	1.83	0.60	
1:B:1146:GLY:O	1:B:1149:SER:OG	2.20	0.60	
1:B:1472:TYR:OH	1:B:1479:ARG:NH1	2.34	0.60	

	A L O	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:A:9:LEU:HD11	1:A:17:PRO:HB3	1.83	0.59	
1:A:283:VAL:HA	1:A:441:ILE:HD11	1.85	0.59	
1:B:757:HIS:HB3	1:B:764:THR:CG2	2.31	0.59	
1:A:1085:GLY:O	1:A:1089:THR:HB	2.02	0.59	
1:B:705:GLU:N	1:B:705:GLU:OE1	2.35	0.59	
1:A:1165:TYR:O	1:A:1167:PRO:HD3	2.03	0.59	
1:B:915:ALA:HA	1:B:962:TYR:OH	2.03	0.59	
1:A:1157:ARG:NH2	1:A:1186:GLU:OE2	2.36	0.58	
1:A:182:PRO:HG2	1:A:192:PRO:O	2.03	0.58	
1:A:467:ASN:HB2	1:A:499:CYS:O	2.03	0.58	
1:A:647:SER:OG	1:A:648:GLU:N	2.36	0.58	
1:B:1038:THR:HG21	1:B:1512:THR:OG1	2.03	0.58	
1:A:1038:THR:HG21	1:A:1512:THR:OG1	2.03	0.57	
1:B:1396:LEU:HD21	1:B:1400:ASP:HB3	1.86	0.57	
1:B:182:PRO:HG2	1:B:192:PRO:O	2.05	0.57	
1:A:169:ARG:NH1	1:A:701:TYR:OH	2.34	0.57	
1:B:432:ASP:HB2	1:B:436:PRO:HB3	1.86	0.57	
1:B:1165:TYR:O	1:B:1167:PRO:HD3	2.04	0.57	
1:B:283:VAL:HA	1:B:441:ILE:HD11	1.86	0.57	
1:B:430:ARG:NH1	1:B:440:PRO:O	2.38	0.56	
1:A:432:ASP:HB2	1:A:436:PRO:HB3	1.87	0.56	
1:A:1158:ARG:O	1:A:1159:PHE:CD2	2.58	0.56	
1:A:684:LEU:HD11	1:A:860:ILE:HD12	1.88	0.56	
1:B:467:ASN:HB2	1:B:499:CYS:O	2.05	0.56	
1:A:1146:GLY:O	1:A:1149:SER:OG	2.23	0.56	
1:A:1493:LEU:HD23	1:A:1494:THR:N	2.21	0.56	
1:A:1396:LEU:HD21	1:A:1400:ASP:HB3	1.88	0.56	
1:A:1492:GLU:HG3	1:A:1508:GLN:HG3	1.88	0.56	
1:B:1396:LEU:HD21	1:B:1400:ASP:CB	2.36	0.56	
1:A:1472:TYR:OH	1:A:1479:ARG:NH1	2.39	0.55	
1:A:1038:THR:HG21	1:A:1512:THR:CB	2.37	0.55	
1:A:1456:GLY:HA3	1:A:1462:LYS:HG3	1.88	0.55	
1:A:65:ILE:HG12	1:A:111:LEU:HD22	1.89	0.55	
1:A:430:ARG:NH1	1:A:440:PRO:O	2.39	0.55	
1:A:656:THR:HG22	1:A:657:ALA:N	2.22	0.55	
1:B:925:VAL:CG1	1:B:1487:TRP:CE2	2.90	0.55	
1:A:738:MET:HE2	1:A:776:TRP:CZ2	2.42	0.55	
1:B:79:ARG:HH21	1:B:550:ASP:CG	2.10	0.54	
1:B:630:ASP:O	1:B:648:GLU:HG2	2.07	0.54	
1:B:738:MET:HE3	1:B:776:TRP:CZ3	2.43	0.54	
1:A:1106:THR:HG21	1:A:1113:PRO:HG3	1.90	0.54	

	At 0	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:A:1123:ARG:NH2	1:A:1207:ASP:OD2	2.41	0.54	
1:B:1493:LEU:HD23	1:B:1494:THR:N	2.22	0.54	
1:A:630:ASP:O	1:A:648:GLU:HG2	2.06	0.54	
1:B:65:ILE:HG12	1:B:111:LEU:HD22	1.90	0.54	
1:B:1405:PRO:HA	1:B:1428:PRO:HD3	1.89	0.54	
1:A:606:GLY:O	1:A:694:SER:HB3	2.08	0.54	
1:A:303:ILE:HG13	1:A:415:ILE:HD11	1.90	0.54	
1:B:647:SER:OG	1:B:648:GLU:N	2.41	0.53	
1:A:196:TYR:OH	1:A:241:GLN:NE2	2.42	0.53	
1:A:1396:LEU:HD21	1:A:1400:ASP:CB	2.38	0.53	
1:B:303:ILE:HG13	1:B:415:ILE:HD11	1.91	0.53	
1:B:1029:THR:HG22	1:B:1030:VAL:N	2.23	0.53	
1:A:757:HIS:HB3	1:A:764:THR:CG2	2.37	0.53	
1:B:1340:ILE:HG22	1:B:1341:TYR:C	2.29	0.53	
1:B:1106:THR:HG21	1:B:1113:PRO:HG3	1.90	0.53	
1:A:1156:THR:CG2	1:A:1174:PHE:HA	2.39	0.53	
1:B:1123:ARG:NH2	1:B:1207:ASP:OD2	2.42	0.52	
1:B:1108:LYS:HE2	1:B:1159:PHE:CD1	2.45	0.52	
1:B:60:THR:HG22	1:B:87:ILE:HG21	1.91	0.52	
1:A:738:MET:HB3	1:A:776:TRP:CH2	2.45	0.52	
1:A:1340:ILE:HG22	1:A:1341:TYR:C	2.30	0.52	
1:B:606:GLY:O	1:B:694:SER:HB3	2.10	0.52	
1:B:1038:THR:HG21	1:B:1512:THR:CB	2.40	0.52	
1:A:148:MET:HE3	1:A:663:LEU:HD21	1.92	0.52	
1:B:560:TYR:CE2	1:B:562:VAL:CG2	2.93	0.52	
1:A:60:THR:HG22	1:A:87:ILE:HG21	1.92	0.52	
1:B:905:GLU:OE1	1:B:966:ARG:NH1	2.43	0.52	
1:B:1128:ASP:OD2	1:B:1239:TRP:N	2.43	0.52	
1:A:1114:ASN:HB2	1:A:1126:ALA:HB2	1.92	0.51	
1:A:1029:THR:HG22	1:A:1030:VAL:N	2.26	0.51	
1:B:925:VAL:CG1	1:B:1487:TRP:CD2	2.93	0.51	
1:A:798:SER:O	1:A:799:GLN:C	2.47	0.51	
1:A:281:TYR:N	1:A:282:PRO:HD3	2.25	0.51	
1:B:798:SER:O	1:B:799:GLN:C	2.49	0.51	
1:A:905:GLU:OE1	1:A:966:ARG:NH1	2.43	0.51	
1:B:1156:THR:CG2	1:B:1174:PHE:HA	2.39	0.51	
1:B:1262:ALA:HB3	1:B:1345:TYR:HB3	1.93	0.51	
1:A:287:THR:O	1:A:291:LEU:HG	2.11	0.51	
1:A:1041:GLN:OE1	1:A:1507:THR:HG21	2.11	0.51	
1:B:9:LEU:HD11	1:B:17:PRO:HB3	1.92	0.51	
1:B:1114:ASN:HB2	1:B:1126:ALA:HB2	1.92	0.51	

