

Full wwPDB X-ray Structure Validation Report (i)

Sep 9, 2020 – 02:56 PM BST

PDB ID	:	6DVH
Title	:	Lactate Monooxygenase from Mycobacterium smegmatis - C203A mutant
Authors	:	Kean, K.M.; Karplus, P.A.
Deposited on	:	2018-06-23
Resolution	:	1.70 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity		4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	$2.14.3.\mathrm{dev}2$
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	$7.0.044 \ (Gargrove)$
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.14.3. dev 2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 1.70 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries},{ m resolution\ range}({ m \AA}))$
R_{free}	130704	4298(1.70-1.70)
Clash score	141614	4695(1.70-1.70)
Ramachandran outliers	138981	4610(1.70-1.70)
Sidechain outliers	138945	4610 (1.70-1.70)
RSRZ outliers	127900	4222 (1.70-1.70)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
			5%		
1	A	394	91%	8%	•
			13%		
1	В	394	89%	9%	••
			11%		
1	C	394	92%	6%	•
			22%		
1	D	394	86%	13%	•
			61%		
1	E	394	85%	13%	•
			72%		
1	F	394	85%	13%	•

6DVH

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 20104 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	Λ	304	Total	С	Ν	Ο	S	0	12	0
	А	394	3080	1964	533	571	12	0		0
1	В	304	Total	С	Ν	Ο	S	0		Ο
L T	D	394	3166	2020	548	586	12	0		0
1	1 C	C 394	Total	С	Ν	Ο	S	0	7	0
			3066	1949	540	565	12		1	0
1	П	394	Total	С	Ν	Ο	S	0	7	0
L T	D		3062	1949	535	566	12	0	1	
1	F	20.4	Total	С	Ν	Ο	S	0	6	0
L T		394	3043	1935	530	566	12	0		0
1	1 5	202	Total	С	Ν	Ο	S	0	6	0
	393	3037	1933	529	564	11		U U	0	

• Molecule 1 is a protein called Lactate 2-monooxygenase.

There are 6 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	203	ALA	CYS	engineered mutation	UNP P21795
В	203	ALA	CYS	engineered mutation	UNP P21795
С	203	ALA	CYS	engineered mutation	UNP P21795
D	203	ALA	CYS	engineered mutation	UNP P21795
Е	203	ALA	CYS	engineered mutation	UNP P21795
F	203	ALA	CYS	engineered mutation	UNP P21795

• Molecule 2 is FLAVIN MONONUCLEOTIDE (three-letter code: FMN) (formula: C₁₇H₂₁N₄O₉P).

Mol	Chain	Residues		Ato	oms			ZeroOcc	AltConf
9	Λ	1	Total	С	Ν	Ο	Р	0	0
2	Л	T	31	17	4	9	1	0	0
9	В	1	Total	С	Ν	Ο	Р	0	0
	D	T	31	17	4	9	1	0	0
9	С	1	Total	С	Ν	Ο	Р	0	0
		1	31	17	4	9	1	0	0
2	п	1	Total	С	Ν	Ο	Р	0	0
2	D	T	31	17	4	9	1	0	0
2	F	1	Total	С	Ν	Ο	Р	0	0
2	Ľ	T	31	17	4	9	1	0	0
2	F	1	Total	С	N	0	Р	0	0
	Ľ		31	17	4	9	1	U	

 $\bullet\,$ Molecule 3 is SULFATE ION (three-letter code: SO4) (formula: O_4S).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	1
3	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	1
3	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	1
3	С	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	С	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	С	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	D	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	D	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	Ε	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	Е	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	F	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	F	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0

• Molecule 4 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	499	Total O 499 499	0	4
4	В	358	Total O 358 358	0	4
4	С	313	Total O 313 313	0	2
4	D	182	Total O 182 182	0	2
4	Е	13	Total O 13 13	0	0
4	F	9	Total O 9 9	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Lactate 2-monooxygenase

• Molecule 1: Lactate 2-monooxygenase

• Molecule 1: Lactate 2-monooxygenase

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 4 21 2	Depositor
Cell constants	149.62Å 149.62Å 274.25Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
$\mathbf{B}_{\mathrm{ascolution}}(\mathbf{\hat{A}})$	30.90 - 1.70	Depositor
Resolution (A)	30.90 - 1.70	EDS
% Data completeness	99.9 (30.90-1.70)	Depositor
(in resolution range)	$100.0 \ (30.90 - 1.70)$	EDS
R_{merge}	(Not available)	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.48 (at 1.70 \text{\AA})$	Xtriage
Refinement program	PHENIX (1.13_2998: ???)	Depositor
D D.	0.169 , 0.194	Depositor
Π, Π_{free}	0.176 , 0.199	DCC
R_{free} test set	34003 reflections $(10.06%)$	wwPDB-VP
Wilson B-factor (Å ²)	30.5	Xtriage
Anisotropy	0.223	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.32 , 58.3	EDS
L-test for twinning ²	$ < L >=0.48, < L^2>=0.31$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.97	EDS
Total number of atoms	20104	wwPDB-VP
Average B, all atoms $(Å^2)$	68.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 16.64% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

 $^{^1 {\}rm Intensities}$ estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: FMN, SO4

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	nd lengths	Bond angles		
		RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.84	1/3197~(0.0%)	0.86	3/4353~(0.1%)	
1	В	0.70	1/3286~(0.0%)	0.80	6/4473~(0.1%)	
1	С	0.63	0/3168	0.71	1/4311~(0.0%)	
1	D	0.51	0/3164	0.60	0/4306	
1	Е	0.36	0/3140	0.49	0/4275	
1	F	0.34	0/3134	0.51	0/4268	
All	All	0.60	2/19089~(0.0%)	0.68	10/25986~(0.0%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	В	0	2

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	$\operatorname{Ideal}(\operatorname{\AA})$
1	А	30	GLU	CD-OE2	-8.02	1.16	1.25
1	В	78	ARG	CG-CD	-5.07	1.39	1.51

All (10) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
1	В	78	ARG	NE-CZ-NH1	7.00	123.80	120.30
1	В	78	ARG	NE-CZ-NH2	-6.41	117.10	120.30
1	А	139	ARG	NE-CZ-NH1	-6.09	117.25	120.30
1	А	111	ASP	CB-CG-OD1	6.04	123.74	118.30
1	В	78	ARG	CA-CB-CG	-5.82	100.59	113.40

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	С	344	ARG	NE-CZ-NH2	5.26	122.93	120.30
1	В	51	ASP	CB-CG-OD1	5.22	123.00	118.30
1	В	242[A]	LEU	CB-CG-CD2	5.20	119.84	111.00
1	В	242[B]	LEU	CB-CG-CD2	5.20	119.84	111.00
1	А	293	ARG	NE-CZ-NH1	-5.08	117.76	120.30

Continued from previous page...

There are no chirality outliers.

All (2) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	В	239[A]	TRP	Peptide
1	В	242[A]	LEU	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	3080	0	3026	24	0
1	В	3166	0	3083	44	0
1	С	3066	0	3002	28	0
1	D	3062	0	2997	38	0
1	Е	3043	0	2978	33	0
1	F	3037	0	2975	45	0
2	А	31	0	19	0	0
2	В	31	0	19	0	0
2	С	31	0	19	1	0
2	D	31	0	19	1	0
2	Е	31	0	19	0	0
2	F	31	0	19	1	0
3	А	20	0	0	0	0
3	В	25	0	0	0	0
3	С	15	0	0	0	0
3	D	10	0	0	0	0
3	Е	10	0	0	0	0
3	F	10	0	0	0	0
4	A	499	0	0	5	2
4	В	358	0	0	6	1

	J	1	1 5			
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
4	С	313	0	0	1	1
4	D	182	0	0	5	0
4	Ε	13	0	0	0	0
4	F	9	0	0	0	0
All	All	20104	0	18175	213	2

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 6.

