

wwPDB X-ray Structure Validation Summary Report (i)

Dec 3, 2023 - 06:15 am GMT

PDB ID : 1E6Y

Title : Methyl-coenzyme M reductase from Methanosarcina barkeri

Authors: Grabarse, W.; Ermler, U.

Deposited on : 2000-08-23

Resolution : 1.60 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
https://www.wwpdb.org/validation/2017/XrayValidationReportHelp
with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity: 4.02b-467

Mogul : 1.8.4, CSD as541be (2020)

Xtriage (Phenix) : 1.13

EDS : FAILED

buster-report : 1.1.7 (2018)

Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)

Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996)

Validation Pipeline (wwPDB-VP) : 2.36

 ${\tt PERCENTILES\ INFOmissing INFO}$

1 Entry composition (i)

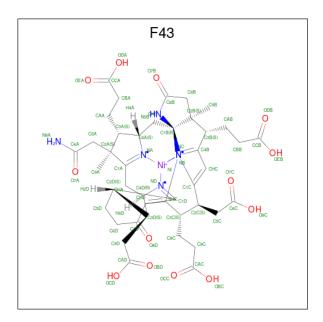
There are 8 unique types of molecules in this entry. The entry contains 21340 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called METHYL-COENZYME M REDUCTASE SUBUNIT ALPHA.

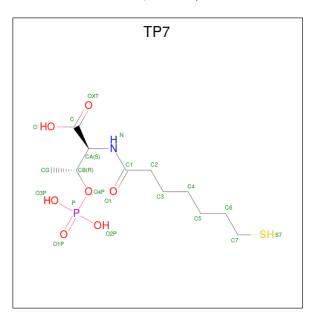
Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace	
1	A	568	Total 4346	C 2735	N 737	O 846	S 28	0	4	0
1	D	F.C.O.	Total	C	N	O O	S	0	2	0
1	D	568	4348	2738	740	842	28	U	<u>ა</u>	"

• Molecule 2 is a protein called METHYL-COENZYME M REDUCTASE I BETA SUBUNIT.

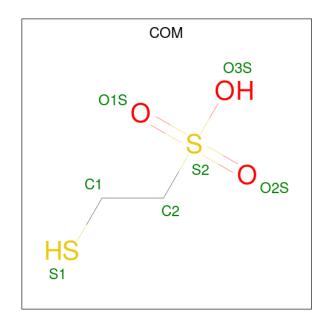

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace	
2	В	432	Total 3176	C 1987	N 549	O 621	S 19	0	4	0
2	Е	433	Total 3178	C 1990	N 550	O 620	S 18	0	1	0

• Molecule 3 is a protein called METHYL-COENZYME M REDUCTASE SUBUNIT GAMMA.

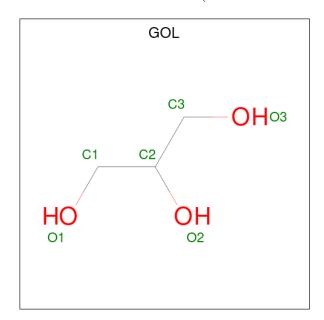
Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace	
2	C	247	Total	С	N	О	S	0	0	0
3		241	1947	1202	359	375	11	U	0	
9	E	247	Total	С	N	О	S	0	1	0
3	Г	241	1950	1205	359	375	11	U	1	U


• Molecule 4 is FACTOR 430 (three-letter code: F43) (formula: C₄₂H₅₁N₆NiO₁₃).

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	
1	Λ	1	Total	С	N	Ni	О	0	0
4	A	1	62	42	6	1	13	0	
1	D	1	Total	С	N	Ni	О	0	0
4	4 D	1	62	42	6	1	13	0	U


 \bullet Molecule 5 is Coenzyme B (three-letter code: TP7) (formula: $\rm C_{11}H_{22}NO_7PS).$

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf				
5	Λ	1	Total	С	N	О	Р	S	0	0		
5	A	1	21	11	1	7	1	1	0	0		
5	D	1	Total	С	N	О	Р	S	0	0		
3	D	D	D	1	21	11	1	7	1	1	0	U



• Molecule 6 is 1-THIOETHANESULFONIC ACID (three-letter code: COM) (formula: $C_2H_6O_3S_2$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	A	1	Total C O S 7 2 3 2	0	0
6	D	1	Total C O S 7 2 3 2	0	0

• Molecule 7 is GLYCEROL (three-letter code: GOL) (formula: $C_3H_8O_3$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	A	1	Total C O 6 3 3	0	0

Continued on next page...

Continued from previous page...