	A L O	Interatomic	Clash	
Atom-1	om-1 Atom-2		overlap (Å)	
1:A:909:SER:CB	1:A:913:SER:HB2	2.41	0.51	
1:A:1404:ARG:O	1:A:1423:ASN:OD1	2.29	0.51	
1:A:1195:ILE:HG12	1:A:1219:VAL:HB	1.93	0.50	
1:B:1035:LEU:O	1:B:1038:THR:HG22	2.12	0.50	
1:A:1405:PRO:HA	1:A:1428:PRO:HD3	1.92	0.50	
1:B:177:MET:HA	1:B:226:LEU:O	2.12	0.50	
1:B:1463:PRO:HB3	1:B:1467:LEU:HD23	1.94	0.50	
1:B:925:VAL:HG11	1:B:1487:TRP:CD2	2.46	0.50	
1:A:231:ILE:HD12	1:A:532:PHE:CD1	2.47	0.50	
1:A:282:PRO:CB	1:A:294:VAL:HG22	2.40	0.50	
1:A:925:VAL:CG1	1:A:1487:TRP:CD2	2.95	0.50	
1:A:1264:VAL:HG11	1:A:1360:PHE:HA	1.93	0.50	
1:A:1156:THR:HG21	1:A:1174:PHE:HA	1.94	0.50	
1:A:1181:GLU:OE1	1:A:1287:LYS:HG3	2.12	0.50	
1:A:1291:VAL:CG2	1:A:1299:ILE:O	2.60	0.50	
1:B:1166:ILE:HD11	1:B:1168:TYR:HB2	1.94	0.50	
1:A:1128:ASP:OD2	1:A:1239:TRP:N	2.44	0.50	
1:B:834:THR:HG22	1:B:835:GLY:N	2.27	0.49	
1:A:834:THR:HG22	1:A:835:GLY:N	2.28	0.49	
1:B:775:GLY:O	1:B:776:TRP:HD1	1.94	0.49	
1:A:761:GLN:NE2	1:A:857:GLN:OE1	2.44	0.49	
1:A:896:TYR:O	1:A:966:ARG:NH2	2.40	0.49	
1:A:925:VAL:HG11	1:A:1487:TRP:CD2	2.48	0.49	
1:A:1166:ILE:HD11	1:A:1168:TYR:HB2	1.94	0.49	
1:B:1195:ILE:HG12	1:B:1219:VAL:HB	1.93	0.49	
1:A:1035:LEU:O	1:A:1038:THR:HG22	2.11	0.49	
1:A:1463:PRO:HB3	1:A:1467:LEU:HD23	1.95	0.49	
1:B:287:THR:O	1:B:291:LEU:HG	2.12	0.49	
1:B:282:PRO:CB	1:B:294:VAL:HG22	2.41	0.49	
1:B:1041:GLN:OE1	1:B:1507:THR:HG21	2.13	0.49	
1:A:925:VAL:CG1	1:A:1487:TRP:CE2	2.95	0.49	
1:B:148:MET:HE3	1:B:663:LEU:HD21	1.94	0.49	
1:B:766:HIS:CE1	1:B:865:THR:HG21	2.48	0.49	
1:A:441:ILE:HG22	1:A:442:THR:N	2.27	0.49	
1:B:896:TYR:O	1:B:966:ARG:NH2	2.43	0.49	
1:B:1198:ARG:HA	1:B:1216:ASN:HA	1.94	0.48	
1:B:1434:TYR:OH	1:B:1474:ARG:HB3	2.13	0.48	
1:B:909:SER:CB	1:B:913:SER:HB2	2.43	0.48	
1:B:567:SER:OG	1:B:568:GLY:N	2.46	0.48	
1:A:136:VAL:HG12	1:A:139:LYS:HB2	1.94	0.48	
1:A:595:GLU:HG3	1:A:784:PHE:CD2	2.48	0.48	

		Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:B:656:THR:CG2	1:B:657:ALA:N	2.77	0.48	
1:A:467:ASN:HA	1:A:500:VAL:HA	1.95	0.48	
1:A:513:TYR:CE2	1:A:517:ARG:HD2	2.48	0.48	
1:B:101:ILE:HD12	1:B:101:ILE:N	2.29	0.48	
1:B:253:HIS:CD2	1:B:254:LYS:N	2.82	0.48	
1:A:177:MET:HA	1:A:226:LEU:O	2.13	0.48	
1:B:441:ILE:HG22	1:B:442:THR:N	2.29	0.48	
1:B:1108:LYS:CE	1:B:1159:PHE:CD1	2.96	0.48	
1:A:1168:TYR:CD1	1:A:1168:TYR:C	2.86	0.48	
1:A:1262:ALA:HB3	1:A:1345:TYR:HB3	1.96	0.48	
1:B:899:TYR:CD1	1:B:1041:GLN:HG2	2.49	0.48	
1:B:1156:THR:HG21	1:B:1174:PHE:HA	1.95	0.48	
1:B:595:GLU:HG3	1:B:784:PHE:CD2	2.49	0.48	
1:A:560:TYR:CE2	1:A:562:VAL:CG2	2.96	0.47	
1:A:775:GLY:O	1:A:776:TRP:HD1	1.97	0.47	
1:B:1108:LYS:HE2	1:B:1159:PHE:HD1	1.78	0.47	
1:B:1291:VAL:CG2	1:B:1299:ILE:O	2.61	0.47	
1:B:1416:PHE:CE2	1:B:1422:ARG:NH2	2.81	0.47	
1:A:1398:PRO:HA	1:A:1403:TYR:CG	2.49	0.47	
1:A:899:TYR:CD1	1:A:1041:GLN:HG2	2.49	0.47	
1:B:1168:TYR:O	1:B:1168:TYR:CD1	2.67	0.47	
1:B:1417:ALA:O	1:B:1422:ARG:HB2	2.15	0.47	
1:A:427:LYS:HE2	1:A:433:ASP:OD2	2.14	0.47	
1:A:610:ILE:HD12	1:A:755:HIS:HB2	1.95	0.47	
1:B:7:LEU:HD22	1:B:643:VAL:HG21	1.96	0.47	
1:A:28:LEU:HB3	1:A:655:LEU:HD11	1.96	0.47	
1:A:567:SER:OG	1:A:568:GLY:N	2.48	0.47	
1:A:766:HIS:CE1	1:A:865:THR:HG21	2.50	0.47	
1:B:1165:TYR:O	1:B:1167:PRO:HD2	2.14	0.47	
1:A:101:ILE:N	1:A:101:ILE:HD12	2.29	0.47	
1:A:1295:ASP:OD1	1:A:1296:GLY:N	2.47	0.47	
1:B:766:HIS:HE1	1:B:865:THR:HG21	1.79	0.47	
1:B:1198:ARG:O	1:B:1199:GLU:C	2.53	0.47	
1:B:150:SER:OG	1:B:179:HIS:HD2	1.98	0.47	
1:B:757:HIS:CB	1:B:764:THR:HG22	2.39	0.47	
1:B:136:VAL:HG12	1:B:139:LYS:HG3	1.97	0.47	
1:B:234:ASN:OD1	1:B:540:THR:OG1	2.33	0.47	
1:A:766:HIS:HE1	1:A:865:THR:HG21	1.79	0.47	
1:A:1168:TYR:CD1	1:A:1168:TYR:O	2.67	0.46	
1:B:648:GLU:HB3	1:B:883:ILE:HD12	1.98	0.46	
1:B:1038:THR:O	1:B:1042:MET:HG2	2.15	0.46	

A 4 1		Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:B:1295:ASP:OD1	1:B:1296:GLY:N	2.48	0.46	
1:B:1398:PRO:HA	1:B:1403:TYR:CG	2.50	0.46	
1:A:1198:ARG:HA	1:A:1216:ASN:HA	1.97	0.46	
1:B:1168:TYR:CD1	1:B:1168:TYR:C	2.87	0.46	
1:A:623:TYR:CD2	1:A:649:ILE:HD11	2.50	0.46	
1:A:1016:ARG:O	1:A:1020:LEU:HG	2.16	0.46	
1:A:1165:TYR:O	1:A:1167:PRO:HD2	2.14	0.46	
1:A:277:GLU:OE2	1:A:283:VAL:HG22	2.15	0.46	
1:A:1038:THR:O	1:A:1042:MET:HG2	2.15	0.46	
1:B:925:VAL:HG13	1:B:1487:TRP:CZ2	2.50	0.46	
1:A:1077:ARG:NH1	1:A:1114:ASN:OD1	2.49	0.46	
1:B:281:TYR:N	1:B:282:PRO:HD3	2.31	0.46	
1:B:775:GLY:O	1:B:776:TRP:CD1	2.69	0.46	
1:B:925:VAL:HG11	1:B:1487:TRP:CE2	2.50	0.46	
1:A:154:LYS:NZ	1:A:190:ASN:O	2.49	0.46	
1:B:1016:ARG:O	1:B:1020:LEU:HG	2.16	0.46	
1:A:947:HIS:HD2	1:A:949:LEU:H	1.64	0.46	
1:A:1106:THR:CG2	1:A:1113:PRO:HG3	2.46	0.46	
1:A:1434:TYR:OH	1:A:1474:ARG:HB3	2.16	0.46	
1:B:623:TYR:CD2	1:B:649:ILE:HD11	2.50	0.46	
1:A:567:SER:HB3	1:A:573:ASP:OD1	2.16	0.46	
1:B:1264:VAL:HG11	1:B:1360:PHE:HA	1.98	0.46	
1:B:1077:ARG:NH1	1:B:1114:ASN:OD1	2.49	0.46	
1:B:1438:ILE:HG23	1:B:1518:LEU:HD22	1.98	0.46	
1:A:235:HIS:HA	1:A:502:LEU:HG	1.97	0.46	
1:B:149:GLN:HA	1:B:699:SER:O	2.16	0.46	
1:B:235:HIS:HA	1:B:502:LEU:HG	1.97	0.46	
1:A:1417:ALA:O	1:A:1422:ARG:HB2	2.15	0.45	
1:B:154:LYS:NZ	1:B:190:ASN:O	2.49	0.45	
1:B:513:TYR:CE2	1:B:517:ARG:HD2	2.51	0.45	
1:B:567:SER:HB3	1:B:573:ASP:OD1	2.17	0.45	
1:B:1405:PRO:HA	1:B:1428:PRO:CD	2.46	0.45	
1:A:648:GLU:HB3	1:A:883:ILE:HD12	1.98	0.45	
1:A:936:LEU:O	1:A:940:ILE:HG13	2.16	0.45	
1:B:427:LYS:HE2	1:B:433:ASP:OD2	2.16	0.45	
1:A:702:GLY:HA2	1:A:705:GLU:HB2	1.98	0.45	
1:A:834:THR:HG22	1:A:835:GLY:H	1.81	0.45	
1:A:1151:LEU:HA	1:A:1180:ILE:HG22	1.97	0.45	
1:B:561:VAL:H	1:B:583:SER:HG	1.65	0.45	
1:B:1158:ARG:HD3	1:B:1173:ALA:HB1	1.99	0.45	
1:A:1416:PHE:CE2	1:A:1422:ARG:NH2	2.85	0.45	

