

Full wwPDB X-ray Structure Validation Report (i)

Oct 7, 2023 – 06:34 PM EDT

PDB ID	:	6DMF
Title	:	Bacteroides ovatus mixed-linkage glucan utilization locus (MLGUL) SGBP-A
		with cellohexaose
Authors	:	Koropatkin, N.M.; Bahr, C.M.
Deposited on	:	2018-06-05
Resolution	:	2.40 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.35.1
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.35.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motrie	Whole archive	Similar resolution
	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
R _{free}	130704	3907 (2.40-2.40)
Clashscore	141614	4398 (2.40-2.40)
Ramachandran outliers	138981	4318 (2.40-2.40)
Sidechain outliers	138945	4319 (2.40-2.40)
RSRZ outliers	127900	3811 (2.40-2.40)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	520	91%	7%	
1	В	520	90%	9%	••
1	С	520	91%	8%	•
1	D	520	90%	9%	•
1	Е	520	91%	8%	••

Mol	Chain	Length	G C	Quality of chain	
1	F	520		92%	6% ••
1	G	520	% 	90%	8% ••
1	Н	520	.%	89%	8% ••
1	Ι	520		90%	7% ••
1	J	520	.%	89%	8% ••
2	K	5	60%		40%
3	L	6	17%	83%	
3	М	6	33%	67%	
3	N	6	67%		33%
3	0	6	33%	67%	
3	Р	6	50%	5	0%
3	Q	6	50%	5	0%
3	R	6	33%	67%	
3	S	6	50%	5	0%
3	Т	6	17%	83%	

6DMF

2 Entry composition (i)

There are 8 unique types of molecules in this entry. The entry contains 42441 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace	
1	Δ	513	Total	С	Ν	0	S	0	0	0	
1	Л	515	4072	2572	676	804	20	0	0	0	
1	В	516	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0	
		510	4082	2579	680	803	20	0	0	0	
1	С	512	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0	
	0	012	4061	2563	675	803	20	0	0	0	
1	О	519	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0	
		010	4103	2592	683	808	20	0	0	0	
1	E	517	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0	
	Ц	011	4097	2588	681	808	20	0			
1	F	514	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0	
	-	011	4069	2571	677	801	20	0	0	Ŭ	
1	G	512	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	012	4041	2552	673	796	20	Ŭ			
1	Н	514	Total	$\mathbf{C}$	Ν	Ο	$\mathbf{S}$	0	0	0	
		011	4072	2574	677	801	20	Ŭ			
1	T	510	Total	$\mathbf{C}$	Ν	Ο	$\mathbf{S}$	0	0	0	
			4035	2551	672	792	20				
1	J	512	Total	$\mathbf{C}$	Ν	Ο	$\mathbf{S}$	0	0	0	
	0	012	4053	2561	674	798	20				

• Molecule 1 is a protein called mixed-linkage glucan utilization locus (MLGUL) SGBP-B.

There are 10 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	39	ILE	-	expression tag	UNP A7LY27
В	39	ILE	-	expression tag	UNP A7LY27
С	39	ILE	-	expression tag	UNP A7LY27
D	39	ILE	-	expression tag	UNP A7LY27
E	39	ILE	-	expression tag	UNP A7LY27
F	39	ILE	-	expression tag	UNP A7LY27
G	39	ILE	-	expression tag	UNP A7LY27
Н	39	ILE	-	expression tag	UNP A7LY27
Ι	39	ILE	-	expression tag	UNP A7LY27



Chain	Residue	Modelled	Actual	Comment	Reference
J	39	ILE	-	expression tag	UNP A7LY27

• Molecule 2 is an oligosaccharide called beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose.



Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	Trace	
2	K	5	Total 56	C 30	0 26	0	0	0

• Molecule 3 is an oligosaccharide called beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D



Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
3	L	6	Total         C         O           67         36         31	0	0	0
3	М	6	Total         C         O           67         36         31	0	0	0
3	Ν	6	Total         C         O           67         36         31	0	0	0
3	О	6	Total C O 67 36 31	0	0	0
3	Р	6	Total         C         O           67         36         31	0	0	0
3	Q	6	Total         C         O           67         36         31	0	0	0
3	R	6	Total         C         O           67         36         31	0	0	0
3	S	6	Total         C         O           67         36         31	0	0	0
3	Т	6	Total         C         O           67         36         31	0	0	0

• Molecule 4 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).



Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	1	Total Mg 1 1	0	0
4	В	1	Total Mg 1 1	0	0
4	С	1	Total Mg 1 1	0	0
4	D	1	Total Mg 1 1	0	0
4	Ε	1	Total Mg 1 1	0	0
4	F	1	Total Mg 1 1	0	0
4	G	1	Total Mg 1 1	0	0
4	Н	1	Total Mg 1 1	0	0
4	Ι	1	Total Mg 1 1	0	0
4	J	1	Total Mg 1 1	0	0

• Molecule 5 is ACETATE ION (three-letter code: ACT) (formula:  $C_2H_3O_2$ ).



Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
5	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0



Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
5	D	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
5	Е	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
5	F	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
5	Н	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
5	Ι	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
5	J	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0

• Molecule 6 is DI(HYDROXYETHYL)ETHER (three-letter code: PEG) (formula:  $C_4H_{10}O_3$ ).



Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 7 & 4 & 3 \end{array}$	0	0
6	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 7 & 4 & 3 \end{array}$	0	0
6	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 7 & 4 & 3 \end{array}$	0	0
6	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 7 & 4 & 3 \end{array}$	0	0



Mol	Chain	Residues	Atoms	5	ZeroOcc	AltConf		
6	J	1	Total C 7 4	O 3	0	0		

• Molecule 7 is 1,2-ETHANEDIOL (three-letter code: EDO) (formula:  $C_2H_6O_2$ ).



Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	А	1	$\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 4  2  2 \end{array}$	0	0
7	В	1	$\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 4  2  2 \end{array}$	0	0
7	В	1	$\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 4  2  2 \end{array}$	0	0
7	С	1	$\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 4  2  2 \end{array}$	0	0
7	С	1	$\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 4  2  2 \end{array}$	0	0
7	С	1	$\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 4  2  2 \end{array}$	0	0
7	D	1	$\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 4  2  2 \end{array}$	0	0
7	Е	1	$\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 4  2  2 \end{array}$	0	0
7	Е	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
7	Е	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0



Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	Е	1	$\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 4  2  2 \end{array}$	0	0
7	G	1	$\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 4  2  2 \end{array}$	0	0
7	G	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
7	G	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
7	G	1	$\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 4  2  2 \end{array}$	0	0
7	G	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
7	Н	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
7	Ι	1	$\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 4  2  2 \end{array}$	0	0

• Molecule 8 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf		
8	А	110	Total O 110 110	0	0		
8	В	129	Total         O           129         129	0	0		
8	С	98	Total O 98 98	0	0		
8	D	88	Total O 88 88	0	0		
8	Е	115	Total O 115 115	0	0		
8	F	59	Total O 59 59	0	0		
8	G	90	Total         O           90         90	0	0		
8	Н	87	Total O 87 87	0	0		
8	Ι	64	$\begin{array}{cc} \text{Total} & \text{O} \\ 64 & 64 \end{array}$	0	0		
8	J	104	Total O 104 104	0	0		



# 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: mixed-linkage glucan utilization locus (MLGUL) SGBP-B



• Molecule 1: mixed-linkage glucan utilization locus (MLGUL) SGBP-B



• Molecule 1: mixed-linkage glucan utilization locus (MLGUL) SGBP-B

Chain D:	90%	9%	•



# TLE 140 156 110 110 1117 1105 1117 1117 1116 1117 1117 1118 1117 1118 1117 1117 1118 1117 1117 1118 1117 1118 1117 1118 1118 1118 1118 1118 1118 1118 1118 1118 1118 1118 1118 1118 1118 1118 1118 1118 1117 1117 1117 1117 1118 1118 1118 1118 1118 </tr

#### 

• Molecule 1: mixed-linkage glucan utilization locus (MLGUL) SGBP-B

Ch	ain	E	-										9	1%											8	%	•		
139 D40	<mark>q51</mark>	L56		5104 L105	0112 V113	R114	M1 <mark>36</mark>	T140	G154 DHF	LEU	ани <mark>G158</mark>	Q167	Y171	K191	V202	R219	D245	<mark>q263</mark>	D268 Y269	R270	<mark>\$292</mark>	Y314	<mark>8319</mark>	8322	1329	P342 R343	S349	E364	
V367	T375 M376	E379	V417	F451	T464	<mark>դ467</mark>	A485 E486		T512	R520	V525	<mark>8529</mark>	W548	E557	OCON														
• ]	Mol	ecu	ıle	1:	mi	xec	l-liı	nka	age	gl	uca	an	uti	liza	atio	on	loc	us	(M	LC	ΞU	L)	SC	βBI	P-I	3			



# 

#### 

 $\bullet$  Molecule 1: mixed-linkage glucan utilization locus (MLGUL) SGBP-B



Chain I:	90%	7% ••
11E 140 156 156 156 156 156 156 156 156	Put LEU GLU GLU GLV LYS LYS T171 L214 L214 L214 L214 L214 L214 L215 R305	K308 7314 7320 1321 1321 1321 1355 1355
V387 N368 N368 N368 N368 N376 N417 T444 T444 T444 T444 T474 C511 T512 R500 R508 M548 W548		
• Molecule 1: mixed-linkage glucan	utilization locus (MLGUL) SG	3P-B
Chain J:	89%	8% ••
ILE P40 P40 E60 E60 P41 P41 P41 P43 P43 P43 P43 P43 P43 P43 P43	CI ST	1277 1277 5292 7314 V327
P342 R343 R345 R347 R376 A377 A377 R376 R376 C376 C376 R376 R376 R376 R376 R377 R376 R377 R376 R377 R376 R377 R376 R377 R377	4500 4510 1511 1515 1515 1515 1515 1515	
• Molecule 2: beta-D-glucopyranose- -beta-D-glucopyranose-(1-4)-beta-D-	-(1-4)-beta-D-glucopyranose-(1-4)-glucopyranose	4)-beta-D-glucopyranose-(1-4)
Chain K: 60%	40%	