All (213) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic	Clash
	Atom-2	distance (Å)	overlap (Å)
1:A:383:GLU:OE2	4:A:501:HOH:O	1.82	0.97
1:A:139:ARG:NH1	4:A:502:HOH:O	1.97	0.96
1:B:240[A]:HIS:O	1:B:243[A]:PHE:N	2.02	0.93
1:C:181[B]:THR:HG22	1:C:294:GLN:HG3	1.55	0.89
1:B:237[A]:ASP:O	1:B:239[A]:TRP:N	2.06	0.88
1:D:145:THR:O	4:D:501:HOH:O	1.93	0.85
1:D:139[A]:ARG:NH1	4:D:501:HOH:O	2.03	0.84
1:D:329:VAL:HG13	1:D:340[B]:VAL:HG21	1.64	0.79
1:B:155:GLU:H	1:B:242[A]:LEU:CD1	1.96	0.78
1:F:205:THR:O	1:F:209:THR:HG23	1.84	0.78
1:B:154:PRO:HB2	1:B:242[A]:LEU:HD11	1.66	0.78
1:F:256:ARG:NH2	1:F:281:GLY:O	2.17	0.78
1:E:181[B]:THR:HG22	1:E:294:GLN:HG3	1.64	0.77
1:F:225:ALA:HA	1:F:228:LEU:HB3	1.71	0.73
1:E:181[B]:THR:HG21	1:E:290:HIS:CE1	2.24	0.72
1:F:212:VAL:O	1:F:215:LYS:N	2.21	0.72
1:A:152:TYR:HE1	1:A:181[A]:THR:HG23	1.54	0.72
1:C:181[B]:THR:HG21	1:C:290:HIS:CE1	2.24	0.72
1:E:112:ALA:O	1:E:116:GLN:HG3	1.92	0.70
1:B:29[B]:TRP:CE3	1:B:352:LEU:HD12	2.25	0.70
1:B:168:GLU:OE1	4:B:501:HOH:O	2.09	0.70
1:A:279[A]:ASP:OD2	4:A:503:HOH:O	2.10	0.69
1:B:29[B]:TRP:HZ2	1:B:360:HIS:HD2	1.38	0.69
1:A:29[B]:TRP:CE3	1:A:352:LEU:HD12	2.29	0.67
1:F:181[B]:THR:HG22	1:F:294:GLN:HG3	1.76	0.67
1:B:155:GLU:N	1:B:242[A]:LEU:CD1	2.58	0.66
1:C:205:THR:HA	1:C:208[A]:VAL:HG22	1.79	0.65
1:B:234:LEU:HD11	4:B:648:HOH:O	1.97	0.64
1:F:226:GLU:O	1:F:230:ASP:N	2.29	0.64

Atom-1	Atom-2	Interatomic	Clash
	7100HI 2	distance (Å)	overlap (Å)
1:A:29[B]:TRP:HZ2	1:A:360:HIS:HD2	1.46	0.64
1:C:152:TYR:HE1	1:C:181[A]:THR:HG23	1.63	0.63
1:F:208[B]:VAL:HG22	1:F:228:LEU:HG	1.79	0.63
1:A:35[A]:GLN:NE2	4:A:504:HOH:O	2.11	0.63
1:E:221:SER:OG	1:E:223:VAL:HG13	1.99	0.62
1:B:237[B]:ASP:OD1	1:B:237[B]:ASP:N	2.33	0.62
1:B:29[B]:TRP:CZ3	1:B:352:LEU:HD12	2.37	0.60
1:B:155:GLU:N	1:B:242[A]:LEU:HD11	2.17	0.60
1:A:181[A]:THR:HG21	1:A:290:HIS:CE1	2.36	0.60
1:A:294:GLN:OE1	4:A:505[B]:HOH:O	2.17	0.60
1:D:266:LYS:HA	1:D:286:TYR:HB3	1.83	0.60
1:F:249:TRP:CH2	1:F:276:ARG:HG2	2.37	0.60
1:C:29[B]:TRP:HZ2	1:C:360:HIS:HD2	1.50	0.59
1:F:225:ALA:HA	1:F:228:LEU:CB	2.31	0.59
1:C:181[B]:THR:HG22	1:C:294:GLN:CG	2.32	0.58
1:C:181[B]:THR:CG2	1:C:294:GLN:HG3	2.30	0.58
1:A:205:THR:HA	1:A:208[A]:VAL:HG22	1.84	0.58
1:D:139[B]:ARG:HG2	1:D:170:ALA:O	2.04	0.58
1:B:193:ILE:HG13	1:B:195:ASN:HB2	1.85	0.58
1:D:211:PRO:O	1:D:215:LYS:HG2	2.03	0.58
1:E:266:LYS:HA	1:E:286:TYR:HB3	1.86	0.58
1:F:255:VAL:O	1:F:259:THR:HG22	2.04	0.57
1:B:155:GLU:H	1:B:242[A]:LEU:HD13	1.68	0.57
1:A:139:ARG:HG2	1:A:172:TYR:CZ	2.41	0.56
1:D:208:VAL:HG12	1:D:228:LEU:HG	1.86	0.56
1:C:165:ARG:O	1:C:169:GLU:HG3	2.06	0.55
1:D:29[A]:TRP:HZ2	1:D:360:HIS:HD2	1.53	0.55
1:E:180:ASP:OD1	1:E:181[B]:THR:HG23	2.06	0.55
1:A:152:TYR:CE1	1:A:181[A]:THR:HG23	2.39	0.55
1:A:29[B]:TRP:CZ3	1:A:352:LEU:HD12	2.43	0.54
1:B:239[A]:TRP:CE3	1:B:239[A]:TRP:HA	2.43	0.54
1:D:139[A]:ARG:HG2	1:D:170:ALA:O	2.08	0.54
1:D:29[A]:TRP:CE3	1:D:352:LEU:HD12	2.43	0.54
1:C:29[B]:TRP:CE3	1:C:352:LEU:HD12	2.43	0.54
1:D:130:LEU:HD13	1:D:198:PHE:CE1	2.43	0.54
1:E:130[B]:LEU:HD13	1:E:198:PHE:CZ	2.43	0.54
1:C:29[B]:TRP:CZ3	1:C:349:GLY:HA2	2.43	0.53
1:B:239[A]:TRP:HB3	1:B:242[A]:LEU:H	1.73	0.53
1:D:320:ASP:O	1:D:321:SER:HB2	2.08	0.53
1:B:155:GLU:HB2	1:B:242[A]:LEU:HD13	1.90	0.53
1:F:205:THR:HA	1:F:208[A]:VAL:HG22	1.91	0.53

Atom-1	Atom-2	Interatomic	Clash
	Atom-2	distance (Å)	overlap (Å)
1:A:29[B]:TRP:CZ2	1:A:360:HIS:HD2	2.27	0.53
1:E:187[B]:ARG:NE	1:E:190:ASP:OD2	2.37	0.53
1:C:152:TYR:CE1	1:C:181[A]:THR:HG23	2.43	0.53
1:B:154:PRO:CB	1:B:242[A]:LEU:HD11	2.36	0.52
1:F:266:LYS:HA	1:F:286:TYR:HB3	1.91	0.52
1:C:266:LYS:HA	1:C:286:TYR:HB3	1.90	0.52
1:C:152:TYR:CE1	1:C:181[B]:THR:OG1	2.62	0.52
1:D:205:THR:HA	1:D:208:VAL:CG2	2.40	0.52
1:C:152:TYR:HE1	1:C:181[B]:THR:OG1	1.91	0.52
1:A:126:ILE:HG12	1:A:148:TYR:HB2	1.92	0.52
1:B:220:HIS:O	1:B:221:SER:HB3	2.10	0.52
1:F:211:PRO:O	1:F:214:GLN:C	2.48	0.52
1:F:227:GLY:CA	1:F:234:LEU:HD12	2.40	0.51
1:E:130[B]:LEU:HD13	1:E:198:PHE:CE1	2.45	0.51
1:F:26:TYR:HA	1:F:29:TRP:CE3	2.45	0.51
1:D:187[B]:ARG:NH2	1:D:190:ASP:OD2	2.41	0.51
1:F:159:LEU:CA	1:F:212:VAL:HG11	2.41	0.51
1:D:29[A]:TRP:CZ2	1:D:360:HIS:HD2	2.29	0.51
1:F:226:GLU:C	1:F:228:LEU:N	2.64	0.51
1:B:213:PHE:HE1	1:B:242[B]:LEU:HD21	1.77	0.50
1:B:239[A]:TRP:HA	1:B:239[A]:TRP:HE3	1.75	0.50
1:F:250:GLU:N	1:F:250:GLU:OE1	2.44	0.50
1:A:181[A]:THR:HG21	1:A:290:HIS:HE1	1.76	0.50
1:A:165:ARG:O	1:A:169:GLU:HG3	2.12	0.50
1:A:29[B]:TRP:CZ3	1:A:349:GLY:HA2	2.47	0.50
1:F:210:ASP:O	1:F:214:GLN:HB2	2.11	0.50
1:F:223:VAL:O	1:F:223:VAL:HG12	2.11	0.50
1:B:242[A]:LEU:O	1:B:242[A]:LEU:HD12	2.12	0.49
1:D:29[A]:TRP:HZ2	1:D:360:HIS:CD2	2.30	0.49
1:B:152:TYR:OH	4:B:502:HOH:O	2.19	0.49
1:B:220:HIS:O	1:B:221:SER:CB	2.61	0.49
1:E:350:ALA:HB2	1:E:358:ILE:HD11	1.93	0.49
1:B:242[A]:LEU:C	1:B:242[A]:LEU:HD12	2.32	0.49
1:F:218:LYS:HD3	1:F:224:GLU:HG3	1.95	0.49
1:B:193:ILE:HG13	1:B:195:ASN:CB	2.43	0.49
1:F:218:LYS:NZ	1:F:224:GLU:OE1	2.45	0.49
1:F:130[A]:LEU:HD21	1:F:243:PHE:HE1	1.77	0.49
1:E:288:SER:OG	1:E:320:ASP:OD1	2.27	0.48
1:E:205:THR:HA	1:E:208[A]:VAL:HG22	1.95	0.48
1:E:218:LYS:HD2	1:E:224:GLU:HA	1.94	0.48
1:E:329:VAL:HG13	1:E:340[A]:VAL:HG21	1.94	0.48

