

wwPDB X-ray Structure Validation Summary Report (i)

Jan 28, 2024 - 01:09 PM EST

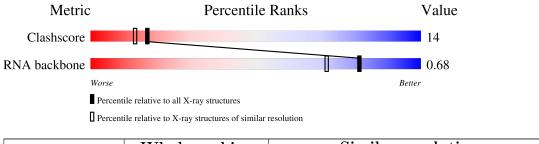
PDB ID	:	1DUQ
Title	:	CRYSTAL STRUCTURE OF THE REV BINDING ELEMENT OF HIV-1
Authors	:	Hung, LW.; Holbrook, E.L.; Holbrook, S.R.
Deposited on	:	2000-01-18
Resolution	:	2.10 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:


MolProbity	:	4.02b-467
Xtriage (Phenix)	:	NOT EXECUTED
EDS	:	NOT EXECUTED
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.10 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$\begin{array}{c} \textbf{Whole archive} \\ (\#\textbf{Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
Clashscore	141614	5710 (2.10-2.10)
RNA backbone	3102	$1000 \ (2.54-1.66)$

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Note EDS was not executed.

Mol	Chain	Length	Quality of chain				
1	А	12	58%	42	2%		
1	С	12	25%	75%			
1	Е	12	75%		25%		
1	G	12	42%	50%	8%		
2	В	14	50%	29%	21%		
2	D	14	29%	50%	21%		
2	F	14	50%	29%	21%		
2	Н	14	36%	50%	14%		

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 2313 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
1	Δ	12	Total	С	Ν	Ο	Р	0	0	0
	А	12	260	116	51	82	11	0	0	
1	С	12	Total	С	Ν	Ο	Р	0	0	0
1		12	260	116	51	82	11			
1	Е	12	Total	С	Ν	Ο	Р	0	0	0
1	E	12	260	116	51	82	11	0		
1	С	10	Total	С	Ν	Ο	Р	0	0	0
	1 G	12	260	116	51	82	11	0	0	0

• Molecule 1 is a RNA chain called THE REV BINDING ELEMENT.

• Molecule 2 is a RNA chain called THE REV BINDING ELEMENT.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
2	В	14	Total	С	Ν	Ο	Р	0	0	0
	D	14	295	133	54	95	13	0	0	U
2	D	14	Total	С	Ν	Ο	Р	0	0	0
	D	14	295	133	54	95	13	0	0	0
2	F	14	Total	С	Ν	Ο	Р	0	0	0
	Г	14	295	133	54	95	13	0	0	
2	Н	14	Total	С	Ν	Ο	Р	0	0	0
	2 H	14	295	133	54	95	13	0	U	0

• Molecule 3 is SODIUM ION (three-letter code: NA) (formula: Na).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	В	1	Total Na 1 1	0	0
3	С	3	Total Na 3 3	0	0
3	D	1	Total Na 1 1	0	0
3	Ε	1	Total Na 1 1	0	0

Continued on next page...

Continued from previous page...

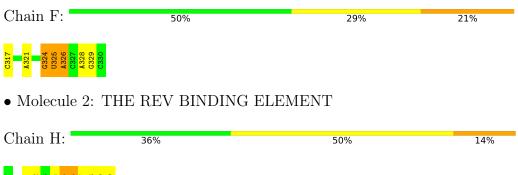
Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	G	2	Total Na 2 2	0	0
3	Н	2	Total Na 2 2	0	0

• Molecule 4 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	11	Total O 11 11	0	0
4	В	18	Total O 18 18	0	0
4	С	6	Total O 6 6	0	0
4	D	11	Total O 11 11	0	0
4	Ε	7	Total O 7 7	0	0
4	F	13	Total O 13 13	0	0
4	G	9	Total O 9 9	0	0
4	Н	8	Total O 8 8	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.


Note EDS was not executed.

• Molecule 1: THE REV BINDING ELEMENT

Chain A:	58%		42%
G101 C102 C103 G104 G112			
• Molecule 1:	THE REV BINDING ELEMENT	ר -	
Chain C:	25%	75%	
(201 (202 (202 (204 (206 (206 (206 (206 (208 (209 (209) (209) (200) (20)	6211 2212		
• Molecule 1:	THE REV BINDING ELEMENT	ר -	
Chain E:	75%		25%
G301 C302 U303 G304 G312 G312			
• Molecule 1:	THE REV BINDING ELEMENT	ר -	
Chain G:	42%	50%	8%
G401 C402 C403 G404 G405 G405 C407 C407 C407			
• Molecule 2:	THE REV BINDING ELEMENT	ר -	
Chain B:	50%	29%	21%
C117 A121 C122 G123 G124 U125 A125 C127 A128	G129 C130		
• Molecule 2:	THE REV BINDING ELEMENT	- -	
Chain D:	29% 50%		21%

• Molecule 2: THE REV BINDING ELEMENT

4 Data and refinement statistics (i)

Xtriage (Phenix) and EDS were not executed - this section is therefore incomplete.