#### BGC1 BGC2 BGC3 BGC4 BGC5

• Molecule 3: beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose

 $\bullet \ Molecule \ 3: \ beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)$ 

Chain M:	33%	67%
BGC1 BGC2 BGC3 BGC4 BGC5 BGC5		

 $\bullet \ {\rm Molecule \ 3: \ beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1$ 

Chain N:

67%

33%





 $\bullet \ Molecule \ 3: \ beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)$ 

Chain O:	33%	67%
BGC1 BGC2 BGC3 BGC4 BGC6 BGC6		

 $\bullet \ Molecule \ 3: \ beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)$ 

Chain P:	50%	50%
BGC1 BGC3 BGC3 BGC4 BGC6 BGC6		

 $\bullet \ Molecule \ 3: \ beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)$ 

Chain Q:	50%	50%
222 4 23 23 23 23 23 23 23 23 23 23 23 23 23		

 $\bullet \ Molecule \ 3: \ beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)$ 

Chain R:	33%	67%	
BGC1 BGC2 BGC3 BGC4 BGC5 BGC5			
			_

• Molecule 3: beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose

Chain S:	50%	50%
00400		

#### BGC1 BGC2 BGC3 BGC4 BGC5 BGC5

 $\bullet \ Molecule \ 3: \ beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)-beta-D-glucopyranose-(1-4)$ 

Chain T:	17%	83%
BGC1           BGC2           BGC3           BGC4           BGC5           BGC6		



# 4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 61	Depositor
Cell constants	228.84Å $228.84$ Å $246.52$ Å	Deperitor
a, b, c, $\alpha$ , $\beta$ , $\gamma$	$90.00^{\circ}$ $90.00^{\circ}$ $120.00^{\circ}$	Depositor
$\mathbf{P}_{\text{assolution}}(\hat{\mathbf{A}})$	49.60 - 2.40	Depositor
Resolution (A)	49.55 - 2.40	EDS
% Data completeness	99.9 (49.60-2.40)	Depositor
(in resolution range)	89.6(49.55-2.40)	EDS
R _{merge}	0.22	Depositor
$R_{sym}$	(Not available)	Depositor
$< I/\sigma(I) > 1$	$0.97 (at 2.39 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.8.0222	Depositor
D D.	0.190 , $0.242$	Depositor
$\Lambda, \Lambda_{free}$	0.191 , $0.242$	DCC
$R_{free}$ test set	14142 reflections $(4.99%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	28.9	Xtriage
Anisotropy	0.258	Xtriage
Bulk solvent $k_{sol}(e/A^3), B_{sol}(A^2)$	0.34, $30.3$	EDS
L-test for twinning ²	$< L >=0.53, < L^2>=0.37$	Xtriage
Estimated twinning fraction	0.023 for h,-h-k,-l	Xtriage
$F_o, F_c$ correlation	0.95	EDS
Total number of atoms	42441	wwPDB-VP
Average B, all atoms $(Å^2)$	36.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 57.57 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 2.3232e-05. The detected translational NCS is most likely also responsible for the elevated intensity ratio.

²Theoretical values of  $\langle |L| \rangle$ ,  $\langle L^2 \rangle$  for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.



¹Intensities estimated from amplitudes.

# 5 Model quality (i)

# 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: PEG, ACT, BGC, EDO, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles	
		RMSZ	# Z  > 5	RMSZ	# Z  > 5
1	А	0.37	0/4171	0.53	0/5671
1	В	0.36	0/4181	0.54	0/5684
1	С	0.35	0/4159	0.53	0/5655
1	D	0.35	0/4203	0.51	0/5715
1	Ε	0.37	0/4196	0.52	0/5703
1	F	0.33	0/4168	0.51	0/5668
1	G	0.34	0/4139	0.52	0/5631
1	Н	0.37	0/4171	0.52	0/5672
1	Ι	0.34	0/4133	0.52	0/5619
1	J	0.36	0/4152	0.52	0/5646
All	All	0.35	0/41673	0.52	0/56664

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	D	0	2
1	F	0	1
All	All	0	3

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (3) planarity outliers are listed below:

Mol	Chain	Res	Type	Group	
1	D	219	ARG	Sidechain	



Continued from previous page...

Mol	Chain	Res	Type	Group
1	D	270	ARG	Sidechain
1	F	219	ARG	Sidechain

### 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	4072	0	3860	19	0
1	В	4082	0	3870	28	0
1	С	4061	0	3851	28	0
1	D	4103	0	3890	27	0
1	Е	4097	0	3890	21	0
1	F	4069	0	3854	17	0
1	G	4041	0	3822	24	0
1	Н	4072	0	3863	30	0
1	Ι	4035	0	3824	25	0
1	J	4053	0	3837	24	0
2	K	56	0	48	0	0
3	L	67	0	57	0	0
3	М	67	0	57	0	0
3	Ν	67	0	57	0	0
3	0	67	0	57	1	0
3	Р	67	0	57	0	0
3	Q	67	0	57	0	0
3	R	67	0	57	0	0
3	S	67	0	57	0	0
3	Т	67	0	57	0	0
4	А	1	0	0	0	0
4	В	1	0	0	0	0
4	С	1	0	0	0	0
4	D	1	0	0	0	0
4	Е	1	0	0	0	0
4	F	1	0	0	0	0
4	G	1	0	0	0	0
4	Н	1	0	0	0	0
4	Ι	1	0	0	0	0
4	J	1	0	0	0	0
5	A	4	0	3	0	0



Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
5	В	4	0	3	0	0
5	С	4	0	3	0	0
5	D	4	0	3	0	0
5	Е	4	0	3	0	0
5	F	4	0	3	0	0
5	Н	4	0	3	0	0
5	Ι	4	0	3	0	0
5	J	4	0	3	0	0
6	А	14	0	20	0	0
6	В	14	0	20	0	0
6	J	7	0	10	0	0
7	А	4	0	6	0	0
7	В	8	0	12	0	0
7	С	12	0	18	1	0
7	D	4	0	6	0	0
7	Ε	16	0	24	1	0
7	G	20	0	30	2	0
7	Н	4	0	6	0	0
7	Ι	4	0	6	0	0
8	А	110	0	0	1	0
8	В	129	0	0	2	0
8	С	98	0	0	4	0
8	D	88	0	0	0	0
8	Ε	115	0	0	0	0
8	F	59	0	0	0	0
8	G	90	0	0	1	0
8	Н	87	0	0	0	0
8	Ι	64	0	0	2	0
8	J	104	0	0	0	0
All	All	42441	0	39307	232	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 3.

All (232) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)	
1:D:143:TYR:O	1:D:520:ARG:NH1	1.60	1.31	
1:H:51:GLN:NE2	1:H:104:SER:OG	1.87	1.07	
1:G:143:TYR:O	1:G:520:ARG:NH1	2.05	0.89	
1:G:268:ASP:OD1	1:G:270:ARG:HD3	1.83	0.79	



	lo uo pugom	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:I:520:ARG:NH1	8:I:701:HOH:O	2.00	0.78
1:D:219:ARG:NH2	1:D:486:GLU:OE2	2.21	0.74
1:A:520:ARG:NH2	1:A:546:ASP:OD1	2.21	0.73
1:A:367:VAL:HG21	1:E:464:THR:HG21	1.72	0.71
1:F:362:CYS:SG	1:F:376:MET:CE	2.79	0.70
1:F:520:ARG:NH2	1:F:546:ASP:OD1	2.27	0.68
1:G:314:TYR:HB2	1:G:376:MET:HE1	1.75	0.67
1:D:364:GLU:O	1:D:367:VAL:HG12	1.96	0.65
1:I:115:THR:HG22	1:I:125:ASN:HB2	1.78	0.64
1:F:362:CYS:SG	1:F:376:MET:HE3	2.38	0.64
1:H:144:GLY:H	1:H:520:ARG:HH12	1.46	0.64
1:C:185:ILE:HG23	1:C:202:VAL:CG1	2.29	0.63
1:H:105:LEU:HD21	1:H:136:MET:CE	2.29	0.63
1:B:51:GLN:HE22	1:B:103:GLN:HB3	1.64	0.62
1:H:219:ARG:HH22	1:H:486:GLU:CD	2.01	0.62
1:E:51:GLN:NE2	1:E:104:SER:OG	2.28	0.61
1:B:512:THR:HB	8:B:753:HOH:O	2.00	0.61
1:C:432:ALA:HB2	8:C:791:HOH:O	2.00	0.61
1:I:320:ALA:O	1:I:321:THR:OG1	2.11	0.60
1:I:314:TYR:HB2	1:I:376:MET:HE1	1.83	0.60
1:D:105:LEU:HD21	1:D:136:MET:CE	2.32	0.60
1:A:367:VAL:HG21	1:E:464:THR:CG2	2.31	0.59
1:B:219:ARG:NH2	1:B:486:GLU:OE2	2.36	0.59
1:G:512:THR:HB	8:G:706:HOH:O	2.02	0.58
1:J:219:ARG:NH2	1:J:486:GLU:OE2	2.36	0.58
1:B:268:ASP:OD1	1:B:270:ARG:HD3	2.04	0.58
1:F:143:TYR:O	1:F:520:ARG:NH1	2.37	0.58
1:I:185:ILE:HG23	1:I:202:VAL:CG1	2.34	0.58
1:I:105:LEU:HD21	1:I:136:MET:CE	2.34	0.58
1:J:115:THR:HG22	1:J:125:ASN:HB2	1.85	0.57
1:D:376:MET:HE3	1:D:379:GLU:HB2	1.85	0.57
1:G:219:ARG:HH22	1:G:486:GLU:CD	2.08	0.57
1:H:219:ARG:NH2	1:H:486:GLU:OE2	2.38	0.56
1:G:314:TYR:HB2	1:G:376:MET:CE	2.36	0.56
1:B:105:LEU:HD21	1:B:136:MET:CE	2.36	0.55
1:A:219:ARG:NH2	1:A:486:GLU:OE2	2.39	0.55
1:G:376:MET:HE1	1:G:379:GLU:HG2	1.89	0.55
1:D:51:GLN:HE22	1:D:103:GLN:HE21	1.54	0.54
1:E:171:TYR:OH	1:E:219:ARG:HD2	2.08	0.54
1:E:292:SER:HA	1:E:342:PRO:HB2	1.88	0.54
1:J:105:LEU:HD21	1:J:136:MET:CE	2.37	0.54



