

wwPDB X-ray Structure Validation Summary Report (i)

Apr 30, 2024 – 06:53 pm BST

PDB ID	:	4D18
Title	:	Crystal structure of the COP9 signalosome
Authors	:	Bunker, R.D.; Lingaraju, G.M.; Thoma, N.H.
Deposited on	:	2014-05-01
Resolution	:	4.08 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Xtriage (Phenix)	:	1.13
EDS	:	2.36.2
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 4.08 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R_{free}	130704	1133 (4.46-3.70)
Clashscore	141614	1013 (4.42-3.74)
Ramachandran outliers	138981	1151 (4.46-3.70)
Sidechain outliers	138945	1139 (4.46-3.70)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain	
1	А	480	80%	7% 13%
1	Ι	480	80%	7% 13%
2	В	447	79%	10% • 10%
2	J	447	79%	11% • 10%
3	С	427	81%	12% • 6%
3	K	427	81%	12% • 6%
4	D	410	88%	11% •

Mol	Chain	Length	Quality of chain	
4	L	410	88%	10% ••
5	Е	327	80%	11% 9%
5	М	327	81%	9% • 9%
6	F	331	74% 11%	15%
6	Ν	331	73% 12%	15%
7	G	222	82%	12% 6%
7	Ο	222	81%	12% 6%
8	Н	213	75% 6%	19%
8	Р	213	76% 6%	19%

2 Entry composition (i)

There are 9 unique types of molecules in this entry. The entry contains 41422 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
1	Λ	410	Total	С	Ν	0	\mathbf{S}	0	0	0
1	Л	419	3348	2113	588	625	22	0	0	0
1	т	410	Total	С	Ν	0	S	0	0	0
1	1	419	3348	2113	588	625	22	0	0	0

• Molecule 1 is a protein called COP9 SIGNALOSOME COMPLEX SUBUNIT 1.

There are 8	discrepancies	between	the modelled	and	reference sequences:
I nore are o	discrepancies	Detween	une modelled	and	renerence sequences.

Chain	Residue	Modelled	Actual	Comment	Reference
А	48	GLY	-	expression tag	UNP Q13098
А	49	GLY	-	expression tag	UNP Q13098
А	50	GLY	-	expression tag	UNP Q13098
А	51	ARG	-	expression tag	UNP Q13098
Ι	48	GLY	-	expression tag	UNP Q13098
Ι	49	GLY	-	expression tag	UNP Q13098
Ι	50	GLY	-	expression tag	UNP Q13098
Ι	51	ARG	-	expression tag	UNP Q13098

• Molecule 2 is a protein called COP9 SIGNALOSOME COMPLEX SUBUNIT 2.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
9	В	403	Total	С	Ν	0	\mathbf{S}	0	0	0
	D		3304	2102	566	621	15	0		
0	т	402	Total	С	Ν	0	S	0	0	0
	J	403	3304	2102	566	621	15	0	0	0

There are 8 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
В	-3	GLY	-	expression tag	UNP P61201
В	-2	GLY	-	expression tag	UNP P61201
В	-1	GLY	-	expression tag	UNP P61201
В	0	ARG	-	expression tag	UNP P61201

Chain	Residue	Modelled	Actual	Comment	Reference						
J	-3	GLY	-	expression tag	UNP P61201						
J	-2	GLY	-	expression tag	UNP P61201						
J	-1	GLY	-	expression tag	UNP P61201						
J	0	ARG	-	expression tag	UNP P61201						

Continued from previous page...

• Molecule 3 is a protein called COP9 SIGNALOSOME COMPLEX SUBUNIT 3.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
3	С	401	Total 3191	C 2032	N 535	O 598	S 26	0	0	0
3	K	401	Total 3191	C 2032	N 535	O 598	S 26	0	0	0

There are 8 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
С	-3	GLY	-	expression tag	UNP Q9UNS2
С	-2	GLY	-	expression tag	UNP Q9UNS2
С	-1	GLY	-	expression tag	UNP Q9UNS2
С	0	ARG	-	expression tag	UNP Q9UNS2
K	-3	GLY	-	expression tag	UNP Q9UNS2
K	-2	GLY	-	expression tag	UNP Q9UNS2
K	-1	GLY	-	expression tag	UNP Q9UNS2
K	0	ARG	-	expression tag	UNP Q9UNS2