Property	Value	Source	
Space group	P 1	Depositor	
Cell constants	23.99Å 53.93Å 64.73Å	Depositor	
a, b, c, α , β , γ	114.52° 89.88° 102.85°	Depositor	
Resolution (Å)	19.77 - 2.10	Depositor	
% Data completeness	84.6 (19.77-2.10)	Depositor	
(in resolution range)	04.0 (15.11-2.10)	Depositor	
R_{merge}	0.38	Depositor	
R _{sym}	(Not available)	Depositor	
Refinement program	CNS 0.9	Depositor	
R, R_{free}	0.218 , 0.269	Depositor	
Estimated twinning fraction	No twinning to report.	Xtriage	
Total number of atoms	2313	wwPDB-VP	
Average B, all atoms $(Å^2)$	41.0	wwPDB-VP	

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NA

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bond angles		
IVIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.79	0/291	0.84	0/454	
1	С	0.88	0/291	0.95	0/454	
1	Е	0.84	0/291	0.86	0/454	
1	G	0.91	0/291	0.96	1/454~(0.2%)	
2	В	0.94	0/329	0.91	0/511	
2	D	0.78	0/329	0.93	0/511	
2	F	0.80	0/329	0.94	1/511~(0.2%)	
2	Н	0.80	0/329	0.93	0/511	
All	All	0.85	0/2480	0.92	2/3860~(0.1%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
2	В	0	1
2	F	0	1
All	All	0	2

There are no bond length outliers.

All (2) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
2	F	324	G	O4'-C1'-N9	5.07	112.26	108.20
1	G	404	G	C4'-C3'-C2'	-5.02	97.58	102.60

There are no chirality outliers.

All (2) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
2	В	124	G	Sidechain
2	F	324	G	Sidechain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	260	0	133	4	0
1	С	260	0	131	11	1
1	Е	260	0	133	2	0
1	G	260	0	132	11	1
2	В	295	0	154	4	0
2	D	295	0	154	5	1
2	F	295	0	154	5	0
2	Н	295	0	154	9	1
3	В	1	0	0	0	0
3	С	3	0	0	0	0
3	D	1	0	0	0	0
3	Е	1	0	0	0	0
3	G	2	0	0	0	0
3	Н	2	0	0	0	0
4	А	11	0	0	1	0
4	В	18	0	0	0	0
4	С	6	0	0	1	0
4	D	11	0	0	0	0
4	Е	7	0	0	0	0
4	F	13	0	0	0	0
4	G	9	0	0	1	0
4	Н	8	0	0	0	0
All	All	2313	0	1145	46	2

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 14.

The worst 5 of 46 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:C:201:G:H2'	1:C:201:G:N3	1.76	1.00
1:G:401:G:H2'	1:G:401:G:N3	1.88	0.89
1:C:202:C:H2'	1:C:203:U:C6	2.11	0.84
2:F:325:U:O2'	2:F:326:A:OP1	1.97	0.83
1:G:402:C:H2'	1:G:403:U:C6	2.15	0.82

All (2) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:C:202:C:O2'	1:G:402:C:O2'[1_445]	2.12	0.08
2:D:229:G:O2'	2:H:429:G:O2'[1_445]	2.12	0.08

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

There are no protein molecules in this entry.

5.3.2 Protein sidechains (i)

There are no protein molecules in this entry.

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	А	11/12~(91%)	0	0
1	С	11/12~(91%)	0	0
1	Е	11/12~(91%)	0	0
1	G	11/12~(91%)	0	0
2	В	13/14~(92%)	2(15%)	1 (7%)
2	D	13/14~(92%)	3~(23%)	2(15%)
2	F	13/14~(92%)	2(15%)	1 (7%)
2	Н	13/14~(92%)	4 (30%)	2(15%)
All	All	96/104~(92%)	11 (11%)	6 (6%)

5 of 11 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
2	В	121	А
2	В	126	А
2	D	221	А
2	D	225	U
2	D	226	А

5 of 6 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
2	F	325	U
2	Н	424	G
2	Н	425	U
2	D	224	G
2	В	125	U

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 10 ligands modelled in this entry, 10 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

EDS was not executed - this section is therefore empty.

6.2 Non-standard residues in protein, DNA, RNA chains (i)

EDS was not executed - this section is therefore empty.

6.3 Carbohydrates (i)

EDS was not executed - this section is therefore empty.

6.4 Ligands (i)

EDS was not executed - this section is therefore empty.

6.5 Other polymers (i)

EDS was not executed - this section is therefore empty.