	A L O	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:A:1495:ASN:O	1:A:1496:LYS:C	2.53	0.45	
1:A:231:ILE:HD12	1:A:532:PHE:CG	2.51	0.45	
1:B:1106:THR:CG2	1:B:1113:PRO:HG3	2.47	0.45	
1:A:1438:ILE:HG23	1:A:1518:LEU:HD22	1.98	0.45	
1:A:7:LEU:HD22	1:A:643:VAL:HG21	1.99	0.45	
1:A:309:TRP:N	1:A:309:TRP:CD1	2.85	0.44	
1:A:1107:LEU:O	1:A:1157:ARG:NH1	2.50	0.44	
1:B:742:ILE:HD12	1:B:776:TRP:CH2	2.51	0.44	
1:B:702:GLY:HA2	1:B:705:GLU:HB2	1.99	0.44	
1:A:149:GLN:HA	1:A:699:SER:O	2.18	0.44	
1:B:277:GLU:OE2	1:B:283:VAL:HG22	2.16	0.44	
1:A:234:ASN:OD1	1:A:540:THR:OG1	2.33	0.44	
1:B:1151:LEU:HA	1:B:1180:ILE:HG22	1.99	0.44	
1:A:618:LEU:HD22	1:A:933:VAL:HG13	1.99	0.44	
1:A:1043:VAL:HB	1:A:1092:ARG:HH22	1.82	0.44	
1:A:1508:GLN:OE1	1:A:1508:GLN:HA	2.17	0.44	
1:A:1116:LEU:HA	1:A:1122:PRO:HB3	1.99	0.44	
1:A:1290:GLU:HG2	1:A:1298:LYS:NZ	2.33	0.44	
1:B:231:ILE:HD12	1:B:532:PHE:CD1	2.53	0.44	
1:B:338:ILE:HG21	1:B:383:LEU:HG	2.00	0.44	
1:B:761:GLN:NE2	1:B:857:GLN:OE1	2.51	0.44	
1:B:322:GLU:HB3	1:B:373:ILE:HD13	1.99	0.44	
1:B:467:ASN:HA	1:B:500:VAL:HA	2.00	0.44	
1:B:478:VAL:O	1:B:479:ASP:C	2.56	0.44	
1:B:156:MET:HG2	1:B:166:VAL:HG21	2.00	0.43	
1:B:738:MET:HB3	1:B:776:TRP:CH2	2.53	0.43	
1:B:1219:VAL:HG13	1:B:1228:ILE:HG23	2.01	0.43	
1:A:322:GLU:HB3	1:A:373:ILE:HD13	1.99	0.43	
1:B:149:GLN:HG2	1:B:170:VAL:HG11	1.98	0.43	
1:A:281:TYR:N	1:A:282:PRO:CD	2.82	0.43	
1:A:738:MET:HE1	1:A:776:TRP:CE2	2.53	0.43	
1:A:1492:GLU:HA	1:A:1508:GLN:CG	2.49	0.43	
1:B:173:LYS:HE3	1:B:175:TYR:HE1	1.84	0.43	
1:B:231:ILE:HD12	1:B:532:PHE:CG	2.53	0.43	
1:B:716:GLU:OE2	1:B:718:ARG:NH1	2.51	0.43	
1:B:899:TYR:O	1:B:926:TYR:HB3	2.18	0.43	
1:A:656:THR:CG2	1:A:657:ALA:N	2.82	0.43	
1:A:716:GLU:OE2	1:A:718:ARG:NH1	2.52	0.43	
1:A:899:TYR:O	1:A:926:TYR:HB3	2.19	0.43	
1:B:1043:VAL:HB	1:B:1092:ARG:HH22	1.83	0.43	
1:A:338:ILE:HG21	1:A:383:LEU:HG	2.00	0.43	

	A L O	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:A:436:PRO:O	1:A:437:LYS:HG2	2.19	0.43	
1:A:478:VAL:O	1:A:479:ASP:C	2.57	0.43	
1:A:981:GLU:OE1	1:A:984:ARG:NH1	2.52	0.43	
1:A:1405:PRO:HA	1:A:1428:PRO:CD	2.48	0.43	
1:B:953:LEU:HD13	1:B:999:PRO:HA	2.00	0.43	
1:A:111:LEU:HD23	1:A:111:LEU:N	2.33	0.43	
1:A:561:VAL:H	1:A:583:SER:HG	1.65	0.43	
1:B:170:VAL:HG21	1:B:178:ILE:HD11	2.01	0.43	
1:B:174:LYS:HG3	1:B:737:ASN:OD1	2.18	0.43	
1:B:610:ILE:HD12	1:B:755:HIS:HB2	2.01	0.43	
1:B:1108:LYS:CE	1:B:1159:PHE:HD1	2.31	0.43	
1:A:1011:GLY:O	1:A:1012:CYS:C	2.55	0.43	
1:A:1198:ARG:O	1:A:1199:GLU:C	2.58	0.43	
1:B:1116:LEU:HA	1:B:1122:PRO:HB3	1.99	0.43	
1:B:1130:ALA:O	1:B:1133:PHE:HB3	2.19	0.43	
1:A:170:VAL:HG21	1:A:178:ILE:HD11	2.00	0.43	
1:A:775:GLY:HA3	1:A:865:THR:CG2	2.49	0.43	
1:A:1042:MET:CE	1:A:1507:THR:HG22	2.48	0.43	
1:B:618:LEU:HD22	1:B:933:VAL:HG13	2.00	0.42	
1:B:893:SER:HA	1:B:896:TYR:CD2	2.54	0.42	
1:B:1181:GLU:OE1	1:B:1287:LYS:HG3	2.19	0.42	
1:A:939:ILE:HD11	1:A:947:HIS:CD2	2.54	0.42	
1:B:1329:GLU:O	1:B:1330:ILE:HG23	2.20	0.42	
1:A:451:TYR:CE1	1:A:495:VAL:HG21	2.55	0.42	
1:A:925:VAL:HG11	1:A:1487:TRP:CE2	2.54	0.42	
1:A:1158:ARG:HD3	1:A:1173:ALA:HB1	2.01	0.42	
1:A:1329:GLU:O	1:A:1330:ILE:HG23	2.20	0.42	
1:B:391:GLY:HA2	1:B:394:GLU:OE1	2.18	0.42	
1:B:878:ILE:HD13	1:B:1001:PHE:HD1	1.85	0.42	
1:B:1157:ARG:HG2	1:B:1176:TYR:OH	2.19	0.42	
1:A:775:GLY:O	1:A:776:TRP:CD1	2.72	0.42	
1:A:1130:ALA:O	1:A:1133:PHE:HB3	2.19	0.42	
1:B:436:PRO:O	1:B:437:LYS:HG2	2.20	0.42	
1:B:775:GLY:HA3	1:B:865:THR:CG2	2.50	0.42	
1:A:149:GLN:HG2	1:A:170:VAL:HG11	2.02	0.42	
1:A:436:PRO:O	1:A:437:LYS:CG	2.67	0.42	
1:A:841:ASP:C	1:A:841:ASP:OD1	2.58	0.42	
1:B:217:GLU:O	1:B:221:THR:HG23	2.19	0.42	
1:B:834:THR:HG22	1:B:835:GLY:H	1.84	0.42	
1:B:1495:ASN:O	1:B:1496:LYS:C	2.58	0.42	
1:A:217:GLU:O	1:A:221:THR:HG23	2.19	0.42	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:B:875:ASP:OD2	1:B:879:ARG:HD2	2.19	0.42	
1:B:1108:LYS:HD2	1:B:1109:HIS:CD2	2.55	0.42	
1:A:147:ALA:HA	1:A:697:ILE:O	2.19	0.42	
1:A:783:LYS:HG2	1:A:857:GLN:CB	2.46	0.42	
1:B:148:MET:HG3	1:B:177:MET:HG2	2.01	0.42	
1:B:939:ILE:HD11	1:B:947:HIS:CD2	2.55	0.42	
1:A:1219:VAL:HG13	1:A:1228:ILE:HG23	2.01	0.41	
1:B:1050:SER:OG	1:B:1051:ILE:N	2.52	0.41	
1:B:1238:THR:HG21	1:B:1259:ARG:NH1	2.35	0.41	
1:B:1275:ARG:NH2	1:B:1366:VAL:O	2.53	0.41	
1:B:108:CYS:HB3	1:B:127:TYR:CD2	2.55	0.41	
1:B:1112:ILE:HD13	1:B:1133:PHE:CG	2.55	0.41	
1:A:618:LEU:HD12	1:A:937:ARG:HG3	2.03	0.41	
1:B:284:ASP:OD1	1:B:284:ASP:N	2.54	0.41	
1:B:1042:MET:CE	1:B:1507:THR:HG22	2.50	0.41	
1:A:276:MET:O	1:A:279:LEU:O	2.38	0.41	
1:A:937:ARG:NH1	1:A:937:ARG:HG2	2.36	0.41	
1:A:1264:VAL:HG23	1:A:1343:ASP:O	2.20	0.41	
1:A:691:ALA:HA	1:A:697:ILE:HD13	2.03	0.41	
1:B:792:LEU:HA	1:B:793:PRO:HD3	1.91	0.41	
1:A:149:GLN:OE1	1:A:701:TYR:HA	2.21	0.41	
1:A:150:SER:OG	1:A:179:HIS:HD2	2.04	0.41	
1:A:230:ASP:OD1	1:A:533:ARG:CD	2.60	0.41	
1:A:337:ASN:N	1:A:337:ASN:OD1	2.54	0.41	
1:A:878:ILE:HD13	1:A:1001:PHE:HD1	1.85	0.41	
1:A:1492:GLU:HB2	1:A:1508:GLN:HG2	2.03	0.41	
1:B:337:ASN:N	1:B:337:ASN:OD1	2.54	0.41	
1:B:436:PRO:O	1:B:437:LYS:CG	2.69	0.41	
1:B:620:ASP:OD1	1:B:620:ASP:N	2.53	0.41	
1:B:793:PRO:O	1:B:794:ARG:C	2.59	0.41	
1:B:1400:ASP:HA	4:L:1:GLC:O6	2.21	0.41	
1:A:875:ASP:OD2	1:A:879:ARG:HD2	2.21	0.41	
1:A:1453:GLN:NE2	1:A:1461:LEU:HD21	2.36	0.41	
1:B:425:ARG:NE	3:M:4:GLC:O6	2.54	0.41	
1:A:156:MET:HG2	1:A:166:VAL:HG21	2.03	0.40	
1:A:333:TRP:CH2	1:A:350:PHE:HZ	2.38	0.40	
1:B:451:TYR:CE1	1:B:495:VAL:HG21	2.55	0.40	
1:B:1264:VAL:HG23	1:B:1343:ASP:O	2.21	0.40	
1:A:1197:TYR:CE1	1:A:1217:VAL:HG23	2.56	0.40	
1:A:1342:LYS:HB2	1:A:1353:ASP:O	2.21	0.40	
1:B:136:VAL:HG13	1:B:137:ASN:N	2.35	0.40	