Atom-1	Atom-2	Interatomic	Clash
		distance (A)	overlap (A)
1:C:29[B]:TRP:CZ2	1:C:360:HIS:HD2	2.31	0.48
1:E:16:VAL:HG23	1:E:18:VAL:HG23	1.94	0.48
1:B:139:ARG:HD3	1:B:139:ARG:O	2.14	0.48
1:F:180:ASP:OD1	1:F:181[B]:THR:HG23	2.14	0.48
1:B:320:ASP:O	1:B:321:SER:HB2	2.14	0.48
1:C:307:GLU:HG3	4:C:566:HOH:O	2.13	0.48
1:F:208[A]:VAL:HG12	1:F:228:LEU:HG	1.95	0.48
1:F:223:VAL:HG11	1:F:234:LEU:HD13	1.96	0.47
1:A:157:ARG:HG2	1:A:254:TRP:CH2	2.49	0.47
1:B:193:ILE:O	1:B:194:SER:C	2.51	0.47
1:F:212:VAL:HG12	1:F:213:PHE:N	2.28	0.47
1:B:228:LEU:HD13	1:B:235[B]:ALA:HB2	1.96	0.47
1:C:181[B]:THR:CG2	1:C:290:HIS:CE1	2.98	0.47
1:D:152:TYR:HE1	1:D:181:THR:HG1	1.62	0.47
1:F:227:GLY:O	1:F:234:LEU:HD12	2.15	0.47
1:E:187[B]:ARG:NH2	1:E:190:ASP:OD2	2.48	0.47
1:F:227:GLY:HA3	1:F:234:LEU:HD12	1.97	0.47
1:F:228:LEU:O	1:F:232:PRO:HA	2.14	0.47
1:B:237[B]:ASP:HB2	4:B:507:HOH:O	2.14	0.47
1:C:217:PHE:CE2	1:C:223:VAL:HG13	2.50	0.46
1:D:139[B]:ARG:NH1	4:D:501:HOH:O	2.47	0.46
1:B:129:THR:HB	1:B:152:TYR:HD2	1.80	0.46
1:D:111:ASP:OD1	1:D:111:ASP:N	2.48	0.46
1:F:320:ASP:O	1:F:321:SER:HB2	2.14	0.46
1:F:166:ARG:NH1	1:F:210:ASP:HB2	2.30	0.46
1:C:181[A]:THR:HG21	1:C:290:HIS:CE1	2.51	0.46
1:A:139:ARG:HG2	1:A:172:TYR:CE2	2.51	0.45
1:B:29[B]:TRP:CZ3	1:B:349:GLY:HA2	2.51	0.45
1:E:124:PRO:HB3	1:E:146:PRO:O	2.16	0.45
1:F:37:LEU:HD21	1:F:351:ALA:HB2	1.98	0.45
1:D:121:THR:CG2	1:D:359:GLU:HG3	2.46	0.45
1:E:80:LEU:HB3	1:E:92:PRO:HD3	1.98	0.45
1:F:252:ILE:HD12	1:F:265:LEU:HD21	1.99	0.45
1:D:329:VAL:HG13	1:D:340[B]:VAL:CG2	2.39	0.45
1:E:320:ASP:OD1	1:E:320:ASP:C	2.56	0.45
1:D:139[A]:ARG:CZ	4:D:501:HOH:O	2.58	0.45
1:B:213:PHE:CE1	1:B:242[B]:LEU:HD21	2.52	0.44
1:D:156:ASP:OD2	1:D:216:LYS:HD3	2.17	0.44
1:D:193:ILE:HG13	1:D:195:ASN:HB2	1.99	0.44
1:B:35[A]:GLN:HG3	1:D:35:GLN:HG3	2.00	0.44
1:E:104:CYS:O	1:E:351:ALA:HA	2.17	0.44

Atom-1	Atom-2	Interatomic	Clash
	7100m 2	distance (Å)	overlap (Å)
1:F:159:LEU:HB2	1:F:212:VAL:HG11	1.99	0.44
1:D:217:PHE:CE2	1:D:223:VAL:HB	2.53	0.44
1:E:117:ALA:O	1:E:121:THR:HG23	2.18	0.43
1:E:37:LEU:HD22	1:E:41:VAL:HG11	2.00	0.43
1:A:205:THR:HA	1:A:208[A]:VAL:CG2	2.48	0.43
1:D:152:TYR:HE1	1:D:181:THR:OG1	2.02	0.43
1:E:30:GLU:O	1:E:34:GLN:HG3	2.19	0.43
1:F:252:ILE:O	1:F:256:ARG:HG2	2.18	0.43
1:D:146:PRO:HA	1:D:173:ASP:OD2	2.18	0.43
1:F:159:LEU:HB2	1:F:212:VAL:CG1	2.49	0.43
1:D:156:ASP:OD2	1:D:216:LYS:CD	2.66	0.43
1:D:275:ARG:HG3	1:D:311:ALA:HB1	1.99	0.43
1:A:183:ILE:HG21	1:A:183:ILE:HD13	1.79	0.43
1:B:237[B]:ASP:HA	1:B:239[B]:TRP:HE1	1.83	0.43
1:C:385:THR:OG1	1:C:387:ASP:OD1	2.27	0.42
1:E:156:ASP:OD2	1:E:216:LYS:HE3	2.18	0.42
1:A:23:PRO:HB2	1:A:29[A]:TRP:CD1	2.53	0.42
1:D:29[A]:TRP:CZ3	1:D:352:LEU:HD12	2.54	0.42
1:D:29[A]:TRP:CZ3	1:D:349:GLY:HA2	2.54	0.42
1:F:217:PHE:CE2	1:F:235:ALA:HB2	2.55	0.42
1:A:161:GLU:HG2	1:A:165:ARG:NH1	2.34	0.42
1:E:214:GLN:O	1:E:218:LYS:HB2	2.19	0.42
2:D:401:FMN:H9	2:D:401:FMN:O4'	2.20	0.42
1:F:113:ALA:HB1	1:F:355:SER:HB2	2.02	0.42
1:D:26:TYR:HA	1:D:29[B]:TRP:CE3	2.55	0.42
1:E:150:GLN:HA	1:E:176:VAL:O	2.19	0.42
1:E:320:ASP:O	1:E:321:SER:HB2	2.19	0.42
1:B:181[A]:THR:HG21	4:B:502:HOH:O	2.20	0.42
1:C:285:ILE:O	1:C:317:VAL:HA	2.20	0.42
1:B:239[B]:TRP:N	1:B:239[B]:TRP:CD1	2.87	0.42
1:B:78:ARG:HA	1:B:379:ARG:O	2.20	0.42
1:C:320:ASP:O	1:C:321:SER:HB2	2.19	0.42
1:E:25:SER:OG	1:E:28:ASP:OD2	2.37	0.42
1:B:181[A]:THR:CG2	1:B:290:HIS:CE1	3.03	0.41
1:D:320:ASP:C	1:D:320:ASP:OD1	2.59	0.41
1:E:57:ALA:HB1	1:E:300:PRO:HG3	2.03	0.41
1:B:242[B]:LEU:N	1:B:242[B]:LEU:HD13	2.35	0.41
1:C:26:TYR:HA	1:C:29[A]:TRP:CE3	2.55	0.41
1:F:159:LEU:N	1:F:212:VAL:HG11	2.36	0.41
1:C:26:TYR:CZ	1:C:324:ARG:HD2	2.55	0.41
1:B:181[B]:THR:HG21	4:B:502:HOH:O	2.19	0.41

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:F:181[B]:THR:HG21	1:F:290:HIS:CE1	2.55	0.41
1:D:224:GLU:H	1:D:224:GLU:CD	2.24	0.41
1:B:126:ILE:HG12	1:B:148:TYR:HB2	2.03	0.41
1:B:130:LEU:HD21	1:B:243[A]:PHE:CZ	2.55	0.41
1:C:29[B]:TRP:HZ2	1:C:360:HIS:CD2	2.35	0.41
1:E:305:LEU:HB3	1:E:306:PRO:HD3	2.02	0.41
1:E:379:ARG:HB2	1:E:379:ARG:CZ	2.51	0.41
1:D:181:THR:HG21	1:D:290:HIS:CE1	2.56	0.41
1:E:218:LYS:HE3	1:E:224:GLU:CD	2.42	0.41
1:F:330:VAL:HG13	1:F:384:LEU:HD21	2.03	0.41
1:F:344:ARG:HD3	2:F:401:FMN:C8M	2.52	0.41
1:C:320:ASP:OD1	1:C:320:ASP:C	2.59	0.40
1:D:285:ILE:O	1:D:317:VAL:HA	2.21	0.40
1:C:221:SER:OG	1:C:223:VAL:HG12	2.21	0.40
2:C:401:FMN:O4'	2:C:401:FMN:H9	2.22	0.40
1:D:47:GLY:HA3	4:D:617:HOH:O	2.21	0.40
1:C:193:ILE:HG13	1:C:195:ASN:HB2	2.04	0.40

All (2) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
4:A:584:HOH:O	4:B:604:HOH:O[7_555]	2.13	0.07
4:A:992:HOH:O	4:C:813:HOH:O[3_545]	2.19	0.01

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	\mathbf{ntiles}
1	А	404/394~(102%)	392 (97%)	10 (2%)	2 (0%)	29	13
1	В	414/394~(105%)	397~(96%)	12 (3%)	5 (1%)	13	3

