

## Full wwPDB X-ray Structure Validation Report (i)

#### Oct 8, 2023 – 12:24 AM EDT

| PDB ID       | : | 6E07                                                             |
|--------------|---|------------------------------------------------------------------|
| Title        | : | Crystal structure of Canton G6PD in complex with structural NADP |
| Authors      | : | Rahighi, S.; Mochly-Rosen, D.; Wakatsuki, S.                     |
| Deposited on | : | 2018-07-06                                                       |
| Resolution   | : | 2.60 Å(reported)                                                 |
|              |   |                                                                  |

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| MolProbity                     | : | 4.02b-467                                                          |
|--------------------------------|---|--------------------------------------------------------------------|
| Mogul                          | : | 1.8.5 (274361), CSD as541be (2020)                                 |
| Xtriage (Phenix)               | : | 1.13                                                               |
| $\mathrm{EDS}$                 | : | 2.35.1                                                             |
| buster-report                  | : | 1.1.7(2018)                                                        |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| Refmac                         | : | 5.8.0158                                                           |
| CCP4                           | : | 7.0.044 (Gargrove)                                                 |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.35.1                                                             |

## 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $X\text{-}RAY \, DIFFRACTION$ 

The reported resolution of this entry is 2.60 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Motric                | Whole archive       | Similar resolution                                          |
|-----------------------|---------------------|-------------------------------------------------------------|
| IVIETIC               | $(\# { m Entries})$ | $(\# { m Entries},  { m resolution}  { m range}({ m \AA}))$ |
| $R_{free}$            | 130704              | 3163 (2.60-2.60)                                            |
| Clashscore            | 141614              | 3518 (2.60-2.60)                                            |
| Ramachandran outliers | 138981              | 3455 (2.60-2.60)                                            |
| Sidechain outliers    | 138945              | 3455 (2.60-2.60)                                            |
| RSRZ outliers         | 127900              | 3104 (2.60-2.60)                                            |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

| Mol | Chain | Length | Quality of chain |     |      |
|-----|-------|--------|------------------|-----|------|
| 1   | В     | 515    | %<br>•<br>83%    | 10% | • 6% |
| 1   | С     | 515    | 85%              | 9%  | 5%   |
| 1   | F     | 515    | 83%              | 10% | • 6% |
| 1   | L     | 515    | 79%              | 12% | • 6% |
| 1   | Ν     | 515    | 80%              | 13% | • 6% |



| Mol | Chain | Length | Quality of chain |     |       |
|-----|-------|--------|------------------|-----|-------|
| 1   | Q     | 515    | %<br>            | 10% | •• 5% |
| 1   | Т     | 515    | %<br>80%         | 13% | • 6%  |
| 1   | W     | 515    | %<br>80%         | 13% | • 6%  |

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

| Mol | Type | Chain | Res | Chirality | Geometry | Clashes | Electron density |
|-----|------|-------|-----|-----------|----------|---------|------------------|
| 4   | GOL  | С     | 605 | -         | -        | -       | Х                |
| 4   | GOL  | F     | 607 | -         | -        | -       | Х                |



## 2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 32689 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

| Mol | Chain | Residues |       | At   | oms |     |              | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|------|-----|-----|--------------|---------|---------|-------|
| 1   | т     | 486      | Total | С    | Ν   | 0   | $\mathbf{S}$ | 0       | 0       | 0     |
| 1   |       | 400      | 3943  | 2518 | 683 | 722 | 20           | 0       | 0       | 0     |
| 1   | С     | 487      | Total | С    | Ν   | 0   | S            | 0       | 0       | 0     |
| 1   | U     | 407      | 3952  | 2524 | 685 | 723 | 20           | 0       | 0       | 0     |
| 1   | F     | 486      | Total | С    | Ν   | 0   | S            | 0       | 0       | 0     |
| 1   | Ľ     | 400      | 3943  | 2518 | 683 | 722 | 20           | 0       | 0       | 0     |
| 1   | N     | 486      | Total | С    | Ν   | 0   | S            | 0       | 0       | 0     |
| 1   | IN    | 400      | 3943  | 2518 | 683 | 722 | 20           | 0       | 0       | 0     |
| 1   | 0     | 487      | Total | С    | Ν   | 0   | S            | 0       | 0       | 0     |
| 1   | Q     | 407      | 3953  | 2524 | 686 | 723 | 20           | 0       | 0       | 0     |
| 1   | Т     | 486      | Total | С    | Ν   | Ο   | S            | 0       | 0       | 0     |
| 1   | 1     | 400      | 3943  | 2518 | 683 | 722 | 20           | 0       | 0       | 0     |
| 1   | W     | 486      | Total | С    | Ν   | 0   | $\mathbf{S}$ | 0       | 0       | 0     |
| 1   | vv    | 400      | 3943  | 2518 | 683 | 722 | 20           | 0       | 0       | 0     |
| 1   | р     | 485      | Total | С    | Ν   | 0   | S            | 0       | 0       | 0     |
|     | D     | 400      | 3934  | 2513 | 681 | 720 | 20           | 0       | 0       | 0     |

• Molecule 1 is a protein called Glucose-6-phosphate 1-dehydrogenase.

There are 8 discrepancies between the modelled and reference sequences:

| Chain | Residue | Modelled | Actual | Comment             | Reference  |
|-------|---------|----------|--------|---------------------|------------|
| L     | 459     | LEU      | ARG    | engineered mutation | UNP P11413 |
| С     | 459     | LEU      | ARG    | engineered mutation | UNP P11413 |
| F     | 459     | LEU      | ARG    | engineered mutation | UNP P11413 |
| N     | 459     | LEU      | ARG    | engineered mutation | UNP P11413 |
| Q     | 459     | LEU      | ARG    | engineered mutation | UNP P11413 |
| Т     | 459     | LEU      | ARG    | engineered mutation | UNP P11413 |
| W     | 459     | LEU      | ARG    | engineered mutation | UNP P11413 |
| В     | 459     | LEU      | ARG    | engineered mutation | UNP P11413 |

• Molecule 2 is NADP NICOTINAMIDE-ADENINE-DINUCLEOTIDE PHOSPHATE (three-letter code: NAP) (formula: C<sub>21</sub>H<sub>28</sub>N<sub>7</sub>O<sub>17</sub>P<sub>3</sub>).





| Mol | Chain | Residues |       | Ate | oms |    |   | ZeroOcc | AltConf |
|-----|-------|----------|-------|-----|-----|----|---|---------|---------|
| 0   | т     | 1        | Total | С   | Ν   | 0  | Р | 0       | 0       |
|     | L     | 1        | 48    | 21  | 7   | 17 | 3 | 0       | 0       |
| 0   | С     | 1        | Total | С   | Ν   | 0  | Р | 0       | 0       |
|     | C     | 1        | 48    | 21  | 7   | 17 | 3 | 0       | 0       |
| 0   | Б     | 1        | Total | С   | Ν   | 0  | Р | 0       | 0       |
|     | Г     | 1        | 48    | 21  | 7   | 17 | 3 | 0       | 0       |
| 0   | N     | 1        | Total | С   | Ν   | 0  | Р | 0       | 0       |
|     | IN    | 1        | 48    | 21  | 7   | 17 | 3 |         |         |
| 0   | 0     | 1        | Total | С   | Ν   | Ο  | Р | 0       | 0       |
|     | Q     |          | 48    | 21  | 7   | 17 | 3 | 0       | U       |
| 0   | Т     | 1        | Total | С   | Ν   | 0  | Р | 0       | 0       |
|     | 1     | 1        | 48    | 21  | 7   | 17 | 3 | 0       | 0       |
| 0   | W     | 1        | Total | С   | Ν   | 0  | Р | 0       | 0       |
|     | vv    |          | 48    | 21  | 7   | 17 | 3 | 0       | U       |
| 0   | 9 D   | 1        | Total | С   | Ν   | Ο  | Р | 0       | 0       |
|     | D     |          | 48    | 21  | 7   | 17 | 3 | 0       | U       |

• Molecule 3 is PHOSPHATE ION (three-letter code: PO4) (formula:  $O_4P$ ).





| Mol | Chain | Residues | Atoms              | ZeroOcc | AltConf  |
|-----|-------|----------|--------------------|---------|----------|
| 3   | L     | 1        | Total O P          | 0       | 0        |
|     |       |          | D 4 1<br>Total O P |         |          |
| 3   | С     | 1        | 5 4 1              | 0       | 0        |
| 3   | F     | 1        | Total O P          | 0       | 0        |
|     | 1     | 1        | 5 4 1              | 0       | 0        |
| 3   | Ν     | 1        | Total O P          | 0       | 0        |
|     |       |          | 5 4 1              |         |          |
| 3   | Q     | 1        | Total O P          | 0       | 0        |
|     | ~~    | -        | 5 4 1              | Ŭ       | <u> </u> |
| 3   | Т     | 1        | Total O P          | 0       | 0        |
| 0   | 1     | Ŧ        | 5 4 1              | 0       | Ū        |
| 3   | W     | 1        | Total O P          | 0       | 0        |
| 5   | vv    | 1        | 5 4 1              |         | 0        |
| 2   | р     | 1        | Total O P          | 0       | 0        |
| 3   | D     |          | 5 4 1              |         | 0        |

• Molecule 4 is GLYCEROL (three-letter code: GOL) (formula:  $C_3H_8O_3$ ).





| Mol | Chain | Residues | Atoms                                                                            | ZeroOcc | AltConf |
|-----|-------|----------|----------------------------------------------------------------------------------|---------|---------|
| 4   | L     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$     | 0       | 0       |
| 4   | L     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$     | 0       | 0       |
| 4   | L     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$     | 0       | 0       |
| 4   | L     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$     | 0       | 0       |
| 4   | L     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$     | 0       | 0       |
| 4   | L     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |
| 4   | L     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |
| 4   | С     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |
| 4   | С     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |
| 4   | С     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$     | 0       | 0       |
| 4   | С     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$     | 0       | 0       |
| 4   | F     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |
| 4   | F     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |
| 4   | F     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |



Continued from previous page...

| Mol | Chain | Residues | Atoms                                                                                           | ZeroOcc | AltConf |
|-----|-------|----------|-------------------------------------------------------------------------------------------------|---------|---------|
| 4   | F     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$                    | 0       | 0       |
| 4   | F     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$                | 0       | 0       |
| 4   | Ν     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$                    | 0       | 0       |
| 4   | Ν     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$                    | 0       | 0       |
| 4   | Ν     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$                    | 0       | 0       |
| 4   | Ν     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$                    | 0       | 0       |
| 4   | Ν     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$                    | 0       | 0       |
| 4   | Ν     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$                    | 0       | 0       |
| 4   | Q     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$                    | 0       | 0       |
| 4   | Q     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$                    | 0       | 0       |
| 4   | Т     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$                    | 0       | 0       |
| 4   | Т     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$                    | 0       | 0       |
| 4   | W     | 1        | $\begin{array}{ccc} \overline{\text{Total}} & \mathrm{C} & \mathrm{O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |
| 4   | W     | 1        | $\begin{array}{c cc} Total & C & O \\ 6 & 3 & 3 \end{array}$                                    | 0       | 0       |
| 4   | В     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$                    | 0       | 0       |

• Molecule 5 is water.

| Mol | Chain | Residues | Atoms                                     | ZeroOcc | AltConf |
|-----|-------|----------|-------------------------------------------|---------|---------|
| 5   | L     | 103      | Total O<br>103 103                        | 0       | 0       |
| 5   | С     | 79       | Total O<br>79 79                          | 0       | 0       |
| 5   | F     | 101      | Total         O           101         101 | 0       | 0       |
| 5   | N     | 38       | Total         O           38         38   | 0       | 0       |



Continued from previous page...

| Mol | Chain | Residues | Atoms                                                              | ZeroOcc | AltConf |
|-----|-------|----------|--------------------------------------------------------------------|---------|---------|
| 5   | Q     | 66       | Total         O           66         66                            | 0       | 0       |
| 5   | Т     | 63       | Total         O           63         63                            | 0       | 0       |
| 5   | W     | 52       | $\begin{array}{cc} \text{Total} & \text{O} \\ 52 & 52 \end{array}$ | 0       | 0       |
| 5   | В     | 35       | Total O<br>35 35                                                   | 0       | 0       |



## 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Chain L: 79% 12% 6% • Molecule 1: Glucose-6-phosphate 1-dehydrogenase Chain C: 85% 9% 5% • Molecule 1: Glucose-6-phosphate 1-dehydrogenase Chain F: 83% 10% • 6%
- Molecule 1: Glucose-6-phosphate 1-dehydrogenase



MET AALA AALA AALA AALA AALA AALA GGLN VAL LEU VAL LEU VAL LEU VAL LEU CYSS GCLY FHE GGLU PHE CGLY PHE CGLY PHE CGLY PHE CGLN





• Molecule 1: Glucose-6-phosphate 1-dehydrogenase







# PROTEIN DATA BANK

## 4 Data and refinement statistics (i)

| Property                                           | Value                                           | Source    |
|----------------------------------------------------|-------------------------------------------------|-----------|
| Space group                                        | P 21 21 21                                      | Depositor |
| Cell constants                                     | 127.12Å 206.25Å 211.84Å                         | Deperitor |
| a, b, c, $\alpha$ , $\beta$ , $\gamma$             | $90.00^{\circ}$ $90.00^{\circ}$ $90.00^{\circ}$ | Depositor |
| $\mathbf{P}_{\text{assolution}}(\hat{\mathbf{A}})$ | 50.01 - 2.60                                    | Depositor |
| Resolution (A)                                     | 49.26 - 2.60                                    | EDS       |
| % Data completeness                                | 100.0 (50.01-2.60)                              | Depositor |
| (in resolution range)                              | $100.0 \ (49.26-2.60)$                          | EDS       |
| R <sub>merge</sub>                                 | 0.15                                            | Depositor |
| $R_{sym}$                                          | (Not available)                                 | Depositor |
| $< I/\sigma(I) > 1$                                | $1.58 (at 2.61 \text{\AA})$                     | Xtriage   |
| Refinement program                                 | REFMAC 5.8.0216                                 | Depositor |
| P. P.                                              | 0.187 , $0.211$                                 | Depositor |
| $\Pi, \Pi_{free}$                                  | 0.194 , $0.216$                                 | DCC       |
| $R_{free}$ test set                                | 8556 reflections $(5.00%)$                      | wwPDB-VP  |
| Wilson B-factor $(Å^2)$                            | 50.6                                            | Xtriage   |
| Anisotropy                                         | 0.154                                           | Xtriage   |
| Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$        | 0.31, 39.4                                      | EDS       |
| L-test for $twinning^2$                            | $< L >=0.50, < L^2>=0.34$                       | Xtriage   |
| Estimated twinning fraction                        | 0.003 for -h,l,k                                | Xtriage   |
| $F_o, F_c$ correlation                             | 0.95                                            | EDS       |
| Total number of atoms                              | 32689                                           | wwPDB-VP  |
| Average B, all atoms $(Å^2)$                       | 59.0                                            | wwPDB-VP  |

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.03% of the height of the origin peak. No significant pseudotranslation is detected.

<sup>&</sup>lt;sup>2</sup>Theoretical values of  $\langle |L| \rangle$ ,  $\langle L^2 \rangle$  for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.



<sup>&</sup>lt;sup>1</sup>Intensities estimated from amplitudes.

