

Full wwPDB X-ray Structure Validation Report (i)

Oct 17, 2023 – 06:57 AM EDT

PDB ID	:	2DWQ
Title	:	Thermus thermophilus YchF GTP-binding protein
Authors	:	Kukimoto-Niino, M.; Murayama, K.; Shorouzu, M.; Kuramitsu, S.; Yokoyama,
		S.; RIKEN Structural Genomics/Proteomics Initiative (RSGI)
Deposited on	:	2006-08-16
Resolution	:	2.95 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Xtriage (Phenix)	:	1.13
EDS	:	2.36
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.95 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	130704	3104 (3.00-2.92)
Clashscore	141614	3462 (3.00-2.92)
Ramachandran outliers	138981	3340 (3.00-2.92)
Sidechain outliers	138945	3343 (3.00-2.92)
RSRZ outliers	127900	2986 (3.00-2.92)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length		Quality of chain	
1	А	368	37%	49%	10% •
1	В	368	29%	51%	11% • 8%

2 Entry composition (i)

There are 2 unique types of molecules in this entry. The entry contains 5410 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called GTP-binding protein.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
1	А	354	Total	C	N 40C	0	S	0	0	0
			2748	1739	496	510	3			
1	В	337	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
I D	557	2631	1668	475	486	2	0	0	0	

• Molecule 2 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	22	Total O 22 22	0	0
2	В	9	Total O 9 9	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: GTP-binding protein

Ka31 L266 1206 1206 A335 G270 V206 A341 K279 V210 K344 K279 V210 K345 K280 V210 K345 K280 K280 K345 K280 K280 K345 K280 K280 K345 K280 K280 K346 K280 K280 K346 K280 K280 K346 K280 K280 K366 K290 K290 K366 K290 K290 K366 K290 K290 K366

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1	Depositor
Cell constants	52.94Å 54.36Å 92.58Å	Depositor
a, b, c, α , β , γ	80.11° 76.46° 73.12°	Depositor
$Resolution(\AA)$	37.04 - 2.95	Depositor
Resolution (A)	37.03 - 2.95	EDS
% Data completeness	94.2 (37.04-2.95)	Depositor
(in resolution range)	94.2 (37.03-2.95)	EDS
R _{merge}	(Not available)	Depositor
R_{sym}	0.12	Depositor
$< I/\sigma(I) > 1$	$3.36 (at 2.95 \text{\AA})$	Xtriage
Refinement program	CNS 1.1	Depositor
P. P.	0.208 , 0.281	Depositor
n, n_{free}	0.200 , 0.270	DCC
R_{free} test set	1872 reflections (9.86%)	wwPDB-VP
Wilson B-factor $(Å^2)$	62.8	Xtriage
Anisotropy	0.507	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.29, 65.2	EDS
L-test for twinning ²	$ < L >=0.50, < L^2>=0.32$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.94	EDS
Total number of atoms	5410	wwPDB-VP
Average B, all atoms $(Å^2)$	60.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 5.69% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	nd lengths	Bond angles		
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.95	1/2795~(0.0%)	1.09	4/3787~(0.1%)	
1	В	0.76	0/2675	0.99	1/3625~(0.0%)	
All	All	0.86	1/5470~(0.0%)	1.04	5/7412~(0.1%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	A	0	1

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	А	144	GLU	CG-CD	5.05	1.59	1.51

All (5) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	84	HIS	N-CA-C	6.34	128.13	111.00
1	В	280	ARG	NE-CZ-NH1	-6.22	117.19	120.30
1	А	86	GLY	N-CA-C	-5.79	98.61	113.10
1	А	100	VAL	CG1-CB-CG2	-5.36	102.32	110.90
1	А	62	ARG	N-CA-C	-5.00	97.50	111.00

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	А	51	TYR	Sidechain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	2748	0	2784	220	0
1	В	2631	0	2666	274	0
2	А	22	0	0	6	0
2	В	9	0	0	2	0
All	All	5410	0	5450	481	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 44.

All (481) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	$distance ({ m \AA})$	overlap (Å)
1:B:23:ARG:HE	1:B:251:GLU:HG2	0.95	1.08
1:A:16:THR:HB	1:A:243:ALA:HB1	1.37	1.05
1:A:302:ARG:HH11	1:A:302:ARG:HB2	1.18	1.04
1:A:244:ARG:HG3	1:A:244:ARG:HH11	1.24	1.02
1:B:258:ARG:HE	1:B:258:ARG:HA	1.24	1.02
1:A:302:ARG:HB2	1:A:302:ARG:NH1	1.75	1.01
1:B:23:ARG:NE	1:B:251:GLU:HG2	1.76	0.99
1:A:340:ARG:HD3	1:B:267:GLN:CB	1.91	0.99
1:B:340:ARG:HG2	1:B:340:ARG:HH11	1.30	0.95
1:B:293:LYS:HD2	1:B:294:GLU:H	1.32	0.94
1:A:85:LYS:HB3	1:A:92:GLN:HE22	1.34	0.90
1:A:302:ARG:HH11	1:A:302:ARG:CB	1.84	0.90
1:B:147:LEU:O	1:B:151:ARG:HB2	1.70	0.90
1:B:14:LYS:HZ3	1:B:77:ALA:HB2	1.36	0.89
1:A:98:ARG:HG3	1:A:199:LEU:HD21	1.52	0.89
1:A:260:LEU:HD11	1:A:264:TYR:HE1	1.36	0.88
1:A:340:ARG:HD3	1:B:267:GLN:HB3	1.55	0.88
1:A:63:VAL:HG22	1:A:64:PRO:HD2	1.54	0.88
1:A:340:ARG:HD3	1:B:267:GLN:HB2	1.56	0.86
1:B:23:ARG:HE	1:B:251:GLU:CG	1.86	0.86
1:A:244:ARG:HG3	1:A:244:ARG:NH1	1.88	0.86
1:A:340:ARG:HG3	2:A:371:HOH:O	1.77	0.85
1:B:5:GLY:HA3	1:B:100:VAL:HG11	1.61	0.82