• Molecule 4 is a protein called COP9 SIGNALOSOME COMPLEX SUBUNIT 4.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
4	D	406	Total 3251	C 2047	N 566	O 622	S 16	0	0	0
4	L	406	Total 3251	C 2047	N 566	O 622	S 16	0	0	0

There are 8 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
D	-3	GLY	-	expression tag	UNP Q9BT78
D	-2	GLY	-	expression tag	UNP Q9BT78
D	-1	GLY	-	expression tag	UNP Q9BT78
D	0	ARG	-	expression tag	UNP Q9BT78
L	-3	GLY	-	expression tag	UNP Q9BT78
L	-2	GLY	-	expression tag	UNP Q9BT78

Chain	Residue	Modelled	Actual	Comment	Reference
L	-1	GLY	-	expression tag	UNP Q9BT78
L	0	ARG	-	expression tag	UNP Q9BT78

• Molecule 5 is a protein called COP9 SIGNALOSOME COMPLEX SUBUNIT 5.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
5	Е	298	Total	C 1510	N 303	0 450	S 13	0	0	0
		200	Z300 Total	1310 C	<u> </u>	430 O	$\frac{13}{S}$			
5	M	298	2366	1510	393	450	13	0	0	0

There are 8 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
E	8	GLY	-	expression tag	UNP Q92905
Е	9	GLY	-	expression tag	UNP Q92905
E	10	GLY	-	expression tag	UNP Q92905
E	11	ARG	-	expression tag	UNP Q92905
М	8	GLY	-	expression tag	UNP Q92905
М	9	GLY	-	expression tag	UNP Q92905
М	10	GLY	-	expression tag	UNP Q92905
M	11	ARG	-	expression tag	UNP Q92905

• Molecule 6 is a protein called COP9 SIGNALOSOME COMPLEX SUBUNIT 6.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
6	F	281	Total 2236	C 1429	N 371	0 421	S 15	0	0	0
6	N	281	Total 2236	C 1429	N 371	O 421	S 15	0	0	0

There are 8 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
F	-3	GLY	-	expression tag	UNP Q7L5N1
F	-2	GLY	-	expression tag	UNP Q7L5N1
F	-1	GLY	-	expression tag	UNP Q7L5N1
F	0	ARG	-	expression tag	UNP Q7L5N1
N	-3	GLY	-	expression tag	UNP Q7L5N1
N	-2	GLY	-	expression tag	UNP Q7L5N1
N	-1	GLY	-	expression tag	UNP Q7L5N1
N	0	ARG	-	expression tag	UNP Q7L5N1

• Molecule 7 is a protein called COP9 SIGNALOSOME COMPLEX SUBUNIT 7A.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
7	C	208	Total	С	Ν	0	\mathbf{S}	0	0	0
1	G 208	208	1631	1028	287	312	4	0	0	0
7	0	208	Total	С	Ν	0	S	0	0	0
1	0	208	1631	1028	287	312	4	0	0	0

There are 8 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
G	-3	GLY	-	expression tag	UNP Q9UBW8
G	-2	GLY	-	expression tag	UNP Q9UBW8
G	-1	GLY	-	expression tag	UNP Q9UBW8
G	0	ARG	-	expression tag	UNP Q9UBW8
0	-3	GLY	-	expression tag	UNP Q9UBW8
0	-2	GLY	-	expression tag	UNP Q9UBW8
0	-1	GLY	-	expression tag	UNP Q9UBW8
0	0	ARG	-	expression tag	UNP Q9UBW8

• Molecule 8 is a protein called COP9 SIGNALOSOME COMPLEX SUBUNIT 8.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
8	Ц	173	Total	С	Ν	0	S	0	0	0
0	11	175	1383	885	240	254	4	0	0	0
0	D	172	Total	С	Ν	Ο	S	0	0	0
0	1	175	1383	885	240	254	4	0	0	0

There are 8 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Н	-3	GLY	-	expression tag	UNP Q99627
Н	-2	GLY	-	expression tag	UNP Q99627
Н	-1	GLY	-	expression tag	UNP Q99627
Н	0	ARG	-	expression tag	UNP Q99627
Р	-3	GLY	-	expression tag	UNP Q99627
Р	-2	GLY	-	expression tag	UNP Q99627
Р	-1	GLY	-	expression tag	UNP Q99627
Р	0	ARG	-	expression tag	UNP Q99627

• Molecule 9 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
9	Е	1	Total Zn 1 1	0	0
9	М	1	Total Zn 1 1	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