## 5 Model quality (i)

### 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: PO4, GOL, NAP

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol Chain |     | Bo   | ond lengths     | Bond angles |                 |  |
|-----------|-----|------|-----------------|-------------|-----------------|--|
|           |     | RMSZ | # Z  > 5        | RMSZ        | # Z  > 5        |  |
| 1         | В   | 0.76 | 4/4030~(0.1%)   | 0.86        | 7/5453~(0.1%)   |  |
| 1         | С   | 0.72 | 0/4048          | 0.86        | 7/5476~(0.1%)   |  |
| 1         | F   | 0.75 | 1/4039~(0.0%)   | 0.87        | 16/5465~(0.3%)  |  |
| 1         | L   | 0.79 | 4/4039~(0.1%)   | 0.91        | 12/5465~(0.2%)  |  |
| 1         | Ν   | 0.71 | 1/4039~(0.0%)   | 0.85        | 7/5465~(0.1%)   |  |
| 1         | Q   | 0.78 | 5/4050~(0.1%)   | 0.91        | 14/5480~(0.3%)  |  |
| 1         | Т   | 0.70 | 2/4039~(0.0%)   | 0.82        | 9/5465~(0.2%)   |  |
| 1         | W   | 0.70 | 1/4039~(0.0%)   | 0.85        | 8/5465~(0.1%)   |  |
| All       | All | 0.74 | 18/32323~(0.1%) | 0.87        | 80/43734~(0.2%) |  |

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

| Mol | Chain | #Chirality outliers | #Planarity outliers |
|-----|-------|---------------------|---------------------|
| 1   | В     | 0                   | 1                   |
| 1   | L     | 0                   | 1                   |
| 1   | Q     | 0                   | 2                   |
| 1   | W     | 0                   | 1                   |
| All | All   | 0                   | 5                   |

All (18) bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms  | Z     | Observed(Å) | $\mathrm{Ideal}(\mathrm{\AA})$ |
|-----|-------|-----|------|--------|-------|-------------|--------------------------------|
| 1   | В     | 455 | SER  | CB-OG  | -8.81 | 1.30        | 1.42                           |
| 1   | Q     | 296 | SER  | CB-OG  | 7.44  | 1.51        | 1.42                           |
| 1   | L     | 455 | SER  | CB-OG  | -7.22 | 1.32        | 1.42                           |
| 1   | Т     | 455 | SER  | CB-OG  | -6.97 | 1.33        | 1.42                           |
| 1   | В     | 417 | GLU  | CD-OE1 | 6.53  | 1.32        | 1.25                           |
| 1   | Q     | 417 | GLU  | CD-OE2 | 6.14  | 1.32        | 1.25                           |



| Mol | Chain | $\mathbf{Res}$ | Type | Atoms  | $\mathbf{Z}$ | Observed(A) | Ideal(Å) |
|-----|-------|----------------|------|--------|--------------|-------------|----------|
| 1   | Q     | 345            | GLU  | CD-OE2 | 6.03         | 1.32        | 1.25     |
| 1   | Q     | 417            | GLU  | CD-OE1 | 5.93         | 1.32        | 1.25     |
| 1   | Q     | 29             | SER  | CB-OG  | -5.83        | 1.34        | 1.42     |
| 1   | F     | 417            | GLU  | CD-OE1 | 5.63         | 1.31        | 1.25     |
| 1   | L     | 473            | GLU  | CD-OE1 | 5.35         | 1.31        | 1.25     |
| 1   | L     | 252            | GLU  | CD-OE1 | 5.33         | 1.31        | 1.25     |
| 1   | Ν     | 417            | GLU  | CD-OE1 | 5.19         | 1.31        | 1.25     |
| 1   | Т     | 368            | GLU  | CD-OE1 | 5.17         | 1.31        | 1.25     |
| 1   | В     | 417            | GLU  | CD-OE2 | 5.12         | 1.31        | 1.25     |
| 1   | W     | 294            | CYS  | CB-SG  | -5.11        | 1.73        | 1.81     |
| 1   | L     | 368            | GLU  | CD-OE1 | 5.04         | 1.31        | 1.25     |
| 1   | В     | 252            | GLU  | CD-OE2 | 5.04         | 1.31        | 1.25     |

All (80) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms     | Z                | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-----------|------------------|------------------|---------------|
| 1   | С     | 421 | ASP  | CB-CG-OD1 | -10.98           | 108.42           | 118.30        |
| 1   | W     | 219 | ARG  | NE-CZ-NH2 | -10.92           | 114.84           | 120.30        |
| 1   | Q     | 42  | ASP  | CB-CG-OD1 | G-OD1 9.74 127.0 |                  | 118.30        |
| 1   | С     | 42  | ASP  | CB-CG-OD1 | 9.71             | 127.03           | 118.30        |
| 1   | N     | 42  | ASP  | CB-CG-OD1 | 9.48             | 126.83           | 118.30        |
| 1   | Т     | 219 | ARG  | NE-CZ-NH2 | -8.08            | 116.26           | 120.30        |
| 1   | L     | 157 | SER  | N-CA-C    | 7.87             | 132.24           | 111.00        |
| 1   | L     | 42  | ASP  | CB-CG-OD1 | 7.81             | 125.33           | 118.30        |
| 1   | Q     | 157 | SER  | N-CA-C    | 7.72             | 131.85           | 111.00        |
| 1   | Q     | 112 | TYR  | N-CA-C    | -7.51            | 90.72            | 111.00        |
| 1   | L     | 176 | ASP  | CB-CG-OD1 | 7.44             | 125.00           | 118.30        |
| 1   | F     | 219 | ARG  | NE-CZ-NH1 | 7.44             | 124.02           | 120.30        |
| 1   | N     | 42  | ASP  | CB-CG-OD2 | -7.44            | 111.61           | 118.30        |
| 1   | Q     | 257 | ARG  | CG-CD-NE  | -7.42            | 96.23            | 111.80        |
| 1   | W     | 130 | LEU  | CB-CG-CD1 | 7.39             | 123.57           | 111.00        |
| 1   | В     | 212 | MET  | CG-SD-CE  | -7.05            | 88.92            | 100.20        |
| 1   | Q     | 42  | ASP  | CB-CG-OD2 | -7.01            | 111.99           | 118.30        |
| 1   | В     | 219 | ARG  | NE-CZ-NH2 | -6.98            | 116.81           | 120.30        |
| 1   | Q     | 125 | MET  | CG-SD-CE  | 6.97             | 111.35           | 100.20        |
| 1   | F     | 257 | ARG  | NE-CZ-NH2 | -6.94            | 116.83           | 120.30        |
| 1   | Q     | 96  | LEU  | CB-CG-CD1 | 6.89             | 122.72           | 111.00        |
| 1   | В     | 219 | ARG  | CG-CD-NE  | -6.85            | 97.42            | 111.80        |
| 1   | W     | 219 | ARG  | CG-CD-NE  | -6.79            | 97.54            | 111.80        |
| 1   | F     | 212 | MET  | CG-SD-CE  | -6.73            | 89.43            | 100.20        |
| 1   | N     | 219 | ARG  | CG-CD-NE  | -6.73            | 97.67            | 111.80        |
| 1   | F     | 177 | LEU  | CB-CG-CD2 | 6.70             | 122.40           | 111.00        |



| Mol | Chain | Res | Type | Atoms      | $Z = Observed(^{o})$ |        | $Ideal(^{o})$ |
|-----|-------|-----|------|------------|----------------------|--------|---------------|
| 1   | L     | 219 | ARG  | NE-CZ-NH2  | -6.68                | 116.96 | 120.30        |
| 1   | W     | 125 | MET  | CG-SD-CE   | 6.59                 | 110.75 | 100.20        |
| 1   | L     | 439 | ARG  | CG-CD-NE   | 6.46                 | 125.37 | 111.80        |
| 1   | F     | 219 | ARG  | NE-CZ-NH2  | -6.42                | 117.09 | 120.30        |
| 1   | Q     | 137 | LEU  | CA-CB-CG   | 6.35                 | 129.91 | 115.30        |
| 1   | В     | 215 | ARG  | NE-CZ-NH2  | -6.31                | 117.14 | 120.30        |
| 1   | Т     | 219 | ARG  | CG-CD-NE   | -6.23                | 98.71  | 111.80        |
| 1   | Q     | 219 | ARG  | NE-CZ-NH1  | 6.10                 | 123.35 | 120.30        |
| 1   | L     | 215 | ARG  | NE-CZ-NH2  | -6.07                | 117.26 | 120.30        |
| 1   | F     | 345 | GLU  | OE1-CD-OE2 | -6.07                | 116.02 | 123.30        |
| 1   | F     | 474 | LEU  | CB-CG-CD2  | 5.99                 | 121.18 | 111.00        |
| 1   | С     | 267 | MET  | CG-SD-CE   | 5.97                 | 109.75 | 100.20        |
| 1   | W     | 130 | LEU  | CB-CG-CD2  | -5.75                | 101.23 | 111.00        |
| 1   | В     | 175 | ARG  | CB-CA-C    | 5.71                 | 121.82 | 110.40        |
| 1   | F     | 96  | LEU  | CB-CG-CD1  | 5.66                 | 120.62 | 111.00        |
| 1   | N     | 257 | ARG  | NE-CZ-NH1  | 5.65                 | 123.13 | 120.30        |
| 1   | F     | 215 | ARG  | NE-CZ-NH2  | -5.62                | 117.49 | 120.30        |
| 1   | С     | 459 | LEU  | CB-CG-CD1  | -5.60                | 101.47 | 111.00        |
| 1   | С     | 330 | ARG  | NE-CZ-NH1  | 5.58                 | 123.09 | 120.30        |
| 1   | Q     | 156 | GLU  | N-CA-C     | -5.58                | 95.94  | 111.00        |
| 1   | L     | 450 | MET  | CG-SD-CE   | -5.56                | 91.31  | 100.20        |
| 1   | Т     | 282 | ASP  | CB-CG-OD2  | -5.56                | 113.30 | 118.30        |
| 1   | Q     | 219 | ARG  | CG-CD-NE   | -5.52                | 100.20 | 111.80        |
| 1   | F     | 219 | ARG  | CG-CD-NE   | -5.51                | 100.22 | 111.80        |
| 1   | F     | 474 | LEU  | CA-CB-CG   | 5.50                 | 127.95 | 115.30        |
| 1   | N     | 74  | ARG  | CG-CD-NE   | 5.50                 | 123.35 | 111.80        |
| 1   | F     | 387 | ARG  | NE-CZ-NH1  | 5.49                 | 123.04 | 120.30        |
| 1   | L     | 176 | ASP  | CB-CG-OD2  | -5.46                | 113.39 | 118.30        |
| 1   | Т     | 267 | MET  | CG-SD-CE   | 5.37                 | 108.78 | 100.20        |
| 1   | F     | 257 | ARG  | NE-CZ-NH1  | 5.33                 | 122.96 | 120.30        |
| 1   | Q     | 113 | ASP  | N-CA-CB    | 5.29                 | 120.11 | 110.60        |
| 1   | W     | 42  | ASP  | N-CA-CB    | 5.28                 | 120.11 | 110.60        |
| 1   | F     | 93  | GLU  | CA-CB-CG   | 5.27                 | 125.00 | 113.40        |
| 1   | Т     | 330 | ARG  | NE-CZ-NH1  | 5.26                 | 122.93 | 120.30        |
| 1   | С     | 215 | ARG  | NE-CZ-NH2  | -5.23                | 117.69 | 120.30        |
| 1   | W     | 96  | LEU  | CA-CB-CG   | 5.20                 | 127.26 | 115.30        |
| 1   | С     | 393 | ARG  | NE-CZ-NH1  | 5.20                 | 122.90 | 120.30        |
| 1   | Т     | 450 | MET  | CG-SD-CE   | 5.19                 | 108.50 | 100.20        |
| 1   | В     | 42  | ASP  | N-CA-CB    | 5.18                 | 119.93 | 110.60        |
| 1   | Т     | 219 | ARG  | NE-CZ-NH1  | 5.17                 | 122.89 | 120.30        |
| 1   | L     | 156 | GLU  | N-CA-C     | -5.16                | 97.07  | 111.00        |
| 1   | Т     | 42  | ASP  | N-CA-CB    | 5.16                 | 119.88 | 110.60        |



| Mol | Chain | Res | Type | Atoms     | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-----------|-------|------------------|---------------|
| 1   | Q     | 257 | ARG  | NE-CZ-NH2 | -5.13 | 117.74           | 120.30        |
| 1   | В     | 177 | LEU  | CB-CG-CD2 | 5.12  | 119.71           | 111.00        |
| 1   | Ν     | 215 | ARG  | NE-CZ-NH2 | -5.12 | 117.74           | 120.30        |
| 1   | F     | 42  | ASP  | N-CA-CB   | 5.12  | 119.81           | 110.60        |
| 1   | F     | 493 | ASP  | CB-CG-OD1 | 5.11  | 122.90           | 118.30        |
| 1   | L     | 227 | ARG  | NE-CZ-NH1 | 5.07  | 122.83           | 120.30        |
| 1   | N     | 219 | ARG  | NE-CZ-NH1 | 5.04  | 122.82           | 120.30        |
| 1   | W     | 176 | ASP  | CB-CG-OD2 | 5.04  | 122.83           | 118.30        |
| 1   | Q     | 330 | ARG  | N-CA-C    | 5.03  | 124.57           | 111.00        |
| 1   | Т     | 458 | LEU  | CA-CB-CG  | 5.03  | 126.86           | 115.30        |
| 1   | L     | 393 | ARG  | NE-CZ-NH1 | 5.02  | 122.81           | 120.30        |
| 1   | L     | 96  | LEU  | CA-CB-CG  | 5.00  | 126.81           | 115.30        |

There are no chirality outliers.

All (5) planarity outliers are listed below:

| Mol | Chain | Res | Type | Group   |
|-----|-------|-----|------|---------|
| 1   | В     | 59  | GLY  | Peptide |
| 1   | L     | 155 | HIS  | Peptide |
| 1   | Q     | 155 | HIS  | Peptide |
| 1   | Q     | 199 | ILE  | Peptide |
| 1   | W     | 59  | GLY  | Peptide |

#### 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | В     | 3934  | 0        | 3876     | 40      | 0            |
| 1   | С     | 3952  | 0        | 3897     | 22      | 0            |
| 1   | F     | 3943  | 0        | 3884     | 38      | 0            |
| 1   | L     | 3943  | 0        | 3884     | 45      | 0            |
| 1   | N     | 3943  | 0        | 3884     | 52      | 0            |
| 1   | Q     | 3953  | 0        | 3891     | 51      | 0            |
| 1   | Т     | 3943  | 0        | 3884     | 40      | 0            |
| 1   | W     | 3943  | 0        | 3884     | 59      | 0            |
| 2   | В     | 48    | 0        | 25       | 2       | 0            |
| 2   | С     | 48    | 0        | 25       | 0       | 0            |



| 6E07 |
|------|
|------|

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 2   | F     | 48    | 0        | 25       | 0       | 0            |
| 2   | L     | 48    | 0        | 25       | 0       | 0            |
| 2   | Ν     | 48    | 0        | 25       | 1       | 0            |
| 2   | Q     | 48    | 0        | 25       | 0       | 0            |
| 2   | Т     | 48    | 0        | 25       | 1       | 0            |
| 2   | W     | 48    | 0        | 25       | 0       | 0            |
| 3   | В     | 5     | 0        | 0        | 0       | 0            |
| 3   | С     | 5     | 0        | 0        | 0       | 0            |
| 3   | F     | 5     | 0        | 0        | 0       | 0            |
| 3   | L     | 5     | 0        | 0        | 0       | 0            |
| 3   | N     | 5     | 0        | 0        | 0       | 0            |
| 3   | Q     | 5     | 0        | 0        | 0       | 0            |
| 3   | Т     | 5     | 0        | 0        | 0       | 0            |
| 3   | W     | 5     | 0        | 0        | 0       | 0            |
| 4   | В     | 6     | 0        | 8        | 0       | 0            |
| 4   | С     | 24    | 0        | 32       | 4       | 0            |
| 4   | F     | 30    | 0        | 40       | 1       | 0            |
| 4   | L     | 42    | 0        | 56       | 1       | 0            |
| 4   | Ν     | 36    | 0        | 48       | 3       | 0            |
| 4   | Q     | 12    | 0        | 16       | 1       | 0            |
| 4   | Т     | 12    | 0        | 16       | 1       | 0            |
| 4   | W     | 12    | 0        | 16       | 0       | 0            |
| 5   | В     | 35    | 0        | 0        | 2       | 0            |
| 5   | С     | 79    | 0        | 0        | 0       | 0            |
| 5   | F     | 101   | 0        | 0        | 1       | 0            |
| 5   | L     | 103   | 0        | 0        | 3       | 0            |
| 5   | Ν     | 38    | 0        | 0        | 2       | 0            |
| 5   | Q     | 66    | 0        | 0        | 1       | 0            |
| 5   | Т     | 63    | 0        | 0        | 6       | 0            |
| 5   | W     | 52    | 0        | 0        | 0       | 0            |
| All | All   | 32689 | 0        | 31516    | 300     | 0            |

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 5.