Interatomic Clash					
Atom-1	Atom-2	distance (Å)	overlap (Å)		
1:I:105:LEU:HD21	1:I:136:MET:HE2	1.89	0.54		
1:C:51:GLN:HE22	1:C:103:GLN:HB3	1.71	0.54		
1:G:520:ARG:NH2	1:G:546:ASP:OD1	2.41	0.54		
1:H:51:GLN:NE2	1:H:104:SER:CB	2.71	0.54		
1:H:51:GLN:NE2	1:H:104:SER:HG	2.04	0.54		
1:J:219:ARG:HH22	1:J:486:GLU:CD	2.10	0.53		
1:E:376:MET:HE1	1:E:379:GLU:HG2	1.90	0.53		
1:B:376:MET:HE1	1:B:379:GLU:HG2	1.90	0.53		
1:F:136:MET:HE3	1:F:148:PHE:CD1	2.44	0.53		
1:D:219:ARG:HH22	1:D:486:GLU:CD	2.12	0.53		
1:G:219:ARG:NH2	1:G:486:GLU:OE2	2.42	0.53		
1:B:512:THR:HG21	1:D:245:ASP:HB3	1.90	0.53		
1:B:356:GLY:HA3	1:B:376:MET:O	2.09	0.53		
1:I:512:THR:HB	8:I:710:HOH:O	2.08	0.53		
1:J:140:THR:O	1:J:143:TYR:O	2.27	0.53		
1:C:219:ARG:HH22	1:C:486:GLU:CD	2.13	0.52		
1:H:305:ARG:HA	1:H:308:LYS:HD2	1.91	0.52		
1:B:112:GLN:NE2	8:B:704:HOH:O	2.43	0.52		
1:H:520:ARG:O	1:H:548:TRP:HB2	2.08	0.52		
1:J:171:TYR:OH	1:J:219:ARG:HD2	2.09	0.52		
1:A:171:TYR:OH	1:A:219:ARG:HD2	2.10	0.52		
1:A:140:THR:O	1:A:143:TYR:O	2.28	0.52		
1:B:214:LEU:HG	1:B:232:PHE:CE2	2.45	0.51		
1:B:111:ALA:O	1:B:115:THR:HB	2.11	0.51		
1:A:314:TYR:HB3	1:A:327:VAL:HB	1.92	0.51		
1:C:219:ARG:HA	1:C:493:ARG:HD3	1.92	0.51		
1:D:51:GLN:NE2	1:D:103:GLN:NE2	2.58	0.51		
1:B:219:ARG:HH22	1:B:486:GLU:CD	2.13	0.51		
1:C:343:ARG:HD2	1:C:349:SER:HA	1.93	0.51		
1:F:520:ARG:O	1:F:548:TRP:HB2	2.10	0.51		
1:A:115:THR:HG22	1:A:125:ASN:HB2	1.92	0.51		
1:G:377:ALA:O	1:G:380:VAL:HG22	2.11	0.50		
1:I:474:THR:O	1:I:477:TRP:HB3	2.11	0.50		
1:A:225:PRO:O	8:A:701:HOH:O	2.19	0.50		
1:I:305:ARG:HA	1:I:308:LYS:HD2	1.92	0.50		
1:E:364:GLU:O	1:E:367:VAL:HG13	2.12	0.50		
1:H:123:ASN:O	1:H:127:VAL:HG23	2.11	0.50		
1:D:320:ALA:O	1:D:321:THR:CB	2.60	0.50		
1:I:60:GLU:OE2	1:I:277:LEU:HD11	2.11	0.50		
1:I:314:TYR:HB2	1:I:376:MET:CE	2.42	0.50		
1:G:329:ILE:HD13	1:G:376:MET:HE3	1.93	0.50		



	Interatomic Clash						
Atom-1	Atom-2	distance $(Å)$	overlap (Å)				
1:F:362:CYS:SG	1:F:376:MET:HE1	2.52	0.50				
1:J:314:TYR:HB2	1:J:376:MET:CE	2.42	0.50				
1:C:51:GLN:HE22	1:C:103:GLN:CB	2.25	0.49				
1:J:210:ASN:HA	1:J:213:ARG:HD3	1.93	0.49				
1:D:343:ARG:HD2	1:D:349:SER:HA	1.93	0.49				
1:D:520:ARG:NH2	1:D:546:ASP:OD1	2.44	0.49				
1:F:245:ASP:HB3	1:I:512:THR:HG21	1.93	0.49				
1:C:417:VAL:O	1:C:417:VAL:CG1	2.60	0.49				
1:B:60:GLU:HA	1:B:277:LEU:HD21	1.95	0.49				
1:E:105:LEU:HD21	1:E:136:MET:CE	2.42	0.49				
1:C:219:ARG:NH2	1:C:486:GLU:OE2	2.45	0.49				
1:B:115:THR:HG22	1:B:125:ASN:OD1	2.13	0.49				
1:B:314:TYR:HB2	1:B:376:MET:CE	2.43	0.49				
1:C:105:LEU:HD21	1:C:136:MET:CE	2.42	0.49				
1:I:417:VAL:CG1	1:I:417:VAL:O	2.60	0.49				
1:H:39:ILE:HG23	1:H:114:ARG:HH12	1.77	0.49				
1:J:115:THR:HG21	1:J:124:ILE:HG23	1.95	0.49				
1:H:140:THR:O	1:H:143:TYR:O	2.30	0.49				
1:C:144:GLY:HA3	8:C:780:HOH:O	2.12	0.48				
1:A:314:TYR:HB2	1:A:376:MET:HE1	1.94	0.48				
1:G:244:THR:O	1:J:512:THR:HB	2.12	0.48				
1:J:60:GLU:HA	1:J:277:LEU:HD21	1.94	0.48				
1:B:171:TYR:OH	1:B:219:ARG:HD2	2.14	0.48				
1:D:376:MET:HE3	1:D:379:GLU:CB	2.43	0.48				
1:G:105:LEU:HD21	1:G:136:MET:CE	2.43	0.48				
1:I:171:TYR:OH	1:I:219:ARG:HD2	2.14	0.48				
1:H:144:GLY:N	1:H:520:ARG:HH12	2.11	0.48				
1:C:211:SER:O	1:C:214:LEU:HB2	2.14	0.48				
1:G:343:ARG:HD2	1:G:349:SER:HA	1.95	0.48				
1:H:51:GLN:HE22	1:H:104:SER:CB	2.27	0.48				
1:I:508:GLY:HA2	1:I:511:LEU:HD22	1.96	0.48				
1:J:474:THR:O	1:J:477:TRP:HB3	2.14	0.48				
1:C:512:THR:HG21	1:E:245:ASP:HB3	1.96	0.48				
1:D:314:TYR:CE2	1:D:372:VAL:HG13	2.49	0.48				
1:A:314:TYR:HB2	1:A:376:MET:CE	2.44	0.47				
1:C:493:ARG:HD3	8:C:775:HOH:O	2.14	0.47				
1:F:105:LEU:HD21	1:F:136:MET:CE	2.45	0.47				
1:I:520:ARG:O	1:I:548:TRP:HB2	2.13	0.47				
1:J:403:VAL:O	1:J:407:MET:HG2	2.13	0.47				
1:G:329:ILE:HD13	1:G:376:MET:CE	2.44	0.47				
1:E:268:ASP:OD2	1:E:270:ARG:NH1	2.47	0.47				



Interatomic Clash					
Atom-1	Atom-2	distance (Å)	overlap (Å)		
1:D:172:ASN:OD1	1:D:227:LYS:HE3	2.15	0.47		
1:E:343:ARG:HD2	1:E:349:SER:HA	1.96	0.47		
1:F:185:ILE:HG23	1:F:202:VAL:HG13	1.96	0.47		
1:F:464:THR:HG23	1:G:504:GLU:OE1	2.14	0.47		
1:J:508:GLY:HA2	1:J:511:LEU:HD22	1.96	0.47		
1:C:417:VAL:O	1:C:417:VAL:HG12	2.15	0.46		
1:J:377:ALA:O	1:J:380:VAL:HG22	2.15	0.46		
1:H:308:LYS:HE3	1:H:444:THR:O	2.15	0.46		
1:F:51:GLN:NE2	1:F:104:SER:OG	2.49	0.46		
1:J:314:TYR:HB3	1:J:327:VAL:HB	1.96	0.46		
1:D:474:THR:O	1:D:477:TRP:HB3	2.16	0.46		
1:A:369:ASN:HA	1:A:370:PRO:HD3	1.81	0.46		
1:H:377:ALA:O	1:H:380:VAL:HG22	2.16	0.46		
1:A:320:ALA:O	1:A:321:THR:CB	2.63	0.46		
1:C:140:THR:O	1:C:143:TYR:O	2.34	0.45		
1:E:219:ARG:NH2	1:E:486:GLU:OE2	2.48	0.45		
1:G:171:TYR:OH	1:G:219:ARG:HD2	2.16	0.45		
1:I:60:GLU:HA	1:I:277:LEU:HD21	1.99	0.45		
1:B:508:GLY:HA2	1:B:511:LEU:HD22	1.97	0.45		
1:B:512:THR:CG2	1:D:245:ASP:HB3	2.47	0.45		
1:F:219:ARG:NH2	1:F:486:GLU:OE2	2.50	0.45		
1:B:72:GLN:HA	1:B:294:PHE:HB2	1.98	0.45		
1:B:539:ILE:CD1	1:B:546:ASP:HB2	2.47	0.44		
1:C:364:GLU:O	1:C:367:VAL:HG13	2.17	0.44		
1:E:464:THR:HG22	1:E:467:GLN:H	1.80	0.44		
1:I:219:ARG:HD3	1:I:554:TRP:CE2	2.51	0.44		
1:G:49:GLN:HE21	1:G:197:ILE:HD12	1.82	0.44		
1:D:292:SER:HA	1:D:342:PRO:HB2	1.99	0.44		
1:D:51:GLN:NE2	1:D:103:GLN:HE21	2.16	0.44		
1:H:152:GLY:HA2	1:H:153:LEU:HG	1.99	0.44		
1:J:343:ARG:HD2	1:J:349:SER:HA	1.99	0.44		
1:C:268:ASP:OD1	1:C:270:ARG:HD3	2.17	0.44		
1:C:356:GLY:HA3	1:C:376:MET:O	2.18	0.44		
1:H:268:ASP:CG	1:H:270:ARG:HH11	2.19	0.44		
1:E:520:ARG:O	1:E:548:TRP:HB2	2.17	0.44		
1:G:308:LYS:HE3	1:G:444:THR:O	2.18	0.44		
1:A:403:VAL:O	1:A:407:MET:HG2	2.18	0.44		
1:B:314:TYR:HB2	1:B:376:MET:HE1	2.00	0.44		
1:H:474:THR:O	1:H:477:TRP:HB3	2.18	0.44		
1:I:356:GLY:HA3	1:I:376:MET:O	2.18	0.43		
1:A:377:ALA:O	1:A:380:VAL:HG22	2.19	0.43		