Chain A:	80%	7% 13%	
GLY GLY GLY GLY GLY ALA ALA ALA CLU GLU CLU CLU CLU CLU CLU CLU CLU	AN AVAL ASP GLN GLN GLN GLN GLN GLN ASP ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	L138 P149 ASP ASP ASP ASP ALA ALA CLU GLU GLU GLU CLU GLU GLU GLU GLU GLU CLU GLU GLU CLU GLU CLU CLU CLU CLU CLU CLU CLU CLU CLU C	L204
1242 1242 1254 1267 1267 1267 1276 1276	1283 4289 1294 5310 8310 1354 1355 1355 1355 1355 1356 1356 1356 1356	1449 1445 1445 1446 1446 1446 1446 1446 1446	GLY GLU LEU
THR PRO ALA ALA ASN SER GLN SER ARG MET ASN MET			
• Molecule 1: CO	P9 SIGNALOSOME COMPLEX	SUBUNIT 1	
Chain I:	80%	7% 13%	
GLY GLY GLY GLY ALA ALA ALA ALA CLU GLU GLU GLU GLU GLU CLE CLE CLE CLE CLE CLE CLE CLE CLE CLE	VAL VAL ASP GLN GLN GLN GLN GLN GLN ASP ASP ASP ASN ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	L138 P149 ASP ASP ASP ASP ASP ASP ALA CLU GLU GLU GLU F160 CLU GLU GLU G200 G200 G200	L204
1242 V264 V268 Q270 Q276 D275 T283	A299 1294 8310 8310 8310 4333 7554 1337 1554 1554 1554 1411 1411 1411 1423 1411 1423 1411 1423 1411 1423 1411	1449 1449 1476 1476 1476 1476 147 1489 1489 1489 1489 1489 1489 1489 1489	GLU LEU THR
PRO ALA ASN SER GLN SER ARG THR THR ASN MET			
• Molecule 2: COl	P9 SIGNALOSOME COMPLEX	SUBUNIT 2	
Chain B:	79%	10% • 10%	
GLY GLY GLY GLY ARG ARF ARF ARF ARF ARF ARF ARF ARF ARF	ASP ASP ASP CUU CUU ASP ASP ASP CUU CUU ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	V57 V57 L58 E59 L60 E60 E60 R64 R64 V64 V64 V64 V64 V64 V64 V152 V152 V152 V152	L172
diter of the second sec	0193 1194 1194 1197 1197 1200 1200 1201 1223 1223 1223 1223 1223	2270 P271 1291 1291 1292 1293 1295 1295 1343 1343 1369 1343 1369 1343 1368 1343 1368 1343	D403
8 <u>7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8</u>	a		

• Molecule 1: COP9 SIGNALOSOME COMPLEX SUBUNIT 1

- L409 D412 0414 R420 N429 N429 N429 N435 V439 V439 A443
- Molecule 2: COP9 SIGNALOSOME COMPLEX SUBUNIT 2

A294 GLY A296 AL D295 AL D295 AL D304 AL D305 AL D306 AL H307 AL M33 AL H307 AL M33 AL M34 AL A36 L37 L355 R153 E365 R153 E365 R153 E365 R153 E365 R153 C70 V194 A366 E165 H366 E165 H366 H168 A366 E165 M400 M194 M400 M194 M197 V194 Y187 Y188 Y187 Y184 Y187 Y184 Y184 Y184 Y184 Y184 Y184 Y184 Y185 Y184

• Molecule 5: COP9 SIGNALOSOME COMPLEX SUBUNIT 5

Chain E: 80% 11% SER PHE MET LEU LEU GLU THR HIS ASP ASP LYS • Molecule 5: COP9 SIGNALOSOME COMPLEX SUBUNIT 5 Chain M: 81% 9% 9% GLY GLY GLY TTRP TTRP TTRP TTRP TTRP GLU MET MET ASN MET ASN MET ASN CLU CLU SER PHE MET LEU LEU GLU HIS ASP ASP ASP LYS • Molecule 6: COP9 SIGNALOSOME COMPLEX SUBUNIT 6 Chain F: 74% 11% 15% GLY ILE GLY GLY ARG ARG ARG ARG GLY LEU PHE PHE ALA THR GLY SER GLY GLV ASN • Molecule 6: COP9 SIGNALOSOME COMPLEX SUBUNIT 6 Chain N: 73% 12% 15% THH GLY GLY GLY GLY ARG MET MET ARG GLY CLEU PHE PHE