All (300) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

| Atom-1           | Atom-2           | Interatomic<br>distance (Å) | Clash<br>overlap (Å) |
|------------------|------------------|-----------------------------|----------------------|
| 1:F:218:ASN:HD21 | 1:W:405:MET:H    | 1.12                        | 0.96                 |
| 1:N:325:ASP:OD1  | 1:N:327:THR:HG22 | 1.67                        | 0.93                 |
| 1:N:405:MET:H    | 1:B:218:ASN:HD21 | 1.16                        | 0.93                 |



|                  | • • • • • •      | Interatomic  | Clash       |  |
|------------------|------------------|--------------|-------------|--|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |  |
| 1:Q:218:ASN:HD21 | 1:T:405:MET:H    | 1.15         | 0.93        |  |
| 1:F:405:MET:H    | 1:W:218:ASN:HD21 | 1.17         | 0.92        |  |
| 1:N:218:ASN:HD21 | 1:B:405:MET:H    | 1.15         | 0.92        |  |
| 1:Q:405:MET:H    | 1:T:218:ASN:HD21 | 1.17         | 0.91        |  |
| 1:L:175:ARG:HB3  | 1:Q:178:GLN:HE22 | 1.38         | 0.87        |  |
| 1:W:405:MET:HE1  | 1:W:417:GLU:CG   | 2.06         | 0.84        |  |
| 1:W:372:GLN:HE22 | 1:W:502:GLN:H    | 1.24         | 0.84        |  |
| 1:T:357:ARG:HD2  | 5:T:737:HOH:O    | 1.80         | 0.81        |  |
| 1:W:207:MET:HB3  | 1:W:392:ILE:CD1  | 2.10         | 0.81        |  |
| 1:Q:137:LEU:HD23 | 1:Q:164:TRP:CZ3  | 2.16         | 0.80        |  |
| 1:W:176:ASP:OD1  | 1:W:178:GLN:HG2  | 1.80         | 0.80        |  |
| 1:N:176:ASP:OD1  | 1:N:178:GLN:HG3  | 1.81         | 0.79        |  |
| 1:W:37:MET:C     | 1:W:142:LEU:HD11 | 2.03         | 0.79        |  |
| 1:W:405:MET:HE1  | 1:W:417:GLU:HG3  | 1.66         | 0.77        |  |
| 1:W:405:MET:CE   | 1:W:417:GLU:HG2  | 2.17         | 0.75        |  |
| 1:L:175:ARG:HB3  | 1:Q:178:GLN:NE2  | 2.03         | 0.74        |  |
| 1:W:45:LYS:HD3   | 1:W:83:GLN:HG2   | 1.69         | 0.74        |  |
| 1:W:405:MET:HE1  | 1:W:417:GLU:HG2  | 1.70         | 0.73        |  |
| 1:L:414:ASN:OD1  | 5:L:701:HOH:O    | 2.10         | 0.69        |  |
| 1:Q:70:TYR:CD1   | 1:Q:121:LEU:HD12 | 2.28         | 0.69        |  |
| 1:W:37:MET:O     | 1:W:142:LEU:CD1  | 2.41         | 0.69        |  |
| 1:B:115:ALA:O    | 1:B:119:GLN:HG2  | 1.93         | 0.68        |  |
| 1:N:218:ASN:HD21 | 1:B:405:MET:N    | 1.90         | 0.68        |  |
| 1:Q:218:ASN:HD21 | 1:T:405:MET:N    | 1.89         | 0.68        |  |
| 1:N:266:GLN:HE22 | 1:N:288:LYS:NZ   | 1.92         | 0.68        |  |
| 1:T:45:LYS:HD2   | 1:T:83:GLN:HG2   | 1.75         | 0.68        |  |
| 1:T:438:GLU:OE1  | 5:T:701:HOH:O    | 2.12         | 0.67        |  |
| 1:Q:129:HIS:CD2  | 1:Q:130:LEU:HD12 | 2.30         | 0.67        |  |
| 1:Q:137:LEU:HD23 | 1:Q:164:TRP:HZ3  | 1.56         | 0.67        |  |
| 2:T:601:NAP:N7A  | 5:T:702:HOH:O    | 2.28         | 0.66        |  |
| 1:F:218:ASN:HD21 | 1:W:405:MET:N    | 1.89         | 0.65        |  |
| 1:C:148:GLU:OE1  | 1:C:182:ARG:NH1  | 2.26         | 0.65        |  |
| 1:Q:218:ASN:ND2  | 1:T:405:MET:H    | 1.92         | 0.65        |  |
| 1:Q:388:ASN:HD22 | 1:T:220:ILE:H    | 1.43         | 0.65        |  |
| 1:B:302:ASN:ND2  | 1:B:498:ARG:HH22 | 1.95         | 0.65        |  |
| 1:F:405:MET:N    | 1:W:218:ASN:HD21 | 1.91         | 0.64        |  |
| 1:F:220:ILE:H    | 1:W:388:ASN:HD22 | 1.44         | 0.64        |  |
| 1:N:302:ASN:ND2  | 1:N:498:ARG:HH22 | 1.96         | 0.64        |  |
| 1:W:96:LEU:HD13  | 1:W:97:LYS:N     | 2.12         | 0.64        |  |
| 1:N:218:ASN:ND2  | 1:B:405:MET:H    | 1.92         | 0.64        |  |
| 1:L:182:ARG:NH2  | 1:Q:252:GLU:HG2  | 2.13         | 0.63        |  |



| A + a 1          | A + amp 2        | Interatomic             | Clash       |
|------------------|------------------|-------------------------|-------------|
| Atom-1           | Atom-2           | distance $(\text{\AA})$ | overlap (Å) |
| 1:C:227:ARG:HH22 | 4:C:606:GOL:H2   | 1.64                    | 0.63        |
| 1:W:38:GLY:HA3   | 1:W:142:LEU:HD12 | 1.80                    | 0.63        |
| 1:L:227:ARG:NH2  | 4:L:603:GOL:H2   | 2.14                    | 0.62        |
| 1:L:73:SER:HB2   | 1:L:75:LEU:CD1   | 2.29                    | 0.62        |
| 1:F:302:ASN:ND2  | 1:F:498:ARG:HH22 | 1.98                    | 0.62        |
| 1:B:177:LEU:HD13 | 1:B:462:TRP:HB3  | 1.82                    | 0.62        |
| 2:B:601:NAP:N1A  | 5:B:701:HOH:O    | 2.30                    | 0.62        |
| 1:N:388:ASN:HD22 | 1:B:220:ILE:H    | 1.46                    | 0.61        |
| 1:N:220:ILE:H    | 1:B:388:ASN:HD22 | 1.48                    | 0.61        |
| 1:F:218:ASN:ND2  | 1:W:405:MET:H    | 1.91                    | 0.61        |
| 1:T:249:TYR:HB2  | 5:T:747:HOH:O    | 2.01                    | 0.61        |
| 1:W:474:LEU:HD23 | 1:W:475:GLU:HG3  | 1.82                    | 0.61        |
| 2:N:601:NAP:H2A  | 5:N:730:HOH:O    | 2.00                    | 0.61        |
| 1:Q:405:MET:N    | 1:T:218:ASN:HD21 | 1.95                    | 0.61        |
| 1:L:386:LYS:HG3  | 1:L:504:GLU:OE1  | 2.00                    | 0.61        |
| 1:W:372:GLN:NE2  | 1:W:387:ARG:HH11 | 1.99                    | 0.60        |
| 1:T:201:HIS:ND1  | 5:T:704:HOH:O    | 2.32                    | 0.60        |
| 1:F:474:LEU:HD13 | 1:F:475:GLU:HG3  | 1.83                    | 0.60        |
| 1:B:177:LEU:HD13 | 1:B:462:TRP:CB   | 2.30                    | 0.59        |
| 1:F:212:MET:HE3  | 1:F:284:VAL:HG13 | 1.82                    | 0.59        |
| 1:L:302:ASN:ND2  | 1:L:498:ARG:HH22 | 1.99                    | 0.59        |
| 1:N:80:ILE:HD11  | 1:N:107:TYR:CD2  | 2.38                    | 0.59        |
| 1:W:122:ASN:ND2  | 1:W:136:ARG:HH12 | 2.01                    | 0.59        |
| 1:Q:375:ASP:O    | 1:T:219:ARG:NH1  | 2.36                    | 0.59        |
| 1:L:73:SER:HB2   | 1:L:75:LEU:HD13  | 1.83                    | 0.59        |
| 1:F:405:MET:H    | 1:W:218:ASN:ND2  | 1.95                    | 0.59        |
| 1:N:227:ARG:NH2  | 4:N:605:GOL:H2   | 2.19                    | 0.58        |
| 1:W:37:MET:O     | 1:W:142:LEU:HD11 | 2.03                    | 0.58        |
| 1:N:135:ASN:HD22 | 1:N:164:TRP:H    | 1.52                    | 0.58        |
| 1:F:220:ILE:H    | 1:W:388:ASN:ND2  | 2.02                    | 0.58        |
| 1:W:135:ASN:HD22 | 1:W:164:TRP:H    | 1.51                    | 0.58        |
| 1:N:388:ASN:ND2  | 1:B:220:ILE:H    | 2.01                    | 0.57        |
| 1:N:405:MET:N    | 1:B:218:ASN:HD21 | 1.94                    | 0.57        |
| 1:F:212:MET:HE3  | 1:F:284:VAL:CG1  | 2.34                    | 0.57        |
| 1:W:207:MET:HB3  | 1:W:392:ILE:HD11 | 1.85                    | 0.57        |
| 1:F:135:ASN:HD22 | 1:F:164:TRP:H    | 1.51                    | 0.57        |
| 1:T:135:ASN:HD22 | 1:T:164:TRP:H    | 1.52                    | 0.57        |
| 1:T:122:ASN:ND2  | 1:T:136:ARG:HH12 | 2.03                    | 0.57        |
| 1:L:175:ARG:CB   | 1:Q:178:GLN:HE22 | 2.14                    | 0.56        |
| 1:W:38:GLY:N     | 1:W:142:LEU:HD11 | 2.21                    | 0.56        |
| 1:C:200:ASP:OD1  | 1:C:263:HIS:HD2  | 1.89                    | 0.56        |



|                  |                  | Interatomic             | Clash       |  |
|------------------|------------------|-------------------------|-------------|--|
| Atom-1           | Atom-2           | distance $(\text{\AA})$ | overlap (Å) |  |
| 1:Q:388:ASN:ND2  | 1:T:220:ILE:H    | 2.03                    | 0.56        |  |
| 1:Q:405:MET:H    | 1:T:218:ASN:ND2  | 1.96                    | 0.56        |  |
| 1:Q:200:ASP:OD1  | 1:Q:263:HIS:HD2  | 1.89                    | 0.56        |  |
| 1:W:392:ILE:O    | 1:W:392:ILE:HG13 | 2.06                    | 0.56        |  |
| 1:F:122:ASN:ND2  | 1:F:136:ARG:HH12 | 2.03                    | 0.56        |  |
| 1:Q:73:SER:HB2   | 1:Q:75:LEU:CD1   | 2.35                    | 0.56        |  |
| 1:W:76:THR:HG23  | 1:W:79:ASP:OD2   | 2.06                    | 0.56        |  |
| 1:W:38:GLY:HA3   | 1:W:142:LEU:CD1  | 2.37                    | 0.55        |  |
| 1:N:220:ILE:H    | 1:B:388:ASN:ND2  | 2.03                    | 0.55        |  |
| 1:B:212:MET:HE3  | 1:B:284:VAL:HG13 | 1.89                    | 0.55        |  |
| 1:T:207:MET:HE3  | 1:T:424:TYR:CE2  | 2.42                    | 0.55        |  |
| 1:L:200:ASP:OD1  | 1:L:263:HIS:HD2  | 1.90                    | 0.55        |  |
| 1:L:32:HIS:CD2   | 1:L:62:PRO:HG2   | 2.42                    | 0.55        |  |
| 1:N:72:ARG:O     | 1:N:74:ARG:NH1   | 2.39                    | 0.55        |  |
| 1:L:207:MET:HE3  | 1:L:424:TYR:CE2  | 2.42                    | 0.55        |  |
| 1:Q:73:SER:HB2   | 1:Q:75:LEU:HD13  | 1.87                    | 0.55        |  |
| 1:T:200:ASP:OD1  | 1:T:263:HIS:HD2  | 1.89                    | 0.55        |  |
| 1:W:372:GLN:HE21 | 1:W:387:ARG:HH11 | 1.54                    | 0.55        |  |
| 1:F:388:ASN:HD22 | 1:W:220:ILE:H    | 1.53                    | 0.54        |  |
| 1:L:206:GLU:HG3  | 1:L:207:MET:HE2  | 1.89                    | 0.54        |  |
| 1:L:220:ILE:H    | 1:C:388:ASN:HD22 | 1.55                    | 0.54        |  |
| 1:L:420:LEU:HB3  | 1:C:420:LEU:HB3  | 1.88                    | 0.54        |  |
| 1:W:209:GLN:NE2  | 1:W:439:ARG:HD3  | 2.21                    | 0.54        |  |
| 1:F:200:ASP:OD1  | 1:F:263:HIS:HD2  | 1.90                    | 0.54        |  |
| 1:C:45:LYS:HD2   | 1:C:83:GLN:HG2   | 1.89                    | 0.54        |  |
| 1:N:207:MET:HE3  | 1:N:424:TYR:CE2  | 2.43                    | 0.54        |  |
| 1:N:200:ASP:OD1  | 1:N:263:HIS:HD2  | 1.90                    | 0.54        |  |
| 1:Q:220:ILE:H    | 1:T:388:ASN:HD22 | 1.54                    | 0.54        |  |
| 1:L:504:GLU:OE2  | 5:L:702:HOH:O    | 2.18                    | 0.54        |  |
| 1:B:73:SER:HB2   | 1:B:75:LEU:CD1   | 2.38                    | 0.54        |  |
| 1:T:76:THR:HG23  | 1:T:79:ASP:OD2   | 2.08                    | 0.53        |  |
| 1:F:219:ARG:NH1  | 1:W:375:ASP:O    | 2.41                    | 0.53        |  |
| 1:N:420:LEU:HB3  | 1:B:420:LEU:HB3  | 1.89                    | 0.53        |  |
| 1:C:227:ARG:HH12 | 4:C:606:GOL:H2   | 1.72                    | 0.53        |  |
| 1:N:266:GLN:HE22 | 1:N:288:LYS:HZ3  | 1.54                    | 0.53        |  |
| 1:F:386:LYS:HB2  | 1:F:405:MET:HE1  | 1.91                    | 0.53        |  |
| 1:B:200:ASP:OD1  | 1:B:263:HIS:HD2  | 1.92                    | 0.53        |  |
| 1:F:45:LYS:HD2   | 1:F:83:GLN:HG2   | 1.91                    | 0.53        |  |
| 1:Q:404:MET:HE2  | 1:Q:419:GLU:HA   | 1.90                    | 0.53        |  |
| 1:Q:34:PHE:CD1   | 1:Q:137:LEU:HD12 | 2.44                    | 0.52        |  |
| 1:F:405:MET:HE2  | 1:F:417:GLU:HG2  | 1.92                    | 0.52        |  |