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:260:LEU:O	1:A:263:ALA:HB3	1.80	0.81
1:A:319:ARG:HG2	1:A:319:ARG:HH11	1.44	0.81
1:B:61:GLU:HB2	1:B:62:ARG:HH11	1.45	0.81
1:A:322:ILE:O	1:A:323:ARG:HG2	1.81	0.80
1:A:245:LEU:HG	1:A:249:LEU:HD11	1.66	0.78
1:B:158:ARG:HD2	1:B:159:GLU:N	1.98	0.77
1:B:40:VAL:HG22	1:B:74:VAL:HG22	1.66	0.77
1:B:229:ARG:HD3	2:B:376:HOH:O	1.83	0.77
1:A:171:TYR:CE2	1:A:175:GLN:NE2	2.52	0.76
1:A:54:GLN:HG2	1:A:63:VAL:CG2	2.15	0.76
1:A:215:LEU:CD1	1:A:245:LEU:HD23	2.16	0.76
1:A:260:LEU:O	1:A:260:LEU:HD12	1.85	0.75
1:A:260:LEU:HD11	1:A:264:TYR:CE1	2.21	0.75
1:A:88:GLY:O	1:A:92:GLN:HG3	1.86	0.75
1:B:14:LYS:HA	1:B:106:VAL:HG21	1.68	0.74
1:A:98:ARG:HG3	1:A:199:LEU:CD2	2.16	0.74
1:B:291:GLY:HA3	1:B:293:LYS:HE3	1.69	0.74
1:B:340:ARG:HG2	1:B:340:ARG:NH1	2.02	0.74
1:B:285:LEU:HD12	1:B:285:LEU:O	1.86	0.74
1:B:78:GLY:O	1:B:80:VAL:N	2.21	0.73
1:A:258:ARG:HE	1:A:258:ARG:HA	1.53	0.73
1:B:244:ARG:HH11	1:B:244:ARG:HB3	1.54	0.72
1:B:322:ILE:O	1:B:323:ARG:HD3	1.90	0.72
1:B:246:GLU:OE2	1:B:271:LEU:HD12	1.90	0.72
1:A:25:ASN:O	1:A:28:ALA:HB3	1.89	0.72
1:A:314:HIS:ND1	1:A:315:SER:N	2.38	0.71
1:B:322:ILE:HD12	1:B:366:PHE:HA	1.70	0.71
1:A:367:ASN:HD22	1:A:367:ASN:C	1.94	0.70
1:B:244:ARG:HB2	1:B:244:ARG:NH1	2.05	0.70
1:A:12:VAL:HG12	1:A:108:ARG:HB3	1.72	0.70
1:B:244:ARG:NH1	1:B:244:ARG:CB	2.54	0.70
1:B:322:ILE:HG22	1:B:323:ARG:HG2	1.72	0.70
1:A:170:LEU:O	1:A:174:LEU:HD12	1.90	0.70
1:A:59:LYS:HD3	1:A:292:GLU:OE1	1.92	0.70
1:A:215:LEU:HD11	1:A:245:LEU:HD23	1.74	0.70
1:B:206:TYR:HB2	1:B:238:VAL:HG22	1.74	0.70
1:A:224:VAL:HG12	1:A:224:VAL:O	1.90	0.70
1:A:240:VAL:O	1:A:241:VAL:HG13	1.91	0.70
1:B:25:ASN:HD22	1:B:25:ASN:C	1.93	0.69
1:B:139:ASP:OD2	1:B:198:LEU:HB3	1.91	0.69
1:B:188:ALA:C	1:B:190:ALA:H	1.96	0.69

		Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
1:A:326:VAL:HG22	1:A:362:ILE:HG12	1.74	0.69
1:A:267:GLN:HG3	1:B:340:ARG:CZ	2.23	0.69
1:B:244:ARG:HH11	1:B:244:ARG:CB	2.05	0.69
1:B:152:LYS:O	1:B:152:LYS:HD3	1.94	0.68
1:B:158:ARG:O	1:B:161:LEU:HD13	1.93	0.68
1:A:63:VAL:HG22	1:A:64:PRO:CD	2.22	0.68
1:B:189:VAL:HG12	1:B:189:VAL:O	1.94	0.68
1:B:278:GLY:O	1:B:282:LEU:HG	1.94	0.68
1:B:285:LEU:HD21	1:B:302:ARG:HA	1.76	0.67
1:B:92:GLN:HA	1:B:92:GLN:OE1	1.92	0.67
1:A:80:VAL:HG21	1:A:93:PHE:CD1	2.30	0.67
1:B:5:GLY:CA	1:B:100:VAL:HG11	2.25	0.67
1:B:8:GLY:O	1:B:10:PRO:HD3	1.95	0.66
1:B:49:ARG:O	1:B:53:LEU:HB2	1.96	0.66
1:B:212:GLU:O	1:B:215:LEU:HB2	1.95	0.65
1:B:61:GLU:HB2	1:B:62:ARG:NH1	2.10	0.65
1:B:285:LEU:CD2	1:B:302:ARG:HA	2.27	0.65
1:B:226:ALA:O	1:B:229:ARG:HB3	1.97	0.65
1:A:259:GLU:O	1:A:262:ALA:HB3	1.96	0.65
1:A:15:SER:O	1:A:19:ASN:HB2	1.98	0.64
1:A:246:GLU:OE1	1:A:270:GLY:N	2.30	0.64
1:B:74:VAL:HG12	1:B:74:VAL:O	1.97	0.64
1:A:2:LEU:HB3	1:A:282:LEU:HD13	1.80	0.64
1:B:127:ASP:O	1:B:131:VAL:HG23	1.98	0.64
1:A:149:ARG:O	1:A:152:LYS:HG3	1.97	0.64
1:B:143:LEU:O	1:B:147:LEU:HB2	1.97	0.64
1:A:276:ARG:HB2	1:A:280:ARG:HH12	1.62	0.64
1:B:216:PRO:HG2	1:B:217:ASP:OD2	1.97	0.63
1:B:16:THR:O	1:B:19:ASN:HB3	1.99	0.63
1:B:335:ALA:HB2	1:B:346:TRP:CZ3	2.32	0.63
1:A:23:ARG:O	1:A:26:ALA:HB3	1.99	0.63
1:B:229:ARG:HG2	1:B:229:ARG:HH11	1.64	0.63
1:B:293:LYS:HD2	1:B:294:GLU:N	2.10	0.63
1:A:36:ILE:HD13	1:A:38:LYS:HE2	1.78	0.63
1:A:124:PRO:HA	2:A:382:HOH:O	1.97	0.63
1:B:253:SER:O	1:B:256:GLU:HB3	1.99	0.63
1:B:78:GLY:C	1:B:80:VAL:H	2.01	0.63
1:B:135:LEU:HD23	1:B:199:LEU:HD12	1.81	0.63
1:A:240:VAL:O	1:A:241:VAL:CG1	2.47	0.62
1:B:67:VAL:HG12	1:B:296:ARG:HG3	1.82	0.62
1:A:188:ALA:O	1:A:189:VAL:C	2.38	0.62

		Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
1:B:186:SER:HB3	1:B:189:VAL:CG2	2.29	0.62
1:B:340:ARG:O	1:B:343:GLU:HB2	2.00	0.62
1:B:181:ARG:NH2	1:B:204:VAL:HG21	2.15	0.61
1:A:330:ASP:OD2	1:A:330:ASP:N	2.33	0.61
1:B:158:ARG:NH1	1:B:159:GLU:HB2	2.16	0.61
1:B:161:LEU:O	1:B:165:GLU:HG3	2.00	0.61
1:B:50:LEU:HD23	1:B:288:PHE:CE2	2.35	0.61
1:B:317:MET:HG3	1:B:366:PHE:CE2	2.35	0.61
1:A:54:GLN:HG2	1:A:63:VAL:HG22	1.82	0.61
1:A:54:GLN:HG2	1:A:63:VAL:HG21	1.81	0.61
1:A:150:LEU:HD23	1:A:153:GLU:OE2	1.99	0.61
1:B:154:ALA:HA	1:B:160:ARG:HB2	1.82	0.61
1:B:228:ARG:O	1:B:232:LEU:HD23	2.01	0.61
1:A:47:ASP:O	1:A:50:LEU:HB2	2.01	0.61
1:A:340:ARG:CD	1:B:267:GLN:HB3	2.29	0.61
1:A:256:GLU:HA	1:A:259:GLU:HG2	1.83	0.60
1:B:9:LEU:HG	1:B:127:ASP:HB3	1.83	0.60
1:B:258:ARG:HA	1:B:258:ARG:NE	2.08	0.60
1:B:222:PRO:HA	1:B:225:GLU:HG3	1.83	0.60
1:A:36:ILE:HG12	1:A:38:LYS:HG2	1.84	0.60
1:A:262:ALA:O	1:A:265:GLY:N	2.32	0.60
1:B:77:ALA:O	1:B:80:VAL:HG23	2.01	0.60
1:A:151:ARG:HA	1:A:164:LEU:HD11	1.84	0.60
1:B:314:HIS:CE1	1:B:316:ASP:OD1	2.55	0.60
1:A:259:GLU:O	1:A:263:ALA:N	2.28	0.59
1:B:335:ALA:HB2	1:B:346:TRP:CE3	2.38	0.59
1:A:152:LYS:C	1:A:152:LYS:HD2	2.23	0.59
1:B:186:SER:HB3	1:B:189:VAL:HG23	1.84	0.59
1:A:255:GLU:O	1:A:258:ARG:HB3	2.03	0.59
1:B:231:ALA:HB1	1:B:236:ALA:O	2.03	0.59
1:B:73:PHE:CZ	1:B:274:LEU:HG	2.37	0.58
1:B:317:MET:HG3	1:B:366:PHE:CD2	2.39	0.58
1:A:172:VAL:O	1:A:176:GLU:HG3	2.01	0.58
1:B:214:ASP:O	1:B:218:GLY:HA2	2.04	0.58
1:B:256:GLU:O	1:B:257:ALA:C	2.40	0.58
1:A:7:VAL:HG12	1:A:76:ILE:HB	1.86	0.58
1:B:146:ARG:HH21	1:B:150:LEU:HG	1.68	0.58
1:B:24:ALA:HB2	1:B:250:ALA:O	2.04	0.58
1:A:298:TRP:CH2	1:A:313:ILE:HA	2.39	0.57
1:B:154:ALA:HB1	1:B:164:LEU:HD22	1.85	0.57
1:A:7:VAL:HG11	1:A:97:ILE:HD11	1.85	0.57

	lo ao pagom	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:254:GLY:C	1:B:256:GLU:H	2.06	0.57
1:B:135:LEU:CD2	1:B:199:LEU:HD12	2.34	0.57
1:B:245:LEU:O	1:B:249:LEU:HG	2.05	0.57
1:A:108:ARG:O	1:A:124:PRO:HB3	2.03	0.57
1:B:46:GLU:HB2	1:B:272:GLN:OE1	2.03	0.57
1:B:132:GLU:O	1:B:136:LEU:HG	2.03	0.57
1:B:152:LYS:HD3	1:B:152:LYS:C	2.24	0.57
1:A:276:ARG:HH12	1:B:344:ARG:CZ	2.17	0.57
1:B:106:VAL:HA	1:B:207:VAL:HB	1.87	0.57
1:B:273:ARG:HG2	1:B:273:ARG:HH11	1.70	0.57
1:A:42:VAL:O	1:A:44:PRO:HD3	2.05	0.57
1:A:58:ALA:HB2	1:A:63:VAL:HG23	1.86	0.56
1:A:244:ARG:O	1:A:247:ALA:HB3	2.05	0.56
1:A:357:GLN:O	1:A:360:ASP:HB2	2.05	0.56
1:A:85:LYS:HB3	1:A:92:GLN:NE2	2.14	0.56
1:A:150:LEU:CD1	1:A:164:LEU:HD12	2.35	0.56
1:B:62:ARG:N	1:B:62:ARG:CD	2.68	0.56
1:B:154:ALA:CB	1:B:164:LEU:HD22	2.35	0.56
1:A:256:GLU:O	1:A:259:GLU:HG3	2.05	0.56
1:A:319:ARG:HG2	1:A:319:ARG:NH1	2.16	0.56
1:B:15:SER:O	1:B:16:THR:C	2.44	0.56
1:A:97:ILE:O	1:A:202:LYS:HE3	2.06	0.56
1:B:54:GLN:NE2	1:B:66:VAL:HG13	2.21	0.56
1:B:71:VAL:CG2	1:B:275:ALA:HB1	2.35	0.56
1:B:213:GLU:H	1:B:213:GLU:CD	2.09	0.56
1:A:215:LEU:HD13	1:A:266:LEU:HD11	1.88	0.56
1:A:351:GLY:O	1:A:353:ASP:N	2.39	0.56
1:B:305:LYS:HD3	1:B:353:ASP:HA	1.86	0.56
1:A:10:PRO:HA	2:A:389:HOH:O	2.05	0.56
1:A:367:ASN:C	1:A:367:ASN:ND2	2.60	0.56
1:A:288:PHE:HB3	1:A:296:ARG:O	2.05	0.55
1:B:364:VAL:HG12	1:B:365:LEU:N	2.21	0.55
1:A:252:LEU:HD11	1:A:260:LEU:HD23	1.88	0.55
1:A:254:GLY:O	1:A:258:ARG:HB2	2.06	0.55
1:B:7:VAL:HG23	1:B:8:GLY:N	2.21	0.55
1:B:135:LEU:HD22	1:B:199:LEU:HB3	1.89	0.55
1:B:132:GLU:OE1	1:B:200:THR:HG22	2.07	0.55
1:A:181:ARG:HD2	1:A:234:GLU:O	2.06	0.55
1:A:157:ASP:OD2	1:A:157:ASP:C	2.45	0.54
1:A:260:LEU:HD12	1:A:263:ALA:HB3	1.89	0.54
1:B:147:LEU:O	1:B:151:ARG:CB	2.50	0.54