Atom-1	om-1 Atom-2		Clash overlap (Å)
1:B:230:ASP:OD1	1:B:533:ARG:CD	2.61	0.40
1:B:936:LEU:O	1:B:940:ILE:HG13	2.21	0.40
1:B:947:HIS:HD2	1:B:949:LEU:H	1.68	0.40
1:B:1030:VAL:O	1:B:1031:PHE:C	2.60	0.40
1:A:738:MET:CE	1:A:776:TRP:CE2	3.04	0.40
1:A:947:HIS:CD2	1:A:949:LEU:H	2.39	0.40
1:A:953:LEU:HD13	1:A:999:PRO:HA	2.03	0.40
1:B:181:THR:HB	1:B:182:PRO:HD2	2.03	0.40
1:B:333:TRP:CH2	1:B:350:PHE:HZ	2.39	0.40
1:B:111:LEU:HD23	1:B:111:LEU:N	2.36	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	1524/1528~(100%)	1314 (86%)	195 (13%)	15 (1%)	15	46
1	В	1524/1528~(100%)	1321 (87%)	188 (12%)	15 (1%)	15	46
All	All	3048/3056~(100%)	2635~(86%)	383 (13%)	30 (1%)	15	46

All (30) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	887	GLU
1	В	887	GLU
1	А	440	PRO
1	А	723	ALA
1	А	1424	TYR
1	В	440	PRO
1	В	1424	TYR
1	А	219	LEU

Mol	Chain	Res	Type
1	А	282	PRO
1	А	308	LEU
1	В	308	LEU
1	В	723	ALA
1	В	727	GLY
1	В	745	GLU
1	В	1026	GLY
1	В	1166	ILE
1	А	31	PRO
1	А	538	HIS
1	А	708	PRO
1	А	1166	ILE
1	А	1521	ASP
1	В	31	PRO
1	В	282	PRO
1	А	115	ASN
1	А	727	GLY
1	В	708	PRO
1	А	511	SER
1	В	511	SER
1	В	450	PRO
1	В	1373	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Per	rce	entiles
1	А	1344/1346~(100%)	1157~(86%)	187 (14%)	د و	3	16
1	В	1344/1346~(100%)	1157~(86%)	187 (14%)	4 2	3	16
All	All	2688/2692~(100%)	2314 (86%)	374 (14%)	، ر	3	16

All (374) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	7	LEU

Mol	Chain	Res	Type
1	А	14	SER
1	А	18	VAL
1	А	31	PRO
1	А	37	GLN
1	А	40	LYS
1	А	44	MET
1	А	67	THR
1	А	74	SER
1	А	78	ASP
1	А	79	ARG
1	А	81	LYS
1	А	86	ILE
1	А	89	THR
1	А	103	VAL
1	А	111	LEU
1	А	116	ASP
1	А	120	LEU
1	А	122	THR
1	А	135	SER
1	А	143	LEU
1	А	145	SER
1	А	149	GLN
1	А	153	SER
1	А	164	GLU
1	А	179	HIS
1	А	183	LEU
1	А	184	GLN
1	А	198	GLN
1	А	200	GLU
1	А	227	SER
1	А	229	THR
1	А	238	ASN
1	А	241	GLN
1	А	254	LYS
1	А	265	LEU
1	А	267	LYS
1	А	268	LYS
1	А	270	LEU
1	А	279	LEU
1	А	285	LEU
1	А	293	LYS
1	А	316	VAL

Mol	Chain	Res	Type
1	А	323	LEU
1	А	324	ARG
1	А	329	ASN
1	А	330	SER
1	А	333	TRP
1	А	334	SER
1	А	335	ASP
1	А	337	ASN
1	А	341	LYS
1	А	344	SER
1	А	346	ASN
1	А	357	GLU
1	А	363	LEU
1	А	371	ILE
1	Α	383	LEU
1	А	389	ASN
1	А	395	LEU
1	А	400	LEU
1	А	409	LYS
1	А	415	ILE
1	А	421	GLN
1	А	423	PHE
1	А	425	ARG
1	А	427	LYS
1	А	431	ILE
1	А	445	LEU
1	А	447	LEU
1	А	449	GLU
1	А	456	LYS
1	А	473	ASP
1	A	477	LEU
1	A	489	LEU
1	A	491	ARG
1	A	499	CYS
1	А	510	ASP
1	A	520	LYS
1	A	536	ASN
1	A	553	ARG
1	A	565	LEU
1	A	583	SER
1	A	587	ARG
1	А	597	GLU

Mol	Chain	Res	Type
1	А	599	SER
1	А	601	LEU
1	А	609	PRO
1	А	616	VAL
1	А	631	GLU
1	А	649	ILE
1	А	650	MET
1	А	653	LYS
1	А	655	LEU
1	А	664	PHE
1	А	673	THR
1	А	704	ASP
1	А	712	ASP
1	А	726	THR
1	А	735	LEU
1	А	748	ASP
1	А	754	MET
1	А	757	HIS
1	А	758	HIS
1	А	764	THR
1	А	765	PHE
1	А	766	HIS
1	А	786	SER
1	А	798	SER
1	А	799	GLN
1	А	801	LYS
1	А	803	THR
1	А	818	ILE
1	А	822	ILE
1	А	824	GLU
1	A	831	ARG
1	А	865	THR
1	A	871	ASP
1	А	873	SER
1	А	889	LEU
1	A	900	ARG
1	А	908	TYR
1	А	913	SER
1	А	987	MET
1	А	999	PRO
1	А	1016	ARG
1	А	1023	ASP

Mol	Chain	Res	Type
1	А	1038	THR
1	А	1044	SER
1	А	1049	THR
1	А	1106	THR
1	А	1111	LEU
1	А	1112	ILE
1	А	1115	LEU
1	А	1116	LEU
1	А	1117	ASP
1	А	1123	ARG
1	А	1127	ARG
1	А	1134	VAL
1	А	1148	VAL
1	А	1149	SER
1	А	1150	LEU
1	А	1157	ARG
1	А	1161	LEU
1	А	1164	GLU
1	A	1166	ILE
1	A	1177	SER
1	A	1186	GLU
1	A	1190	ARG
1	A	1198	ARG
1	A	1206	LEU
1	A	1208	ARG
1	A	1210	MET
1	A	1227	LEU
1	A	1235	ASN
1	A	1245	GLU
1	A	1250	ASN
1	A	1265	GLU
1	A	1272	SER
1	A	1289	THR
1	A	1290	GLU
1	A	1291	VAL
1	A	1302	SER
1	A	1310	GLU
1	A	1321	ASN
1	A	1329	GLU
1	A	1337	ARG
1	A	1338	ARG
1	A	1346	ARG

Mol	Chain	Res	Type
1	А	1347	SER
1	А	1391	VAL
1	А	1401	TYR
1	А	1402	ASN
1	А	1404	ARG
1	А	1420	LYS
1	А	1424	TYR
1	А	1442	HIS
1	А	1454	VAL
1	А	1460	LYS
1	А	1469	ARG
1	А	1474	ARG
1	А	1476	LEU
1	А	1482	ILE
1	А	1494	THR
1	А	1510	TRP
1	А	1524	ILE
1	А	1528	GLU
1	В	7	LEU
1	В	14	SER
1	В	18	VAL
1	В	40	LYS
1	В	44	MET
1	В	61	ARG
1	В	62	ASP
1	В	67	THR
1	В	74	SER
1	В	78	ASP
1	В	79	ARG
1	В	81	LYS
1	В	86	ILE
1	В	89	THR
1	В	103	VAL
1	В	111	LEU
1	В	116	ASP
1	В	120	LEU
1	В	122	THR
1	В	135	SER
1	В	143	LEU
1	В	145	SER
1	В	149	GLN
1	В	153	SER
	1		