		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:F:171:TYR:OH	1:F:219:ARG:HD2	2.18	0.43
1:H:413:LYS:O	1:H:414:LYS:HB2	2.17	0.43
1:C:314:TYR:HB2	1:C:376:MET:HE2	2.00	0.43
1:G:508:GLY:HA2	1:G:511:LEU:HD22	2.01	0.43
1:D:377:ALA:O	1:D:380:VAL:HG22	2.18	0.43
1:H:268:ASP:OD2	1:H:270:ARG:NH1	2.51	0.43
1:D:105:LEU:HD21	1:D:136:MET:HE1	2.00	0.43
1:B:462:GLY:HA3	1:B:467:GLN:HB3	2.00	0.43
1:C:307:PHE:HA	1:C:310:SER:O	2.19	0.43
1:C:481:PHE:HB3	7:C:611:EDO:H21	2.00	0.43
1:D:413:LYS:O	1:D:414:LYS:HB2	2.18	0.43
1:B:369:ASN:HA	1:B:370:PRO:HD3	1.76	0.43
1:G:535:TYR:O	1:G:539:ILE:HG12	2.19	0.43
1:B:403:VAL:O	1:B:407:MET:HG2	2.19	0.43
1:A:256:THR:HA	1:A:391:SER:OG	2.19	0.42
1:F:210:ASN:HA	1:F:213:ARG:HD3	2.00	0.42
1:A:356:GLY:HA3	1:A:376:MET:O	2.18	0.42
1:I:308:LYS:HE3	1:I:444:THR:O	2.19	0.42
1:B:51:GLN:HE22	1:B:103:GLN:CB	2.32	0.42
1:F:462:GLY:HA3	1:F:467:GLN:HB3	2.01	0.42
1:G:478:ILE:HG22	7:G:608:EDO:H12	2.01	0.42
1:H:314:TYR:HB2	1:H:376:MET:CE	2.49	0.42
1:A:219:ARG:HH22	1:A:486:GLU:CD	2.21	0.42
1:B:509:GLN:HG2	1:D:451:PHE:CE2	2.54	0.42
1:D:520:ARG:O	1:D:548:TRP:HB2	2.20	0.42
1:E:314:TYR:HB2	1:E:376:MET:HE2	2.02	0.42
1:D:539:ILE:CD1	1:D:546:ASP:HB2	2.50	0.42
1:E:263:GLN:OE1	3:O:1:BGC:H6C1	2.19	0.42
1:C:474:THR:O	1:C:477:TRP:HB3	2.20	0.42
1:G:437:LEU:HD11	7:G:608:EDO:H21	2.02	0.42
1:H:410:ALA:HB1	1:H:415:TRP:CD1	2.54	0.42
1:I:369:ASN:HA	1:I:370:PRO:HD3	1.79	0.42
1:D:304:PRO:O	1:D:308:LYS:HD2	2.21	0.41
1:E:140:THR:O	1:E:167:GLN:NE2	2.53	0.41
1:E:485:ALA:HB2	7:E:610:EDO:H22	2.02	0.41
1:J:314:TYR:HB2	1:J:376:MET:HE2	2.02	0.41
1:H:210:ASN:HA	1:H:213:ARG:HD3	2.01	0.41
1:C:477:TRP:HB2	8:C:784:HOH:O	2.20	0.41
1:B:140:THR:O	1:B:167:GLN:NE2	2.53	0.41
1:D:320:ALA:O	1:D:321:THR:HB	2.21	0.41
1:E:417:VAL:O	1:E:417:VAL:CG1	2.69	0.41



A + 1	A + 2	Interatomic	Clash
Atom-1	Atom-2	distance $(\text{\AA})$	overlap (Å)
1:H:105:LEU:HD21	1:H:136:MET:HE1	2.02	0.41
1:J:72:GLN:HA	1:J:294:PHE:HB2	2.02	0.41
1:J:520:ARG:O	1:J:548:TRP:HB2	2.20	0.41
1:B:539:ILE:HD12	1:B:546:ASP:HB2	2.03	0.41
1:I:368:ASN:HD22	1:I:368:ASN:HA	1.59	0.41
1:H:509:GLN:HE21	1:H:509:GLN:HB2	1.71	0.41
1:C:509:GLN:HG2	1:E:451:PHE:CE2	2.56	0.41
1:A:462:GLY:HA3	1:A:467:GLN:HB3	2.03	0.41
1:C:376:MET:HE1	1:C:379:GLU:HG2	2.03	0.41
1:C:464:THR:HG22	1:C:466:ASN:N	2.36	0.41
1:E:329:ILE:HD13	1:E:376:MET:CE	2.51	0.41
1:G:451:PHE:CE2	1:J:509:GLN:HG2	2.56	0.41
1:I:358:ASP:OD1	1:I:375:THR:HG22	2.21	0.41
1:C:464:THR:HG22	1:C:466:ASN:H	1.86	0.41
1:H:307:PHE:HA	1:H:310:SER:O	2.20	0.40
1:I:55:ASP:OD1	1:I:57:SER:HB3	2.21	0.40
1:J:292:SER:HA	1:J:342:PRO:HB2	2.03	0.40
1:J:144:GLY:HA2	1:J:552:LEU:HD22	2.03	0.40
1:J:376:MET:HE1	1:J:379:GLU:HG2	2.03	0.40
1:H:144:GLY:N	1:H:520:ARG:NH1	2.69	0.40
1:H:314:TYR:HB2	1:H:376:MET:HE2	2.04	0.40
1:F:417:VAL:O	1:F:417:VAL:CG1	2.69	0.40
1:H:214:LEU:CD1	1:H:235:ALA:HB3	2.52	0.40

There are no symmetry-related clashes.

### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	509/520~(98%)	487 (96%)	21 (4%)	1 (0%)	47	62
1	В	512/520~(98%)	492 (96%)	20 (4%)	0	100	100



Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	С	508/520~(98%)	489 (96%)	19 (4%)	0	100	100
1	D	517/520~(99%)	500 (97%)	16 (3%)	1 (0%)	47	62
1	Ε	513/520~(99%)	493 (96%)	20~(4%)	0	100	100
1	F	510/520~(98%)	489 (96%)	20~(4%)	1 (0%)	47	62
1	G	508/520~(98%)	489 (96%)	19 (4%)	0	100	100
1	Н	510/520~(98%)	483 (95%)	27~(5%)	0	100	100
1	Ι	504/520~(97%)	489 (97%)	14 (3%)	1 (0%)	47	62
1	J	508/520~(98%)	493 (97%)	14 (3%)	1 (0%)	47	62
All	All	5099/5200~(98%)	4904 (96%)	190 (4%)	5~(0%)	51	68

All (5) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	D	321	THR
1	F	189	LYS
1	А	321	THR
1	Ι	321	THR
1	J	144	GLY

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	436/441~(99%)	419 (96%)	17 (4%)	32 50
1	В	435/441~(99%)	419 (96%)	16 (4%)	34 53
1	С	435/441~(99%)	427 (98%)	8 (2%)	59 76
1	D	437/441~(99%)	422 (97%)	15 (3%)	37 56
1	Е	438/441~(99%)	420 (96%)	18 (4%)	30 48
1	F	434/441~(98%)	420 (97%)	14 (3%)	39 59
1	G	430/441 (98%)	416 (97%)	14 (3%)	38 57

Continued on next page...



Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	Н	435/441~(99%)	418 (96%)	17 (4%)	32 50
1	Ι	430/441~(98%)	418 (97%)	12 (3%)	43 63
1	J	432/441~(98%)	418 (97%)	14 (3%)	39 59
All	All	4342/4410 (98%)	4197 (97%)	145 (3%)	38 57

Continued from previous page...