• Molecule 7: COP9 SIGNALOSOME COMPLEX SUBUNIT 7A

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 31	Depositor
Cell constants	147.68Å 147.68Å 317.85Å	Deperitor
a, b, c, α , β , γ	90.00° 90.00° 120.00°	Depositor
$\mathbf{P}_{\text{accolution}}\left(\overset{\text{\&}}{\mathbf{A}}\right)$	52.98 - 4.08	Depositor
Resolution (A)	52.98 - 4.08	EDS
% Data completeness	100.0 (52.98-4.08)	Depositor
(in resolution range)	$100.0\ (52.98-4.08)$	EDS
R_{merge}	0.16	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.30 (at 4.14 \text{\AA})$	Xtriage
Refinement program	BUSTER 2.11.5	Depositor
B B c	0.236 , 0.253	Depositor
II, IIfree	0.263 , 0.277	DCC
R_{free} test set	3085 reflections $(5.00%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	175.9	Xtriage
Anisotropy	0.072	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.30 , 196.2	EDS
L-test for $twinning^2$	$< L > = 0.42, < L^2 > = 0.25$	Xtriage
	0.059 for -h,-k,l	
Estimated twinning fraction	0.115 for h,-h-k,-l	Xtriage
	0.067 for -k,-h,-l	
F_o, F_c correlation	0.90	EDS
Total number of atoms	41422	wwPDB-VP
Average B, all atoms $(Å^2)$	213.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.56% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Mol Chain		Bond lengths		ond angles
	Ullaili	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.38	0/3404	0.48	0/4588
1	Ι	0.37	0/3404	0.48	0/4588
2	В	0.42	0/3361	0.51	0/4522
2	J	0.42	0/3361	0.51	0/4522
3	С	0.55	2/3250~(0.1%)	0.64	3/4390~(0.1%)
3	Κ	0.56	2/3250~(0.1%)	0.64	3/4390~(0.1%)
4	D	0.41	0/3303	0.52	0/4460
4	L	0.39	0/3303	0.53	0/4460
5	Е	0.40	0/2417	0.54	0/3266
5	М	0.42	0/2417	0.54	0/3266
6	F	0.66	1/2282~(0.0%)	0.57	1/3092~(0.0%)
6	Ν	0.38	0/2281	0.57	2/3089~(0.1%)
7	G	0.37	0/1652	0.48	0/2239
7	0	0.38	0/1652	0.48	0/2239
8	Н	0.39	0/1416	0.49	0/1924
8	Р	0.39	0/1416	0.48	0/1924
All	All	0.44	5/42169~(0.0%)	0.54	9/56959~(0.0%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
3	С	0	6
3	Κ	0	6
All	All	0	12

All (5) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms		Observed(Å)	Ideal(Å)
6	F	40	SER	C-N	26.22	1.94	1.34
3	Κ	301	SER	C-O	-5.74	1.12	1.23
3	С	301	SER	C-O	-5.72	1.12	1.23
3	С	297	GLN	C-O	-5.40	1.13	1.23
3	Κ	297	GLN	C-O	-5.38	1.13	1.23

The worst 5 of 9 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
6	F	40	SER	O-C-N	-7.22	111.15	122.70
3	Κ	304	LYS	CA-C-O	-5.30	108.97	120.10
3	С	304	LYS	CA-C-O	-5.30	108.98	120.10
3	Κ	301	SER	CA-C-O	-5.29	109.00	120.10
3	С	301	SER	CA-C-O	-5.26	109.05	120.10

There are no chirality outliers.

5 of 12 planarity outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Group
3	С	295	VAL	Mainchain
3	С	296	LYS	Mainchain
3	С	300	SER	Mainchain
3	С	304	LYS	Mainchain
3	С	308	GLN	Mainchain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	3348	0	3385	22	0
1	Ι	3348	0	3385	26	0
2	В	3304	0	3351	25	0
2	J	3304	0	3351	35	0
3	С	3191	0	3208	26	0
3	K	3191	0	3208	21	0
4	D	3251	0	3253	31	0
4	L	3251	0	3253	39	0
5	Е	2366	0	2340	29	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
5	М	2366	0	2340	31	0
6	F	2236	0	2226	29	0
6	Ν	2236	0	2226	33	0
7	G	1631	0	1654	18	0
7	0	1631	0	1654	24	0
8	Н	1383	0	1366	7	0
8	Р	1383	0	1366	5	0
9	Ε	1	0	0	0	0
9	М	1	0	0	0	0
All	All	41422	0	41566	297	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 4.