Mol	Chain	Res	Type
1	В	164	GLU
1	В	179	HIS
1	В	183	LEU
1	В	184	GLN
1	В	198	GLN
1	В	200	GLU
1	В	220	ARG
1	В	227	SER
1	В	229	THR
1	В	238	ASN
1	В	248	GLU
1	В	254	LYS
1	В	265	LEU
1	В	267	LYS
1	В	268	LYS
1	В	270	LEU
1	В	279	LEU
1	В	284	ASP
1	В	285	LEU
1	В	293	LYS
1	В	316	VAL
1	В	323	LEU
1	В	324	ARG
1	В	329	ASN
1	В	330	SER
1	В	333	TRP
1	В	334	SER
1	В	335	ASP
1	В	337	ASN
1	В	341	LYS
1	В	344	SER
1	В	346	ASN
1	В	357	GLU
1	В	371	ILE
1	В	383	LEU
1	В	389	ASN
1	В	395	LEU
1	В	398	LYS
1	В	400	LEU
1	В	409	LYS
1	В	415	ILE
1	В	417	GLU

Mol	Chain	Res	Type
1	В	421	GLN
1	В	423	PHE
1	В	425	ARG
1	В	427	LYS
1	В	431	ILE
1	В	433	ASP
1	В	445	LEU
1	В	447	LEU
1	В	449	GLU
1	В	456	LYS
1	В	468	ASN
1	В	473	ASP
1	В	477	LEU
1	В	489	LEU
1	В	499	CYS
1	В	510	ASP
1	В	520	LYS
1	В	536	ASN
1	В	553	ARG
1	В	565	LEU
1	В	583	SER
1	В	587	ARG
1	В	597	GLU
1	В	599	SER
1	В	601	LEU
1	В	609	PRO
1	В	616	VAL
1	В	649	ILE
1	В	650	MET
1	В	653	LYS
1	В	655	LEU
1	В	664	PHE
1	В	673	THR
1	В	704	ASP
1	В	726	THR
1	В	730	LYS
1	В	735	LEU
1	В	739	ARG
1	В	748	ASP
1	В	754	MET
1	В	757	HIS
1	В	758	HIS

Mol	Chain	Res	Type
1	В	764	THR
1	В	765	PHE
1	В	766	HIS
1	В	786	SER
1	В	798	SER
1	В	799	GLN
1	В	801	LYS
1	В	803	THR
1	В	818	ILE
1	В	822	ILE
1	В	824	GLU
1	В	831	ARG
1	В	865	THR
1	В	871	ASP
1	В	873	SER
1	В	900	ARG
1	В	907	ASP
1	В	908	TYR
1	В	913	SER
1	В	987	MET
1	В	1016	ARG
1	В	1023	ASP
1	В	1038	THR
1	В	1044	SER
1	В	1049	THR
1	В	1106	THR
1	В	1111	LEU
1	В	1112	ILE
1	В	1115	LEU
1	В	1116	LEU
1	В	1117	ASP
1	В	1123	ARG
1	В	1134	VAL
1	В	1148	VAL
1	В	1149	SER
1	В	1150	LEU
1	В	1161	LEU
1	В	1164	GLU
1	В	1166	ILE
1	В	1177	SER
1	В	1186	GLU
1	В	1190	ARG

Mol	Chain	Res	Type
1	В	1198	ARG
1	В	1206	LEU
1	В	1210	MET
1	В	1227	LEU
1	В	1235	ASN
1	В	1245	GLU
1	В	1265	GLU
1	В	1272	SER
1	В	1287	LYS
1	В	1289	THR
1	В	1290	GLU
1	В	1291	VAL
1	В	1302	SER
1	В	1310	GLU
1	В	1321	ASN
1	В	1324	ASP
1	В	1329	GLU
1	В	1337	ARG
1	В	1338	ARG
1	В	1346	ARG
1	В	1347	SER
1	В	1391	VAL
1	В	1401	TYR
1	В	1402	ASN
1	В	1420	LYS
1	В	1424	TYR
1	В	1442	HIS
1	В	1454	VAL
1	В	1455	GLU
1	В	1460	LYS
1	В	1469	ARG
1	В	1474	ARG
1	В	1476	LEU
1	В	1482	ILE
1	В	1494	THR
1	В	1510	TRP
1	В	1524	ILE

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (31) such sidechains are listed below:

IVIOI	Chain	Res	Type
1	А	37	GLN

Mol	Chain	Res	Type
1	А	92	HIS
1	А	179	HIS
1	А	238	ASN
1	А	354	ASN
1	А	605	HIS
1	А	766	HIS
1	А	790	GLN
1	А	866	GLN
1	А	876	HIS
1	А	947	HIS
1	А	1309	GLN
1	А	1355	GLN
1	А	1409	ASN
1	А	1442	HIS
1	А	1453	GLN
1	В	92	HIS
1	В	179	HIS
1	В	238	ASN
1	В	241	GLN
1	В	253	HIS
1	В	354	ASN
1	В	766	HIS
1	В	790	GLN
1	В	866	GLN
1	В	876	HIS
1	В	947	HIS
1	В	1250	ASN
1	В	1355	GLN
1	В	1409	ASN
1	В	1442	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

46 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tiple	Bo	Bond lengths		Bond angles		
	туре	Unam	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
2	GLC	С	1	2	12,12,12	0.88	0	17,17,17	1.39	2 (11%)
2	GLC	С	2	2	11,11,12	0.98	1 (9%)	15,15,17	1.24	2 (13%)
2	GLC	С	3	2	11,11,12	1.24	3 (27%)	15,15,17	1.36	2 (13%)
2	GLC	С	4	2	11,11,12	1.86	3 (27%)	15,15,17	1.60	2 (13%)
3	GLC	D	1	3	12,12,12	0.99	0	17,17,17	1.20	3 (17%)
3	GLC	D	2	3	11,11,12	1.59	2 (18%)	15,15,17	1.61	2 (13%)
3	GLC	D	3	3	11,11,12	0.85	0	15,15,17	1.29	2 (13%)
3	GLC	D	4	3	11,11,12	0.68	0	15,15,17	1.47	3 (20%)
3	GLC	D	5	3	11,11,12	0.76	0	15,15,17	0.96	1 (6%)
2	GLC	Е	1	2	11,11,12	1.18	1 (9%)	15,15,17	2.04	5 (33%)
2	GLC	Е	2	2	11,11,12	0.89	0	15,15,17	1.24	2 (13%)
2	GLC	Е	3	2	11,11,12	1.00	1 (9%)	15,15,17	1.41	2 (13%)
2	GLC	Е	4	2	11,11,12	1.10	1 (9%)	15,15,17	2.10	1 (6%)
4	GLC	F	1	4	12,12,12	0.98	0	17,17,17	1.00	1 (5%)
4	GLC	F	2	4	11,11,12	1.57	2 (18%)	15,15,17	2.74	3 (20%)
4	GLC	F	3	4	11,11,12	0.89	1 (9%)	15,15,17	1.53	1 (6%)
3	GLC	G	1	3	12,12,12	0.96	0	17,17,17	1.02	1 (5%)
3	GLC	G	2	3	11,11,12	1.10	1 (9%)	15,15,17	1.18	3 (20%)
3	GLC	G	3	3	11,11,12	0.86	0	15,15,17	1.26	1 (6%)
3	GLC	G	4	3	11,11,12	0.86	0	15,15,17	1.39	2 (13%)
3	GLC	G	5	3	11,11,12	1.29	2 (18%)	15,15,17	1.66	5 (33%)
2	GLC	Н	1	2	11,11,12	1.27	1 (9%)	15,15,17	1.04	1 (6%)
2	GLC	Н	2	2	11,11,12	1.62	3 (27%)	15,15,17	1.90	4 (26%)
2	GLC	Н	3	2	11,11,12	1.22	2 (18%)	15,15,17	1.92	2(13%)
2	GLC	Н	4	2	11,11,12	0.97	1 (9%)	15,15,17	1.66	2 (13%)
2	GLC	Ι	1	2	12,12,12	1.10	0	17,17,17	1.32	2 (11%)