All (145) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	56	LEU
1	А	117	GLU
1	А	143	TYR
1	А	160	PHE
1	А	214	LEU
1	А	365	LEU
1	А	367	VAL
1	А	369	ASN
1	А	373	THR
1	А	375	THR
1	А	390	LYS
1	А	392	ASP
1	А	509	GLN
1	А	511	LEU
1	А	512	THR
1	А	529	SER
1	А	548	TRP
1	В	115	THR
1	В	143	TYR
1	В	202	VAL
1	В	257	ILE
1	В	319	SER
1	В	365	LEU
1	В	367	VAL
1	В	375	THR
1	В	417	VAL
1	В	464	THR
1	В	504	GLU
1	В	509	GLN
1	В	511	LEU
1	В	512	THR
1	В	548	TRP
1	В	558	ASN



Mol	Chain	Res	Type
1	С	40	ASP
1	С	56	LEU
1	С	117	GLU
1	С	509	GLN
1	С	512	THR
1	С	529	SER
1	С	548	TRP
1	С	550	SER
1	D	56	LEU
1	D	112	GLN
1	D	117	GLU
1	D	122	VAL
1	D	191	LYS
1	D	214	LEU
1	D	322	SER
1	D	369	ASN
1	D	373	THR
1	D	392	ASP
1	D	509	GLN
1	D	512	THR
1	D	520	ARG
1	D	548	TRP
1	D	550	SER
1	Е	40	ASP
1	Е	56	LEU
1	Е	57	SER
1	Е	112	GLN
1	Е	191	LYS
1	Е	202	VAL
1	Е	319	SER
1	Ε	322	SER
1	Е	367	VAL
1	Е	375	THR
1	E	511	LEU
1	E	512	THR
1	Е	520	ARG
1	E	525	VAL
1	E	529	SER
1	E	548	TRP
1	E	557	GLU
1	E	558	ASN
1	F	56	LEU



Mol	Chain	Res	Type
1	F	104	SER
1	F	112	GLN
1	F	202	VAL
1	F	319	SER
1	F	375	THR
1	F	414	LYS
1	F	509	GLN
1	F	512	THR
1	F	520	ARG
1	F	533	LYS
1	F	548	TRP
1	F	557	GLU
1	F	558	ASN
1	G	56	LEU
1	G	112	GLN
1	G	122	VAL
1	G	191	LYS
1	G	256	THR
1	G	290	LEU
1	G	319	SER
1	G	355	THR
1	G	375	THR
1	G	417	VAL
1	G	511	LEU
1	G	512	THR
1	G	520	ARG
1	G	548	TRP
1	Н	56	LEU
1	Н	112	GLN
1	Н	117	GLU
1	Н	153	LEU
1	Н	160	PHE
1	Н	202	VAL
1	Н	414	LYS
1	Н	415	TRP
1	Н	417	VAL
1	Н	464	THR
1	Н	504	GLU
1	Н	509	GLN
1	Н	511	LEU
1	Н	512	THR
1	Н	520	ARG



Mol	Chain	Res	Type
1	Н	531	ASN
1	Н	548	TRP
1	Ι	56	LEU
1	Ι	112	GLN
1	Ι	202	VAL
1	Ι	214	LEU
1	Ι	245	ASP
1	Ι	367	VAL
1	Ι	368	ASN
1	Ι	511	LEU
1	Ι	512	THR
1	Ι	548	TRP
1	Ι	550	SER
1	Ι	557	GLU
1	J	56	LEU
1	J	112	GLN
1	J	143	TYR
1	J	214	LEU
1	J	245	ASP
1	J	248	SER
1	J	392	ASP
1	J	414	LYS
1	J	509	GLN
1	J	511	LEU
1	J	515	THR
1	J	540	GLU
1	J	548	TRP
1	J	557	GLU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (31) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	369	ASN
1	А	440	ASN
1	В	51	GLN
1	В	440	ASN
1	В	536	ASN
1	С	51	GLN
1	С	103	GLN
1	D	103	GLN
1	D	536	ASN
1	Е	51	GLN



Mol	Chain	$\mathbf{Res}$	Type
1	Е	509	GLN
1	Е	536	ASN
1	F	51	GLN
1	F	161	ASN
1	F	331	GLN
1	F	440	ASN
1	F	456	GLN
1	F	531	ASN
1	F	558	ASN
1	G	44	GLN
1	G	112	GLN
1	G	125	ASN
1	G	161	ASN
1	G	536	ASN
1	Н	51	GLN
1	Н	509	GLN
1	Н	531	ASN
1	Ι	368	ASN
1	J	112	GLN
1	J	125	ASN
1	J	536	ASN

### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

### 5.5 Carbohydrates (i)

59 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).



	<b>T</b> a	Chain	Dag	T : 1-	Bo	Bond lengths		Bond angles		
IVIOI	Type	Chain	Res	LINK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
2	BGC	K	1	2	12,12,12	0.45	0	$17,\!17,\!17$	0.64	0
2	BGC	K	2	2	11,11,12	0.29	0	$15,\!15,\!17$	0.88	0
2	BGC	К	3	2	11,11,12	0.56	0	$15,\!15,\!17$	1.10	1 (6%)
2	BGC	К	4	2	11,11,12	0.56	0	$15,\!15,\!17$	0.83	0
2	BGC	Κ	5	2	11,11,12	0.58	0	$15,\!15,\!17$	1.26	1 (6%)
3	BGC	L	1	3	12,12,12	0.54	0	17,17,17	1.06	1 (5%)
3	BGC	L	2	3	11,11,12	0.31	0	15,15,17	0.88	0
3	BGC	L	3	3	11,11,12	0.57	0	$15,\!15,\!17$	1.96	2 (13%)
3	BGC	L	4	3	11,11,12	0.45	0	15,15,17	1.02	2 (13%)
3	BGC	L	5	3	11,11,12	0.36	0	$15,\!15,\!17$	1.10	2 (13%)
3	BGC	L	6	3	11,11,12	0.66	0	15,15,17	1.24	2 (13%)
3	BGC	М	1	3	12,12,12	0.50	0	17,17,17	0.87	0
3	BGC	М	2	3	11,11,12	0.29	0	$15,\!15,\!17$	0.83	0
3	BGC	М	3	3	11,11,12	0.64	0	$15,\!15,\!17$	0.88	1 (6%)
3	BGC	М	4	3	11,11,12	0.38	0	$15,\!15,\!17$	0.89	2 (13%)
3	BGC	М	5	3	11,11,12	0.38	0	$15,\!15,\!17$	0.83	1 (6%)
3	BGC	М	6	3	11,11,12	0.44	0	$15,\!15,\!17$	1.11	1 (6%)
3	BGC	Ν	1	3	12,12,12	0.48	0	17,17,17	0.90	1 (5%)
3	BGC	Ν	2	3	11,11,12	0.33	0	$15,\!15,\!17$	1.14	1 (6%)
3	BGC	N	3	3	11,11,12	0.43	0	$15,\!15,\!17$	0.97	0
3	BGC	N	4	3	11,11,12	0.31	0	$15,\!15,\!17$	0.79	0
3	BGC	Ν	5	3	11,11,12	0.51	0	$15,\!15,\!17$	0.86	0
3	BGC	Ν	6	3	11,11,12	0.40	0	$15,\!15,\!17$	1.04	0
3	BGC	0	1	3	12,12,12	0.56	0	$17,\!17,\!17$	0.96	0
3	BGC	Ο	2	3	11,11,12	0.40	0	$15,\!15,\!17$	1.14	2 (13%)
3	BGC	Ο	3	3	11,11,12	0.36	0	$15,\!15,\!17$	0.77	1 (6%)
3	BGC	0	4	3	11,11,12	0.38	0	$15,\!15,\!17$	0.69	0
3	BGC	Ο	5	3	11,11,12	0.48	0	$15,\!15,\!17$	1.26	3 (20%)
3	BGC	0	6	3	11,11,12	0.33	0	15,15,17	0.65	0
3	BGC	Р	1	3	12,12,12	0.53	0	17,17,17	0.89	0
3	BGC	Р	2	3	11,11,12	0.40	0	$15,\!15,\!17$	0.61	0
3	BGC	Р	3	3	11,11,12	0.30	0	$15,\!15,\!17$	0.90	1 (6%)
3	BGC	Р	4	3	11,11,12	0.51	0	$15,\!15,\!17$	0.85	1 (6%)
3	BGC	Р	5	3	11,11,12	0.39	0	$15,\!15,\!17$	1.17	1 (6%)
3	BGC	Р	6	3	11,11,12	0.40	0	15,15,17	0.77	0
3	BGC	Q	1	3	12,12,12	0.47	0	$17,\!17,\!17$	0.59	0
3	BGC	Q	2	3	11,11,12	0.39	0	$\overline{15,\!15,\!17}$	0.78	0
3	BGC	Q	3	3	11,11,12	0.25	0	$15,\!15,\!17$	1.09	1 (6%)



Mol	Type	Chain	Bos	Link	Bond lengths		Bond angles			
	Type	Ullalli	nes		Counts	RMSZ	# Z  > 2	Counts	RMSZ	# Z  > 2
3	BGC	Q	4	3	11,11,12	0.31	0	15,15,17	0.89	0
3	BGC	Q	5	3	11,11,12	0.41	0	$15,\!15,\!17$	1.29	1 (6%)
3	BGC	Q	6	3	11,11,12	0.42	0	$15,\!15,\!17$	1.01	1 (6%)
3	BGC	R	1	3	12,12,12	0.55	0	17,17,17	1.03	0
3	BGC	R	2	3	11,11,12	0.69	0	15,15,17	0.74	0
3	BGC	R	3	3	11,11,12	0.49	0	15,15,17	0.79	1 (6%)
3	BGC	R	4	3	11,11,12	0.38	0	15,15,17	0.81	1 (6%)
3	BGC	R	5	3	11,11,12	0.39	0	15,15,17	1.39	1 (6%)
3	BGC	R	6	3	11,11,12	0.33	0	15,15,17	0.90	1 (6%)
3	BGC	S	1	3	12,12,12	0.46	0	17,17,17	0.85	1 (5%)
3	BGC	S	2	3	11,11,12	0.37	0	15,15,17	1.71	2 (13%)
3	BGC	S	3	3	11,11,12	0.40	0	15,15,17	0.51	0
3	BGC	S	4	3	11,11,12	0.25	0	$15,\!15,\!17$	0.90	0
3	BGC	S	5	3	11,11,12	0.49	0	$15,\!15,\!17$	0.83	0
3	BGC	S	6	3	11,11,12	0.35	0	15,15,17	1.11	2 (13%)
3	BGC	Т	1	3	12,12,12	0.47	0	17,17,17	0.81	1 (5%)
3	BGC	Т	2	3	11,11,12	0.26	0	15,15,17	1.28	2 (13%)
3	BGC	Т	3	3	11,11,12	0.61	0	$15,\!15,\!17$	0.70	0
3	BGC	Т	4	3	11,11,12	0.36	0	$15,\!15,\!17$	0.87	1 (6%)
3	BGC	Т	5	3	11,11,12	0.29	0	$15,\!15,\!17$	1.27	3 (20%)
3	BGC	Т	6	3	11,11,12	0.36	0	$1\overline{5,}15,17$	0.96	1(6%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	BGC	Κ	1	2	-	1/2/22/22	0/1/1/1
2	BGC	K	2	2	-	0/2/19/22	0/1/1/1
2	BGC	Κ	3	2	-	0/2/19/22	0/1/1/1
2	BGC	Κ	4	2	-	0/2/19/22	0/1/1/1
2	BGC	К	5	2	-	2/2/19/22	0/1/1/1
3	BGC	L	1	3	-	0/2/22/22	0/1/1/1
3	BGC	L	2	3	-	0/2/19/22	0/1/1/1
3	BGC	L	3	3	-	1/2/19/22	0/1/1/1
3	BGC	L	4	3	-	1/2/19/22	0/1/1/1
3	BGC	L	5	3	-	2/2/19/22	0/1/1/1
3	BGC	L	6	3	-	1/2/19/22	0/1/1/1