	lo uo pugom	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:225:GLU:O	1:B:229:ARG:HB2	2.07	0.54
1:B:321:PHE:HE1	1:B:324:ALA:HB2	1.72	0.54
1:B:188:ALA:O	1:B:190:ALA:N	2.41	0.54
1:B:301:ARG:O	1:B:302:ARG:C	2.46	0.54
1:B:155:ARG:C	1:B:157:ASP:H	2.11	0.54
1:B:290:ALA:CB	1:B:295:VAL:HG23	2.38	0.54
1:B:328:PRO:HG2	1:B:331:LYS:HG2	1.89	0.54
1:B:109:CYS:SG	1:B:224:VAL:HG22	2.48	0.54
1:A:276:ARG:HH12	1:B:344:ARG:NH2	2.05	0.54
1:A:282:LEU:N	1:A:282:LEU:HD23	2.22	0.54
1:B:14:LYS:HE2	1:B:75:ASP:OD1	2.07	0.54
1:B:65:PRO:CD	1:B:293:LYS:O	2.56	0.54
1:A:328:PRO:HB2	1:A:330:ASP:OD2	2.09	0.53
1:B:6:ILE:HD11	1:B:73:PHE:HD2	1.73	0.53
1:B:244:ARG:HB2	1:B:244:ARG:CZ	2.38	0.53
1:A:210:VAL:HG11	1:A:224:VAL:HG21	1.89	0.53
1:A:189:VAL:O	1:A:192:PHE:N	2.41	0.53
1:B:230:LYS:HE2	1:B:234:GLU:HG3	1.91	0.53
1:A:319:ARG:HD2	1:A:319:ARG:C	2.28	0.53
1:B:151:ARG:HA	1:B:164:LEU:HD13	1.90	0.53
1:A:280:ARG:HG3	1:A:280:ARG:HH11	1.73	0.53
1:A:87:GLU:H	1:A:87:GLU:CD	2.11	0.53
1:A:150:LEU:HD13	1:A:164:LEU:CD1	2.39	0.53
1:A:225:GLU:O	1:A:229:ARG:HG3	2.08	0.53
1:B:101:ALA:O	1:B:203:PRO:HD2	2.09	0.53
1:B:13:GLY:O	1:B:15:SER:N	2.42	0.53
1:B:73:PHE:CE2	1:B:274:LEU:HD21	2.44	0.52
1:A:77:ALA:O	1:A:78:GLY:C	2.48	0.52
1:A:212:GLU:OE1	1:A:244:ARG:HG2	2.09	0.52
1:B:127:ASP:OD2	1:B:127:ASP:N	2.42	0.52
1:A:309:ALA:HB2	1:A:356:VAL:HG21	1.91	0.52
1:B:65:PRO:HD2	1:B:293:LYS:O	2.08	0.52
1:A:170:LEU:O	1:A:173:HIS:HB3	2.10	0.52
1:A:267:GLN:HG2	1:B:340:ARG:CG	2.39	0.52
1:B:252:LEU:HD12	1:B:260:LEU:CD2	2.40	0.52
1:B:188:ALA:C	1:B:190:ALA:N	2.61	0.52
1:B:340:ARG:HH11	1:B:340:ARG:CG	2.12	0.52
1:A:256:GLU:O	1:A:259:GLU:CG	2.57	0.52
1:B:14:LYS:NZ	1:B:77:ALA:HB2	2.18	0.52
1:B:285:LEU:HD12	1:B:285:LEU:C	2.30	0.52
1:A:276:ARG:O	1:A:280:ARG:NH1	2.43	0.52

	lo uo pugom	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:71:VAL:HG21	1:B:275:ALA:HB1	1.92	0.51
1:B:150:LEU:HD23	1:B:153:GLU:OE2	2.10	0.51
1:A:211:ALA:O	1:A:214:ASP:HB2	2.10	0.51
1:B:13:GLY:O	1:B:14:LYS:C	2.49	0.51
1:B:161:LEU:HB2	1:B:162:PRO:HD3	1.92	0.51
1:A:214:ASP:O	1:A:215:LEU:C	2.48	0.51
1:B:296:ARG:HD3	1:B:298:TRP:CZ2	2.46	0.51
1:A:125:LEU:O	1:A:128:ALA:HB3	2.10	0.51
1:B:189:VAL:O	1:B:189:VAL:CG1	2.58	0.51
1:A:304:THR:HG23	1:A:308:ARG:HB3	1.91	0.51
1:B:70:HIS:ND1	1:B:70:HIS:N	2.59	0.51
1:B:256:GLU:O	1:B:259:GLU:N	2.43	0.51
1:B:329:TRP:CG	1:B:330:ASP:N	2.78	0.51
1:A:259:GLU:O	1:A:262:ALA:N	2.44	0.51
1:A:10:PRO:CA	2:A:389:HOH:O	2.58	0.50
1:A:85:LYS:CB	1:A:92:GLN:HE22	2.16	0.50
1:B:260:LEU:O	1:B:261:LEU:C	2.50	0.50
1:B:262:ALA:O	1:B:265:GLY:N	2.43	0.50
1:A:319:ARG:NH1	1:A:319:ARG:CG	2.74	0.50
1:B:242:SER:O	1:B:246:GLU:HG2	2.11	0.50
1:B:62:ARG:N	1:B:62:ARG:HD3	2.26	0.50
1:B:307:PRO:HG2	1:B:352:LYS:HB2	1.93	0.50
1:A:217:ASP:OD1	1:A:273:ARG:NH2	2.45	0.50
1:A:85:LYS:HG2	1:A:87:GLU:O	2.12	0.50
1:A:259:GLU:HG3	1:A:260:LEU:H	1.76	0.50
1:B:18:PHE:O	1:B:18:PHE:CD2	2.65	0.50
1:B:256:GLU:C	1:B:258:ARG:N	2.60	0.50
1:B:2:LEU:HD11	1:B:301:ARG:HH21	1.75	0.50
1:B:110:PHE:CD2	1:B:110:PHE:O	2.65	0.50
1:B:159:GLU:O	1:B:162:PRO:HD2	2.11	0.50
1:B:261:LEU:HB3	1:B:266:LEU:CB	2.42	0.50
1:B:273:ARG:HG2	1:B:273:ARG:NH1	2.25	0.50
1:B:210:VAL:HG23	1:B:211:ALA:O	2.12	0.49
1:B:249:LEU:O	1:B:251:GLU:N	2.45	0.49
1:A:150:LEU:HD12	1:A:164:LEU:HD12	1.93	0.49
1:B:256:GLU:HG3	1:B:259:GLU:HG2	1.95	0.49
1:B:310:ALA:HB1	1:B:317:MET:HB3	1.92	0.49
1:A:322:ILE:O	1:A:323:ARG:CG	2.58	0.49
1:B:255:GLU:HA	1:B:255:GLU:OE1	2.13	0.49
1:B:299:THR:O	1:B:300:VAL:HG13	2.13	0.49
1:A:244:ARG:HH11	1:A:244:ARG:CG	2.07	0.49