Mal	Mol Type Chain		Dog	Bos	Ros	Bog	Bog I inl	Tink	Bond lengths			Bond angles		
IVIOI	туре	Ullain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2				
2	GLC	Ι	2	2	11,11,12	0.92	0	$15,\!15,\!17$	1.80	4 (26%)				
2	GLC	Ι	3	2	11,11,12	1.25	1 (9%)	15,15,17	2.47	3 (20%)				
2	GLC	Ι	4	2	11,11,12	1.65	2 (18%)	15,15,17	1.74	3 (20%)				
3	GLC	J	1	3	12,12,12	1.26	2 (16%)	17,17,17	1.05	1 (5%)				
3	GLC	J	2	3	11,11,12	2.06	3 (27%)	15,15,17	2.72	2 (13%)				
3	GLC	J	3	3	11,11,12	0.83	0	15,15,17	1.69	3 (20%)				
3	GLC	J	4	3	11,11,12	0.94	1 (9%)	15,15,17	1.23	2 (13%)				
3	GLC	J	5	3	11,11,12	0.96	1 (9%)	15,15,17	1.37	2 (13%)				
2	GLC	K	1	2	11,11,12	1.35	3 (27%)	$15,\!15,\!17$	3.24	7 (46%)				
2	GLC	K	2	2	11,11,12	0.84	1 (9%)	15,15,17	1.23	2 (13%)				
2	GLC	K	3	2	11,11,12	1.10	1 (9%)	15,15,17	1.92	3 (20%)				
2	GLC	К	4	2	11,11,12	1.21	2 (18%)	$15,\!15,\!17$	1.75	1 (6%)				
4	GLC	L	1	4	12,12,12	0.78	0	17,17,17	0.88	1 (5%)				
4	GLC	L	2	4	11,11,12	0.90	0	15,15,17	1.92	2 (13%)				
4	GLC	L	3	4	11,11,12	0.71	0	15,15,17	1.75	1 (6%)				
3	GLC	М	1	3	12,12,12	0.71	0	17,17,17	0.89	1 (5%)				
3	GLC	М	2	3	11,11,12	0.90	0	$15,\!15,\!17$	1.02	0				
3	GLC	М	3	3	11,11,12	0.85	0	$15,\!15,\!17$	1.03	2(13%)				
3	GLC	М	4	3	11,11,12	0.86	0	15,15,17	1.67	1 (6%)				
3	GLC	М	5	3	11,11,12	1.04	1 (9%)	15,15,17	1.32	2 (13%)				

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	GLC	С	1	2	-	2/2/22/22	0/1/1/1
2	GLC	С	2	2	-	0/2/19/22	0/1/1/1
2	GLC	С	3	2	-	0/2/19/22	0/1/1/1
2	GLC	С	4	2	-	1/2/19/22	0/1/1/1
3	GLC	D	1	3	-	0/2/22/22	0/1/1/1
3	GLC	D	2	3	-	2/2/19/22	0/1/1/1
3	GLC	D	3	3	-	2/2/19/22	0/1/1/1
3	GLC	D	4	3	-	1/2/19/22	0/1/1/1
3	GLC	D	5	3	-	2/2/19/22	0/1/1/1
2	GLC	E	1	2	-	2/2/19/22	0/1/1/1

5D0F

Conti	nued fro	m previoi	is page				
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	GLC	E	2	2	-	1/2/19/22	0/1/1/1
2	GLC	Ε	3	2	-	2/2/19/22	0/1/1/1
2	GLC	Е	4	2	-	1/2/19/22	0/1/1/1
4	GLC	F	1	4	-	1/2/22/22	0/1/1/1
4	GLC	F	2	4	-	0/2/19/22	0/1/1/1
4	GLC	F	3	4	-	1/2/19/22	0/1/1/1
3	GLC	G	1	3	-	0/2/22/22	0/1/1/1
3	GLC	G	2	3	-	0/2/19/22	0/1/1/1
3	GLC	G	3	3	-	0/2/19/22	0/1/1/1
3	GLC	G	4	3	-	0/2/19/22	0/1/1/1
3	GLC	G	5	3	-	0/2/19/22	0/1/1/1
2	GLC	Н	1	2	-	2/2/19/22	0/1/1/1
2	GLC	Н	2	2	-	2/2/19/22	0/1/1/1
2	GLC	Н	3	2	-	0/2/19/22	0/1/1/1
2	GLC	Н	4	2	-	2/2/19/22	0/1/1/1
2	GLC	Ι	1	2	-	2/2/22/22	0/1/1/1
2	GLC	Ι	2	2	-	0/2/19/22	0/1/1/1
2	GLC	Ι	3	2	-	2/2/19/22	0/1/1/1
2	GLC	Ι	4	2	-	1/2/19/22	0/1/1/1
3	GLC	J	1	3	-	2/2/22/22	0/1/1/1
3	GLC	J	2	3	-	1/2/19/22	0/1/1/1
3	GLC	J	3	3	-	2/2/19/22	0/1/1/1
3	GLC	J	4	3	-	2/2/19/22	0/1/1/1
3	GLC	J	5	3	-	2/2/19/22	0/1/1/1
2	GLC	K	1	2	-	0/2/19/22	0/1/1/1
2	GLC	K	2	2	-	2/2/19/22	0/1/1/1
2	GLC	K	3	2	-	0/2/19/22	0/1/1/1
2	GLC	K	4	2	-	1/2/19/22	0/1/1/1
4	GLC	L	1	4	-	0/2/22/22	0/1/1/1
4	GLC	L	2	4	-	1/2/19/22	0/1/1/1
4	GLC	L	3	4	-	2/2/19/22	0/1/1/1
3	GLC	М	1	3	-	2/2/22/22	0/1/1/1
3	GLC	М	2	3	_	0/2/19/22	0/1/1/1
3	GLC	М	3	3	-	2/2/19/22	0/1/1/1
3	GLC	М	4	3	-	1/2/19/22	0/1/1/1
3	GLC	М	5	3	-	0/2/19/22	0/1/1/1

 α atia J fa .

All (43) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
3	J	2	GLC	O5-C1	4.25	1.50	1.43
2	Ι	4	GLC	O5-C1	4.05	1.50	1.43
3	J	2	GLC	O5-C5	3.87	1.51	1.43
3	D	2	GLC	O5-C1	3.69	1.49	1.43
2	С	4	GLC	O5-C1	3.58	1.49	1.43
4	F	2	GLC	O5-C5	3.56	1.50	1.43
2	С	4	GLC	O5-C5	3.52	1.50	1.43
2	Е	4	GLC	O5-C1	2.96	1.48	1.43
2	С	4	GLC	C2-C3	2.91	1.56	1.52
2	Н	3	GLC	O5-C1	2.86	1.48	1.43
2	Ι	4	GLC	O5-C5	2.82	1.49	1.43
2	Н	2	GLC	O5-C1	2.80	1.48	1.43
2	K	1	GLC	O4-C4	2.78	1.49	1.43
3	G	5	GLC	C4-C5	2.77	1.58	1.53
2	Ι	3	GLC	O5-C5	2.73	1.49	1.43
3	J	2	GLC	C4-C5	2.69	1.58	1.53
3	D	2	GLC	O5-C5	2.66	1.48	1.43
2	Н	2	GLC	C1-C2	2.60	1.58	1.52
2	Κ	4	GLC	O5-C1	2.58	1.47	1.43
2	K	3	GLC	O5-C1	2.51	1.47	1.43
2	Н	1	GLC	C4-C5	2.50	1.58	1.53
4	F	2	GLC	O5-C1	2.49	1.47	1.43
2	С	3	GLC	C1-C2	2.47	1.57	1.52
3	J	1	GLC	C4-C5	2.46	1.58	1.53
3	J	1	GLC	O4-C4	2.44	1.48	1.43
3	G	2	GLC	O5-C1	2.42	1.47	1.43
2	С	2	GLC	O4-C4	2.38	1.48	1.43
3	J	4	GLC	O5-C1	2.37	1.47	1.43
2	С	3	GLC	C2-C3	2.30	1.55	1.52
2	K	1	GLC	C4-C3	2.25	1.58	1.52
4	F	3	GLC	O5-C1	2.23	1.47	1.43
3	J	5	GLC	O5-C1	2.23	1.47	1.43
2	С	3	GLC	O4-C4	2.23	1.48	1.43
2	Н	2	GLC	O4-C4	2.20	1.48	1.43
2	К	2	GLC	O4-C4	2.20	1.48	1.43
2	Κ	4	GLC	O5-C5	2.17	1.47	1.43
3	G	5	GLC	C4-C3	2.15	1.57	1.52
2	Е	1	GLC	C4-C5	2.11	1.57	1.53
2	Κ	1	GLC	C2-C3	2.08	1.55	1.52
2	Н	4	GLC	O5-C1	2.07	1.47	1.43
3	М	5	GLC	C2-C3	2.06	1.55	1.52
2	Н	3	GLC	O5-C5	2.04	1.47	1.43
2	Е	3	GLC	C4-C5	-2.02	1.48	1.53