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	С	399/394~(101%)	389~(98%)	9~(2%)	1 (0%)	41	24
1	D	399/394~(101%)	388~(97%)	10~(2%)	1 (0%)	41	24
1	Ε	398/394~(101%)	384~(96%)	13~(3%)	1 (0%)	41	24
1	F	397/394~(101%)	373~(94%)	20~(5%)	4 (1%)	15	4
All	All	2411/2364~(102%)	2323~(96%)	74 (3%)	14 (1%)	25	11

All (14) Ramachandran outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	1	SER
1	В	321	SER
1	С	321	SER
1	D	321	SER
1	А	321	SER
1	В	221	SER
1	Е	321	SER
1	F	227	GLY
1	В	203	ALA
1	В	239[A]	TRP
1	В	239[B]	TRP
1	F	224	GLU
1	F	321	SER
1	F	353	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percer	ntiles
1	А	316/304~(104%)	304~(96%)	12~(4%)	33	14
1	В	322/304~(106%)	312~(97%)	10~(3%)	40	21
1	С	311/304~(102%)	300~(96%)	11 (4%)	36	17
1	D	311/304~(102%)	298~(96%)	13~(4%)	30	12
1	Е	310/304~(102%)	296~(96%)	14 (4%)	27	10

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	F	309/304~(102%)	296~(96%)	13 (4%)	30	12
All	All	1879/1824~(103%)	1806~(96%)	73 (4%)	34	13

All (73) residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
1	А	0	MET
1	А	1	SER
1	А	9	GLU
1	А	78	ARG
1	А	83	GLU
1	А	139	ARG
1	А	153	TYR
1	А	157	ARG
1	А	181[A]	THR
1	А	181[B]	THR
1	А	286	TYR
1	А	344	ARG
1	В	0	MET
1	В	139	ARG
1	В	159	LEU
1	В	196	PHE
1	В	208	VAL
1	В	242[A]	LEU
1	В	242[B]	LEU
1	В	260	LYS
1	В	286	TYR
1	В	344	ARG
1	С	130	LEU
1	С	139[A]	ARG
1	С	139[B]	ARG
1	С	153	TYR
1	С	165	ARG
1	С	181[A]	THR
1	С	181[B]	THR
1	С	223	VAL
1	С	286	TYR
1	С	307	GLU
1	С	344	ARG
1	D	0	MET
1	D	83	GLU
1	D	153	TYR

Mol	Chain	Res	Type		
1	D	157	ARG		
1		159	LEU		
1	D	165	ABG		
1	D	160	GLU		
1	D	105	PHE		
1	D	204	LEU		
1	D	204	LUS		
1	D	210	LIS		
1	D	286	TYR		
1	D	344	ARG		
1	E	011	MET		
1	E E	78	ARG		
1	E E	139	ARG		
1	E	152	TYR		
1	E	181[A]	THR		
1	E	181[B]	THR		
1	E	218	LYS		
1	E	224	GLU		
1	E	226	GLU		
1	Ē	246	SER		
1	E	286	TYR		
1	Ē	344	ARG		
1	Е	346	TYR		
1	Е	379	ARG		
1	F	78	ARG		
1	F	139	ARG		
1	F	152	TYR		
1	F	155	GLU		
1	F	157	ARG		
1	F	158	ASP		
1	F	212	VAL		
1	F	214	GLN		
1	F	229	ARG		
1	F	246	SER		
1	F	256	ARG		
1	F	286	TYR		
1	F	344	ARG		

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

24 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tune	Chain	Dog	Tink	B	ond leng	gths	B	ond ang	gles
	туре	Chain	Ites		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
3	SO4	А	403	-	4,4,4	0.56	0	6,6,6	0.70	0
3	SO4	Е	403	-	4,4,4	0.12	0	6,6,6	0.21	0
2	FMN	E	401	-	31,33,33	2.51	5(16%)	40,50,50	2.12	8 (20%)
3	SO4	В	404[A]	-	4,4,4	0.20	0	6,6,6	0.12	0
3	SO4	D	402	-	4,4,4	0.27	0	$6,\!6,\!6$	0.69	0
2	FMN	А	401	-	31,33,33	2.56	8 (25%)	40,50,50	2.92	10(25%)
3	SO4	А	402	-	4,4,4	0.54	0	6,6,6	0.83	0
3	SO4	С	402	-	4,4,4	0.29	0	$6,\!6,\!6$	0.74	0
2	FMN	В	401	-	31,33,33	2.70	10 (32%)	40,50,50	2.44	11 (27%)
3	SO4	В	403	-	4,4,4	0.20	0	6,6,6	0.38	0
3	SO4	В	405	-	4,4,4	0.08	0	6,6,6	0.14	0
2	FMN	D	401	-	31,33,33	2.60	8 (25%)	40,50,50	2.29	<mark>9 (22%)</mark>
3	SO4	В	406[B]	-	4,4,4	0.42	0	6,6,6	0.36	0
3	SO4	F	403	-	4,4,4	0.16	0	$6,\!6,\!6$	0.26	0
3	SO4	C	404	-	4,4,4	0.18	0	$6,\!6,\!6$	0.16	0
3	SO4	C	403	-	4,4,4	0.16	0	$6,\!6,\!6$	1.00	0
3	SO4	A	405	-	4,4,4	0.26	0	6,6,6	0.14	0

Mal	d Turne Chain Deg I		Timl	Bond lengths			Bond angles						
	туре	Chain	nes	nes	nes	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
2	FMN	F	401	-	$31,\!33,\!33$	2.43	5 (16%)	40,50,50	2.35	10 (25%)			
3	SO4	D	403	-	4,4,4	0.41	0	6,6,6	0.42	0			
3	SO4	F	402	-	4,4,4	0.11	0	6,6,6	0.19	0			
2	FMN	C	401	-	$31,\!33,\!33$	2.73	9 (29%)	40,50,50	2.32	10 (25%)			
3	SO4	В	402	-	4,4,4	0.55	0	6,6,6	0.47	0			
3	SO4	E	402	-	4,4,4	0.21	0	6,6,6	0.30	0			
3	SO4	A	404[A]	-	4,4,4	0.26	0	6,6,6	0.59	0			

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	FMN	Е	401	-	-	3/18/18/18	0/3/3/3
2	FMN	С	401	-	-	1/18/18/18	0/3/3/3
2	FMN	А	401	-	-	1/18/18/18	0/3/3/3
2	FMN	F	401	-	-	5/18/18/18	0/3/3/3
2	FMN	D	401	-	-	1/18/18/18	0/3/3/3
2	FMN	В	401	-	-	1/18/18/18	0/3/3/3

All (45) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	Ideal(Å)
2	Е	401	FMN	C4A-C10	10.73	1.49	1.38
2	F	401	FMN	C4A-C10	10.29	1.49	1.38
2	В	401	FMN	C4A-C10	10.17	1.49	1.38
2	D	401	FMN	C4A-C10	9.86	1.48	1.38
2	А	401	FMN	C4A-C10	9.11	1.47	1.38
2	С	401	FMN	C4A-C10	8.83	1.47	1.38
2	С	401	FMN	C9A-N10	6.16	1.46	1.38
2	С	401	FMN	C4A-N5	5.46	1.41	1.33
2	D	401	FMN	C9A-N10	5.32	1.45	1.38
2	А	401	FMN	C4-C4A	5.01	1.50	1.41
2	С	401	FMN	C10-N1	4.84	1.39	1.33
2	А	401	FMN	C5'-C4'	4.76	1.58	1.51
2	Е	401	FMN	C4-C4A	4.36	1.48	1.41
2	В	401	FMN	C5'-C4'	4.30	1.57	1.51
2	F	401	FMN	C4-C4A	4.27	1.48	1.41
2	В	401	FMN	C4A-N5	4.09	1.39	1.33
2	С	401	FMN	C4-C4A	4.05	1.48	1.41

Mol	Chain	Res	Type	Atoms	Z	Observed(A)	Ideal(Å)
2	В	401	FMN	C9A-C5A	3.95	1.50	1.42
2	D	401	FMN	C4A-N5	3.93	1.38	1.33
2	F	401	FMN	C9A-C5A	3.92	1.50	1.42
2	Е	401	FMN	C9A-C5A	3.85	1.50	1.42
2	А	401	FMN	C1'-N10	-3.79	1.44	1.48
2	Е	401	FMN	C9A-N10	3.77	1.43	1.38
2	F	401	FMN	C8-C7	3.73	1.50	1.40
2	D	401	FMN	C4-C4A	3.72	1.47	1.41
2	А	401	FMN	C8-C7	3.54	1.49	1.40
2	F	401	FMN	C9A-N10	3.50	1.43	1.38
2	D	401	FMN	C9A-C5A	3.47	1.49	1.42
2	В	401	FMN	C4-C4A	3.47	1.47	1.41
2	В	401	FMN	C10-N1	3.38	1.37	1.33
2	А	401	FMN	C5A-N5	3.33	1.40	1.35
2	Е	401	FMN	C8-C7	3.28	1.49	1.40
2	D	401	FMN	C4-N3	3.03	1.38	1.33
2	В	401	FMN	C9A-N10	2.88	1.42	1.38
2	А	401	FMN	C6-C5A	-2.73	1.37	1.41
2	В	401	FMN	C1'-N10	-2.67	1.45	1.48
2	D	401	FMN	C10-N1	2.37	1.36	1.33
2	D	401	FMN	C8-C7	2.30	1.46	1.40
2	А	401	FMN	C9A-C5A	2.29	1.47	1.42
2	В	401	FMN	C8-C7	2.26	1.46	1.40
2	В	401	FMN	O4-C4	2.25	1.30	1.24
2	С	401	FMN	C2-N3	-2.24	1.33	1.38
2	С	401	FMN	C4-N3	2.13	1.36	1.33
2	С	401	FMN	C8-C7	2.10	1.46	1.40
2	С	401	FMN	C9A-C5A	2.09	1.46	1.42