|                  |                  | Interatomic             | Clash       |  |
|------------------|------------------|-------------------------|-------------|--|
| Atom-1           | Atom-2           | distance $(\text{\AA})$ | overlap (Å) |  |
| 1:N:405:MET:H    | 1:B:218:ASN:ND2  | 1.97                    | 0.52        |  |
| 1:B:212:MET:HE3  | 1:B:284:VAL:CG1  | 2.40                    | 0.52        |  |
| 1:W:207:MET:HB3  | 1:W:392:ILE:HD12 | 1.90                    | 0.52        |  |
| 1:T:175:ARG:NH2  | 1:T:252:GLU:HB3  | 2.24                    | 0.51        |  |
| 1:F:175:ARG:HD3  | 1:F:175:ARG:N    | 2.25                    | 0.51        |  |
| 1:N:227:ARG:HH22 | 4:N:605:GOL:H2   | 1.75                    | 0.51        |  |
| 1:B:73:SER:HB2   | 1:B:75:LEU:HD13  | 1.93                    | 0.51        |  |
| 1:F:49:TYR:CZ    | 1:F:80:ILE:HD13  | 2.46                    | 0.51        |  |
| 1:Q:49:TYR:CZ    | 1:Q:80:ILE:HD13  | 2.46                    | 0.51        |  |
| 1:W:143:PRO:O    | 1:W:146:VAL:HG22 | 2.09                    | 0.51        |  |
| 1:W:49:TYR:CZ    | 1:W:80:ILE:HD13  | 2.46                    | 0.51        |  |
| 1:L:161:GLN:C    | 1:L:162:ILE:HD12 | 2.31                    | 0.51        |  |
| 1:Q:137:LEU:HD21 | 1:Q:444:VAL:HG12 | 1.92                    | 0.51        |  |
| 1:B:45:LYS:HD2   | 1:B:83:GLN:HG2   | 1.93                    | 0.51        |  |
| 1:C:49:TYR:CZ    | 1:C:80:ILE:HD13  | 2.46                    | 0.50        |  |
| 1:B:49:TYR:CZ    | 1:B:80:ILE:HD13  | 2.47                    | 0.50        |  |
| 1:L:49:TYR:CZ    | 1:L:80:ILE:HD13  | 2.46                    | 0.50        |  |
| 1:W:142:LEU:CD1  | 1:W:142:LEU:N    | 2.73                    | 0.50        |  |
| 1:N:161:GLN:C    | 1:N:162:ILE:HD12 | 2.31                    | 0.50        |  |
| 1:Q:227:ARG:NH2  | 4:Q:603:GOL:H2   | 2.27                    | 0.50        |  |
| 1:Q:219:ARG:NH1  | 1:T:375:ASP:O    | 2.45                    | 0.50        |  |
| 1:Q:34:PHE:HD1   | 1:Q:137:LEU:HD12 | 1.75                    | 0.50        |  |
| 1:Q:155:HIS:HD2  | 1:Q:190:LEU:HB3  | 1.77                    | 0.50        |  |
| 1:L:155:HIS:CG   | 1:L:155:HIS:O    | 2.62                    | 0.50        |  |
| 1:L:483:ILE:HG13 | 1:F:162:ILE:HD11 | 1.93                    | 0.49        |  |
| 1:L:293:LYS:NZ   | 1:B:283:ASP:OD1  | 2.45                    | 0.49        |  |
| 1:T:49:TYR:CZ    | 1:T:80:ILE:HD13  | 2.47                    | 0.49        |  |
| 1:L:206:GLU:OE1  | 1:L:439:ARG:NH2  | 2.44                    | 0.49        |  |
| 1:Q:45:LYS:HD2   | 1:Q:83:GLN:HG2   | 1.95                    | 0.49        |  |
| 1:N:135:ASN:ND2  | 1:N:164:TRP:H    | 2.11                    | 0.49        |  |
| 1:N:155:HIS:CD2  | 1:N:190:LEU:HD22 | 2.48                    | 0.49        |  |
| 1:F:386:LYS:H    | 1:F:405:MET:CE   | 2.26                    | 0.49        |  |
| 1:N:219:ARG:NH1  | 1:B:375:ASP:O    | 2.45                    | 0.49        |  |
| 1:W:405:MET:CE   | 1:W:417:GLU:CG   | 2.80                    | 0.49        |  |
| 1:N:222:GLY:HA2  | 4:N:606:GOL:H11  | 1.95                    | 0.49        |  |
| 1:N:91:THR:HG22  | 1:N:94:GLU:CD    | 2.34                    | 0.48        |  |
| 1:Q:177:LEU:HD13 | 1:Q:462:TRP:HB3  | 1.95                    | 0.48        |  |
| 1:T:74:ARG:HD2   | 1:T:74:ARG:O     | 2.14                    | 0.48        |  |
| 1:Q:137:LEU:HD23 | 1:Q:164:TRP:CH2  | 2.49                    | 0.48        |  |
| 1:Q:404:MET:HE3  | 1:Q:418:SER:HB3  | 1.95                    | 0.47        |  |
| 1:W:135:ASN:ND2  | 1:W:164:TRP:H    | 2.11                    | 0.47        |  |



|                  | • • • • • •      | Interatomic  | Clash       |  |
|------------------|------------------|--------------|-------------|--|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |  |
| 1:L:297:GLU:HG3  | 5:L:767:HOH:O    | 2.13         | 0.47        |  |
| 1:C:202:TYR:HH   | 1:C:237:PHE:HE1  | 1.60         | 0.47        |  |
| 1:F:388:ASN:ND2  | 1:W:220:ILE:H    | 2.12         | 0.47        |  |
| 1:Q:508:LYS:HA   | 1:Q:508:LYS:CE   | 2.45         | 0.47        |  |
| 1:T:268:LEU:C    | 1:T:268:LEU:HD23 | 2.35         | 0.47        |  |
| 1:L:206:GLU:HG3  | 1:L:207:MET:CE   | 2.45         | 0.47        |  |
| 1:C:389:GLU:OE2  | 4:C:605:GOL:H2   | 2.14         | 0.47        |  |
| 1:Q:153:ASN:O    | 1:Q:157:SER:OG   | 2.28         | 0.47        |  |
| 1:Q:220:ILE:H    | 1:T:388:ASN:ND2  | 2.13         | 0.47        |  |
| 1:Q:439:ARG:HG3  | 5:Q:737:HOH:O    | 2.14         | 0.47        |  |
| 1:Q:508:LYS:HA   | 1:Q:508:LYS:HE2  | 1.97         | 0.47        |  |
| 2:B:601:NAP:O1N  | 2:B:601:NAP:O5B  | 2.33         | 0.47        |  |
| 1:C:45:LYS:HB2   | 1:C:83:GLN:HE21  | 1.79         | 0.47        |  |
| 1:W:206:GLU:OE1  | 1:W:439:ARG:NH2  | 2.48         | 0.47        |  |
| 1:F:135:ASN:ND2  | 1:F:164:TRP:H    | 2.12         | 0.47        |  |
| 1:N:409:PRO:HB2  | 1:B:431:VAL:HG11 | 1.97         | 0.47        |  |
| 1:Q:268:LEU:C    | 1:Q:268:LEU:HD23 | 2.35         | 0.47        |  |
| 1:T:135:ASN:ND2  | 1:T:164:TRP:H    | 2.12         | 0.46        |  |
| 1:B:77:VAL:HG22  | 5:B:725:HOH:O    | 2.15         | 0.46        |  |
| 1:L:178:GLN:O    | 1:L:182:ARG:HG3  | 2.14         | 0.46        |  |
| 1:L:261:GLN:NE2  | 1:L:462:TRP:CH2  | 2.84         | 0.46        |  |
| 1:L:404:MET:HE2  | 1:L:419:GLU:HA   | 1.96         | 0.46        |  |
| 1:F:302:ASN:HD22 | 1:F:498:ARG:HH22 | 1.63         | 0.46        |  |
| 1:N:248:GLY:H    | 1:N:327:THR:HG23 | 1.80         | 0.46        |  |
| 1:L:302:ASN:HD22 | 1:L:498:ARG:HH22 | 1.61         | 0.46        |  |
| 1:W:42:ASP:HB3   | 1:W:45:LYS:HE3   | 1.98         | 0.46        |  |
| 1:W:209:GLN:HE22 | 1:W:439:ARG:HD3  | 1.80         | 0.46        |  |
| 1:B:298:VAL:HG22 | 1:B:342:LEU:HD21 | 1.98         | 0.46        |  |
| 1:F:268:LEU:HD23 | 1:F:268:LEU:C    | 2.36         | 0.46        |  |
| 1:W:192:ARG:NH1  | 1:W:194:ASP:OD1  | 2.49         | 0.46        |  |
| 1:C:192:ARG:NH1  | 1:C:194:ASP:OD1  | 2.49         | 0.46        |  |
| 1:B:192:ARG:NH1  | 1:B:194:ASP:OD1  | 2.49         | 0.46        |  |
| 1:B:129:HIS:ND1  | 1:B:130:LEU:HD12 | 2.31         | 0.46        |  |
| 1:N:80:ILE:CD1   | 1:N:107:TYR:CD2  | 2.99         | 0.45        |  |
| 1:L:224:ILE:CD1  | 1:C:223:PRO:HG2  | 2.47         | 0.45        |  |
| 1:N:268:LEU:C    | 1:N:268:LEU:HD23 | 2.36         | 0.45        |  |
| 1:L:192:ARG:NH1  | 1:L:194:ASP:OD1  | 2.49         | 0.45        |  |
| 1:Q:402:THR:HG22 | 1:Q:420:LEU:HB2  | 1.97         | 0.45        |  |
| 1:C:227:ARG:NH2  | 4:C:606:GOL:H2   | 2.31         | 0.45        |  |
| 1:T:192:ARG:NH1  | 1:T:194:ASP:OD1  | 2.49         | 0.45        |  |
| 1:W:202:TYR:HH   | 1:W:237:PHE:HE2  | 1.63         | 0.45        |  |



|                  | AL O             | Interatomic             | Clash       |
|------------------|------------------|-------------------------|-------------|
| Atom-1           | Atom-2           | distance $(\text{\AA})$ | overlap (Å) |
| 1:C:268:LEU:C    | 1:C:268:LEU:HD23 | 2.36                    | 0.45        |
| 1:T:298:VAL:HG22 | 1:T:342:LEU:HD21 | 1.99                    | 0.45        |
| 1:L:220:ILE:H    | 1:C:388:ASN:ND2  | 2.15                    | 0.45        |
| 1:N:330:ARG:NE   | 1:N:330:ARG:HA   | 2.32                    | 0.45        |
| 1:B:268:LEU:C    | 1:B:268:LEU:HD23 | 2.36                    | 0.45        |
| 1:F:405:MET:CE   | 1:F:417:GLU:HG2  | 2.46                    | 0.45        |
| 1:Q:192:ARG:NH1  | 1:Q:194:ASP:OD1  | 2.50                    | 0.44        |
| 1:W:268:LEU:HD23 | 1:W:268:LEU:C    | 2.37                    | 0.44        |
| 1:W:72:ARG:HG2   | 1:W:111:GLN:OE1  | 2.17                    | 0.44        |
| 1:Q:121:LEU:O    | 1:Q:121:LEU:HD23 | 2.17                    | 0.44        |
| 1:L:75:LEU:CD1   | 1:L:75:LEU:N     | 2.80                    | 0.44        |
| 1:Q:507:TYR:O    | 1:Q:508:LYS:HE3  | 2.17                    | 0.44        |
| 1:C:298:VAL:HG22 | 1:C:342:LEU:HD21 | 2.00                    | 0.44        |
| 1:L:75:LEU:HD13  | 1:L:75:LEU:N     | 2.33                    | 0.44        |
| 1:L:169:VAL:HG12 | 1:L:173:PHE:HE1  | 1.82                    | 0.44        |
| 1:N:91:THR:HG22  | 1:N:94:GLU:OE1   | 2.17                    | 0.44        |
| 1:N:162:ILE:HD12 | 1:N:162:ILE:N    | 2.32                    | 0.44        |
| 1:T:167:ILE:O    | 1:T:167:ILE:HG12 | 2.18                    | 0.44        |
| 1:F:330:ARG:HA   | 1:F:330:ARG:NE   | 2.33                    | 0.44        |
| 1:B:356:LEU:N    | 1:B:356:LEU:HD12 | 2.33                    | 0.44        |
| 1:L:202:TYR:HH   | 1:L:237:PHE:HE2  | 1.64                    | 0.43        |
| 1:L:268:LEU:C    | 1:L:268:LEU:HD23 | 2.39                    | 0.43        |
| 1:N:72:ARG:NH1   | 1:N:111:GLN:HG3  | 2.33                    | 0.43        |
| 1:N:161:GLN:HB2  | 1:N:162:ILE:HD12 | 2.00                    | 0.43        |
| 1:N:171:LYS:HB3  | 5:N:702:HOH:O    | 2.18                    | 0.43        |
| 1:L:356:LEU:N    | 1:L:356:LEU:HD12 | 2.33                    | 0.43        |
| 1:N:375:ASP:O    | 1:B:219:ARG:NH1  | 2.49                    | 0.43        |
| 1:L:162:ILE:HD12 | 1:L:162:ILE:N    | 2.33                    | 0.43        |
| 1:N:95:LYS:HE2   | 1:N:95:LYS:HA    | 2.01                    | 0.43        |
| 1:Q:75:LEU:CD1   | 1:Q:75:LEU:N     | 2.81                    | 0.43        |
| 1:W:106:SER:OG   | 1:W:124:HIS:HE1  | 2.02                    | 0.43        |
| 1:N:175:ARG:NH1  | 1:N:473:GLU:OE2  | 2.46                    | 0.43        |
| 1:W:402:THR:HG22 | 1:W:420:LEU:HB2  | 2.00                    | 0.43        |
| 1:N:206:GLU:HG3  | 1:N:207:MET:HE2  | 2.00                    | 0.43        |
| 1:W:298:VAL:HG22 | 1:W:342:LEU:HD21 | 2.01                    | 0.43        |
| 1:B:75:LEU:CD1   | 1:B:75:LEU:N     | 2.81                    | 0.43        |
| 1:F:498:ARG:HD3  | 4:F:605:GOL:O3   | 2.19                    | 0.43        |
| 1:N:203:LEU:HD21 | 1:N:266:GLN:HE21 | 1.84                    | 0.43        |
| 1:Q:356:LEU:HD12 | 1:Q:356:LEU:N    | 2.34                    | 0.42        |
| 1:F:45:LYS:HB2   | 1:F:83:GLN:HE21  | 1.84                    | 0.42        |
| 1:N:248:GLY:H    | 1:N:327:THR:CG2  | 2.31                    | 0.42        |