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:9:LEU:O	1:A:12:VAL:HG22	2.12	0.48
1:A:150:LEU:CD2	1:A:153:GLU:OE2	2.60	0.48
1:A:160:ARG:NH1	1:A:163:LEU:HD22	2.28	0.48
1:A:306:ALA:N	1:A:354:TYR:O	2.39	0.48
1:B:221:ASN:OD1	1:B:224:VAL:HG23	2.13	0.48
1:A:183:PHE:CD1	1:A:184:PRO:HD2	2.48	0.48
1:B:92:GLN:O	1:B:93:PHE:C	2.51	0.48
1:B:254:GLY:C	1:B:256:GLU:N	2.67	0.48
1:B:322:ILE:HD12	1:B:365:LEU:O	2.13	0.48
1:A:6:ILE:HD11	1:A:73:PHE:CD2	2.48	0.48
1:A:240:VAL:C	1:A:241:VAL:HG13	2.32	0.48
1:A:144:GLU:HG3	1:A:171:TYR:CE1	2.48	0.48
1:A:216:PRO:HB3	1:A:266:LEU:HD22	1.95	0.48
1:A:223:GLN:C	1:A:225:GLU:H	2.16	0.48
1:B:307:PRO:O	1:B:310:ALA:HB3	2.14	0.48
1:B:12:VAL:HG12	1:B:108:ARG:CB	2.44	0.48
1:B:50:LEU:CD2	1:B:288:PHE:CE2	2.96	0.48
1:B:221:ASN:CG	1:B:224:VAL:HG23	2.34	0.48
1:B:254:GLY:O	1:B:256:GLU:N	2.47	0.48
1:A:267:GLN:HG2	1:B:340:ARG:HG3	1.95	0.48
1:B:184:PRO:HA	1:B:185:PRO:HD3	1.66	0.48
1:B:186:SER:C	1:B:188:ALA:H	2.17	0.48
1:B:322:ILE:HD12	1:B:366:PHE:CA	2.40	0.48
1:B:65:PRO:HG2	1:B:294:GLU:HA	1.94	0.48
1:B:166:ALA:O	1:B:170:LEU:N	2.42	0.48
1:A:224:VAL:O	1:A:224:VAL:CG1	2.62	0.47
1:A:230:LYS:HE2	1:A:230:LYS:HA	1.95	0.47
1:B:317:MET:O	1:B:321:PHE:HB2	2.13	0.47
1:A:259:GLU:HG3	1:A:260:LEU:N	2.30	0.47
1:A:135:LEU:HD22	1:A:199:LEU:HD13	1.96	0.47
1:A:214:ASP:C	1:A:215:LEU:O	2.50	0.47
1:A:230:LYS:O	1:A:233:GLU:N	2.43	0.47
1:B:172:VAL:O	1:B:176:GLU:HG3	2.14	0.47
1:A:36:ILE:HG23	1:A:36:ILE:O	2.15	0.47
1:A:302:ARG:NH1	1:A:302:ARG:CB	2.56	0.47
1:B:220:GLY:O	1:B:222:PRO:HD3	2.14	0.47
1:A:96:HIS:O	1:A:98:ARG:N	2.48	0.47
1:A:150:LEU:HD13	1:A:164:LEU:HD13	1.96	0.47
1:B:174:LEU:HD11	1:B:180:ALA:HB2	1.97	0.47
1:B:261:LEU:HB3	1:B:266:LEU:HB2	1.97	0.47
1:A:106:VAL:O	1:A:107:LEU:HD23	2.14	0.47

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:227:VAL:HG12	1:A:228:ARG:N	2.30	0.47
1:B:148:GLU:O	1:B:149:ARG:C	2.52	0.47
1:B:229:ARG:HG2	1:B:229:ARG:NH1	2.29	0.47
1:B:364:VAL:HG12	1:B:365:LEU:H	1.78	0.47
1:A:110:PHE:CG	1:A:110:PHE:O	2.68	0.46
1:A:171:TYR:CD2	1:A:175:GLN:NE2	2.79	0.46
1:B:210:VAL:O	1:B:242:SER:HB2	2.14	0.46
1:B:311:GLY:O	1:B:313:ILE:N	2.48	0.46
1:A:253:SER:O	1:A:257:ALA:N	2.39	0.46
1:A:326:VAL:HA	1:A:361:VAL:O	2.14	0.46
1:B:23:ARG:CZ	1:B:251:GLU:HG2	2.43	0.46
1:B:17:LEU:C	1:B:19:ASN:H	2.19	0.46
1:B:25:ASN:C	1:B:25:ASN:ND2	2.65	0.46
1:A:272:GLN:O	1:A:273:ARG:C	2.52	0.46
1:B:163:LEU:CD1	1:B:192:PHE:HB2	2.45	0.46
1:B:300:VAL:CG1	1:B:304:THR:HG21	2.46	0.46
1:A:136:LEU:HD11	1:A:177:GLY:O	2.15	0.46
1:A:198:LEU:O	1:A:201:ALA:HB3	2.15	0.46
1:A:223:GLN:O	1:A:226:ALA:N	2.49	0.46
1:B:66:VAL:HG23	1:B:66:VAL:O	2.16	0.46
1:A:13:GLY:O	1:A:14:LYS:C	2.53	0.46
1:B:6:ILE:HD11	1:B:73:PHE:CD2	2.51	0.46
1:B:50:LEU:CD2	1:B:288:PHE:HE2	2.28	0.46
1:B:107:LEU:HB3	1:B:124:PRO:HB2	1.98	0.46
1:B:241:VAL:HG23	1:B:242:SER:N	2.30	0.46
1:B:249:LEU:C	1:B:251:GLU:N	2.68	0.46
1:B:332:LEU:O	1:B:332:LEU:HG	2.16	0.46
1:A:96:HIS:O	1:A:99:GLU:N	2.48	0.46
1:B:73:PHE:CE2	1:B:274:LEU:HG	2.50	0.46
1:B:311:GLY:C	1:B:313:ILE:N	2.69	0.46
1:B:17:LEU:C	1:B:19:ASN:N	2.70	0.45
1:A:80:VAL:HG21	1:A:93:PHE:CE1	2.51	0.45
1:A:96:HIS:C	1:A:98:ARG:N	2.69	0.45
1:A:301:ARG:O	1:A:302:ARG:C	2.55	0.45
1:A:339:ALA:O	1:A:343:GLU:HG3	2.16	0.45
1:B:47:ASP:OD1	1:B:49:ARG:NH2	2.49	0.45
1:B:188:ALA:O	1:B:191:ARG:N	2.48	0.45
1:A:254:GLY:O	1:A:258:ARG:N	2.44	0.45
1:B:314:HIS:NE2	1:B:316:ASP:OD1	2.49	0.45
1:B:50:LEU:HD23	1:B:288:PHE:CD2	2.52	0.45
1:A:80:VAL:HG11	1:A:93:PHE:CD1	2.51	0.45