All (58) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
2	С	401	FMN	C4-N3-C2	9.18	122.89	115.14
2	А	401	FMN	C4-N3-C2	8.99	122.73	115.14
2	А	401	FMN	C4-C4A-C10	-8.63	114.24	119.95
2	F	401	FMN	C4-N3-C2	8.63	122.43	115.14
2	В	401	FMN	C4-N3-C2	8.32	122.17	115.14
2	D	401	FMN	C4-N3-C2	8.27	122.12	115.14
2	В	401	FMN	C4-C4A-C10	-8.23	114.50	119.95
2	A	401	FMN	C1'-N10-C9A	8.15	124.71	118.29
2	Ē	401	FMN	C4-N3-C2	8.06	121.95	115.14
2	D	401	FMN	C4-C4A-C10	-6.95	115.35	119.95

6DVH	

Conti	Continued from previous page								
Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$		
2	С	401	FMN	C4-C4A-C10	-6.20	115.85	119.95		
2	F	401	FMN	C1'-N10-C9A	6.13	123.12	118.29		
2	F	401	FMN	C4-C4A-C10	-4.85	116.74	119.95		
2	A	401	FMN	C5A-C9A-N10	4.78	121.18	117.72		
2	E	401	FMN	C4-C4A-C10	-4.39	117.05	119.95		
2	А	401	FMN	C4A-C10-N10	-4.35	115.83	120.30		
2	Е	401	FMN	C1'-N10-C9A	4.25	121.64	118.29		
2	С	401	FMN	C1'-N10-C9A	4.04	121.47	118.29		
2	В	401	FMN	C4-C4A-N5	3.99	123.16	118.60		
2	F	401	FMN	C9A-N10-C10	-3.95	116.74	121.91		
2	D	401	FMN	C1'-N10-C9A	3.81	121.30	118.29		
2	Е	401	FMN	C4A-N5-C5A	3.79	120.56	116.77		
2	F	401	FMN	C4A-C4-N3	-3.79	118.25	123.43		
2	С	401	FMN	C9A-N10-C10	-3.74	117.01	121.91		
2	А	401	FMN	C4-C4A-N5	3.62	122.73	118.60		
2	F	401	FMN	C4A-N5-C5A	3.62	120.39	116.77		
2	С	401	FMN	C4A-C4-N3	-3.57	118.56	123.43		
2	Е	401	FMN	C4A-C4-N3	-3.52	118.61	123.43		
2	D	401	FMN	C4-C4A-N5	3.52	122.62	118.60		
2	D	401	FMN	C9A-N10-C10	-3.45	117.39	121.91		
2	Е	401	FMN	C9A-N10-C10	-3.41	117.44	121.91		
2	В	401	FMN	P-O5'-C5'	3.41	127.69	118.30		
2	D	401	FMN	C4A-C4-N3	-3.30	118.92	123.43		
2	D	401	FMN	C1'-N10-C10	3.25	121.32	118.41		
2	В	401	FMN	C1'-N10-C9A	3.15	120.78	118.29		
2	A	401	FMN	C1'-N10-C10	-3.12	115.62	118.41		
2	F	401	FMN	C4-C4A-N5	3.01	122.03	118.60		
2	В	401	FMN	C9A-N10-C10	-2.85	118.17	121.91		
2	A	401	FMN	O3P-P-O5'	-2.71	99.53	106.73		
2	Е	401	FMN	C4-C4A-N5	2.61	121.58	118.60		
2	С	401	FMN	C1'-N10-C10	2.53	120.67	118.41		
2	С	401	FMN	O5'-P-O1P	-2.52	99.41	106.47		
2	В	401	FMN	C1'-N10-C10	2.49	120.64	118.41		
2	С	401	FMN	C4-C4A-N5	2.49	121.44	118.60		
2	D	401	FMN	O5'-P-O1P	-2.48	99.52	106.47		
2	D	401	FMN	O3P-P-O2P	2.41	116.86	107.64		
2	A	401	FMN	C9A-C5A-N5	-2.37	118.66	122.36		
2	В	401	FMN	C5A-C9A-N10	2.32	119.40	117.72		
2	В	401	FMN	O3'-C3'-C4'	-2.28	103.30	108.81		
2	В	401	FMN	C4A-C4-N3	-2.27	120.33	123.43		
$\frac{1}{2}$	B	401	FMN	O2'-C2'-C3'	-2.26	103.60	109.10		
2	Е	401	FMN	O3P-P-O2P	2.16	115.89	107.64		

Jfa α m tin

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
2	С	401	FMN	C6-C5A-N5	-2.15	116.68	119.05
2	F	401	FMN	O2P-P-O5'	-2.13	101.06	106.73
2	А	401	FMN	C10-C4A-N5	2.11	122.72	121.26
2	F	401	FMN	O3P-P-O2P	2.06	115.52	107.64
2	С	401	FMN	C10-C4A-N5	2.05	122.67	121.26
2	F	401	FMN	O5'-P-O1P	-2.04	100.76	106.47

There are no chirality outliers.

Mol	Chain	Res	Type	Atoms
2	Е	401	FMN	C2'-C3'-C4'-O4'
2	F	401	FMN	C2'-C3'-C4'-O4'
2	F	401	FMN	C2'-C3'-C4'-C5'
2	Е	401	FMN	C4'-C5'-O5'-P
2	В	401	FMN	C4'-C5'-O5'-P
2	С	401	FMN	C4'-C5'-O5'-P
2	А	401	FMN	C4'-C5'-O5'-P
2	D	401	FMN	C4'-C5'-O5'-P
2	F	401	FMN	O3'-C3'-C4'-C5'
2	F	401	FMN	C4'-C5'-O5'-P
2	Е	401	FMN	C2'-C3'-C4'-C5'
2	F	401	FMN	O3'-C3'-C4'-O4'

All (12) torsion outliers are listed below:

There are no ring outliers.

3 monomers are involved in 3 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	D	401	FMN	1	0
2	F	401	FMN	1	0
2	С	401	FMN	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier.

The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	< RSRZ >	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	394/394~(100%)	0.28	21 (5%) 26 29	19, 30, 49, 77	0
1	В	394/394~(100%)	0.66	52 (13%) 3 3	25, 38, 88, 131	0
1	С	394/394~(100%)	0.47	45 (11%) 5 5	30, 43, 70, 100	0
1	D	394/394~(100%)	1.16	85~(21%) 0 0	46, 62, 103, 160	0
1	Е	394/394~(100%)	3.40	241 (61%) 0 0	72, 103, 158, 190	394 (100%)
1	F	393/394~(99%)	4.05	282 (71%) 0 0	87, 113, 169, 204	393~(100%)
All	All	2363/2364~(99%)	1.67	726 (30%) 0 0	19, 57, 137, 204	787~(33%)

All (726) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	F	223	VAL	28.1
1	Е	238	PHE	23.5
1	Е	234	LEU	21.9
1	F	222	GLY	19.6
1	F	226	GLU	18.9
1	Е	236	ALA	18.9
1	F	239	TRP	17.2
1	Е	239	TRP	16.9
1	F	228	LEU	16.8
1	Е	235	ALA	15.5
1	Е	229	ARG	15.4
1	F	213	PHE	15.2
1	F	230	ASP	14.8
1	F	236	ALA	14.6
1	F	235	ALA	14.4
1	Ē	223	VAL	13.3
1	F	234	LEU	13.2
1	F	238	PHE	12.7
1	F	225	ALA	12.6