|                  | • •• • • • • •   | Interatomic             | Clash       |  |
|------------------|------------------|-------------------------|-------------|--|
| Atom-1           | Atom-2           | distance $(\text{\AA})$ | overlap (Å) |  |
| 1:Q:95:LYS:HE2   | 1:Q:95:LYS:HA    | 2.01                    | 0.42        |  |
| 1:W:125:MET:CE   | 1:W:136:ARG:HD3  | 2.50                    | 0.42        |  |
| 1:B:75:LEU:HD13  | 1:B:75:LEU:N     | 2.34                    | 0.42        |  |
| 1:N:146:VAL:HG13 | 1:N:150:VAL:HG23 | 2.02                    | 0.42        |  |
| 1:Q:224:ILE:CD1  | 1:T:220:ILE:HA   | 2.48                    | 0.42        |  |
| 1:F:356:LEU:N    | 1:F:356:LEU:HD12 | 2.34                    | 0.42        |  |
| 1:Q:37:MET:HE1   | 1:Q:121:LEU:HD11 | 2.00                    | 0.42        |  |
| 1:T:106:SER:OG   | 1:T:124:HIS:HE1  | 2.03                    | 0.42        |  |
| 1:L:422:LEU:HB2  | 1:C:420:LEU:HD12 | 2.02                    | 0.42        |  |
| 1:Q:155:HIS:CG   | 1:Q:155:HIS:O    | 2.73                    | 0.42        |  |
| 1:B:175:ARG:CZ   | 1:B:175:ARG:HB3  | 2.50                    | 0.42        |  |
| 1:F:402:THR:HG22 | 1:F:420:LEU:HB2  | 2.01                    | 0.42        |  |
| 1:F:463:ARG:HD3  | 5:F:724:HOH:O    | 2.19                    | 0.42        |  |
| 1:W:129:HIS:CD2  | 1:W:130:LEU:HD13 | 2.54                    | 0.42        |  |
| 1:W:142:LEU:N    | 1:W:142:LEU:HD13 | 2.35                    | 0.42        |  |
| 1:Q:125:MET:CE   | 1:Q:136:ARG:HD3  | 2.49                    | 0.42        |  |
| 1:T:206:GLU:HG3  | 1:T:207:MET:HE2  | 2.01                    | 0.42        |  |
| 1:W:356:LEU:N    | 1:W:356:LEU:HD12 | 2.35                    | 0.42        |  |
| 1:L:42:ASP:HA    | 1:L:45:LYS:HG2   | 2.02                    | 0.42        |  |
| 1:Q:75:LEU:HD13  | 1:Q:75:LEU:N     | 2.35                    | 0.41        |  |
| 1:T:122:ASN:HD22 | 1:T:136:ARG:HH12 | 1.68                    | 0.41        |  |
| 1:T:356:LEU:HD12 | 1:T:356:LEU:N    | 2.35                    | 0.41        |  |
| 1:W:141:ALA:C    | 1:W:142:LEU:CD1  | 2.88                    | 0.41        |  |
| 1:L:186:HIS:O    | 1:L:190:LEU:HD22 | 2.20                    | 0.41        |  |
| 1:T:285:ARG:O    | 1:T:289:VAL:HG23 | 2.21                    | 0.41        |  |
| 1:L:177:LEU:HD12 | 1:L:462:TRP:HB2  | 2.01                    | 0.41        |  |
| 1:T:470:HIS:HB2  | 5:T:741:HOH:O    | 2.20                    | 0.41        |  |
| 1:C:143:PRO:HA   | 1:C:144:PRO:HD3  | 1.98                    | 0.41        |  |
| 1:C:170:GLU:HG3  | 1:C:171:LYS:HD2  | 2.02                    | 0.41        |  |
| 1:N:106:SER:OG   | 1:N:124:HIS:HE1  | 2.03                    | 0.41        |  |
| 1:N:248:GLY:N    | 1:N:327:THR:HG23 | 2.36                    | 0.41        |  |
| 1:F:106:SER:OG   | 1:F:124:HIS:HE1  | 2.03                    | 0.41        |  |
| 1:F:298:VAL:HG22 | 1:F:342:LEU:HD21 | 2.03                    | 0.41        |  |
| 1:L:175:ARG:CZ   | 1:L:175:ARG:HB2  | 2.51                    | 0.41        |  |
| 1:C:250:PHE:CE2  | 1:C:360:LYS:HE2  | 2.55                    | 0.41        |  |
| 1:F:220:ILE:HG23 | 1:W:388:ASN:HD22 | 1.86                    | 0.41        |  |
| 1:T:45:LYS:HB2   | 1:T:83:GLN:HE21  | 1.86                    | 0.41        |  |
| 1:T:227:ARG:HH12 | 4:T:603:GOL:H12  | 1.86                    | 0.41        |  |
| 1:C:356:LEU:HD12 | 1:C:356:LEU:N    | 2.36                    | 0.41        |  |
| 1:B:402:THR:HG22 | 1:B:420:LEU:HB2  | 2.03                    | 0.41        |  |
| 1:N:356:LEU:HD12 | 1:N:356:LEU:N    | 2.35                    | 0.40        |  |



| Atom-1           | Atom-2           | Interatomic<br>distance (Å) | Clash<br>overlap (Å) |
|------------------|------------------|-----------------------------|----------------------|
|                  |                  |                             |                      |
| 1:W:37:MET:O     | 1:W:142:LEU:HD13 | 2.20                        | 0.40                 |
| 1:N:302:ASN:HD21 | 1:N:498:ARG:HH22 | 1.64                        | 0.40                 |
| 1:T:402:THR:HG22 | 1:T:420:LEU:HB2  | 2.02                        | 0.40                 |
| 1:W:122:ASN:HD22 | 1:W:136:ARG:HH12 | 1.69                        | 0.40                 |
| 1:B:129:HIS:CE1  | 1:B:130:LEU:CD1  | 3.04                        | 0.40                 |
| 1:N:43:LEU:HD21  | 1:N:170:GLU:HG3  | 2.02                        | 0.40                 |
| 1:L:298:VAL:HG22 | 1:L:342:LEU:HD21 | 2.04                        | 0.40                 |
| 1:N:220:ILE:HG23 | 1:B:388:ASN:HD22 | 1.87                        | 0.40                 |
| 1:B:106:SER:OG   | 1:B:124:HIS:HE1  | 2.05                        | 0.40                 |
| 1:B:212:MET:CE   | 1:B:284:VAL:HG13 | 2.51                        | 0.40                 |

There are no symmetry-related clashes.

#### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed        | Favoured   | Allowed  | Outliers | Perce | ntiles |
|-----|-------|-----------------|------------|----------|----------|-------|--------|
| 1   | В     | 483/515~(94%)   | 469 (97%)  | 14 (3%)  | 0        | 100   | 100    |
| 1   | С     | 485/515~(94%)   | 472 (97%)  | 13 (3%)  | 0        | 100   | 100    |
| 1   | F     | 484/515~(94%)   | 471 (97%)  | 13 (3%)  | 0        | 100   | 100    |
| 1   | L     | 484/515~(94%)   | 463 (96%)  | 19 (4%)  | 2~(0%)   | 34    | 57     |
| 1   | Ν     | 484/515~(94%)   | 469 (97%)  | 15 (3%)  | 0        | 100   | 100    |
| 1   | Q     | 485/515~(94%)   | 469 (97%)  | 14 (3%)  | 2~(0%)   | 34    | 57     |
| 1   | Т     | 484/515~(94%)   | 471 (97%)  | 13 (3%)  | 0        | 100   | 100    |
| 1   | W     | 484/515~(94%)   | 467 (96%)  | 16 (3%)  | 1 (0%)   | 47    | 71     |
| All | All   | 3873/4120 (94%) | 3751 (97%) | 117 (3%) | 5(0%)    | 51    | 75     |

All (5) Ramachandran outliers are listed below:



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | L     | 157 | SER  |
| 1   | Q     | 113 | ASP  |
| 1   | Q     | 157 | SER  |
| 1   | L     | 171 | LYS  |
| 1   | W     | 29  | SER  |

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed        | Rotameric  | Outliers | Percentiles |
|-----|-------|-----------------|------------|----------|-------------|
| 1   | В     | 425/450~(94%)   | 404 (95%)  | 21 (5%)  | 25 48       |
| 1   | С     | 427/450~(95%)   | 410 (96%)  | 17 (4%)  | 31 57       |
| 1   | F     | 426/450~(95%)   | 406 (95%)  | 20~(5%)  | 26 50       |
| 1   | L     | 426/450~(95%)   | 402 (94%)  | 24 (6%)  | 21 42       |
| 1   | Ν     | 426/450~(95%)   | 398~(93%)  | 28 (7%)  | 16 33       |
| 1   | Q     | 427/450~(95%)   | 403 (94%)  | 24 (6%)  | 21 42       |
| 1   | Т     | 426/450~(95%)   | 398~(93%)  | 28 (7%)  | 16 33       |
| 1   | W     | 426/450~(95%)   | 405 (95%)  | 21 (5%)  | 25 48       |
| All | All   | 3409/3600~(95%) | 3226 (95%) | 183 (5%) | 22 44       |

All (183) residues with a non-rotameric sidechain are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | L     | 29  | SER  |
| 1   | L     | 45  | LYS  |
| 1   | L     | 57  | ARG  |
| 1   | L     | 63  | GLU  |
| 1   | L     | 73  | SER  |
| 1   | L     | 75  | LEU  |
| 1   | L     | 82  | LYS  |
| 1   | L     | 96  | LEU  |
| 1   | L     | 105 | ASN  |
| 1   | L     | 137 | LEU  |
| 1   | L     | 152 | LYS  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | L     | 157 | SER  |
| 1   | L     | 160 | SER  |
| 1   | L     | 175 | ARG  |
| 1   | L     | 183 | LEU  |
| 1   | L     | 184 | SER  |
| 1   | L     | 190 | LEU  |
| 1   | L     | 212 | MET  |
| 1   | L     | 246 | ARG  |
| 1   | L     | 330 | ARG  |
| 1   | L     | 404 | MET  |
| 1   | L     | 413 | PHE  |
| 1   | L     | 419 | GLU  |
| 1   | L     | 420 | LEU  |
| 1   | С     | 45  | LYS  |
| 1   | С     | 57  | ARG  |
| 1   | С     | 73  | SER  |
| 1   | С     | 105 | ASN  |
| 1   | С     | 137 | LEU  |
| 1   | С     | 160 | SER  |
| 1   | С     | 175 | ARG  |
| 1   | С     | 183 | LEU  |
| 1   | С     | 184 | SER  |
| 1   | С     | 246 | ARG  |
| 1   | С     | 345 | GLU  |
| 1   | С     | 400 | VAL  |
| 1   | С     | 404 | MET  |
| 1   | С     | 419 | GLU  |
| 1   | С     | 420 | LEU  |
| 1   | C     | 508 | LYS  |
| 1   | С     | 514 | LYS  |
| 1   | F     | 28  | GLN  |
| 1   | F     | 57  | ARG  |
| 1   | F     | 73  | SER  |
| 1   | F     | 82  | LYS  |
| 1   | F     | 93  | GLU  |
| 1   | F     | 96  | LEU  |
| 1   | F     | 105 | ASN  |
| 1   | F     | 137 | LEU  |
| 1   | F     | 160 | SER  |
| 1   | F     | 170 | GLU  |
| 1   | F     | 175 | ARG  |
| 1   | F     | 177 | LEU  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | F     | 184 | SER  |
| 1   | F     | 219 | ARG  |
| 1   | F     | 246 | ARG  |
| 1   | F     | 400 | VAL  |
| 1   | F     | 404 | MET  |
| 1   | F     | 419 | GLU  |
| 1   | F     | 432 | LYS  |
| 1   | F     | 474 | LEU  |
| 1   | Ν     | 29  | SER  |
| 1   | Ν     | 45  | LYS  |
| 1   | Ν     | 57  | ARG  |
| 1   | N     | 63  | GLU  |
| 1   | Ν     | 72  | ARG  |
| 1   | N     | 73  | SER  |
| 1   | Ν     | 91  | THR  |
| 1   | N     | 95  | LYS  |
| 1   | Ν     | 96  | LEU  |
| 1   | Ν     | 105 | ASN  |
| 1   | Ν     | 111 | GLN  |
| 1   | Ν     | 137 | LEU  |
| 1   | Ν     | 146 | VAL  |
| 1   | Ν     | 160 | SER  |
| 1   | Ν     | 170 | GLU  |
| 1   | Ν     | 179 | SER  |
| 1   | Ν     | 181 | ASP  |
| 1   | Ν     | 184 | SER  |
| 1   | Ν     | 212 | MET  |
| 1   | Ν     | 219 | ARG  |
| 1   | Ν     | 246 | ARG  |
| 1   | N     | 296 | SER  |
| 1   | Ν     | 400 | VAL  |
| 1   | N     | 404 | MET  |
| 1   | N     | 413 | PHE  |
| 1   | N     | 419 | GLU  |
| 1   | N     | 420 | LEU  |
| 1   | Ν     | 432 | LYS  |
| 1   | Q     | 45  | LYS  |
| 1   | Q     | 57  | ARG  |
| 1   | Q     | 73  | SER  |
| 1   | Q     | 75  | LEU  |
| 1   | Q     | 95  | LYS  |
| 1   | Q     | 96  | LEU  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | Q     | 105 | ASN  |
| 1   | Q     | 113 | ASP  |
| 1   | Q     | 137 | LEU  |
| 1   | Q     | 152 | LYS  |
| 1   | Q     | 160 | SER  |
| 1   | Q     | 175 | ARG  |
| 1   | Q     | 184 | SER  |
| 1   | Q     | 219 | ARG  |
| 1   | Q     | 224 | ILE  |
| 1   | Q     | 296 | SER  |
| 1   | Q     | 330 | ARG  |
| 1   | Q     | 376 | VAL  |
| 1   | Q     | 386 | LYS  |
| 1   | Q     | 400 | VAL  |
| 1   | Q     | 404 | MET  |
| 1   | Q     | 413 | PHE  |
| 1   | Q     | 419 | GLU  |
| 1   | Q     | 508 | LYS  |
| 1   | Т     | 45  | LYS  |
| 1   | Т     | 57  | ARG  |
| 1   | Т     | 73  | SER  |
| 1   | Т     | 74  | ARG  |
| 1   | Т     | 76  | THR  |
| 1   | Т     | 96  | LEU  |
| 1   | Т     | 105 | ASN  |
| 1   | Т     | 130 | LEU  |
| 1   | Т     | 137 | LEU  |
| 1   | Т     | 152 | LYS  |
| 1   | Т     | 160 | SER  |
| 1   | Т     | 167 | ILE  |
| 1   | Т     | 171 | LYS  |
| 1   | Т     | 176 | ASP  |
| 1   | Т     | 183 | LEU  |
| 1   | Т     | 184 | SER  |
| 1   | Т     | 219 | ARG  |
| 1   | Т     | 246 | ARG  |
| 1   | Т     | 249 | TYR  |
| 1   | Т     | 296 | SER  |
| 1   | Т     | 330 | ARG  |
| 1   | Т     | 397 | ASN  |
| 1   | Т     | 400 | VAL  |
| 1   | Т     | 404 | MET  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | Т     | 413 | PHE  |
| 1   | Т     | 414 | ASN  |
| 1   | Т     | 419 | GLU  |
| 1   | Т     | 459 | LEU  |
| 1   | W     | 45  | LYS  |
| 1   | W     | 57  | ARG  |
| 1   | W     | 73  | SER  |
| 1   | W     | 76  | THR  |
| 1   | W     | 96  | LEU  |
| 1   | W     | 105 | ASN  |
| 1   | W     | 137 | LEU  |
| 1   | W     | 142 | LEU  |
| 1   | W     | 160 | SER  |
| 1   | W     | 183 | LEU  |
| 1   | W     | 184 | SER  |
| 1   | W     | 190 | LEU  |
| 1   | W     | 212 | MET  |
| 1   | W     | 246 | ARG  |
| 1   | W     | 297 | GLU  |
| 1   | W     | 392 | ILE  |
| 1   | W     | 400 | VAL  |
| 1   | W     | 404 | MET  |
| 1   | W     | 413 | PHE  |
| 1   | W     | 419 | GLU  |
| 1   | W     | 459 | LEU  |
| 1   | В     | 45  | LYS  |
| 1   | В     | 57  | ARG  |
| 1   | В     | 72  | ARG  |
| 1   | В     | 73  | SER  |
| 1   | В     | 75  | LEU  |
| 1   | В     | 96  | LEU  |
| 1   | B     | 105 | ASN  |
| 1   | B     | 137 | LEU  |
| 1   | B     | 160 | SER  |
| 1   | B     | 175 | ARG  |
| 1   | B     | 178 | GLN  |
| 1   | B     | 183 | LEU  |
| 1   | B     | 184 | SER  |
| 1   | B     | 219 | ARG  |
| 1   | B     | 246 | ARG  |
| 1   | B     | 330 | ARG  |
| 1   | В     | 400 | VAL  |



Continued from previous page...