	lo uo pugo	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:267:GLN:HG2	1:B:340:ARG:CD	2.47	0.45
1:B:73:PHE:CE2	1:B:274:LEU:CD2	3.00	0.45
1:B:246:GLU:HB3	1:B:271:LEU:HD11	1.99	0.45
1:A:271:LEU:HD23	1:A:271:LEU:HA	1.76	0.45
1:B:259:GLU:O	1:B:262:ALA:HB3	2.17	0.45
1:A:223:GLN:C	1:A:225:GLU:N	2.70	0.45
1:A:317:MET:CE	1:A:364:VAL:HB	2.46	0.45
1:A:327:ILE:HD11	1:A:331:LYS:HB2	1.98	0.45
1:B:15:SER:O	1:B:17:LEU:N	2.50	0.45
1:A:80:VAL:O	1:A:81:LYS:O	2.35	0.45
1:B:221:ASN:HB3	1:B:224:VAL:HB	1.98	0.45
1:A:170:LEU:HD23	1:A:170:LEU:HA	1.71	0.45
1:A:249:LEU:O	1:A:250:ALA:C	2.55	0.45
1:B:136:LEU:HD23	1:B:136:LEU:HA	1.85	0.45
1:A:307:PRO:HG3	1:A:321:PHE:CD2	2.52	0.44
1:A:326:VAL:HG22	1:A:362:ILE:CG1	2.46	0.44
1:B:136:LEU:HD23	1:B:174:LEU:HD23	1.99	0.44
1:B:194:LYS:HA	2:B:371:HOH:O	2.17	0.44
1:B:327:ILE:HG23	1:B:327:ILE:O	2.16	0.44
1:A:123:ASP:OD2	1:A:123:ASP:C	2.55	0.44
1:B:9:LEU:O	1:B:12:VAL:HG22	2.17	0.44
1:B:21:LEU:HD11	1:B:42:VAL:N	2.32	0.44
1:B:71:VAL:HG23	1:B:275:ALA:HB1	2.00	0.44
1:B:280:ARG:HH11	1:B:280:ARG:CG	2.30	0.44
1:A:50:LEU:HD22	1:A:295:VAL:HG12	2.00	0.44
1:A:56:THR:HG22	1:A:57:PHE:CE1	2.53	0.44
1:A:241:VAL:HG12	1:A:270:GLY:CA	2.47	0.44
1:B:78:GLY:C	1:B:80:VAL:N	2.66	0.44
1:B:124:PRO:C	1:B:126:GLU:N	2.70	0.44
1:A:2:LEU:HD12	1:A:284:LEU:HD21	1.99	0.44
1:A:106:VAL:C	1:A:107:LEU:HD23	2.38	0.44
1:B:238:VAL:HG12	1:B:238:VAL:O	2.17	0.44
1:A:53:LEU:HD11	1:A:329:TRP:HB2	2.00	0.44
1:A:214:ASP:O	1:A:215:LEU:O	2.36	0.44
1:B:22:THR:O	1:B:23:ARG:C	2.56	0.44
1:B:158:ARG:CZ	1:B:159:GLU:HB2	2.48	0.44
1:B:306:ALA:HB3	1:B:307:PRO:HD3	1.99	0.44
1:B:221:ASN:HA	1:B:222:PRO:HD2	1.86	0.44
1:A:11:ASN:N	2:A:389:HOH:O	2.26	0.44
1:A:68:PRO:HB2	2:A:387:HOH:O	2.18	0.44
1:B:178:LYS:HA	1:B:179:PRO:HD3	1.86	0.44

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:244:ARG:HG3	1:B:245:LEU:N	2.33	0.43
1:B:321:PHE:CE1	1:B:324:ALA:HB2	2.53	0.43
1:A:7:VAL:O	1:A:105:HIS:HA	2.17	0.43
1:B:12:VAL:HG12	1:B:108:ARG:H	1.83	0.43
1:B:270:GLY:HA2	1:B:273:ARG:CD	2.49	0.43
1:B:316:ASP:OD1	1:B:316:ASP:N	2.45	0.43
1:B:326:VAL:HG21	1:B:350:GLU:HG3	2.01	0.43
1:A:245:LEU:HG	1:A:249:LEU:CD1	2.43	0.43
1:B:12:VAL:HG12	1:B:108:ARG:HB2	1.99	0.43
1:A:158:ARG:O	1:A:161:LEU:HB2	2.18	0.43
1:B:167:ALA:O	1:B:168:GLU:C	2.56	0.43
1:A:20:ALA:HA	1:A:23:ARG:HB3	2.00	0.43
1:A:207:VAL:CG2	1:A:274:LEU:CD1	2.97	0.43
1:B:158:ARG:HD2	1:B:159:GLU:HB2	2.01	0.43
1:B:242:SER:O	1:B:242:SER:OG	2.33	0.43
1:B:327:ILE:HD13	1:B:332:LEU:HB2	1.99	0.43
1:B:273:ARG:HH11	1:B:273:ARG:CG	2.32	0.43
1:A:71:VAL:HG21	1:A:275:ALA:O	2.19	0.43
1:A:157:ASP:OD2	1:A:159:GLU:N	2.52	0.43
1:A:160:ARG:HH12	1:A:163:LEU:HD22	1.84	0.43
1:B:25:ASN:OD1	1:B:42:VAL:HG22	2.19	0.43
1:B:212:GLU:CG	1:B:244:ARG:HD3	2.49	0.43
1:A:217:ASP:O	1:A:218:GLY:C	2.56	0.42
1:B:179:PRO:HB2	1:B:181:ARG:HG2	2.01	0.42
1:B:252:LEU:HD12	1:B:260:LEU:HD23	2.00	0.42
1:A:51:TYR:HB2	1:B:55:ARG:NH2	2.33	0.42
1:A:143:LEU:O	1:A:144:GLU:C	2.57	0.42
1:B:50:LEU:HD21	1:B:297:ALA:HB2	1.99	0.42
1:B:216:PRO:O	1:B:273:ARG:NH2	2.52	0.42
1:B:299:THR:CG2	1:B:300:VAL:N	2.82	0.42
1:A:45:LEU:HD23	1:A:45:LEU:HA	1.79	0.42
1:A:179:PRO:HB2	1:A:181:ARG:HG2	2.01	0.42
1:A:181:ARG:NH2	1:A:204:VAL:CG2	2.82	0.42
1:A:242:SER:O	1:A:246:GLU:HB2	2.19	0.42
1:B:124:PRO:C	1:B:126:GLU:H	2.22	0.42
1:B:362:ILE:CG2	1:B:363:TYR:N	2.82	0.42
1:B:175:GLN:OE1	1:B:175:GLN:HA	2.19	0.42
1:A:20:ALA:O	1:A:21:LEU:C	2.58	0.42
1:A:55:ARG:CZ	1:B:51:TYR:HB3	2.50	0.42
1:A:245:LEU:CG	1:A:249:LEU:HD11	2.44	0.42
1:A:54:GLN:CG	1:A:63:VAL:HG22	2.48	0.42