6 DV	Η
------	---

Mol	Chain	Res	Type	RSRZ
1	Е	217	PHE	12.0
1	Е	198	PHE	12.0
1	F	227	GLY	11.9
1	F	172	TYR	11.8
1	Е	16	VAL	11.8
1	D	225	ALA	11.4
1	F	15	LEU	11.4
1	F	159	LEU	11.3
1	Е	227	GLY	11.3
1	Е	0	MET	10.9
1	F	219	ALA	10.7
1	F	221	SER	10.5
1	F	258	ILE	10.5
1	Е	222	GLY	10.5
1	Е	224	GLU	10.1
1	Е	230	ASP	9.9
1	Е	225	ALA	9.9
1	F	212	VAL	9.9
1	Е	172	TYR	9.8
1	Е	228	LEU	9.8
1	Е	254	TRP	9.8
1	F	229	ARG	9.8
1	F	19	ALA	9.6
1	F	254	TRP	9.5
1	D	220	HIS	9.5
1	Е	212	VAL	9.4
1	Е	231	ASN	9.3
1	F	142	ALA	9.2
1	F	163	PHE	9.2
1	F	220	HIS	9.1
1	E	1	SER	9.1
1	F	199	LEU	9.1
1	F	16	VAL	9.0
1	F	231	ASN	8.8
1	D	239	TRP	8.8
1	E	240	HIS	8.8
1	E	219	ALA	8.8
1	Е	226	GLU	8.8
1	E	15	LEU	8.7
1	F	217	PHE	8.6
1	F	18	VAL	8.6
1	Е	12	GLY	8.6

|--|

Mol	Chain	Res	Type	RSRZ
1	F	259	THR	8.5
1	F	17	GLY	8.4
1	F	99	GLY	8.4
1	D	226	GLU	8.3
1	Е	132	VAL	8.3
1	D	0	MET	8.3
1	F	14	GLY	8.3
1	F	37	LEU	8.2
1	Е	10	ILE	8.2
1	F	198	PHE	8.2
1	В	220	HIS	8.1
1	F	88	THR	8.1
1	Е	17	GLY	8.0
1	F	12	GLY	8.0
1	E	220	HIS	8.0
1	D	217	PHE	7.9
1	Е	18	VAL	7.9
1	В	234	LEU	7.9
1	В	235[A]	ALA	7.8
1	F	196	PHE	7.8
1	Е	130[A]	LEU	7.8
1	F	76	THR	7.8
1	Ε	221	SER	7.8
1	F	143	GLY	7.8
1	D	238	PHE	7.8
1	F	257	SER	7.6
1	F	164	ILE	7.6
1	F	286	TYR	7.6
1	D	219	ALA	7.5
1	E	208[A]	VAL	7.5
1	F	260	LYS	7.4
1	F	195	ASN	7.4
1	D	236	ALA	7.4
1	E	201	GLY	7.3
1	F F	65	TRP	7.2
1	F,	266	LYS	7.2
1	E E	213	PHE	7.2
1		97	PRO	7.2
1		318		7.2
1		170	ALA	7.2
1		165	ARG	7.1
1	B	0	MET	7.0

Conti	nued fron	<i>i previou</i>	s page	DODZ
Mol	Chain	Res	Type	RSRZ
1	E	14	GLY	6.9
1	F	140	LYS	6.9
1	E	210	ASP	6.9
1	D	234	LEU	6.9
1	D	221	SER	6.8
1	F	208[A]	VAL	6.8
1	Ε	193	ILE	6.8
1	F	138	ILE	6.8
1	Ε	199	LEU	6.8
1	Ε	237	ASP	6.7
1	D	227	GLY	6.7
1	F	79	ASP	6.6
1	Е	131	ALA	6.6
1	E	377	GLY	6.6
1	В	230	ASP	6.6
1	D	230	ASP	6.6
1	F	342	ILE	6.6
1	F	207	TYR	6.6
1	F	8	ASN	6.6
1	F	144	ASP	6.6
1	F	386	ILE	6.5
1	Е	260	LYS	6.5
1	F	261	MET	6.5
1	В	221	SER	6.5
1	F	265	LEU	6.5
1	F	42	LEU	6.5
1	D	340[A]	VAL	6.4
1	А	0	MET	6.4
1	Е	98	ILE	6.4
1	F	98	ILE	6.4
1	F	11	TYR	6.4
1	F	85	TRP	6.4
1	Е	255	VAL	6.4
1	Е	101	ILE	6.4
1	В	239[A]	TRP	6.3
1	F	153	TYR	6.3
1	Е	144	ASP	6.3
1	Е	135	LEU	6.3
1	D	235	ALA	6.3
1	Е	232	PRO	6.3
1	F	218	LYS	6.2
1	В	227	GLY	6.2
	1	1		

.... α n tin J f

Mol	Chain	Res	Type	RSRZ
1	Е	209	THR	6.2
1	F	70	ARG	6.2
1	В	225	ALA	6.2
1	F	253	ASP	6.2
1	F	365	LEU	6.2
1	D	224	GLU	6.2
1	Е	83	GLU	6.2
1	F	131	ALA	6.2
1	F	224	GLU	6.2
1	Е	382	LYS	6.1
1	F	197	PRO	6.1
1	В	238 A	PHE	6.1
1	Е	250	GLU	6.1
1	F	41	VAL	6.1
1	F	169	GLU	6.1
1	F	156	ASP	6.1
1	F	237	ASP	6.0
1	F	10	ILE	6.0
1	F	75	ALA	6.0
1	F	152	TYR	6.0
1	F	101	ILE	6.0
1	F	250	GLU	6.0
1	F	340[A]	VAL	6.0
1	F	244	GLY	6.0
1	F	381	LEU	5.9
1	В	228	LEU	5.9
1	Ε	145	THR	5.9
1	F	233	ARG	5.9
1	E	138	ILE	5.9
1	F	86	GLY	5.8
1	F	200	ARG	5.8
1	F	178	THR	5.8
1	Е	323	ILE	5.8
1	D	228	LEU	5.8
1	F	135	LEU	5.8
1	F	385	THR	5.8
1	E	86	GLY	5.8
1	F	341	GLY	5.8
1	F	40	GLY	5.7
1	В	243[A]	PHE	5.7
1	F	343	GLY	5.7
1	B	236[A]	ALA	5.6

6DVH

Mol	Chain	Res	Type	RSRZ
1	F	380	ASN	5.6
1	Е	340[A]	VAL	5.6
1	D	342	ILE	5.6
1	В	223	VAL	5.6
1	Е	233	ARG	5.6
1	В	217	PHE	5.6
1	F	305	LEU	5.5
1	Е	257	SER	5.5
1	F	393	ARG	5.5
1	С	0	MET	5.5
1	F	112	ALA	5.5
1	F	215	LYS	5.5
1	Е	211	PRO	5.5
1	Е	142	ALA	5.4
1	F	202	LEU	5.4
1	Е	13	GLN	5.4
1	F	141	HIS	5.4
1	F	78	ARG	5.4
1	Е	196	PHE	5.4
1	В	222	GLY	5.4
1	Е	140	LYS	5.4
1	Е	353	GLY	5.3
1	D	94	PHE	5.3
1	Е	143	GLY	5.3
1	F	203	ALA	5.3
1	F	130[A]	LEU	5.3
1	F	82	VAL	5.3
1	F	94	PHE	5.3
1	F	184	PHE	5.3
1	Е	342	ILE	5.2
1	F	243	PHE	5.2
1	Е	141	HIS	5.2
1	Е	216	LYS	5.2
1	Е	85	TRP	5.2
1	В	229	ARG	5.2
1	F	122	GLY	5.2
1	Е	169	GLU	5.2
1	Е	88	THR	5.2
1	F	242	LEU	5.1
1	Е	11	TYR	5.1
1	F	1	SER	5.1
1	Е	151	LEU	5.1

6DVH

Mol	Chain	Res	Type	RSRZ
1	Е	381	LEU	5.1
1	Е	76	THR	5.1
1	Е	379	ARG	5.0
1	F	181[A]	THR	5.0
1	Е	386	ILE	5.0
1	С	226	GLU	5.0
1	F	391	PRO	5.0
1	В	237[A]	ASP	5.0
1	Е	258	ILE	5.0
1	F	256	ARG	5.0
1	F	102	ALA	5.0
1	В	226	GLU	5.0
1	D	176	VAL	5.0
1	F	187[A]	ARG	5.0
1	F	87	LYS	5.0
1	F	366	LEU	4.9
1	F	176	VAL	4.9
1	F	382	LYS	4.9
1	Е	195	ASN	4.9
1	D	237	ASP	4.9
1	Е	9	GLU	4.8
1	D	223	VAL	4.8
1	F	232	PRO	4.8
1	D	229	ARG	4.8
1	Е	242	LEU	4.8
1	F	104	CYS	4.8
1	F	74	ALA	4.8
1	E	109	HIS	4.8
1	Е	253	ASP	4.8
1	Е	152	TYR	4.8
1	Е	348	TRP	4.7
1	Е	176	VAL	4.7
1	F	9	GLU	4.7
1	F	210	ASP	4.7
1	D	222	GLY	4.7
1	Ε	82	VAL	4.7
1	F	7	GLU	4.7
1	F	378	TYR	4.7
1	D	231	ASN	4.6
1	F	165	ARG	4.6
1	F	105	ALA	4.6
1	Е	384	LEU	4.6