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | В     | 404 | MET  |
| 1   | В     | 413 | PHE  |
| 1   | В     | 419 | GLU  |
| 1   | В     | 420 | LEU  |

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (73) such sidechains are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | L     | 32  | HIS  |
| 1   | L     | 126 | ASN  |
| 1   | L     | 209 | GLN  |
| 1   | L     | 263 | HIS  |
| 1   | L     | 302 | ASN  |
| 1   | С     | 28  | GLN  |
| 1   | С     | 83  | GLN  |
| 1   | С     | 185 | ASN  |
| 1   | С     | 263 | HIS  |
| 1   | С     | 307 | GLN  |
| 1   | С     | 384 | GLN  |
| 1   | С     | 388 | ASN  |
| 1   | С     | 513 | HIS  |
| 1   | F     | 83  | GLN  |
| 1   | F     | 122 | ASN  |
| 1   | F     | 124 | HIS  |
| 1   | F     | 135 | ASN  |
| 1   | F     | 218 | ASN  |
| 1   | F     | 263 | HIS  |
| 1   | F     | 302 | ASN  |
| 1   | F     | 388 | ASN  |
| 1   | F     | 451 | HIS  |
| 1   | Ν     | 124 | HIS  |
| 1   | N     | 135 | ASN  |
| 1   | N     | 155 | HIS  |
| 1   | Ν     | 218 | ASN  |
| 1   | Ν     | 263 | HIS  |
| 1   | N     | 266 | GLN  |
| 1   | Ν     | 302 | ASN  |
| 1   | Ν     | 388 | ASN  |
| 1   | Ν     | 451 | HIS  |
| 1   | Ν     | 470 | HIS  |
| 1   | Q     | 28  | GLN  |
| 1   | Q     | 83  | GLN  |



| Mol | Chain | Res              | Type |
|-----|-------|------------------|------|
| 1   | Q     | 124              | HIS  |
| 1   | Q     | 126              | ASN  |
| 1   | Q     | 129              | HIS  |
| 1   | Q     | 155              | HIS  |
| 1   | Q     | 178              | GLN  |
| 1   | Q     | 218              | ASN  |
| 1   | Q     | 263              | HIS  |
| 1   | Q     | 307              | GLN  |
| 1   | Q     | 388              | ASN  |
| 1   | Q     | 451              | HIS  |
| 1   | Т     | 83               | GLN  |
| 1   | Т     | 122              | ASN  |
| 1   | Т     | 124              | HIS  |
| 1   | Т     | 126              | ASN  |
| 1   | Т     | 135              | ASN  |
| 1   | Т     | 218              | ASN  |
| 1   | Т     | 263              | HIS  |
| 1   | Т     | 307              | GLN  |
| 1   | Т     | 388              | ASN  |
| 1   | Т     | 451              | HIS  |
| 1   | W     | 122              | ASN  |
| 1   | W     | 124              | HIS  |
| 1   | W     | 126              | ASN  |
| 1   | W     | 135              | ASN  |
| 1   | W     | 209              | GLN  |
| 1   | W     | 218              | ASN  |
| 1   | W     | 372              | GLN  |
| 1   | W     | 384              | GLN  |
| 1   | W     | 388              | ASN  |
| 1   | W     | 451              | HIS  |
| 1   | В     | $12\overline{4}$ | HIS  |
| 1   | В     | 133              | GLN  |
| 1   | В     | 218              | ASN  |
| 1   | В     | 263              | HIS  |
| 1   | В     | 302              | ASN  |
| 1   | В     | 307              | GLN  |
| 1   | В     | 384              | GLN  |
| 1   | В     | 388              | ASN  |
| 1   | В     | 451              | HIS  |



#### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

### 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

### 5.6 Ligand geometry (i)

45 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol  | Type | Chain   | Bos | Link | Bo             | ond leng | ths      | E              | ond ang | gles     |
|------|------|---------|-----|------|----------------|----------|----------|----------------|---------|----------|
| WIOI | туре | Ullalli | nes |      | Counts         | RMSZ     | # Z  > 2 | Counts         | RMSZ    | # Z  > 2 |
| 4    | GOL  | L       | 606 | -    | $5,\!5,\!5$    | 0.71     | 0        | $5,\!5,\!5$    | 0.51    | 0        |
| 4    | GOL  | W       | 604 | -    | $5,\!5,\!5$    | 0.48     | 0        | $5,\!5,\!5$    | 0.18    | 0        |
| 4    | GOL  | С       | 605 | -    | $5,\!5,\!5$    | 0.67     | 0        | $5,\!5,\!5$    | 0.67    | 0        |
| 4    | GOL  | Q       | 603 | -    | $5,\!5,\!5$    | 0.95     | 0        | $5,\!5,\!5$    | 1.22    | 0        |
| 4    | GOL  | L       | 605 | -    | $5,\!5,\!5$    | 0.16     | 0        | $5,\!5,\!5$    | 0.44    | 0        |
| 2    | NAP  | Т       | 601 | -    | $45,\!52,\!52$ | 1.00     | 5 (11%)  | $56,\!80,\!80$ | 1.55    | 9 (16%)  |
| 2    | NAP  | L       | 601 | -    | $45,\!52,\!52$ | 1.06     | 4 (8%)   | $56,\!80,\!80$ | 1.57    | 8 (14%)  |
| 2    | NAP  | В       | 601 | -    | $45,\!52,\!52$ | 1.05     | 3 (6%)   | $56,\!80,\!80$ | 1.88    | 12 (21%) |
| 4    | GOL  | N       | 606 | -    | $5,\!5,\!5$    | 0.59     | 0        | $5,\!5,\!5$    | 0.76    | 0        |
| 2    | NAP  | Q       | 601 | -    | $45,\!52,\!52$ | 0.88     | 2 (4%)   | 56,80,80       | 1.57    | 11 (19%) |
| 4    | GOL  | С       | 603 | -    | $5,\!5,\!5$    | 0.40     | 0        | $5,\!5,\!5$    | 0.27    | 0        |
| 4    | GOL  | N       | 605 | -    | $5,\!5,\!5$    | 0.54     | 0        | $5,\!5,\!5$    | 0.66    | 0        |
| 4    | GOL  | Ν       | 608 | -    | $5,\!5,\!5$    | 0.33     | 0        | $5,\!5,\!5$    | 0.31    | 0        |
| 3    | PO4  | F       | 602 | -    | 4,4,4          | 0.69     | 0        | 6,6,6          | 0.66    | 0        |
| 4    | GOL  | Т       | 604 | -    | $5,\!5,\!5$    | 0.60     | 0        | $5,\!5,\!5$    | 0.42    | 0        |
| 2    | NAP  | С       | 601 | -    | $45,\!52,\!52$ | 1.00     | 2 (4%)   | $56,\!80,\!80$ | 1.54    | 9 (16%)  |



| Mal | Trune | Chain       | Dec | Timle | Bond lengths   |      | Bond angles |             |      |          |
|-----|-------|-------------|-----|-------|----------------|------|-------------|-------------|------|----------|
|     | Type  | pe Chain He | nes | LIIIK | Counts         | RMSZ | # Z >2      | Counts      | RMSZ | # Z >2   |
| 4   | GOL   | С           | 604 | -     | $5,\!5,\!5$    | 0.43 | 0           | $5,\!5,\!5$ | 0.36 | 0        |
| 3   | PO4   | N           | 602 | -     | 4,4,4          | 0.78 | 0           | $6,\!6,\!6$ | 0.81 | 0        |
| 3   | PO4   | W           | 602 | -     | 4,4,4          | 0.59 | 0           | 6,6,6       | 1.03 | 0        |
| 4   | GOL   | Q           | 604 | -     | $5,\!5,\!5$    | 0.36 | 0           | $5,\!5,\!5$ | 0.32 | 0        |
| 4   | GOL   | N           | 607 | -     | $5,\!5,\!5$    | 0.74 | 0           | $5,\!5,\!5$ | 0.87 | 0        |
| 4   | GOL   | С           | 606 | -     | $5,\!5,\!5$    | 0.80 | 0           | $5,\!5,\!5$ | 0.96 | 0        |
| 4   | GOL   | N           | 604 | -     | $5,\!5,\!5$    | 0.47 | 0           | $5,\!5,\!5$ | 0.14 | 0        |
| 4   | GOL   | F           | 603 | -     | $5,\!5,\!5$    | 0.72 | 0           | $5,\!5,\!5$ | 0.98 | 0        |
| 4   | GOL   | L           | 603 | -     | $5,\!5,\!5$    | 0.62 | 0           | $5,\!5,\!5$ | 0.40 | 0        |
| 3   | PO4   | С           | 602 | -     | 4,4,4          | 0.75 | 0           | 6,6,6       | 0.95 | 0        |
| 4   | GOL   | L           | 604 | -     | $5,\!5,\!5$    | 0.46 | 0           | $5,\!5,\!5$ | 0.39 | 0        |
| 4   | GOL   | L           | 607 | -     | $5,\!5,\!5$    | 0.64 | 0           | $5,\!5,\!5$ | 0.57 | 0        |
| 4   | GOL   | F           | 604 | -     | $5,\!5,\!5$    | 0.49 | 0           | $5,\!5,\!5$ | 0.31 | 0        |
| 2   | NAP   | F           | 601 | -     | $45,\!52,\!52$ | 0.90 | 2 (4%)      | 56,80,80    | 1.43 | 8 (14%)  |
| 4   | GOL   | F           | 605 | -     | $5,\!5,\!5$    | 0.27 | 0           | $5,\!5,\!5$ | 0.22 | 0        |
| 4   | GOL   | F           | 606 | -     | $5,\!5,\!5$    | 0.37 | 0           | $5,\!5,\!5$ | 0.37 | 0        |
| 4   | GOL   | Т           | 603 | -     | $5,\!5,\!5$    | 0.64 | 0           | $5,\!5,\!5$ | 0.67 | 0        |
| 4   | GOL   | W           | 603 | -     | $5,\!5,\!5$    | 0.72 | 0           | $5,\!5,\!5$ | 0.73 | 0        |
| 4   | GOL   | В           | 603 | -     | $5,\!5,\!5$    | 0.71 | 0           | $5,\!5,\!5$ | 0.77 | 0        |
| 2   | NAP   | Ν           | 601 | -     | 45,52,52       | 1.11 | 4 (8%)      | 56,80,80    | 1.67 | 11 (19%) |
| 3   | PO4   | Т           | 602 | -     | 4,4,4          | 0.72 | 0           | 6,6,6       | 0.78 | 0        |
| 4   | GOL   | N           | 603 | -     | $5,\!5,\!5$    | 0.44 | 0           | $5,\!5,\!5$ | 0.53 | 0        |
| 4   | GOL   | L           | 609 | -     | $5,\!5,\!5$    | 0.71 | 0           | $5,\!5,\!5$ | 0.68 | 0        |
| 3   | PO4   | Q           | 602 | -     | 4,4,4          | 0.82 | 0           | 6,6,6       | 0.51 | 0        |
| 4   | GOL   | L           | 608 | -     | $5,\!5,\!5$    | 0.48 | 0           | $5,\!5,\!5$ | 0.55 | 0        |
| 3   | PO4   | В           | 602 | -     | 4,4,4          | 0.75 | 0           | $6,\!6,\!6$ | 0.72 | 0        |
| 4   | GOL   | F           | 607 | -     | $5,\!5,\!5$    | 0.61 | 0           | $5,\!5,\!5$ | 0.31 | 0        |
| 3   | PO4   | L           | 602 | -     | 4,4,4          | 0.67 | 0           | $6,\!6,\!6$ | 0.79 | 0        |
| 2   | NAP   | W           | 601 | -     | 45,52,52       | 0.83 | 1 (2%)      | 56,80,80    | 1.44 | 9 (16%)  |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

| Mol | Type | Chain | Res | Link | Chirals | Torsions | Rings |
|-----|------|-------|-----|------|---------|----------|-------|
| 4   | GOL  | L     | 606 | -    | -       | 2/4/4/4  | -     |
| 4   | GOL  | W     | 604 | -    | -       | 0/4/4/4  | -     |
| 4   | GOL  | С     | 605 | -    | -       | 2/4/4/4  | -     |
| 4   | GOL  | Q     | 603 | -    | -       | 2/4/4/4  | -     |
| 4   | GOL  | L     | 605 | -    | -       | 0/4/4/4  | -     |



| 6 |  |  |
|---|--|--|
| 5 |  |  |
| 5 |  |  |

| Mol | Type | Chain | $\mathbf{Res}$ | Link | Chirals | Torsions   | Rings   |
|-----|------|-------|----------------|------|---------|------------|---------|
| 2   | NAP  | Т     | 601            | -    | -       | 5/31/67/67 | 0/5/5/5 |
| 2   | NAP  | L     | 601            | -    | -       | 3/31/67/67 | 0/5/5/5 |
| 2   | NAP  | В     | 601            | -    | -       | 7/31/67/67 | 0/5/5/5 |
| 4   | GOL  | N     | 606            | -    | -       | 2/4/4/4    | -       |
| 2   | NAP  | Q     | 601            | -    | -       | 2/31/67/67 | 0/5/5/5 |
| 4   | GOL  | С     | 603            | -    | -       | 2/4/4/4    | -       |
| 4   | GOL  | N     | 605            | -    | -       | 2/4/4/4    | -       |
| 4   | GOL  | N     | 608            | -    | -       | 2/4/4/4    | -       |
| 4   | GOL  | Т     | 604            | -    | -       | 0/4/4/4    | -       |
| 2   | NAP  | С     | 601            | -    | -       | 4/31/67/67 | 0/5/5/5 |
| 4   | GOL  | С     | 604            | -    | -       | 0/4/4/4    | -       |
| 4   | GOL  | Q     | 604            | -    | -       | 3/4/4/4    | -       |
| 4   | GOL  | N     | 607            | -    | -       | 2/4/4/4    | -       |
| 4   | GOL  | С     | 606            | -    | -       | 1/4/4/4    | -       |
| 4   | GOL  | N     | 604            | -    | -       | 2/4/4/4    | -       |
| 4   | GOL  | F     | 603            | -    | -       | 4/4/4/4    | -       |
| 4   | GOL  | L     | 603            | -    | -       | 0/4/4/4    | -       |
| 4   | GOL  | L     | 607            | -    | -       | 3/4/4/4    | -       |
| 4   | GOL  | L     | 604            | -    | -       | 1/4/4/4    | -       |
| 4   | GOL  | F     | 604            | -    | -       | 1/4/4/4    | -       |
| 2   | NAP  | F     | 601            | -    | -       | 5/31/67/67 | 0/5/5/5 |
| 4   | GOL  | F     | 605            | -    | -       | 2/4/4/4    | -       |
| 4   | GOL  | F     | 606            | -    | -       | 2/4/4/4    | -       |
| 4   | GOL  | Т     | 603            | -    | -       | 3/4/4/4    | -       |
| 4   | GOL  | W     | 603            | -    | -       | 2/4/4/4    | -       |
| 4   | GOL  | В     | 603            | -    | -       | 2/4/4/4    | -       |
| 2   | NAP  | N     | 601            | -    | -       | 2/31/67/67 | 0/5/5/5 |
| 4   | GOL  | N     | 603            | -    | -       | 4/4/4/4    | -       |
| 4   | GOL  | L     | 609            | -    | -       | 2/4/4/4    | -       |
| 4   | GOL  | L     | 608            | -    | -       | 2/4/4/4    | -       |
| 4   | GOL  | F     | 607            | -    | -       | 0/4/4/4    | -       |
| 2   | NAP  | W     | 601            | -    | -       | 7/31/67/67 | 0/5/5/5 |