5D0F

Mol	Chain	Res	Type	Atoms	Z	Observed(^o)	Ideal(°)
3	J	2	GLC	C1-O5-C5	9.60	125.20	112.19
4	F	2	GLC	C1-O5-C5	8.92	124.28	112.19
2	Ι	3	GLC	C1-O5-C5	8.55	123.77	112.19
2	K	1	GLC	O5-C5-C6	7.07	118.29	107.20
2	Е	4	GLC	C1-O5-C5	7.00	121.67	112.19
2	К	1	GLC	C1-O5-C5	6.65	121.20	112.19
2	Н	3	GLC	C1-O5-C5	6.42	120.89	112.19
4	L	2	GLC	C1-O5-C5	6.13	120.50	112.19
2	K	4	GLC	C1-O5-C5	5.99	120.31	112.19
4	L	3	GLC	C1-O5-C5	5.69	119.90	112.19
2	K	3	GLC	O5-C5-C6	5.66	116.08	107.20
3	М	4	GLC	C1-O5-C5	5.50	119.65	112.19
2	Н	2	GLC	C1-O5-C5	5.30	119.37	112.19
2	Ι	4	GLC	C1-O5-C5	5.28	119.34	112.19
2	Н	4	GLC	O5-C5-C6	5.24	115.41	107.20
4	F	3	GLC	C1-O5-C5	5.16	119.18	112.19
2	Е	1	GLC	O5-C5-C6	5.14	115.26	107.20
3	J	3	GLC	O5-C5-C6	4.73	114.62	107.20
2	K	1	GLC	C2-C3-C4	4.41	118.53	110.89
2	Ι	2	GLC	C1-O5-C5	4.36	118.10	112.19
4	F	2	GLC	O5-C5-C6	4.33	114.00	107.20
2	С	4	GLC	O5-C5-C6	4.22	113.81	107.20
2	K	1	GLC	C1-C2-C3	4.09	114.69	109.67
3	D	2	GLC	O5-C5-C6	4.07	113.58	107.20
3	D	4	GLC	C1-O5-C5	3.72	117.24	112.19
3	G	5	GLC	C3-C4-C5	3.72	116.88	110.24
2	С	3	GLC	C1-C2-C3	3.69	114.20	109.67
3	D	2	GLC	C1-O5-C5	3.61	117.09	112.19
3	G	4	GLC	C1-O5-C5	3.56	117.01	112.19
2	E	1	GLC	C1-O5-C5	3.50	116.94	112.19
2	С	2	GLC	C3-C4-C5	-3.50	104.00	110.24
2	С	1	GLC	O5-C5-C4	3.49	116.04	109.69
2	E	3	GLC	C1-O5-C5	3.36	116.75	112.19
2	Н	2	GLC	C1-C2-C3	3.28	113.69	109.67
2	E	3	GLC	O5-C5-C6	3.26	112.31	107.20
2	C	4	GLC	C1-O5-C5	3.13	116.44	112.19
2	C	3	GLC	C3-C4-C5	-2.91	105.04	110.24
2	I	2	GLC	<u>05-C5-C6</u>	-2.91	102.65	107.20
2	K	1	GLC	O5-C1-C2	2.88	115.21	110.77
3	J	4	GLC	O5-C5-C6	2.86	111.69	107.20
3	J	3	GLC	C1-O5-C5	2.83	116.02	112.19
3	G	5	GLC	C1-O5-C5	2.82	116.01	112.19

All (100) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	J	5	GLC	O5-C5-C6	2.77	111.55	107.20
2	Н	2	GLC	O5-C1-C2	2.76	115.03	110.77
3	G	3	GLC	C3-C4-C5	2.76	115.17	110.24
3	М	5	GLC	C1-C2-C3	2.76	113.06	109.67
2	Κ	3	GLC	C3-C4-C5	-2.74	105.36	110.24
3	J	4	GLC	C1-O5-C5	2.74	115.90	112.19
3	D	3	GLC	O5-C5-C6	2.73	111.49	107.20
2	Е	2	GLC	O5-C5-C6	2.68	111.41	107.20
2	Ι	4	GLC	O5-C5-C6	2.66	111.38	107.20
2	Ι	3	GLC	O5-C5-C6	2.66	111.38	107.20
2	Κ	2	GLC	C3-C4-C5	-2.63	105.54	110.24
3	J	2	GLC	O5-C5-C6	2.63	111.33	107.20
2	Κ	2	GLC	C1-C2-C3	2.62	112.89	109.67
3	D	4	GLC	C3-C4-C5	-2.60	105.59	110.24
3	D	4	GLC	C2-C3-C4	-2.57	106.45	110.89
2	Ι	2	GLC	C2-C3-C4	-2.55	106.47	110.89
2	Κ	1	GLC	C3-C4-C5	2.53	114.75	110.24
4	F	2	GLC	C6-C5-C4	-2.52	107.11	113.00
3	D	1	GLC	C1-O5-C5	2.49	118.36	113.66
3	М	1	GLC	O5-C5-C6	2.45	112.53	106.44
3	G	1	GLC	C6-C5-C4	-2.45	107.27	113.00
3	G	4	GLC	O5-C5-C6	2.43	111.01	107.20
2	Κ	1	GLC	O3-C3-C2	-2.39	105.42	109.99
3	G	5	GLC	O5-C1-C2	-2.38	107.09	110.77
2	Е	1	GLC	C6-C5-C4	-2.38	107.43	113.00
2	Ι	2	GLC	C3-C4-C5	-2.37	106.01	110.24
2	Е	2	GLC	C1-C2-C3	2.36	112.56	109.67
3	J	3	GLC	C6-C5-C4	-2.36	107.49	113.00
2	Ε	1	GLC	C2-C3-C4	2.35	114.96	110.89
4	L	1	GLC	O6-C6-C5	-2.35	103.23	111.29
3	D	3	GLC	C3-C4-C5	2.34	114.41	110.24
3	D	1	GLC	C6-C5-C4	-2.33	107.54	113.00
2	Ι	1	GLC	C3-C4-C5	2.32	114.39	110.24
2	Е	1	GLC	C3-C4-C5	2.31	114.35	110.24
2	Ι	1	GLC	O5-C5-C4	2.30	113.87	109.69
3	D	1	GLC	O5-C5-C4	2.29	113.85	109.69
2	Н	4	GLC	C1-C2-C3	2.27	112.45	109.67
3	М	3	GLC	O4-C4-C3	-2.25	105.14	110.35
3	G	2	GLC	O5-C5-C6	2.23	110.71	107.20
2	Н	1	GLC	O4-C4-C3	-2.21	105.25	110.35
3	G	2	GLC	C1-C2-C3	2.20	112.37	109.67
3	G	2	GLC	O4-C4-C3	-2.16	105.35	110.35

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	Η	2	GLC	O4-C4-C5	2.16	114.67	109.30
3	J	1	GLC	C3-C4-C5	-2.16	106.38	110.24
4	F	1	GLC	C3-C4-C5	-2.15	106.40	110.24
3	D	5	GLC	C2-C3-C4	-2.15	107.18	110.89
4	L	2	GLC	C6-C5-C4	-2.13	108.00	113.00
2	Ι	3	GLC	C2-C3-C4	-2.13	107.20	110.89
3	М	3	GLC	O5-C5-C6	2.11	110.52	107.20
3	J	5	GLC	C3-C4-C5	-2.11	106.47	110.24
3	М	5	GLC	C3-C4-C5	2.11	114.00	110.24
2	Κ	3	GLC	C2-C3-C4	-2.11	107.25	110.89
3	G	5	GLC	O5-C5-C4	2.10	115.94	110.83
3	G	5	GLC	O6-C6-C5	-2.05	104.25	111.29
2	С	1	GLC	C3-C4-C5	2.02	113.84	110.24
2	С	2	GLC	C1-C2-C3	2.02	112.15	109.67
2	Ι	4	GLC	O6-C6-C5	-2.01	104.41	111.29
2	Н	3	GLC	C2-C3-C4	-2.00	107.43	110.89

There are no chirality outliers.

`	/			
Mol	Chain	\mathbf{Res}	Type	Atoms
2	Н	4	GLC	O5-C5-C6-O6
3	J	3	GLC	O5-C5-C6-O6
2	Н	2	GLC	C4-C5-C6-O6
3	D	3	GLC	O5-C5-C6-O6
2	Ι	3	GLC	O5-C5-C6-O6
3	J	1	GLC	C4-C5-C6-O6
3	J	5	GLC	C4-C5-C6-O6
2	Е	3	GLC	O5-C5-C6-O6
2	K	2	GLC	O5-C5-C6-O6
3	D	5	GLC	C4-C5-C6-O6
2	Н	1	GLC	O5-C5-C6-O6
2	С	1	GLC	C4-C5-C6-O6
2	Н	2	GLC	O5-C5-C6-O6
4	L	3	GLC	O5-C5-C6-O6
2	Ι	1	GLC	C4-C5-C6-O6

3

3

1

45

3

Ι

D

С

Η

D

J

2

3

2

2

3

3

GLC

GLC

GLC

GLC

GLC

GLC

All (49) torsion outliers are listed below:

Continued on next page...

C4-C5-C6-O6

C4-C5-C6-O6

O5-C5-C6-O6

C4-C5-C6-O6

O5-C5-C6-O6

C4-C5-C6-O6

Mol	Chain	Res	Type	Atoms
2	Е	1	GLC	O5-C5-C6-O6
3	D	2	GLC	C4-C5-C6-O6
2	Е	1	GLC	C4-C5-C6-O6
3	D	2	GLC	O5-C5-C6-O6
2	Е	3	GLC	C4-C5-C6-O6
2	Κ	2	GLC	C4-C5-C6-O6
3	J	1	GLC	O5-C5-C6-O6
3	J	5	GLC	O5-C5-C6-O6
2	Ι	1	GLC	O5-C5-C6-O6
4	L	3	GLC	C4-C5-C6-O6
3	М	1	GLC	O5-C5-C6-O6
3	М	3	GLC	O5-C5-C6-O6
3	J	4	GLC	O5-C5-C6-O6
3	М	3	GLC	C4-C5-C6-O6
4	F	1	GLC	O5-C5-C6-O6
2	Е	2	GLC	O5-C5-C6-O6
2	Н	1	GLC	C4-C5-C6-O6
4	F	3	GLC	O5-C5-C6-O6
2	К	4	GLC	O5-C5-C6-O6
2	С	4	GLC	O5-C5-C6-O6
2	Ι	4	GLC	O5-C5-C6-O6
3	М	1	GLC	C4-C5-C6-O6
2	Е	4	GLC	O5-C5-C6-O6
3	D	4	GLC	O5-C5-C6-O6
3	J	4	GLC	C4-C5-C6-O6
3	J	2	GLC	C4-C5-C6-O6
4	L	2	GLC	C4-C5-C6-O6
3	М	4	GLC	O5-C5-C6-O6

Continued from previous page...