оруп	6DVH	[
------	------	---

Mol	Chain	Res	Type	RSRZ
1	Е	329	VAL	4.6
1	В	231	ASN	4.6
1	D	16	VAL	4.6
1	С	98	ILE	4.6
1	Е	346	TYR	4.6
1	С	229	ARG	4.5
1	F	168	GLU	4.5
1	В	98	ILE	4.5
1	Е	218	LYS	4.5
1	F	107	ASP	4.5
1	Е	116	GLN	4.5
1	F	84	LEU	4.5
1	D	126	ILE	4.5
1	Е	261	MET	4.5
1	F	193	ILE	4.5
1	С	225	ALA	4.5
1	F	379	ARG	4.4
1	Е	343	GLY	4.4
1	Е	385	THR	4.4
1	С	126	ILE	4.4
1	F	119	ALA	4.4
1	Е	207	TYR	4.4
1	F	329	VAL	4.4
1	Е	266	LYS	4.4
1	F	96	ALA	4.4
1	F	137	ASP	4.4
1	Е	215	LYS	4.3
1	D	365	LEU	4.3
1	Е	259	THR	4.3
1	F	157	ARG	4.3
1	E	200	ARG	4.3
1	D	29[A]	TRP	4.3
1	E	110	GLY	4.3
1	B	219	ALA	4.3
1	E	119	ALA	4.3
1	F	113	ALA	4.3
1	F	13	GLN	4.3
1	F	392	THR	4.3
1	F	285	ILE	4.2
1	F	288	SER	4.2
1	F	255	VAL	4.2
1	С	219	ALA	4.2

61)	V	F]

Mol	Chain	Res	Type	RSRZ
1	F	319	PHE	4.2
1	В	232	PRO	4.2
1	F	201	GLY	4.2
1	Е	168	GLU	4.2
1	Е	356	LYS	4.2
1	С	340	VAL	4.2
1	Е	120	ARG	4.2
1	Е	171	GLY	4.2
1	Е	6	TYR	4.2
1	F	132	VAL	4.2
1	Е	3	TRP	4.2
1	D	323	ILE	4.1
1	Е	391	PRO	4.1
1	F	29	TRP	4.1
1	F	333	LEU	4.1
1	Е	96	ALA	4.1
1	D	198	PHE	4.1
1	F	34	GLN	4.1
1	Е	197	PRO	4.1
1	F	262	PRO	4.1
1	F	307	GLU	4.1
1	Е	137	ASP	4.1
1	Е	387	ASP	4.1
1	F	5	ASP	4.1
1	F	290	HIS	4.1
1	Е	87	LYS	4.1
1	D	95	PHE	4.1
1	Е	159	LEU	4.0
1	F	173	ASP	4.0
1	F	64	HIS	4.0
1	C	319	PHE	4.0
1	E	365	LEU	4.0
1	E	248	THR	4.0
1	E	392	THR	4.0
1	E	170	ALA	4.0
1	E	277	ALA	4.0
1	F	311	ALA	4.0
1	D	15	LEU	3.9
1	B	198	PHE	3.9
1	E	187[A]	ARG	3.9
1	E	314	ASP	3.9
1	Е	157	ARG	3.9

Mol	Chain	Res	Type	RSRZ
1	D	260	LYS	3.9
1	F	387	ASP	3.9
1	Е	355	SER	3.9
1	В	224	GLU	3.9
1	F	81	SER	3.9
1	F	314	ASP	3.9
1	F	241	GLY	3.9
1	F	145	THR	3.9
1	F	109	HIS	3.8
1	Е	158	ASP	3.8
1	С	181 A	THR	3.8
1	Е	214	GLN	3.8
1	Е	2	ASN	3.8
1	Е	310	LYS	3.8
1	F	214	GLN	3.7
1	F	151	LEU	3.7
1	Е	303	ASP	3.7
1	F	352	LEU	3.7
1	С	286	TYR	3.7
1	Е	249	TRP	3.7
1	F	216	LYS	3.7
1	Е	81	SER	3.7
1	Е	114	SER	3.7
1	Е	173	ASP	3.7
1	D	98	ILE	3.7
1	Е	315	THR	3.7
1	F	375	VAL	3.7
1	F	149	PHE	3.6
1	В	342	ILE	3.6
1	D	386	ILE	3.6
1	Е	278	VAL	3.6
1	F	278	VAL	3.6
1	D	387	ASP	3.6
1	F	83	GLU	3.6
1	F	251	ASP	3.6
1	Е	167	ALA	3.6
1	F	133	SER	3.6
1	F	315	THR	3.6
1	F	291	GLY	3.6
1	D	215	LYS	3.6
1	Е	126	ILE	3.6
1	Е	8	ASN	3.6

Mol	Chain	Res	Type	RSRZ
1	Е	102	ALA	3.5
1	F	306	PRO	3.5
1	С	96	ALA	3.5
1	А	226	GLU	3.5
1	С	230	ASP	3.5
1	Е	245	HIS	3.5
1	Е	75	ALA	3.5
1	Е	318	LEU	3.5
1	Е	251	ASP	3.5
1	F	268	ILE	3.5
1	D	240	HIS	3.5
1	Е	244	GLY	3.5
1	F	194	SER	3.5
1	Е	252	ILE	3.5
1	Е	113	ALA	3.5
1	F	6	TYR	3.4
1	В	218	LYS	3.4
1	Е	155	GLU	3.4
1	D	17	GLY	3.4
1	С	342	ILE	3.4
1	D	1	SER	3.4
1	В	329	VAL	3.4
1	Е	84	LEU	3.4
1	Е	330	VAL	3.4
1	D	372	ILE	3.4
1	Е	156	ASP	3.4
1	F	166	ARG	3.4
1	F	129	THR	3.4
1	Е	388	ALA	3.3
1	F	120	ARG	3.3
1	F	310	LYS	3.3
1	С	94	PHE	3.3
1	Е	117	ALA	3.3
1	В	181[A]	THR	3.3
1	F	160	ALA	3.3
1	F	339	ALA	3.3
1	F	370	ASP	3.3
1	Е	371	LEU	3.3
1	Е	164	ILE	3.3
1	F	139	ARG	3.3
1	Е	112	ALA	3.3
1	F	118	SER	3.3

Conti	nued fron	ı previou	s page	
Mol	Chain	Res	Type	RSRZ
1	F	134	SER	3.3
1	F	240	HIS	3.3
1	D	329	VAL	3.3
1	F	69	PRO	3.3
1	F	95	PHE	3.2
1	В	340[A]	VAL	3.2
1	С	1	SER	3.2
1	Е	162	SER	3.2
1	F	171	GLY	3.2
1	D	382	LYS	3.2
1	F	3	TRP	3.2
1	F	209	THR	3.2
1	F	111	ASP	3.2
1	Е	77	GLU	3.2
1	D	218	LYS	3.2
1	F	282	VAL	3.2
1	Е	264	ILE	3.2
1	F	177	ILE	3.2
1	Е	362	ALA	3.2
1	А	1	SER	3.2
1	F	89	TRP	3.1
1	В	240[A]	HIS	3.1
1	С	314	ASP	3.1
1	F	100	VAL	3.1
1	Е	154	PRO	3.1
1	Е	205	THR	3.1
1	F	383	GLU	3.1
1	В	242[A]	LEU	3.1
1	Е	350	ALA	3.1
1	F	281	GLY	3.1
1	А	94	PHE	3.1
1	А	342	ILE	3.1
1	F	35	GLN	3.1
1	А	229	ARG	3.1
1	D	97	PRO	3.1
1	Е	97	PRO	3.1
1	F	326	GLY	3.1
1	В	1	SER	3.1
1	F	146	PRO	3.0
1	Е	108	GLY	3.0
1	Е	136	GLU	3.0
1	Е	40	GLY	3.0

6]	D	V	Η
61	D	V	H

Mol	Chain	Res	Type	RSRZ
1	D	250	GLU	3.0
1	Е	5	ASP	3.0
1	Е	80	LEU	3.0
1	Е	163	PHE	3.0
1	F	116	GLN	3.0
1	F	248	THR	3.0
1	С	227	GLY	3.0
1	F	154	PRO	3.0
1	С	223	VAL	3.0
1	С	260	LYS	3.0
1	F	369	ALA	3.0
1	F	348	TRP	3.0
1	D	343	GLY	3.0
1	F	297	GLY	3.0
1	С	318	LEU	3.0
1	Е	115	ALA	2.9
1	Е	29	TRP	2.9
1	Е	107	ASP	2.9
1	Е	366	LEU	2.9
1	F	162	SER	2.9
1	Е	279	ASP	2.9
1	F	323	ILE	2.9
1	В	199	LEU	2.9
1	Е	282	VAL	2.9
1	С	97	PRO	2.9
1	F	277	ALA	2.9
1	F	180	ASP	2.9
1	F	252	ILE	2.9
1	D	197	PRO	2.9
1	В	96	ALA	2.9
1	Е	181[A]	THR	2.9
1	F	115	ALA	2.9
1	F	361	VAL	2.9
1	D	384[A]	LEU	2.8
1	F	289	ASN	2.8
1	D	266	LYS	2.8
1	D	339	ALA	2.8
1	Е	19	ALA	2.8
1	С	346	TYR	2.8
1	D	253	ASP	2.8
1	A	372	ILE	2.8
1	С	222	GLY	2.8