All (23) bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms   | Z    | Observed(Å) | $\operatorname{Ideal}(\operatorname{\AA})$ |
|-----|-------|-----|------|---------|------|-------------|--------------------------------------------|
| 2   | С     | 601 | NAP  | O4B-C1B | 3.32 | 1.45        | 1.41                                       |



| Mol | Chain | Res | Type | Atoms                | Z    | Observed(Å) | $\mathrm{Ideal}(\mathrm{\AA})$ |
|-----|-------|-----|------|----------------------|------|-------------|--------------------------------|
| 2   | L     | 601 | NAP  | C2A-N3A              | 3.10 | 1.37        | 1.32                           |
| 2   | Ν     | 601 | NAP  | O4B-C1B              | 3.08 | 1.45        | 1.41                           |
| 2   | Ν     | 601 | NAP  | C5A-C4A              | 2.92 | 1.48        | 1.40                           |
| 2   | L     | 601 | NAP  | O4D-C1D              | 2.80 | 1.45        | 1.41                           |
| 2   | В     | 601 | NAP  | C5A-C4A              | 2.76 | 1.48        | 1.40                           |
| 2   | Т     | 601 | NAP  | C2A-N3A              | 2.62 | 1.36        | 1.32                           |
| 2   | Т     | 601 | NAP  | O4D-C1D              | 2.60 | 1.44        | 1.41                           |
| 2   | Ν     | 601 | NAP  | O4D-C1D              | 2.55 | 1.44        | 1.41                           |
| 2   | В     | 601 | NAP  | P2B-O2B              | 2.51 | 1.64        | 1.59                           |
| 2   | В     | 601 | NAP  | O4B-C1B              | 2.30 | 1.44        | 1.41                           |
| 2   | С     | 601 | NAP  | C2A-N3A              | 2.28 | 1.35        | 1.32                           |
| 2   | Т     | 601 | NAP  | C5A-C4A              | 2.26 | 1.46        | 1.40                           |
| 2   | F     | 601 | NAP  | C5A-C4A              | 2.21 | 1.46        | 1.40                           |
| 2   | L     | 601 | NAP  | O4B-C1B              | 2.17 | 1.44        | 1.41                           |
| 2   | Q     | 601 | NAP  | C2A-N3A              | 2.12 | 1.35        | 1.32                           |
| 2   | Ν     | 601 | NAP  | C2A-N3A              | 2.10 | 1.35        | 1.32                           |
| 2   | Т     | 601 | NAP  | C4A-N3A              | 2.09 | 1.38        | 1.35                           |
| 2   | W     | 601 | NAP  | C5A-C4A              | 2.07 | 1.46        | 1.40                           |
| 2   | L     | 601 | NAP  | $C\overline{5A-C4A}$ | 2.05 | 1.46        | 1.40                           |
| 2   | F     | 601 | NAP  | C2A-N3A              | 2.03 | 1.35        | 1.32                           |
| 2   | Q     | 601 | NAP  | C5A-C4A              | 2.02 | 1.46        | 1.40                           |
| 2   | Т     | 601 | NAP  | O4B-C1B              | 2.01 | 1.43        | 1.41                           |

All (77) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-------------|-------|------------------|---------------|
| 2   | В     | 601 | NAP  | PN-O3-PA    | -5.86 | 112.71           | 132.83        |
| 2   | В     | 601 | NAP  | N6A-C6A-N1A | 5.09  | 129.14           | 118.57        |
| 2   | Т     | 601 | NAP  | N3A-C2A-N1A | -5.07 | 120.76           | 128.68        |
| 2   | С     | 601 | NAP  | N3A-C2A-N1A | -4.61 | 121.47           | 128.68        |
| 2   | L     | 601 | NAP  | N3A-C2A-N1A | -4.55 | 121.57           | 128.68        |
| 2   | Т     | 601 | NAP  | C1B-N9A-C4A | -4.51 | 118.72           | 126.64        |
| 2   | F     | 601 | NAP  | N3A-C2A-N1A | -4.50 | 121.64           | 128.68        |
| 2   | Q     | 601 | NAP  | C3N-C7N-N7N | 4.34  | 122.95           | 117.75        |
| 2   | С     | 601 | NAP  | C3N-C7N-N7N | 4.25  | 122.86           | 117.75        |
| 2   | Q     | 601 | NAP  | N3A-C2A-N1A | -4.25 | 122.04           | 128.68        |
| 2   | W     | 601 | NAP  | N3A-C2A-N1A | -4.21 | 122.10           | 128.68        |
| 2   | В     | 601 | NAP  | C5A-C6A-N6A | -4.20 | 113.96           | 120.35        |
| 2   | В     | 601 | NAP  | C4A-C5A-N7A | 4.15  | 113.72           | 109.40        |
| 2   | L     | 601 | NAP  | PN-O3-PA    | -4.14 | 118.63           | 132.83        |
| 2   | N     | 601 | NAP  | O4B-C1B-C2B | -4.04 | 99.58            | 106.59        |
| 2   | В     | 601 | NAP  | N3A-C2A-N1A | -4.02 | 122.39           | 128.68        |



| Mol | Chain | Res | Type | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-------------|-------|------------------|---------------|
| 2   | В     | 601 | NAP  | C3B-C2B-C1B | -4.00 | 95.38            | 102.89        |
| 2   | Ν     | 601 | NAP  | N6A-C6A-N1A | 3.91  | 126.68           | 118.57        |
| 2   | Т     | 601 | NAP  | C3N-C7N-N7N | 3.81  | 122.32           | 117.75        |
| 2   | F     | 601 | NAP  | C3N-C7N-N7N | 3.69  | 122.18           | 117.75        |
| 2   | W     | 601 | NAP  | C3N-C7N-N7N | 3.62  | 122.09           | 117.75        |
| 2   | N     | 601 | NAP  | PN-O3-PA    | -3.59 | 120.51           | 132.83        |
| 2   | N     | 601 | NAP  | C3N-C7N-N7N | 3.57  | 122.04           | 117.75        |
| 2   | F     | 601 | NAP  | C1B-N9A-C4A | -3.50 | 120.48           | 126.64        |
| 2   | С     | 601 | NAP  | C1B-N9A-C4A | -3.48 | 120.53           | 126.64        |
| 2   | Q     | 601 | NAP  | C1B-N9A-C4A | -3.42 | 120.64           | 126.64        |
| 2   | W     | 601 | NAP  | C1B-N9A-C4A | -3.33 | 120.79           | 126.64        |
| 2   | Q     | 601 | NAP  | O7N-C7N-N7N | -3.32 | 117.86           | 122.58        |
| 2   | Q     | 601 | NAP  | PN-O3-PA    | -3.30 | 121.50           | 132.83        |
| 2   | L     | 601 | NAP  | C1B-N9A-C4A | -3.26 | 120.91           | 126.64        |
| 2   | F     | 601 | NAP  | O3X-P2B-O2X | 3.18  | 119.78           | 107.64        |
| 2   | С     | 601 | NAP  | O3X-P2B-O2X | 3.17  | 119.74           | 107.64        |
| 2   | L     | 601 | NAP  | O3X-P2B-O2X | 3.13  | 119.61           | 107.64        |
| 2   | Ν     | 601 | NAP  | O3X-P2B-O2X | 3.11  | 119.52           | 107.64        |
| 2   | Ν     | 601 | NAP  | C5A-C6A-N6A | -3.08 | 115.67           | 120.35        |
| 2   | Ν     | 601 | NAP  | N3A-C2A-N1A | -3.06 | 123.89           | 128.68        |
| 2   | Ν     | 601 | NAP  | O7N-C7N-C3N | -3.06 | 115.97           | 119.63        |
| 2   | F     | 601 | NAP  | PN-O3-PA    | -3.05 | 122.34           | 132.83        |
| 2   | С     | 601 | NAP  | PN-O3-PA    | -3.02 | 122.47           | 132.83        |
| 2   | Ν     | 601 | NAP  | C2N-C3N-C4N | 2.94  | 121.60           | 118.26        |
| 2   | В     | 601 | NAP  | C2A-N1A-C6A | 2.91  | 123.73           | 118.75        |
| 2   | Т     | 601 | NAP  | O3X-P2B-O2X | 2.88  | 118.63           | 107.64        |
| 2   | С     | 601 | NAP  | O7N-C7N-N7N | -2.85 | 118.53           | 122.58        |
| 2   | Т     | 601 | NAP  | PN-O3-PA    | -2.75 | 123.40           | 132.83        |
| 2   | В     | 601 | NAP  | C3N-C7N-N7N | 2.70  | 120.99           | 117.75        |
| 2   | L     | 601 | NAP  | O2N-PN-O1N  | 2.70  | 125.58           | 112.24        |
| 2   | W     | 601 | NAP  | PN-O3-PA    | -2.70 | 123.57           | 132.83        |
| 2   | W     | 601 | NAP  | O3X-P2B-O2X | 2.64  | 117.74           | 107.64        |
| 2   | Ν     | 601 | NAP  | C3B-C2B-C1B | -2.62 | 97.96            | 102.89        |
| 2   | В     | 601 | NAP  | O4B-C4B-C5B | -2.53 | 101.05           | 109.37        |
| 2   | Т     | 601 | NAP  | O7N-C7N-N7N | -2.50 | 119.03           | 122.58        |
| 2   | В     | 601 | NAP  | O2A-PA-O5B  | -2.46 | 96.31            | 107.75        |
| 2   | Q     | 601 | NAP  | N6A-C6A-N1A | 2.46  | 123.68           | 118.57        |
| 2   | С     | 601 | NAP  | C3B-C2B-C1B | -2.42 | 98.35            | 102.89        |
| 2   | N     | 601 | NAP  | C5N-C4N-C3N | -2.36 | 117.55           | 120.34        |
| 2   | F     | 601 | NAP  | C2A-N1A-C6A | 2.35  | 122.77           | 118.75        |
| 2   | В     | 601 | NAP  | O3X-P2B-O2X | 2.34  | 116.56           | 107.64        |
| 2   | F     | 601 | NAP  | N6A-C6A-N1A | 2.33  | 123.42           | 118.57        |



| Mol | Chain | $\mathbf{Res}$ | Type | Atoms       | Z     | $\mathbf{Observed}(^{o})$ | $Ideal(^{o})$ |
|-----|-------|----------------|------|-------------|-------|---------------------------|---------------|
| 2   | Q     | 601            | NAP  | O3X-P2B-O2X | 2.33  | 116.53                    | 107.64        |
| 2   | Q     | 601            | NAP  | O2A-PA-O5B  | -2.30 | 97.04                     | 107.75        |
| 2   | L     | 601            | NAP  | C5A-C6A-N6A | -2.29 | 116.86                    | 120.35        |
| 2   | Т     | 601            | NAP  | C2A-N1A-C6A | 2.29  | 122.67                    | 118.75        |
| 2   | W     | 601            | NAP  | O2N-PN-O1N  | 2.28  | 123.52                    | 112.24        |
| 2   | Т     | 601            | NAP  | O3X-P2B-O2B | -2.27 | 95.84                     | 105.99        |
| 2   | W     | 601            | NAP  | C3D-C2D-C1D | 2.25  | 104.37                    | 100.98        |
| 2   | L     | 601            | NAP  | O2A-PA-O1A  | 2.21  | 123.18                    | 112.24        |
| 2   | W     | 601            | NAP  | O2A-PA-O1A  | 2.21  | 123.18                    | 112.24        |
| 2   | W     | 601            | NAP  | C4A-C5A-N7A | -2.20 | 107.10                    | 109.40        |
| 2   | Q     | 601            | NAP  | O2A-PA-O1A  | 2.20  | 123.11                    | 112.24        |
| 2   | L     | 601            | NAP  | C3N-C7N-N7N | 2.19  | 120.38                    | 117.75        |
| 2   | В     | 601            | NAP  | O2A-PA-O1A  | 2.13  | 122.79                    | 112.24        |
| 2   | Q     | 601            | NAP  | C3B-C2B-C1B | -2.12 | 98.90                     | 102.89        |
| 2   | F     | 601            | NAP  | O7N-C7N-N7N | -2.12 | 119.57                    | 122.58        |
| 2   | С     | 601            | NAP  | C5A-C6A-N6A | -2.11 | 117.15                    | 120.35        |
| 2   | С     | 601            | NAP  | O5B-C5B-C4B | 2.05  | 116.05                    | 108.99        |
| 2   | Т     | 601            | NAP  | N6A-C6A-N1A | 2.05  | 122.82                    | 118.57        |
| 2   | Q     | 601            | NAP  | C5A-C6A-N6A | -2.01 | 117.30                    | 120.35        |

There are no chirality outliers.