6DMF
------

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	BGC	М	1	3	-	2/2/22/22	0/1/1/1
3	BGC	М	2	3	_	2/2/19/22	0/1/1/1
3	BGC	М	3	3	_	0/2/19/22	0/1/1/1
3	BGC	М	4	3	-	1/2/19/22	0/1/1/1
3	BGC	М	5	3	-	2/2/19/22	0/1/1/1
3	BGC	М	6	3	-	2/2/19/22	0/1/1/1
3	BGC	N	1	3	-	2/2/22/22	0/1/1/1
3	BGC	N	2	3	-	0/2/19/22	0/1/1/1
3	BGC	N	3	3	-	0/2/19/22	0/1/1/1
3	BGC	N	4	3	-	0/2/19/22	0/1/1/1
3	BGC	N	5	3	-	2/2/19/22	0/1/1/1
3	BGC	Ν	6	3	-	2/2/19/22	0/1/1/1
3	BGC	0	1	3	-	2/2/22/22	0/1/1/1
3	BGC	0	2	3	-	0/2/19/22	0/1/1/1
3	BGC	0	3	3	-	0/2/19/22	0/1/1/1
3	BGC	0	4	3	-	1/2/19/22	0/1/1/1
3	BGC	0	5	3	-	0/2/19/22	0/1/1/1
3	BGC	0	6	3	-	0/2/19/22	0/1/1/1
3	BGC	Р	1	3	-	2/2/22/22	0/1/1/1
3	BGC	Р	2	3	-	0/2/19/22	0/1/1/1
3	BGC	Р	3	3	-	2/2/19/22	0/1/1/1
3	BGC	Р	4	3	-	0/2/19/22	0/1/1/1
3	BGC	Р	5	3	-	2/2/19/22	0/1/1/1
3	BGC	Р	6	3	-	0/2/19/22	0/1/1/1
3	BGC	Q	1	3	-	0/2/22/22	0/1/1/1
3	BGC	Q	2	3	-	0/2/19/22	0/1/1/1
3	BGC	Q	3	3	-	2/2/19/22	0/1/1/1
3	BGC	Q	4	3	-	0/2/19/22	0/1/1/1
3	BGC	Q	5	3	-	1/2/19/22	0/1/1/1
3	BGC	Q	6	3	_	1/2/19/22	0/1/1/1
3	BGC	R	1	3	-	0/2/22/22	0/1/1/1
3	BGC	R	2	3	-	0/2/19/22	0/1/1/1
3	BGC	R	3	3	-	2/2/19/22	0/1/1/1
3	BGC	R	4	3	-	0/2/19/22	0/1/1/1
3	BGC	R	5	3	-	2/2/19/22	0/1/1/1
3	BGC	R	6	3	-	2/2/19/22	0/1/1/1
3	BGC	S	1	3	-	2/2/22/22	0/1/1/1
3	BGC	S	2	3	-	2/2/19/22	0/1/1/1



Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	BGC	S	3	3	-	0/2/19/22	0/1/1/1
3	BGC	S	4	3	-	0/2/19/22	0/1/1/1
3	BGC	S	5	3	-	1/2/19/22	0/1/1/1
3	BGC	S	6	3	-	2/2/19/22	0/1/1/1
3	BGC	Т	1	3	-	1/2/22/22	0/1/1/1
3	BGC	Т	2	3	-	0/2/19/22	0/1/1/1
3	BGC	Т	3	3	-	0/2/19/22	0/1/1/1
3	BGC	Т	4	3	-	0/2/19/22	0/1/1/1
3	BGC	Т	5	3	-	2/2/19/22	0/1/1/1
3	BGC	Т	6	3	-	1/2/19/22	0/1/1/1

There are no bond length outliers.

All (47) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	L	3	BGC	C1-O5-C5	5.75	119.98	112.19
3	S	2	BGC	C1-O5-C5	5.28	119.35	112.19
3	R	5	BGC	C1-O5-C5	3.90	117.48	112.19
3	М	6	BGC	O5-C5-C6	3.40	112.53	107.20
3	Т	2	BGC	C1-O5-C5	3.37	116.75	112.19
3	Q	5	BGC	C1-O5-C5	3.35	116.73	112.19
3	0	2	BGC	C1-C2-C3	3.32	113.74	109.67
3	L	6	BGC	O5-C5-C6	3.27	112.34	107.20
3	L	3	BGC	O5-C5-C6	-3.21	102.17	107.20
2	Κ	5	BGC	C1-O5-C5	3.10	116.39	112.19
3	Р	5	BGC	C1-O5-C5	3.02	116.28	112.19
2	Κ	3	BGC	C1-C2-C3	3.00	113.35	109.67
3	0	5	BGC	C1-O5-C5	2.81	116.00	112.19
3	L	1	BGC	O5-C1-C2	-2.76	105.36	110.28
3	Т	5	BGC	O5-C5-C6	2.71	111.45	107.20
3	Р	4	BGC	C1-C2-C3	2.67	112.95	109.67
3	S	6	BGC	O5-C5-C6	2.59	111.26	107.20
3	Т	6	BGC	O5-C5-C6	2.52	111.15	107.20
3	Q	6	BGC	O5-C5-C6	2.49	111.10	107.20
3	Т	2	BGC	C6-C5-C4	-2.39	107.41	113.00
3	L	5	BGC	C1-O5-C5	2.38	115.41	112.19
3	Ν	2	BGC	C1-O5-C5	2.36	115.39	112.19
3	Т	4	BGC	O5-C5-C6	2.33	110.86	107.20
3	S	1	BGC	C4-C3-C2	-2.32	106.77	110.82
3	Т	5	BGC	C6-C5-C4	-2.28	107.66	113.00
3	Ν	1	BGC	O5-C1-C2	-2.25	106.27	110.28



Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
3	L	4	BGC	O5-C5-C6	2.23	110.70	107.20
3	М	4	BGC	O5-C5-C6	2.23	110.70	107.20
3	0	5	BGC	C6-C5-C4	-2.23	107.78	113.00
3	0	5	BGC	O5-C5-C6	2.20	110.65	107.20
3	0	3	BGC	C1-O5-C5	2.19	115.16	112.19
3	R	3	BGC	O5-C1-C2	-2.18	107.41	110.77
3	L	5	BGC	O5-C5-C6	2.17	110.61	107.20
3	Т	5	BGC	C1-O5-C5	2.16	115.11	112.19
3	L	4	BGC	O5-C1-C2	-2.15	107.45	110.77
3	L	6	BGC	C1-C2-C3	2.13	112.29	109.67
3	S	2	BGC	C6-C5-C4	-2.13	108.01	113.00
3	R	6	BGC	O5-C5-C6	2.12	110.53	107.20
3	М	4	BGC	C1-C2-C3	2.11	112.26	109.67
3	Q	3	BGC	C6-C5-C4	-2.10	108.09	113.00
3	Т	1	BGC	C4-C3-C2	-2.09	107.17	110.82
3	М	3	BGC	O5-C5-C6	2.09	110.47	107.20
3	S	6	BGC	C1-C2-C3	2.06	112.20	109.67
3	R	4	BGC	C1-C2-C3	2.06	112.20	109.67
3	0	2	BGC	C1-O5-C5	2.05	114.98	112.19
3	Р	3	BGC	O2-C2-C1	2.02	113.28	109.15
3	М	5	BGC	O5-C5-C6	2.00	110.35	107.20

There are no chirality outliers.