The worst 5 of 297 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
6:F:40:SER:C	6:F:41:VAL:N	1.94	1.21
1:A:200:GLY:O	1:A:204:LEU:HD13	1.63	0.98
1:I:200:GLY:O	1:I:204:LEU:HD13	1.64	0.98
5:M:70:ARG:NH2	5:M:257:THR:HG22	1.78	0.97
3:K:41:HIS:O	3:K:44:THR:HG22	1.63	0.96

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Analysed Favoured Allowed		Outliers	Perce	entiles
1	А	415/480~(86%)	395~(95%)	16 (4%)	4 (1%)	15	52
1	Ι	415/480~(86%)	395~(95%)	17 (4%)	3(1%)	22	61

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
2	В	399/447~(89%)	365~(92%)	24 (6%)	10 (2%)	5	35
2	J	399/447~(89%)	365~(92%)	24 (6%)	10 (2%)	5	35
3	С	399/427~(93%)	360 (90%)	26~(6%)	13 (3%)	4	30
3	Κ	399/427~(93%)	360 (90%)	25~(6%)	14 (4%)	3	29
4	D	404/410~(98%)	399~(99%)	2(0%)	3 (1%)	22	61
4	L	404/410~(98%)	400 (99%)	1 (0%)	3 (1%)	22	61
5	Ε	294/327~(90%)	283~(96%)	8 (3%)	3 (1%)	15	52
5	М	294/327~(90%)	283~(96%)	9(3%)	2(1%)	22	61
6	F	277/331~(84%)	267~(96%)	8 (3%)	2(1%)	22	61
6	Ν	275/331~(83%)	264 (96%)	8 (3%)	3~(1%)	14	51
7	G	206/222~(93%)	195~(95%)	8 (4%)	3(2%)	10	45
7	Ο	206/222~(93%)	195~(95%)	8 (4%)	3(2%)	10	45
8	Н	169/213~(79%)	162 (96%)	7 (4%)	0	100	100
8	Р	169/213~(79%)	162 (96%)	7 (4%)	0	100	100
All	All	5124/5714~(90%)	4850 (95%)	198 (4%)	76 (2%)	10	45

Continued from previous page...

5 of 76 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
3	С	51	VAL
3	С	68	MET
3	С	153	LYS
4	D	294	ALA
5	Е	297	GLU

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	365/415~(88%)	362 (99%)	3 (1%)	81 89
1	Ι	365/415~(88%)	360 (99%)	5 (1%)	67 80

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
2	В	367/406~(90%)	359~(98%)	8 (2%)	52	71
2	J	367/406~(90%)	358~(98%)	9~(2%)	47	68
3	\mathbf{C}	358/378~(95%)	347~(97%)	11 (3%)	40	63
3	Κ	358/378~(95%)	348~(97%)	10 (3%)	43	65
4	D	347/348~(100%)	334~(96%)	13~(4%)	34	60
4	L	347/348~(100%)	342~(99%)	5 (1%)	67	80
5	Ε	255/278~(92%)	246~(96%)	9~(4%)	36	61
5	М	255/278~(92%)	247~(97%)	8 (3%)	40	63
6	F	251/277~(91%)	245~(98%)	6 (2%)	49	69
6	Ν	251/277~(91%)	247~(98%)	4 (2%)	62	79
7	G	174/184~(95%)	168~(97%)	6 (3%)	37	61
7	Ο	174/184~(95%)	168~(97%)	6 (3%)	37	61
8	Н	144/174~(83%)	138~(96%)	6 (4%)	30	56
8	Р	144/174~(83%)	138 (96%)	6 (4%)	30	56
All	All	$452\overline{2/4920}$ (92%)	4407 (98%)	115 (2%)	47	68

Continued from previous page...

5 of 115 residues with a non-rotameric side chain are listed below:

Mol	Mol Chain		Type
8	Н	40	LEU
8	Р	40	LEU
2	J	250	GLU
8	Р	33	THR
6	Ν	38	SER

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 30 such sidechains are listed below:

Mol	Chain	Res	Type
6	F	111	GLN
6	Ν	76	GLN
1	Ι	324	ASN
7	0	202	GLN
4	L	184	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 2 ligands modelled in this entry, 2 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
6	Ν	1
6	F	1

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	N	40:SER	С	41:VAL	N	2.59

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	F	40:SER	С	41:VAL	Ν	1.94

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.2 Non-standard residues in protein, DNA, RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.3 Carbohydrates (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.4 Ligands (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.5 Other polymers (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