All (85) torsion outliers are listed below:

| Mol | Chain | Res | Type | Atoms         |
|-----|-------|-----|------|---------------|
| 2   | F     | 601 | NAP  | PN-O3-PA-O5B  |
| 2   | Т     | 601 | NAP  | PN-O3-PA-O5B  |
| 2   | W     | 601 | NAP  | PN-O3-PA-O5B  |
| 2   | В     | 601 | NAP  | C5B-O5B-PA-O3 |
| 2   | В     | 601 | NAP  | PN-O3-PA-O5B  |
| 4   | L     | 606 | GOL  | O1-C1-C2-O2   |
| 4   | L     | 606 | GOL  | O1-C1-C2-C3   |
| 4   | L     | 607 | GOL  | O1-C1-C2-C3   |
| 4   | L     | 609 | GOL  | O1-C1-C2-C3   |
| 4   | С     | 603 | GOL  | O1-C1-C2-C3   |
| 4   | С     | 605 | GOL  | O1-C1-C2-C3   |
| 4   | F     | 603 | GOL  | O1-C1-C2-O2   |
| 4   | F     | 603 | GOL  | O1-C1-C2-C3   |
| 4   | F     | 603 | GOL  | C1-C2-C3-O3   |
| 4   | F     | 605 | GOL  | C1-C2-C3-O3   |
| 4   | F     | 605 | GOL  | O2-C2-C3-O3   |
| 4   | F     | 606 | GOL  | O1-C1-C2-C3   |
| 4   | N     | 603 | GOL  | O1-C1-C2-C3   |



| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 4   | N     | 603 | GOL  | C1-C2-C3-O3     |
| 4   | N     | 606 | GOL  | C1-C2-C3-O3     |
| 4   | N     | 608 | GOL  | O1-C1-C2-C3     |
| 4   | Q     | 603 | GOL  | O1-C1-C2-C3     |
| 4   | Q     | 604 | GOL  | O1-C1-C2-C3     |
| 4   | Т     | 603 | GOL  | O1-C1-C2-C3     |
| 4   | W     | 603 | GOL  | O1-C1-C2-C3     |
| 4   | В     | 603 | GOL  | O1-C1-C2-C3     |
| 2   | N     | 601 | NAP  | C3B-C2B-O2B-P2B |
| 2   | Q     | 601 | NAP  | C3B-C2B-O2B-P2B |
| 2   | В     | 601 | NAP  | C3B-C2B-O2B-P2B |
| 4   | L     | 607 | GOL  | O1-C1-C2-O2     |
| 4   | N     | 606 | GOL  | O2-C2-C3-O3     |
| 2   | С     | 601 | NAP  | C1B-C2B-O2B-P2B |
| 2   | Т     | 601 | NAP  | C1B-C2B-O2B-P2B |
| 2   | L     | 601 | NAP  | C3B-C2B-O2B-P2B |
| 2   | С     | 601 | NAP  | C3B-C2B-O2B-P2B |
| 2   | F     | 601 | NAP  | C3B-C2B-O2B-P2B |
| 2   | Т     | 601 | NAP  | C3B-C2B-O2B-P2B |
| 2   | W     | 601 | NAP  | C3B-C2B-O2B-P2B |
| 4   | L     | 608 | GOL  | O1-C1-C2-C3     |
| 4   | N     | 604 | GOL  | O1-C1-C2-C3     |
| 4   | N     | 607 | GOL  | O1-C1-C2-C3     |
| 2   | L     | 601 | NAP  | C1B-C2B-O2B-P2B |
| 2   | F     | 601 | NAP  | C1B-C2B-O2B-P2B |
| 2   | W     | 601 | NAP  | C1B-C2B-O2B-P2B |
| 4   | L     | 609 | GOL  | O1-C1-C2-O2     |
| 4   | С     | 603 | GOL  | O1-C1-C2-O2     |
| 4   | С     | 605 | GOL  | O1-C1-C2-O2     |
| 4   | F     | 603 | GOL  | O2-C2-C3-O3     |
| 4   | Q     | 603 | GOL  | O1-C1-C2-O2     |
| 4   | W     | 603 | GOL  | O1-C1-C2-O2     |
| 4   | F     | 606 | GOL  | O1-C1-C2-O2     |
| 4   | N     | 604 | GOL  | O1-C1-C2-O2     |
| 4   | N     | 608 | GOL  | O1-C1-C2-O2     |
| 4   | Q     | 604 | GOL  | O1-C1-C2-O2     |
| 4   | Т     | 603 | GOL  | O1-C1-C2-O2     |
| 4   | В     | 603 | GOL  | O1-C1-C2-O2     |
| 4   | N     | 603 | GOL  | O2-C2-C3-O3     |
| 2   | L     | 601 | NAP  | PN-O3-PA-O5B    |
| 2   | С     | 601 | NAP  | PN-O3-PA-O5B    |
| 2   | N     | 601 | NAP  | PN-O3-PA-O5B    |

Continued from previous page...



| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 4   | L     | 608 | GOL  | O1-C1-C2-O2     |
| 4   | F     | 604 | GOL  | O2-C2-C3-O3     |
| 4   | N     | 607 | GOL  | O1-C1-C2-O2     |
| 2   | С     | 601 | NAP  | PA-O3-PN-O1N    |
| 2   | В     | 601 | NAP  | PA-O3-PN-O1N    |
| 4   | N     | 605 | GOL  | O1-C1-C2-C3     |
| 2   | В     | 601 | NAP  | C5B-O5B-PA-O2A  |
| 2   | Q     | 601 | NAP  | C1B-C2B-O2B-P2B |
| 2   | W     | 601 | NAP  | PA-O3-PN-O1N    |
| 2   | F     | 601 | NAP  | PA-O3-PN-O1N    |
| 2   | Т     | 601 | NAP  | PA-O3-PN-O1N    |
| 4   | N     | 603 | GOL  | O1-C1-C2-O2     |
| 4   | N     | 605 | GOL  | O1-C1-C2-O2     |
| 2   | W     | 601 | NAP  | C2B-O2B-P2B-O1X |
| 2   | W     | 601 | NAP  | C2B-O2B-P2B-O3X |
| 4   | L     | 604 | GOL  | O2-C2-C3-O3     |
| 2   | В     | 601 | NAP  | O4B-C4B-C5B-O5B |
| 2   | F     | 601 | NAP  | PA-O3-PN-O2N    |
| 2   | Т     | 601 | NAP  | PA-O3-PN-O2N    |
| 2   | W     | 601 | NAP  | PA-O3-PN-O2N    |
| 2   | В     | 601 | NAP  | PA-O3-PN-O2N    |
| 4   | L     | 607 | GOL  | C1-C2-C3-O3     |
| 4   | С     | 606 | GOL  | O1-C1-C2-C3     |
| 4   | Q     | 604 | GOL  | C1-C2-C3-O3     |
| 4   | Т     | 603 | GOL  | O2-C2-C3-O3     |

Continued from previous page...

There are no ring outliers.

| 11 monomers are | involved | in 15 | short | contacts: |
|-----------------|----------|-------|-------|-----------|
|-----------------|----------|-------|-------|-----------|

| Mol | Chain | Res | Type | Clashes | Symm-Clashes |
|-----|-------|-----|------|---------|--------------|
| 4   | С     | 605 | GOL  | 1       | 0            |
| 4   | Q     | 603 | GOL  | 1       | 0            |
| 2   | Т     | 601 | NAP  | 1       | 0            |
| 2   | В     | 601 | NAP  | 2       | 0            |
| 4   | Ν     | 606 | GOL  | 1       | 0            |
| 4   | Ν     | 605 | GOL  | 2       | 0            |
| 4   | С     | 606 | GOL  | 3       | 0            |
| 4   | L     | 603 | GOL  | 1       | 0            |
| 4   | F     | 605 | GOL  | 1       | 0            |
| 4   | Т     | 603 | GOL  | 1       | 0            |
| 2   | N     | 601 | NAP  | 1       | 0            |



The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient the outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.



































### 5.7 Other polymers (i)

There are no such residues in this entry.

### 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



## 6 Fit of model and data (i)

### 6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median,  $95^{th}$  percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

| Mol | Chain | Analysed        | $\langle RSRZ \rangle$ | #RSRZ>2 |    | $OWAB(Å^2)$ | Q < 0.9          |   |
|-----|-------|-----------------|------------------------|---------|----|-------------|------------------|---|
| 1   | В     | 485/515~(94%)   | -0.29                  | 3~(0%)  | 89 | 88          | 30, 54, 91, 134  | 0 |
| 1   | С     | 487/515~(94%)   | -0.30                  | 2(0%)   | 92 | 91          | 29, 50, 91, 142  | 0 |
| 1   | F     | 486/515~(94%)   | -0.37                  | 1 (0%)  | 95 | 95          | 32, 48, 82, 113  | 0 |
| 1   | L     | 486/515~(94%)   | -0.28                  | 2(0%)   | 92 | 91          | 27, 48, 102, 127 | 0 |
| 1   | Ν     | 486/515~(94%)   | -0.13                  | 1 (0%)  | 95 | 95          | 30, 61, 96, 137  | 0 |
| 1   | Q     | 487/515~(94%)   | -0.18                  | 5 (1%)  | 82 | 80          | 32, 53, 100, 126 | 0 |
| 1   | Т     | 486/515~(94%)   | -0.10                  | 5 (1%)  | 82 | 80          | 37, 63, 97, 129  | 0 |
| 1   | W     | 486/515~(94%)   | -0.04                  | 7 (1%)  | 75 | 71          | 37, 65, 109, 133 | 0 |
| All | All   | 3889/4120~(94%) | -0.21                  | 26 (0%) | 87 | 86          | 27, 55, 97, 142  | 0 |

All (26) RSRZ outliers are listed below:

| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | С     | 178 | GLN  | 4.8  |
| 1   | Q     | 74  | ARG  | 3.9  |
| 1   | W     | 80  | ILE  | 3.9  |
| 1   | W     | 121 | LEU  | 3.2  |
| 1   | Т     | 74  | ARG  | 3.2  |
| 1   | В     | 513 | HIS  | 2.9  |
| 1   | Т     | 249 | TYR  | 2.9  |
| 1   | L     | 513 | HIS  | 2.6  |
| 1   | Т     | 330 | ARG  | 2.5  |
| 1   | Q     | 108 | VAL  | 2.5  |
| 1   | Ν     | 92  | PRO  | 2.4  |
| 1   | W     | 178 | GLN  | 2.4  |
| 1   | С     | 315 | GLU  | 2.4  |
| 1   | W     | 102 | PHE  | 2.4  |
| 1   | L     | 96  | LEU  | 2.3  |
| 1   | Т     | 80  | ILE  | 2.3  |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | F     | 175 | ARG  | 2.3  |
| 1   | В     | 175 | ARG  | 2.2  |
| 1   | В     | 315 | GLU  | 2.2  |
| 1   | Т     | 176 | ASP  | 2.2  |
| 1   | Q     | 123 | SER  | 2.1  |
| 1   | W     | 70  | TYR  | 2.1  |
| 1   | W     | 118 | TYR  | 2.1  |
| 1   | Q     | 413 | PHE  | 2.1  |
| 1   | W     | 74  | ARG  | 2.1  |
| 1   | Q     | 121 | LEU  | 2.0  |

#### 6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

#### 6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

#### 6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median,  $95^{th}$  percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

| Mol | Type | Chain | Res | Atoms            | RSCC | RSR  | $B-factors(Å^2)$    | Q<0.9 |
|-----|------|-------|-----|------------------|------|------|---------------------|-------|
| 4   | GOL  | С     | 603 | 6/6              | 0.43 | 0.35 | 80,90,96,96         | 0     |
| 4   | GOL  | F     | 607 | 6/6              | 0.52 | 0.58 | 77,93,99,103        | 0     |
| 4   | GOL  | C     | 605 | 6/6              | 0.58 | 0.47 | 77,94,103,104       | 0     |
| 4   | GOL  | N     | 604 | 6/6              | 0.70 | 0.31 | 85,90,94,94         | 0     |
| 4   | GOL  | L     | 606 | 6/6              | 0.74 | 0.34 | 66,72,77,78         | 0     |
| 4   | GOL  | F     | 606 | 6/6              | 0.74 | 0.17 | $85,\!93,\!95,\!97$ | 0     |
| 4   | GOL  | Т     | 604 | 6/6              | 0.76 | 0.27 | 86,91,93,94         | 0     |
| 4   | GOL  | Ν     | 607 | 6/6              | 0.77 | 0.28 | $63,\!68,\!73,\!73$ | 0     |
| 4   | GOL  | L     | 608 | 6/6              | 0.77 | 0.26 | 84,90,91,92         | 0     |
| 4   | GOL  | С     | 604 | 6/6              | 0.78 | 0.26 | 64,73,83,83         | 0     |
| 4   | GOL  | Q     | 604 | 6/6              | 0.79 | 0.29 | $61,\!70,\!72,\!73$ | 0     |
| 3   | PO4  | L     | 602 | $\overline{5/5}$ | 0.79 | 0.20 | 90,96,101,112       | 0     |
| 3   | PO4  | W     | 602 | 5/5              | 0.80 | 0.20 | 90,94,96,106        | 0     |



| 6] | ΕC | )7 |
|----|----|----|
| -  | -  | -  |

| Mol | Type | Chain | Res | Atoms | RSCC | RSR  | B-factors(Å <sup>2</sup> )     | Q<0.9 |
|-----|------|-------|-----|-------|------|------|--------------------------------|-------|
| 4   | GOL  | В     | 603 | 6/6   | 0.80 | 0.26 | 43,46,49,57                    | 0     |
| 4   | GOL  | L     | 609 | 6/6   | 0.82 | 0.28 | 66,74,77,79                    | 0     |
| 3   | PO4  | В     | 602 | 5/5   | 0.82 | 0.16 | 103,109,112,118                | 0     |
| 4   | GOL  | Q     | 603 | 6/6   | 0.82 | 0.22 | 41,45,47,51                    | 0     |
| 3   | PO4  | С     | 602 | 5/5   | 0.83 | 0.19 | 87,88,89,102                   | 0     |
| 4   | GOL  | W     | 604 | 6/6   | 0.84 | 0.45 | 75,78,79,80                    | 0     |
| 4   | GOL  | N     | 603 | 6/6   | 0.84 | 0.29 | 64,67,72,74                    | 0     |
| 4   | GOL  | L     | 607 | 6/6   | 0.85 | 0.28 | $59,\!65,\!67,\!67$            | 0     |
| 3   | PO4  | Т     | 602 | 5/5   | 0.86 | 0.14 | $88,\!91,\!98,\!103$           | 0     |
| 4   | GOL  | F     | 604 | 6/6   | 0.86 | 0.23 | $58,\!66,\!70,\!70$            | 0     |
| 3   | PO4  | Ν     | 602 | 5/5   | 0.87 | 0.14 | $77,\!84,\!92,\!95$            | 0     |
| 4   | GOL  | Ν     | 606 | 6/6   | 0.87 | 0.35 | 68,72,77,81                    | 0     |
| 4   | GOL  | W     | 603 | 6/6   | 0.87 | 0.17 | $46,\!54,\!54,\!63$            | 0     |
| 4   | GOL  | L     | 604 | 6/6   | 0.87 | 0.23 | $65,\!75,\!79,\!82$            | 0     |
| 4   | GOL  | F     | 605 | 6/6   | 0.87 | 0.28 | $69,\!78,\!82,\!91$            | 0     |
| 4   | GOL  | С     | 606 | 6/6   | 0.88 | 0.24 | $38,\!41,\!50,\!53$            | 0     |
| 4   | GOL  | L     | 603 | 6/6   | 0.89 | 0.21 | $43,\!47,\!50,\!52$            | 0     |
| 3   | PO4  | Q     | 602 | 5/5   | 0.90 | 0.14 | 88,90,99,100                   | 0     |
| 4   | GOL  | F     | 603 | 6/6   | 0.91 | 0.19 | $39,\!43,\!46,\!47$            | 0     |
| 4   | GOL  | Т     | 603 | 6/6   | 0.91 | 0.23 | $47,\!53,\!56,\!59$            | 0     |
| 4   | GOL  | L     | 605 | 6/6   | 0.91 | 0.22 | 69,70,71,75                    | 0     |
| 4   | GOL  | Ν     | 608 | 6/6   | 0.92 | 0.19 | 68,74,76,76                    | 0     |
| 3   | PO4  | F     | 602 | 5/5   | 0.92 | 0.13 | 80,80,84,93                    | 0     |
| 4   | GOL  | Ν     | 605 | 6/6   | 0.93 | 0.22 | $39,\!48,\!50,\!51$            | 0     |
| 2   | NAP  | N     | 601 | 48/48 | 0.95 | 0.14 | 42,52,68,73                    | 0     |
| 2   | NAP  | В     | 601 | 48/48 | 0.96 | 0.15 | $39,\!46,\!57,\!68$            | 0     |
| 2   | NAP  | F     | 601 | 48/48 | 0.96 | 0.13 | 43,54,65,73                    | 0     |
| 2   | NAP  | W     | 601 | 48/48 | 0.97 | 0.11 | $41,\!49,\!54,\!57$            | 0     |
| 2   | NAP  | С     | 601 | 48/48 | 0.97 | 0.12 | 38,47,53,54                    | 0     |
| 2   | NAP  | Т     | 601 | 48/48 | 0.97 | 0.12 | 42,52,57,58                    | 0     |
| 2   | NAP  | L     | 601 | 48/48 | 0.98 | 0.13 | 32,38,50,53                    | 0     |
| 2   | NAP  | Q     | 601 | 48/48 | 0.98 | 0.12 | $34,\!42,\!54,\!5\overline{4}$ | 0     |

 $\alpha$ ntin d fa

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.



















## 6.5 Other polymers (i)

There are no such residues in this entry.