All (53) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
3	R	6	BGC	O5-C5-C6-O6
3	М	5	BGC	O5-C5-C6-O6
2	Κ	5	BGC	O5-C5-C6-O6
3	Р	3	BGC	O5-C5-C6-O6
3	S	6	BGC	O5-C5-C6-O6
3	N	1	BGC	C4-C5-C6-O6
3	R	6	BGC	C4-C5-C6-O6
3	N	1	BGC	O5-C5-C6-O6
3	М	5	BGC	C4-C5-C6-O6
3	S	2	BGC	O5-C5-C6-O6
3	N	5	BGC	O5-C5-C6-O6
3	0	1	BGC	O5-C5-C6-O6
3	S	1	BGC	O5-C5-C6-O6
3	S	6	BGC	C4-C5-C6-O6
3	М	1	BGC	C4-C5-C6-O6
3	0	1	BGC	C4-C5-C6-O6



Mol	Chain	Res	Type	Atoms
3	R	3	BGC	C4-C5-C6-O6
3	Ν	5	BGC	C4-C5-C6-O6
2	K	5	BGC	C4-C5-C6-O6
3	S	1	BGC	C4-C5-C6-O6
3	L	5	BGC	O5-C5-C6-O6
3	R	5	BGC	C4-C5-C6-O6
3	S	2	BGC	C4-C5-C6-O6
3	М	6	BGC	O5-C5-C6-O6
3	Т	5	BGC	O5-C5-C6-O6
3	М	1	BGC	O5-C5-C6-O6
3	Р	5	BGC	C4-C5-C6-O6
3	М	2	BGC	O5-C5-C6-O6
3	R	3	BGC	O5-C5-C6-O6
3	Р	3	BGC	C4-C5-C6-O6
3	Q	3	BGC	O5-C5-C6-O6
3	S	5	BGC	O5-C5-C6-O6
3	N	6	BGC	O5-C5-C6-O6
3	N	6	BGC	C4-C5-C6-O6
3	R	5	BGC	O5-C5-C6-O6
3	Т	1	BGC	O5-C5-C6-O6
3	Р	1	BGC	C4-C5-C6-O6
3	Q	6	BGC	O5-C5-C6-O6
3	L	3	BGC	O5-C5-C6-O6
3	М	4	BGC	O5-C5-C6-O6
3	L	5	BGC	C4-C5-C6-O6
3	М	6	BGC	C4-C5-C6-O6
3	Т	5	BGC	C4-C5-C6-O6
3	Q	5	BGC	C4-C5-C6-O6
3	Т	6	BGC	O5-C5-C6-O6
3	Р	5	BGC	O5-C5-C6-O6
3	L	6	BGC	O5-C5-C6-O6
2	K	1	BGC	C4-C5-C6-O6
3	0	4	BGC	C4-C5-C6-O6
3	Р	1	BGC	O5-C5-C6-O6
3	L	4	BGC	O5-C5-C6-O6
3	М	2	BGC	C4-C5-C6-O6
3	Q	3	BGC	C4-C5-C6-O6

Continued from previous page...

There are no ring outliers.

1 monomer is involved in 1 short contact:



Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	0	1	BGC	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.















## 5.6 Ligand geometry (i)

Of 42 ligands modelled in this entry, 10 are monoatomic - leaving 32 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tuno	Chain	Dec	Tink	B	ond leng	gths	B	ond ang	gles
IVIOI	Type	Unann	nes	LIIIK	Counts	RMSZ	# Z  > 2	Counts	RMSZ	# Z >2
5	ACT	А	607	-	3,3,3	0.73	0	$3,\!3,\!3$	0.66	0
7	EDO	В	612	-	3,3,3	0.45	0	2,2,2	0.25	0
7	EDO	G	609	-	3,3,3	0.50	0	$2,\!2,\!2$	0.19	0
7	EDO	А	610	-	3,3,3	0.49	0	2,2,2	0.22	0
7	EDO	G	608	-	3,3,3	0.77	0	2,2,2	0.83	0
5	ACT	Ι	608	-	3,3,3	0.77	0	3,3,3	0.64	0
6	PEG	J	609	-	6,6,6	0.44	0	$5,\!5,\!5$	0.28	0
7	EDO	Н	609	-	3,3,3	0.45	0	2,2,2	0.26	0
6	PEG	А	608	-	6,6,6	0.58	0	$5,\!5,\!5$	0.77	0
5	ACT	J	608	-	3,3,3	0.77	0	$3,\!3,\!3$	0.83	0
7	EDO	Е	612	-	3,3,3	0.52	0	2,2,2	0.21	0
7	EDO	E	609	-	3,3,3	0.53	0	$2,\!2,\!2$	0.17	0
5	ACT	С	608	-	3,3,3	0.72	0	3,3,3	0.79	0
7	EDO	G	612	-	3,3,3	0.48	0	2,2,2	0.34	0
7	EDO	E	610	-	3,3,3	0.55	0	$2,\!2,\!2$	0.38	0
7	EDO	С	611	-	3,3,3	0.50	0	2,2,2	0.12	0
6	PEG	В	610	-	6,6,6	0.48	0	$5,\!5,\!5$	0.19	0
5	ACT	D	608	-	3,3,3	0.72	0	3,3,3	0.89	0
5	ACT	Е	608	-	3,3,3	0.76	0	3,3,3	0.73	0



Mal	d Type Chain Bes Link				B	ond leng	$\operatorname{gths}$	Bond angles			
IVIOI	Type	Unain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2	
6	PEG	А	609	-	6,6,6	0.48	0	$5,\!5,\!5$	0.17	0	
6	PEG	В	609	-	6,6,6	0.53	0	$5,\!5,\!5$	0.29	0	
7	EDO	Ι	609	-	3,3,3	0.52	0	2,2,2	0.21	0	
5	ACT	В	608	-	3,3,3	0.87	0	3,3,3	0.49	0	
7	EDO	С	609	-	3,3,3	0.49	0	2,2,2	0.21	0	
7	EDO	G	611	-	3,3,3	0.48	0	2,2,2	0.23	0	
5	ACT	Н	608	-	3,3,3	0.77	0	3,3,3	0.74	0	
7	EDO	С	610	-	3,3,3	0.45	0	2,2,2	0.25	0	
7	EDO	Е	611	-	3,3,3	0.50	0	2,2,2	0.15	0	
7	EDO	D	609	-	3,3,3	0.45	0	2,2,2	0.23	0	
7	EDO	G	610	-	3,3,3	0.49	0	2,2,2	0.27	0	
7	EDO	В	611	-	3,3,3	0.47	0	2,2,2	0.19	0	
5	ACT	F	608	-	3,3,3	0.75	0	3,3,3	0.80	0	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	$\mathbf{Res}$	Link	Chirals	Torsions	Rings
7	EDO	В	612	-	-	0/1/1/1	-
7	EDO	G	609	-	-	1/1/1/1	-
7	EDO	А	610	-	-	1/1/1/1	-
7	EDO	G	608	-	-	0/1/1/1	-
6	PEG	J	609	-	-	2/4/4/4	-
7	EDO	Н	609	-	-	1/1/1/1	-
6	PEG	А	608	-	-	2/4/4/4	-
7	EDO	Е	612	-	-	1/1/1/1	-
7	EDO	Е	609	-	-	0/1/1/1	-
7	EDO	G	612	-	-	0/1/1/1	-
7	EDO	Ε	610	-	-	1/1/1/1	-
7	EDO	С	611	-	-	1/1/1/1	_
6	PEG	В	610	-	-	2/4/4/4	-
6	PEG	А	609	-	-	2/4/4/4	-
6	PEG	В	609	-	-	2/4/4/4	-
7	EDO	Ι	609	-	-	1/1/1/1	-
7	EDO	С	609	-	-	0/1/1/1	-
7	EDO	G	611	-	-	1/1/1/1	-
7	EDO	С	610	-	_	1/1/1/1	-
7	EDO	Е	611	-	-	0/1/1/1	-
7	EDO	D	609	_	_	1/1/1/1	_



Continued from previous page...

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
7	EDO	G	610	-	-	0/1/1/1	-
7	EDO	В	611	-	-	1/1/1/1	-

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (21) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
6	J	609	PEG	O1-C1-C2-O2
6	А	608	PEG	O2-C3-C4-O4
6	А	609	PEG	O2-C3-C4-O4
7	А	610	EDO	O1-C1-C2-O2
7	В	611	EDO	O1-C1-C2-O2
7	С	611	EDO	O1-C1-C2-O2
7	Е	610	EDO	O1-C1-C2-O2
7	Е	612	EDO	O1-C1-C2-O2
7	G	609	EDO	O1-C1-C2-O2
7	G	611	EDO	O1-C1-C2-O2
7	Ι	609	EDO	O1-C1-C2-O2
6	А	609	PEG	O1-C1-C2-O2
6	В	610	PEG	O1-C1-C2-O2
7	D	609	EDO	O1-C1-C2-O2
7	С	610	EDO	O1-C1-C2-O2
6	В	610	PEG	C4-C3-O2-C2
6	В	609	PEG	O1-C1-C2-O2
7	Н	609	EDO	O1-C1-C2-O2
6	А	608	PEG	C1-C2-O2-C3
6	J	609	PEG	C4-C3-O2-C2
6	В	609	PEG	C4-C3-O2-C2

There are no ring outliers.

3 monomers are involved in 4 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
7	G	608	EDO	2	0
7	Е	610	EDO	1	0
7	С	611	EDO	1	0



# 5.7 Other polymers (i)

There are no such residues in this entry.