There are no ring outliers.

2 monomers are involved in 2 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	М	4	GLC	1	0
4	L	1	GLC	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	< RSRZ >	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	1526/1528~(99%)	0.06	50 (3%) 46 44	50, 86, 144, 176	0
1	В	1526/1528~(99%)	0.07	60 (3%) 39 37	50, 83, 146, 190	0
All	All	3052/3056~(99%)	0.07	110 (3%) 42 40	50, 85, 145, 190	0

All (110) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	А	281	TYR	5.7
1	В	1245	GLU	5.7
1	А	1457	SER	5.5
1	А	1458	ALA	4.6
1	В	1244	GLY	4.1
1	В	289	ASP	4.1
1	В	427	LYS	4.0
1	В	288	VAL	4.0
1	В	488	TYR	3.9
1	В	1242	LYS	3.7
1	В	308	LEU	3.6
1	В	1206	LEU	3.6
1	А	363	LEU	3.5
1	В	1165	TYR	3.4
1	В	489	LEU	3.4
1	А	1334	ILE	3.3
1	В	379	ILE	3.3
1	В	364	GLY	3.2
1	В	1224	GLU	3.2
1	А	282	PRO	3.1
1	В	423	PHE	3.1
1	В	1210	MET	3.1
1	В	425	ARG	3.1
1	А	1328	PHE	3.1

Conti	nued from	n previo	ous page.	••
Mol	Chain	Roc	Type	E

Mol	Chain	Res	Type	RSRZ
1	А	338	ILE	3.1
1	А	1246	SER	3.1
1	В	426	ILE	3.0
1	В	1208	ARG	3.0
1	В	371	ILE	3.0
1	В	291	LEU	3.0
1	А	1301	LEU	2.9
1	В	1226	GLY	2.9
1	В	1412	ASP	2.9
1	А	438	GLN	2.9
1	В	283	VAL	2.9
1	В	447	LEU	2.9
1	А	273	SER	2.8
1	В	1416	PHE	2.8
1	A	337	ASN	2.8
1	А	309	TRP	2.8
1	В	298	ILE	2.7
1	В	421	GLN	2.7
1	А	275	GLN	2.7
1	В	1205	ASN	2.7
1	В	491	ARG	2.7
1	А	307	LYS	2.7
1	В	1246	SER	2.7
1	А	1298	LYS	2.6
1	А	1224	GLU	2.6
1	В	1223	TRP	2.6
1	В	493	VAL	2.6
1	В	1209	VAL	2.6
1	В	424	ASN	2.6
1	В	1204	PRO	2.6
1	В	309	TRP	2.6
1	В	384	HIS	2.6
1	В	303	ILE	2.6
1	А	1424	TYR	2.5
1	В	438	GLN	2.5
1	А	312	TYR	2.5
1	А	1247	GLU	2.5
1	А	283	VAL	2.5
1	В	251	TYR	2.4
1	В	307	LYS	2.4
1	A	339	PRO	2.4
1	В	269	LEU	2.4

Continued from previous page								
Mol	Chain	Res	Type	RSRZ				
1	В	337	ASN	2.4				
1	В	383	LEU	2.4				
1	А	1243	MET	2.3				
1	В	284	ASP	2.3				
1	А	489	LEU	2.3				
1	А	1223	TRP	2.3				
1	В	428	TYR	2.3				
1	А	423	PHE	2.3				
1	В	1304	TRP	2.3				
1	А	1514	CYS	2.3				
1	А	1085	GLY	2.3				
1	А	1456	GLY	2.3				
1	А	447	LEU	2.2				
1	А	1321	ASN	2.2				
1	В	292	ILE	2.2				
1	А	291	LEU	2.2				
1	В	1267	ASN	2.2				
1	А	1252	VAL	2.2				
1	В	681	GLU	2.2				
1	А	350	PHE	2.2				
1	В	504	TYR	2.2				
1	В	354	ASN	2.2				
1	А	1345	TYR	2.2				
1	А	407	PHE	2.2				
1	А	439	GLY	2.2				
1	А	434	HIS	2.2				
1	А	426	ILE	2.2				
1	В	1334	ILE	2.1				
1	А	1319	PRO	2.1				
1	А	1354	TYR	2.1				
1	В	376	PHE	2.1				
1	А	111	LEU	2.1				
1	А	295	MET	2.1				
1	А	272	PHE	2.1				
1	В	1121	ASN	2.1				
1	В	1227	LEU	2.1				
1	А	292	ILE	2.0				
1	В	287	THR	2.0				
1	В	1203	GLY	2.0				
1	А	1208	ARG	2.0				
1	В	492	GLU	2.0				
1	А	347	LEU	2.0				

Continued from previous page...

Mol	Chain	\mathbf{Res}	Type	RSRZ
1	А	269	LEU	2.0
1	А	1422	ARG	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
2	GLC	Н	3	11/12	0.48	0.24	147,167,186,188	0
3	GLC	М	5	11/12	0.58	0.62	186,201,208,211	0
2	GLC	Н	4	11/12	0.60	0.31	154,180,189,196	0
3	GLC	G	1	12/12	0.62	0.67	131,183,190,194	0
3	GLC	М	2	11/12	0.65	0.33	150,177,181,188	0
2	GLC	Н	1	11/12	0.65	0.25	113,137,147,147	0
3	GLC	М	3	11/12	0.69	0.31	146,173,184,185	0
2	GLC	Ι	4	11/12	0.71	0.28	110,127,136,153	0
2	GLC	K	4	11/12	0.72	0.33	108,120,135,136	0
3	GLC	G	5	11/12	0.73	0.25	174,185,191,192	0
2	GLC	С	4	11/12	0.75	0.35	98,128,136,141	0
2	GLC	Н	2	11/12	0.76	0.32	135,152,165,172	0
4	GLC	L	3	11/12	0.80	0.22	130,145,159,162	0
3	GLC	D	5	11/12	0.82	0.34	144,152,172,173	0
3	GLC	М	4	11/12	0.82	0.44	159,174,189,199	0
3	GLC	М	1	12/12	0.82	0.38	137,168,174,178	0
2	GLC	K	1	11/12	0.82	0.21	104,121,127,130	0
3	GLC	D	1	12/12	0.83	0.59	117,135,142,144	0
3	GLC	G	4	11/12	0.84	0.24	147,197,208,208	0
2	GLC	Ι	1	12/12	0.84	0.29	$138,\!144,\!158,\!162$	0
3	GLC	D	2	11/12	0.84	0.37	126,132,138,142	0
3	GLC	G	2	11/12	0.84	0.38	138,157,166,171	0
2	GLC	С	3	11/12	0.85	0.28	107,113,133,135	0
4	GLC	F	2	11/12	0.85	0.21	129,167,181,185	0
3	GLC	G	3	11/12	0.85	0.33	$151,\!166,\!173,\!187$	0
3	GLC	J	1	12/12	0.86	0.38	129,138,144,145	0

$\mathbf{M} \mathbf{L} = \mathbf{M} \mathbf{L} $								
Mol	Type	Chain	Res	Atoms	RSCC	RSR	B -factors(A^2)	Q<0.9
2	GLC	Ε	1	11/12	0.86	0.17	$120,\!125,\!132,\!135$	0
2	GLC	Е	4	11/12	0.86	0.20	105,119,126,132	0
2	GLC	С	1	12/12	0.86	0.42	124,143,157,171	0
4	GLC	F	3	11/12	0.87	0.30	152,169,173,179	0
4	GLC	F	1	12/12	0.87	0.22	157,161,164,164	0
2	GLC	Ι	3	11/12	0.88	0.24	105,118,134,142	0
2	GLC	С	2	11/12	0.88	0.39	102,114,121,128	0
4	GLC	L	1	12/12	0.90	0.13	114,131,133,141	0
3	GLC	J	5	11/12	0.90	0.44	121,129,135,137	0
3	GLC	J	2	11/12	0.91	0.50	123,129,144,145	0
2	GLC	Ι	2	11/12	0.91	0.21	102,109,115,120	0
3	GLC	J	4	11/12	0.92	0.49	108,120,128,128	0
3	GLC	D	4	11/12	0.92	0.24	123,133,142,148	0
2	GLC	Κ	2	11/12	0.92	0.19	112,113,119,119	0
4	GLC	L	2	11/12	0.92	0.18	124,134,166,190	0
2	GLC	Е	2	11/12	0.92	0.17	92,108,117,118	0
2	GLC	К	3	11/12	0.95	0.19	91,93,100,105	0
3	GLC	J	3	11/12	0.95	0.42	105,117,120,125	0
3	GLC	D	3	11/12	0.95	0.30	112,129,140,143	0
2	GLC	Е	3	11/12	0.96	0.14	71,78,90,91	0

The following is a graphical depiction of the model fit to experimental electron density for oligosaccharide. Each fit is shown from different orientation to approximate a three-dimensional view.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