Mol	Chain	Res	Type	RSRZ
1	D	241	GLY	2.8
1	F	39	PRO	2.8
1	В	151	LEU	2.8
1	С	95	PHE	2.8
1	Е	79	ASP	2.8
1	Е	184	PHE	2.8
1	Е	192	THR	2.8
1	С	341	GLY	2.8
1	F	110	GLY	2.8
1	С	323	ILE	2.8
1	С	266	LYS	2.8
1	F	179	LEU	2.8
1	D	257	SER	2.8
1	Е	393	ARG	2.8
1	F	279	ASP	2.8
1	Е	133	SER	2.7
1	А	365	LEU	2.7
1	D	144	ASP	2.7
1	D	333	LEU	2.7
1	Е	175	LEU	2.7
1	В	94	PHE	2.7
1	D	79	ASP	2.7
1	F	46	ALA	2.7
1	F	167	ALA	2.7
1	D	361	VAL	2.7
1	F	204[A]	LEU	2.7
1	F	106	GLN	2.7
1	F	121	THR	2.7
1	С	224	GLU	2.7
1	А	98	ILE	2.7
1	Е	106	GLN	2.7
1	А	130[A]	LEU	2.7
1	В	29[A]	TRP	2.7
1	Е	179	LEU	2.7
1	Е	178	THR	2.7
1	Е	288	SER	2.7
1	D	96	ALA	2.6
1	В	126	ILE	2.6
1	F	303	ASP	2.6
1	Е	153	TYR	2.6
1	В	200	ARG	2.6
1	D	149	PHE	2.6

6DVH

Conti	nued fron	ı previou	s page	
Mol	Chain	Res	Type	RSRZ
1	F	108	GLY	2.6
1	Е	339	ALA	2.6
1	Е	312	SER	2.6
1	А	126	ILE	2.6
1	А	340[A]	VAL	2.6
1	С	151	LEU	2.6
1	Ε	202	LEU	2.6
1	Е	305	LEU	2.6
1	F	206	ASN	2.6
1	Е	65	TRP	2.6
1	D	76	THR	2.6
1	В	16	VAL	2.6
1	D	275	ARG	2.5
1	E	297	GLY	2.5
1	F	205	THR	2.5
1	F	334	ALA	2.5
1	С	101	ILE	2.5
1	С	176	VAL	2.5
1	Е	78	ARG	2.5
1	F	44	TYR	2.5
1	F	267	GLY	2.5
1	Ε	139	ARG	2.5
1	D	319	PHE	2.5
1	D	341	GLY	2.5
1	F	190	ASP	2.5
1	С	178	THR	2.5
1	F	22	LEU	2.5
1	В	233	ARG	2.5
1	F	158	ASP	2.5
1	E	383	GLU	2.5
1	F	136	GLU	2.5
1	E	21	THR	2.5
1	D	152	TYR	2.5
1	E	24	MET	2.5
1	E	61	ALA	2.5
1	E	35	GLN	2.5
1	F	2	ASN	2.5
1	E	243	PHE	2.5
1	F	249	TRP	2.5
1	В	346	TYR	2.4
1	D	295	ALA	2.4
1	D	369	ALA	2.4

Conti	nued fron	ı previou	s page	
\mathbf{Mol}	Chain	\mathbf{Res}	Type	RSRZ
1	F	274	ALA	2.4
1	F	155	GLU	2.4
1	D	216	LYS	2.4
1	Ε	246	SER	2.4
1	F	321	SER	2.4
1	F	355	SER	2.4
1	В	365	LEU	2.4
1	Е	72	LEU	2.4
1	F	384	LEU	2.4
1	Е	31	ALA	2.4
1	Е	380	ASN	2.4
1	С	220	HIS	2.4
1	Е	73	MET	2.4
1	C	329	VAL	2.4
1	D	151	LEU	2.4
1	F	27	ALA	2.4
1	F	80	LEU	2.4
1	С	343	GLY	2.4
1	D	232	PRO	2.4
1	Е	275	ARG	2.4
1	Е	104	CYS	2.4
1	С	215	LYS	2.4
1	F	186	TRP	2.4
1	С	100	VAL	2.3
1	А	323	ILE	2.3
1	D	252	ILE	2.3
1	Е	204	LEU	2.3
1	F	67	LEU	2.3
1	Е	203	ALA	2.3
1	D	314[A]	ASP	2.3
1	F	128	SER	2.3
1	Е	347	ALA	2.3
1	F	61	ALA	2.3
1	F	117	ALA	2.3
1	F	25	SER	2.3
1	Е	333	LEU	2.3
1	F	103	LEU	2.3
1	F	126	ILE	2.3
1	D	178	THR	2.3
1	D	318	LEU	2.3
1	F	114	SER	2.2
1	В	202	LEU	2.2
			-	

Mol	Chain	Res	Type	RSRZ
1	Е	268	ILE	2.2
1	Е	341	GLY	2.2
1	F	313	GLY	2.2
1	С	321	SER	2.2
1	А	295	ALA	2.2
1	F	31	ALA	2.2
1	D	208	VAL	2.2
1	Е	100	VAL	2.2
1	В	372	ILE	2.2
1	А	29[A]	TRP	2.2
1	Е	182	TRP	2.2
1	F	280	SER	2.2
1	Е	263	VAL	2.2
1	F	30	GLU	2.2
1	F	272	ASP	2.2
1	D	254	TRP	2.2
1	Е	325	THR	2.2
1	А	225	ALA	2.2
1	Е	33	ALA	2.2
1	Е	378	TYR	2.2
1	С	290	HIS	2.2
1	F	32	HIS	2.2
1	В	358	ILE	2.2
1	С	339	ALA	2.2
1	D	196	PHE	2.1
1	Е	319	PHE	2.1
1	С	169	GLU	2.1
1	Е	7	GLU	2.1
1	F	188	PRO	2.1
1	F	271	PRO	2.1
1	F	345	PRO	2.1
1	Е	103	LEU	2.1
1	А	44	TYR	2.1
1	D	158	ASP	2.1
1	А	287	CYS	2.1
1	D	265	LEU	2.1
1	Е	129	THR	2.1
1	С	288	SER	2.1
1	Е	280[A]	SER	2.1
1	F	73	MET	2.1
1	В	169	GLU	2.1
1	Е	349	GLY	2.1

Mol	Chain	Res	Type	RSRZ	
1	D	346	TYR	2.1	
1	А	319	PHE	2.1	
1	Е	95	PHE	2.1	
1	F	43	SER	2.1	
1	А	375	VAL	2.1	
1	F	317	VAL	2.1	
1	Е	295	ALA	2.1	
1	Е	146	PRO	2.1	
1	Е	345	PRO	2.1	
1	С	268	ILE	2.1	
1	F	47	GLY	2.1	
1	F	264	ILE	2.1	
1	F	377	GLY	2.1	
1	В	367	ALA	2.1	
1	Е	160	ALA	2.1	
1	F	389	LEU	2.1	
1	В	268	ILE	2.1	
1	В	323	ILE	2.1	
1	Ε	34	GLN	2.0	
1	F	192	THR	2.0	
1	Е	271	PRO	2.0	
1	F	161	GLU	2.0	
1	А	346	TYR	2.0	
1	С	291	GLY	2.0	
1	F	346	TYR	2.0	
1	D	256	ARG	2.0	
1	F	371	LEU	2.0	
1	D	93	MET	2.0	
1	F	93	MET	2.0	
1	F	275	ARG	2.0	
1	D	321	SER	2.0	
1	В	361	VAL	2.0	
1	E	67	LEU	2.0	
1	D	14	GLY	2.0	
1	E	316	PRO	2.0	

Continued from previous page...

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	\mathbf{B} -factors (\mathbf{A}^2)	Q<0.9
3	SO4	В	406[B]	5/5	0.71	0.23	50, 56, 56, 59	5
3	SO4	А	404[A]	5/5	0.78	0.31	50, 56, 58, 59	5
2	FMN	F	401	31/31	0.81	0.18	74,79,82,82	31
3	SO4	F	402	5/5	0.84	0.14	88,89,89,90	5
3	SO4	Е	403	5/5	0.85	0.14	94,95,95,96	5
2	FMN	Е	401	31/31	0.86	0.20	74,78,81,81	31
3	SO4	В	404[A]	5/5	0.87	0.22	67,67,68,70	5
3	SO4	С	404	5/5	0.90	0.24	$66,\!66,\!67,\!68$	5
3	SO4	F	403	5/5	0.93	0.23	72,72,74,74	5
3	SO4	А	405	5/5	0.94	0.19	63,64,64,65	5
3	SO4	В	405	5/5	0.94	0.26	$99,\!99,\!101,\!104$	0
2	FMN	С	401	31/31	0.96	0.16	29,33,37,39	0
3	SO4	Е	402	5/5	0.96	0.26	$98,\!98,\!99,\!99$	0
2	FMN	D	401	31/31	0.96	0.10	39,46,51,52	0
2	FMN	В	401	31/31	0.97	0.12	23, 29, 33, 36	0
2	FMN	А	401	31/31	0.98	0.15	19,23,26,30	0
3	SO4	D	403	5/5	0.98	0.11	$64,\!64,\!69,\!71$	0
3	SO4	С	403	5/5	0.99	0.08	$36,\!42,\!43,\!45$	0
3	SO4	В	403	5/5	0.99	0.09	38,40,44,45	0
3	SO4	В	402	5/5	0.99	0.08	38, 39, 43, 43	0
3	SO4	A	403	5/5	0.99	0.12	35,35,39,39	0
3	SO4	D	402	5/5	0.99	0.11	51, 51, 55, 56	0
3	SO4	A	402	5/5	1.00	0.06	$30,\!34,\!35,\!37$	0
3	SO4	С	402	5/5	1.00	0.08	39,44,46,49	0

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