# 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



# 6 Fit of model and data (i)

## 6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median,  $95^{th}$  percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<rsrz></rsrz>	> #RSRZ>2		$OWAB(Å^2)$	Q<0.9	
1	А	513/520~(98%)	-0.62	3~(0%)	89	88	19, 30, 53, 79	0
1	В	516/520~(99%)	-0.70	1 (0%)	95	94	16, 27, 46, 78	0
1	С	512/520~(98%)	-0.57	5(0%)	82	80	19, 32, 58, 87	0
1	D	519/520~(99%)	-0.59	2 (0%)	92	91	18, 34, 55, 79	0
1	Е	517/520~(99%)	-0.63	1 (0%)	95	94	19, 31, 52, 75	0
1	F	514/520~(98%)	-0.52	2 (0%)	92	91	20, 39, 63, 81	0
1	G	512/520~(98%)	-0.61	4 (0%)	86	84	21, 32, 56, 72	0
1	Н	514/520~(98%)	-0.53	5(0%)	82	80	20, 35, 56, 76	0
1	Ι	510/520~(98%)	-0.55	2 (0%)	92	91	24, 39, 59, 70	0
1	J	512/520~(98%)	-0.59	3~(0%)	89	88	19, 34, 58, 85	0
All	All	5139/5200 (98%)	-0.59	28 (0%)	91	89	16, 33, 58, 87	0

All (28) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	F	160	PHE	3.7
1	С	39	ILE	3.4
1	С	114	ARG	3.1
1	D	155	PHE	2.9
1	А	114	ARG	2.9
1	Ε	114	ARG	2.9
1	J	160	PHE	2.9
1	Ι	114	ARG	2.8
1	Н	116	ALA	2.7
1	Н	113	TYR	2.6
1	В	117	GLU	2.4
1	С	113	TYR	2.4
1	J	117	GLU	2.4



Mol	Chain	Res	Type	RSRZ
1	Н	39	ILE	2.3
1	J	114	ARG	2.3
1	G	114	ARG	2.3
1	С	120	GLU	2.3
1	G	530	TYR	2.2
1	А	117	GLU	2.2
1	G	113	TYR	2.2
1	G	191	LYS	2.2
1	Н	114	ARG	2.2
1	Н	121	LYS	2.1
1	Ι	368	ASN	2.1
1	F	114	ARG	2.1
1	D	156	LEU	2.1
1	А	530	TYR	2.0
1	С	110	ASP	2.0

### 6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

#### 6.3 Carbohydrates (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median,  $95^{th}$  percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
3	BGC	L	1	12/12	0.81	0.21	$53,\!58,\!62,\!65$	0
3	BGC	0	1	12/12	0.83	0.21	53,63,71,75	0
3	BGC	N	1	12/12	0.87	0.17	54,62,64,71	0
3	BGC	S	1	12/12	0.87	0.17	51,62,72,74	0
3	BGC	М	1	12/12	0.88	0.23	54,68,73,74	0
3	BGC	Т	1	12/12	0.88	0.15	53,57,64,68	0
3	BGC	Q	1	12/12	0.89	0.13	$56,\!59,\!64,\!65$	0
3	BGC	R	2	11/12	0.89	0.13	$49,\!53,\!57,\!57$	0
3	BGC	R	1	12/12	0.90	0.16	$57,\!63,\!66,\!66$	0
2	BGC	K	1	12/12	0.90	0.16	50,59,66,66	0
3	BGC	М	2	11/12	0.91	0.14	44,47,58,64	0
3	BGC	Ν	2	11/12	0.91	0.14	$53,\!55,\!58,\!60$	0
3	BGC	Р	6	11/12	0.92	0.18	63,68,75,76	0



Mol		Chain	Res	Atoms	BSCC	<b>RSR</b>	<b>B-factors</b> $(Å^2)$	Q<0.9
3	BGC	P	1	12/12	0.92	0.14	61 67 71 76	0
3	BGC	P	2	$\frac{12}{12}$	0.92	0.11	49 57 60 61	0
3	BGC	P	3	$\frac{11}{12}$	0.93	0.11	60 62 68 74	0
3	BGC	I.	6	$\frac{11}{12}$	0.93	0.13	42 47 51 53	0
3	BGC	M	3	11/12	0.93	0.11	40 43 45 47	0
3	BGC	P	5	11/12	0.94	0.12	56.60.66.70	0
3	BGC	N	6	11/12	0.94	0.11	53.58.63.65	0
3	BGC	M	6	11/12	0.94	0.11	44.48.52.62	0
3	BGC	Q	2	11/12	0.94	0.10	44.46.49.54	0
3	BGC	Q	6	11/12	0.94	0.12	41,44,49,51	0
3	BGC	L	2	11/12	0.94	0.11	40,43,50,57	0
3	BGC	L	3	11/12	0.94	0.11	33,35,42,43	0
3	BGC	N	3	11/12	0.94	0.09	46,50,52,54	0
3	BGC	S	2	11/12	0.94	0.10	42,45,51,60	0
3	BGC	Р	4	11/12	0.94	0.11	52,56,59,59	0
3	BGC	Т	2	11/12	0.94	0.12	41,48,52,62	0
3	BGC	Т	5	11/12	0.94	0.11	36,39,46,48	0
3	BGC	N	5	11/12	0.95	0.10	50,54,63,65	0
3	BGC	L	5	11/12	0.95	0.12	34,38,42,46	0
3	BGC	R	3	11/12	0.95	0.13	46,47,57,59	0
3	BGC	R	6	11/12	0.95	0.12	50,54,60,60	0
2	BGC	К	5	11/12	0.95	0.10	38,42,48,50	0
3	BGC	0	2	11/12	0.95	0.14	$43,\!51,\!57,\!58$	0
3	BGC	S	5	11/12	0.95	0.13	39,43,46,49	0
3	BGC	0	3	11/12	0.95	0.10	40,41,48,48	0
2	BGC	K	3	11/12	0.95	0.11	37,45,53,58	0
3	BGC	Т	4	11/12	0.95	0.10	32,34,36,36	0
3	BGC	N	4	11/12	0.95	0.10	46,52,57,58	0
3	BGC	Т	6	11/12	0.95	0.18	45,49,57,64	0
2	BGC	K	2	11/12	0.96	0.09	47,49,53,55	0
3	BGC	S	3	11/12	0.96	0.08	39,42,47,50	0
3	BGC	S	4	11/12	0.96	0.10	36,38,42,45	0
3	BGC	M	4	11/12	0.96	0.10	33,39,41,42	0
3	BGC	Q	3	11/12	0.96	0.12	37,41,48,59	0
3	BGC	R	4	11/12	0.96	0.10	45,48,55,62	0
3	BGC	R	5	$\frac{11}{12}$	0.96	0.10	46,49,52,60	0
3	BGC	Q	5	11/12	0.96	0.10	37,39,44,47	0
3	BGC		6	11/12	0.96	0.11	38,40,43,45	0
3	BGC	L	4	11/12	0.97	0.11	32,33,35,35	0
3	BGC	S	6	11/12	0.97	0.12	41,44,47,52	0
3	BGC	M	5	11/12	0.97	0.09	39,42,43,45	0
2	RGC	K	4	11/12	0.97	0.07	35, 36, 38, 40	0



	f										
Mol	Type	Chain	Res	Atoms	RSCC	RSR	${f B} ext{-factors}({ m \AA}^2)$	Q<0.9			
3	BGC	Т	3	11/12	0.97	0.08	36,39,42,49	0			
3	BGC	0	4	11/12	0.97	0.10	33,36,40,42	0			
3	BGC	0	5	11/12	0.97	0.09	36,40,47,51	0			
3	BGC	Q	4	11/12	0.97	0.08	32,37,41,42	0			

The following is a graphical depiction of the model fit to experimental electron density for oligosaccharide. Each fit is shown from different orientation to approximate a three-dimensional view.























### 6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median,  $95^{th}$  percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
7	EDO	G	610	4/4	0.73	0.17	$54,\!57,\!57,\!58$	0
5	ACT	Н	608	4/4	0.78	0.16	66,69,70,74	0
7	EDO	Е	609	4/4	0.79	0.19	52,55,56,56	0
7	EDO	G	611	4/4	0.79	0.16	$54,\!55,\!56,\!57$	0
6	PEG	В	609	7/7	0.82	0.21	49,53,61,62	0
7	EDO	D	609	4/4	0.84	0.17	$56,\!63,\!63,\!65$	0
6	PEG	А	609	7/7	0.85	0.15	52,57,64,66	0
5	ACT	Ι	608	4/4	0.86	0.20	$52,\!53,\!56,\!57$	0
6	PEG	В	610	7/7	0.86	0.12	56,57,60,61	0
5	ACT	Е	608	4/4	0.86	0.23	42,51,53,64	0
7	EDO	С	609	4/4	0.87	0.18	$51,\!53,\!53,\!53$	0
7	EDO	Н	609	4/4	0.87	0.16	$52,\!54,\!55,\!57$	0
5	ACT	D	608	4/4	0.88	0.21	53,53,54,57	0
7	EDO	Е	612	4/4	0.88	0.15	$65,\!67,\!68,\!68$	0



Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
7	EDO	G	612	4/4	0.88	0.21	44,46,50,51	0
7	EDO	G	608	4/4	0.88	0.23	41,47,50,52	0
5	ACT	J	608	4/4	0.89	0.14	48,49,54,58	0
5	ACT	В	608	4/4	0.89	0.17	38,42,43,50	0
5	ACT	F	608	4/4	0.89	0.14	51,55,57,57	0
7	EDO	G	609	4/4	0.89	0.11	50,57,58,59	0
7	EDO	С	610	4/4	0.91	0.16	47,50,51,51	0
7	EDO	Е	610	4/4	0.91	0.20	43,47,50,52	0
6	PEG	J	609	7/7	0.91	0.12	52,52,56,56	0
6	PEG	А	608	7/7	0.92	0.30	36,45,58,62	0
7	EDO	Ι	609	4/4	0.92	0.12	54,57,58,59	0
7	EDO	В	612	4/4	0.93	0.11	54,54,55,55	0
5	ACT	А	607	4/4	0.93	0.17	54,56,58,60	0
5	ACT	С	608	4/4	0.94	0.16	47,51,54,55	0
7	EDO	Е	611	4/4	0.94	0.12	48,49,52,53	0
4	MG	F	607	1/1	0.95	0.06	52,52,52,52	0
4	MG	С	607	1/1	0.95	0.10	50,50,50,50	0
4	MG	Ι	607	1/1	0.96	0.05	$55,\!55,\!55,\!55$	0
4	MG	D	607	1/1	0.96	0.09	44,44,44,44	0
4	MG	G	607	1/1	0.96	0.06	53,53,53,53	0
7	EDO	А	610	4/4	0.97	0.14	46,47,51,52	0
4	MG	А	606	1/1	0.97	0.12	45,45,45,45	0
7	EDO	С	611	4/4	0.97	0.15	36,37,38,38	0
4	MG	Е	607	1/1	0.98	0.12	54,54,54,54	0
4	MG	Н	607	1/1	0.98	0.08	51, 51, 51, 51	0
4	MG	В	607	1/1	0.99	0.09	48,48,48,48	0
7	EDO	В	611	4/4	0.99	0.12	36,37,37,39	0
4	MG	J	607	1/1	0.99	0.08	43,43,43,43	0

# 6.5 Other polymers (i)

There are no such residues in this entry.