	A L O	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:214:ASP:O	1:B:218:GLY:CA	2.68	0.42
1:B:97:ILE:CG2	1:B:199:LEU:HD13	2.50	0.42
1:B:131:VAL:O	1:B:135:LEU:HD12	2.20	0.42
1:B:146:ARG:HA	1:B:146:ARG:HD2	1.60	0.42
1:B:226:ALA:O	1:B:230:LYS:N	2.47	0.42
1:B:268:GLU:HG3	1:B:272:GLN:HB2	2.02	0.42
1:B:295:VAL:O	1:B:295:VAL:CG1	2.68	0.42
1:A:255:GLU:HA	1:A:258:ARG:HB2	2.02	0.41
1:A:342:LYS:HG3	1:A:347:VAL:HG21	2.02	0.41
1:A:16:THR:HB	1:A:243:ALA:CB	2.27	0.41
1:A:112:ASP:HB2	1:A:113:PRO:HD2	2.01	0.41
1:B:53:LEU:HA	1:B:53:LEU:HD23	1.82	0.41
1:B:155:ARG:C	1:B:157:ASP:N	2.73	0.41
1:A:77:ALA:O	1:A:80:VAL:N	2.53	0.41
1:A:253:SER:O	1:A:254:GLY:C	2.58	0.41
1:A:325:GLU:OE1	1:A:342:LYS:NZ	2.50	0.41
1:A:340:ARG:HH11	1:A:340:ARG:HD2	1.69	0.41
1:A:89:LEU:HD23	1:A:89:LEU:HA	1.87	0.41
1:A:110:PHE:O	1:A:111:PRO:C	2.58	0.41
1:A:139:ASP:O	1:A:142:THR:HB	2.21	0.41
1:B:151:ARG:HA	1:B:164:LEU:CD1	2.51	0.41
1:B:209:ASN:OD1	1:B:209:ASN:C	2.57	0.41
1:B:271:LEU:HD12	1:B:271:LEU:H	1.84	0.41
1:B:186:SER:C	1:B:188:ALA:N	2.74	0.41
1:B:71:VAL:HB	1:B:73:PHE:HE1	1.84	0.41
1:B:307:PRO:O	1:B:310:ALA:N	2.51	0.41
1:B:268:GLU:HG3	1:B:272:GLN:CB	2.51	0.41
1:A:20:ALA:O	1:A:23:ARG:N	2.53	0.41
1:A:332:LEU:HD12	1:A:332:LEU:HA	1.89	0.41
1:A:351:GLY:O	1:A:352:LYS:C	2.59	0.41
1:B:23:ARG:HH21	1:B:251:GLU:CG	2.33	0.41
1:B:63:VAL:HA	1:B:64:PRO:HD3	1.92	0.41
1:A:207:VAL:HG21	1:A:274:LEU:CD1	2.51	0.40
1:B:280:ARG:CG	1:B:280:ARG:NH1	2.83	0.40
1:B:21:LEU:C	1:B:21:LEU:HD12	2.42	0.40
1:B:252:LEU:O	1:B:253:SER:C	2.59	0.40
1:B:328:PRO:HB2	1:B:330:ASP:OD1	2.21	0.40
1:A:48:GLU:OE1	1:B:55:ARG:NH2	2.54	0.40
1:A:76:ILE:HD13	1:A:76:ILE:HA	1.81	0.40
1:A:163:LEU:HD11	1:A:191:ARG:NH2	2.36	0.40
1:A:282:LEU:HB2	1:A:284:LEU:HG	2.04	0.40

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:B:341:ALA:C	1:B:343:GLU:N	2.74	0.40
1:A:23:ARG:C	1:A:26:ALA:HB3	2.41	0.40
1:A:81:LYS:O	1:A:82:GLY:C	2.60	0.40
1:B:206:TYR:O	1:B:208:ALA:N	2.52	0.40
1:B:270:GLY:HA2	1:B:273:ARG:HD3	2.03	0.40
1:A:136:LEU:HD23	1:A:136:LEU:HA	1.72	0.40
1:A:146:ARG:HA	1:A:146:ARG:HD2	1.68	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Pe	erce	entil	es
1	А	348/368~(95%)	286 (82%)	48 (14%)	14 (4%)		3	14	
1	В	329/368~(89%)	264 (80%)	46 (14%)	19 (6%)		1	7	
All	All	677/736~(92%)	550 (81%)	94 (14%)	33~(5%)		2	10	

All (33) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	81	LYS
1	А	82	GLY
1	А	189	VAL
1	А	352	LYS
1	В	10	PRO
1	В	79	LEU
1	В	100	VAL
1	В	189	VAL
1	А	56	THR
1	А	188	ALA
1	В	14	LYS

Mol	Chain	Res	Type
1	В	253	SER
1	В	315	SER
1	В	356	VAL
1	В	151	ARG
1	В	255	GLU
1	В	16	THR
1	В	207	VAL
1	В	258	ARG
1	А	38	LYS
1	А	83	ALA
1	А	263	ALA
1	В	221	ASN
1	В	248	GLU
1	В	262	ALA
1	В	312	GLU
1	В	156	ALA
1	А	111	PRO
1	А	86	GLY
1	А	130	VAL
1	А	241	VAL
1	А	222	PRO
1	В	130	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	277/289~(96%)	246~(89%)	31 (11%)	6 22
1	В	266/289~(92%)	230~(86%)	36 (14%)	4 15
All	All	543/578~(94%)	476 (88%)	67 (12%)	4 18

All (67) residues with a non-rotameric sidechain are listed below:

10101	Ullain	Res	Type
1	А	9	LEU

1 A 12 VAL 1 A 42 VAL 1 A 44 PRO 1 A 45 LEU 1 A 46 GLU 1 A 46 GLU 1 A 46 GLU 1 A 97 ILE 1 A 97 ILE 1 A 108 ARG 1 A 108 ARG 1 A 112 ASP 1 A 113 PRO 1 A 151 ARG 1 A 152 LYS 1 A 212 GLU 1 A 214 ASP 1 A 217 ASP 1 A 217 ASP 1 A 268 GLU 1 A 268 GLU 1 A 268 THR 1 A <th>Mol</th> <th>Chain</th> <th>Res</th> <th>Type</th>	Mol	Chain	Res	Type
1 A 42 VAL 1 A 44 PRO 1 A 45 LEU 1 A 46 GLU 1 A 84 HIS 1 A 97 ILE 1 A 97 ILE 1 A 108 ARG 1 A 108 ARG 1 A 112 ASP 1 A 113 PRO 1 A 146 ARG 1 A 151 ARG 1 A 152 LYS 1 A 212 GLU 1 A 214 ASP 1 A 230 LYS 1 A 244 ARG 1 A 268 GLU 1 A 268 GLU 1 A 286 THR 1 A 286 THR 1 A<	1	А	12	VAL
1 A 44 PRO 1 A 45 LEU 1 A 46 GLU 1 A 84 HIS 1 A 97 ILE 1 A 97 ILE 1 A 108 ARG 1 A 112 ASP 1 A 113 PRO 1 A 113 PRO 1 A 151 ARG 1 A 152 LYS 1 A 212 GLU 1 A 214 ASP 1 A 217 ASP 1 A 230 LYS 1 A 268 GLU 1 A 268 GLU 1 A 274 LEU 1 A 286 THR 1 A 286 THR 1 A 288 PHE 1 A	1	А	42	VAL
1 A 45 LEU 1 A 46 GLU 1 A 84 HIS 1 A 97 ILE 1 A 108 ARG 1 A 112 ASP 1 A 112 ASP 1 A 113 PRO 1 A 146 ARG 1 A 151 ARG 1 A 152 LYS 1 A 212 GLU 1 A 214 ASP 1 A 217 ASP 1 A 217 ASP 1 A 230 LYS 1 A 244 ARG 1 A 268 GLU 1 A 273 ARG 1 A 286 THR 1 A 288 PHE 1 A 288 PHE 1 <td< td=""><td>1</td><td>А</td><td>44</td><td>PRO</td></td<>	1	А	44	PRO
1 A 46 GLU 1 A 84 HIS 1 A 97 ILE 1 A 108 ARG 1 A 108 ARG 1 A 112 ASP 1 A 113 PRO 1 A 146 ARG 1 A 151 ARG 1 A 152 LYS 1 A 212 GLU 1 A 214 ASP 1 A 217 ASP 1 A 217 ASP 1 A 230 LYS 1 A 268 GLU 1 A 268 GLU 1 A 274 LEU 1 A 286 THR 1 A 288 PHE 1 A 299 THR 1 A 302 ARG 1 <t< td=""><td>1</td><td>А</td><td>45</td><td>LEU</td></t<>	1	А	45	LEU
1 A 84 HIS 1 A 97 ILE 1 A 108 ARG 1 A 112 ASP 1 A 112 ASP 1 A 113 PRO 1 A 113 PRO 1 A 146 ARG 1 A 151 ARG 1 A 152 LYS 1 A 212 GLU 1 A 214 ASP 1 A 217 ASP 1 A 230 LYS 1 A 230 LYS 1 A 268 GLU 1 A 268 GLU 1 A 273 ARG 1 A 286 THR 1 A 286 THR 1 A 288 PHE 1 A 299 THR 1 <	1	А	46	GLU
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	84	HIS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	97	ILE
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	108	ARG
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	А	112	ASP
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	113	PRO
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	146	ARG
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	151	ARG
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	152	LYS
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	А	212	GLU
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	214	ASP
1 A 230 LYS 1 A 244 ARG 1 A 268 GLU 1 A 273 ARG 1 A 274 LEU 1 A 286 THR 1 A 287 PHE 1 A 288 PHE 1 A 299 THR 1 A 302 ARG 1 A 319 ARG	1	А	217	ASP
1 A 244 ARG 1 A 268 GLU 1 A 273 ARG 1 A 274 LEU 1 A 286 THR 1 A 287 PHE 1 A 288 PHE 1 A 299 THR 1 A 302 ARG 1 A 319 ARG	1	А	230	LYS
1 A 268 GLU 1 A 273 ARG 1 A 274 LEU 1 A 286 THR 1 A 287 PHE 1 A 288 PHE 1 A 299 THR 1 A 302 ARG 1 A 319 ARG	1	А	244	ARG
1 A 273 ARG 1 A 274 LEU 1 A 286 THR 1 A 287 PHE 1 A 288 PHE 1 A 299 THR 1 A 302 ARG 1 A 319 ARG	1	А	268	GLU
1 A 274 LEU 1 A 286 THR 1 A 287 PHE 1 A 288 PHE 1 A 299 THR 1 A 302 ARG 1 A 319 ARG	1	А	273	ARG
1 A 286 THR 1 A 287 PHE 1 A 288 PHE 1 A 299 THR 1 A 302 ARG 1 A 319 ARG	1	А	274	LEU
1 A 287 PHE 1 A 288 PHE 1 A 299 THR 1 A 302 ARG 1 A 319 ARG	1	А	286	THR
1 A 288 PHE 1 A 299 THR 1 A 302 ARG 1 A 319 ARG	1	А	287	PHE
1 A 299 THR 1 A 302 ARG 1 A 319 ARG	1	А	288	PHE
1 A 302 ARG 1 A 319 ARG	1	А	299	THR
1 A 319 ARG	1	А	302	ARG
	1	А	319	ARG
1 A 340 ARG	1	А	340	ARG
1 A 349 LEU	1	А	349	LEU
1 A 367 ASN	1	A	367	ASN
1 B 10 PRO	1	В	10	PRO
1 B 12 VAL	1	В	12	VAL
1 B 19 ASN	1	В	19	ASN
1 B 21 LEU	1	В	21	LEU
$1 \qquad B \qquad 25 \qquad ASN$	1	В	25	ASN
1 B 63 VAL	1	В	63	VAL
1 B 80 VAL	1	В	80	VAL
1 B 92 GLN	1	В	92	GLN
1 B 110 PHE	1	В	110	PHE
1 B 125 LEU	1	В	125	LEU
1 B 127 ASP	1	В	127	ASP
1 B 146 ARG	1	В	146	ARG

Mol	Chain	Res	Type
1	В	150	LEU
1	В	155	ARG
1	В	158	ARG
1	В	163	LEU
1	В	182	THR
1	В	217	ASP
1	В	242	SER
1	В	244	ARG
1	В	249	LEU
1	В	251	GLU
1	В	258	ARG
1	В	259	GLU
1	В	264	TYR
1	В	273	ARG
1	В	279	TYR
1	В	287	PHE
1	В	293	LYS
1	В	294	GLU
1	В	295	VAL
1	В	316	ASP
1	В	317	MET
1	В	340	ARG
1	В	352	LYS
1	В	364	VAL

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (6) such side chains are listed below:

Mol	Chain	Res	Type
1	А	92	GLN
1	А	357	GLN
1	А	367	ASN
1	В	11	ASN
1	В	19	ASN
1	В	54	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	< RSRZ >	#RSRZ>2	$\mathbf{OWAB}(\mathbf{\AA}^2)$	Q<0.9
1	А	354/368~(96%)	-0.59	0 100 100	14, 49, 90, 119	1 (0%)
1	В	337/368~(91%)	-0.31	5 (1%) 73 57	16, 65, 108, 145	1 (0%)
All	All	691/736~(93%)	-0.45	5 (0%) 87 76	14, 56, 100, 145	2~(0%)

All (5) RSRZ outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	RSRZ
1	В	159	GLU	2.9
1	В	158	ARG	2.7
1	В	156	ALA	2.4
1	В	157	ASP	2.2
1	В	110	PHE	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