Mo	Chain	Residues	Atoms	ZeroOcc	AltConf
7	A	1	Total C O 6 3 3	0	0
7	D	1	Total C O 6 3 3	0	0

• Molecule 8 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
8	A	489	Total O 489 489	0	0
8	В	340	Total O 342 342	0	2
8	С	241	Total O 241 241	0	0
8	D	522	Total O 522 522	0	0
8	Ε	339	Total O 339 339	0	0
8	F	264	Total O 264 264	0	0

 ${\tt SEQUENCE-PLOTS\ INFO missing INFO}$

2 Data and refinement statistics (i)

EDS failed to run properly - this section is therefore incomplete.

Property	Value	Source
Space group	P 21 21 21	Depositor
Cell constants	113.68Å 153.10Å 153.29Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Resolution (Å)	30.00 - 1.60	Depositor
% Data completeness	89.0 (30.00-1.60)	Depositor
(in resolution range)	,	
R_{merge}	0.06	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	3.98 (at 1.60Å)	Xtriage
Refinement program	CNS 0.3	Depositor
R, R_{free}	0.160 , 0.179	Depositor
Wilson B-factor $(Å^2)$	11.0	Xtriage
Anisotropy	0.817	Xtriage
L-test for twinning ²	$< L > = 0.48, < L^2> = 0.31$	Xtriage
Estimated twinning fraction	0.011 for -h,l,k	Xtriage
Total number of atoms	21340	wwPDB-VP
Average B, all atoms (\mathring{A}^2)	14.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 33.28 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 8.2047e-04. The detected translational NCS is most likely also responsible for the elevated intensity ratio.

²Theoretical values of <|L|>, $<L^2>$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

3 Model quality (i)

3.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: COM, AGM, F43, TP7, MHS, GOL, OCS, GL3, SMC

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Во	nd lengths	В	ond angles
IVIOI	Wioi Chain		# Z > 5	RMSZ	# Z >5
1	A	0.31	0/4423	0.68	9/5988~(0.2%)
1	D	0.64	6/4418 (0.1%)	1.95	$26/5979 \ (0.4\%)$
2	В	0.29	0/3244	0.61	8/4390 (0.2%)
2	Е	0.30	0/3231	0.65	8/4372 (0.2%)
3	С	0.31	0/1976	0.85	$17/2666 \; (0.6\%)$
3	F	0.32	0/1983	1.85	15/2676~(0.6%)
All	All	0.41	$6/19275 \ (0.0\%)$	1.24	83/26071 (0.3%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a maintenain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	A	0	2
1	D	0	2
2	В	0	2
2	Е	0	3
3	С	0	1
3	F	0	1
All	All	0	11

The worst 5 of 6 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	Observed(A)	Ideal(A)
1	D	4551[A]	ARG	CZ-NH2	22.62	1.62	1.33
1	D	4551[B]	ARG	CZ-NH2	22.62	1.62	1.33
1	D	4551[A]	ARG	NE-CZ	10.05	1.46	1.33
1	D	4551[B]	ARG	NE-CZ	10.05	1.46	1.33
1	D	4551[A]	ARG	CG-CD	-8.02	1.31	1.51

The worst	5	of	83	bond	angle	outliers	are	listed	below:
110 WOID	$\overline{}$	O.	\circ	OIIG	WII SIC	Cathere	COL C	IID CCL	CIC III.

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$\mathbf{Observed}(^o)$	$Ideal(^{o})$
1	D	4551[A]	ARG	NH1-CZ-NH2	-85.30	25.57	119.40
1	D	4551[B]	ARG	NH1-CZ-NH2	-85.30	25.57	119.40
3	F	6040[A]	VAL	CG1-CB-CG2	-59.08	16.37	110.90
3	F	6040[B]	VAL	CG1-CB-CG2	-59.08	16.37	110.90
1	D	4551[A]	ARG	NE-CZ-NH2	-44.85	97.87	120.30

There are no chirality outliers.

5 of 11 planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	A	1396[A]	GLU	Sidechain
1	A	1396[B]	GLU	Sidechain
2	В	2331	TYR	Sidechain
2	В	2347	TYR	Sidechain
3	С	3093	TYR	Sidechain

3.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	A	4346	0	4191	39	0
1	D	4348	0	4205	50	0
2	В	3176	0	3161	17	0
2	Ε	3178	0	3170	22	0
3	С	1947	0	1888	9	0
3	F	1950	0	1894	13	0
4	A	62	0	43	6	0
4	D	62	0	43	5	0
5	A	21	0	19	2	0
5	D	21	0	19	1	0
6	A	7	0	5	1	0
6	D	7	0	5	0	0
7	A	12	0	16	0	0
7	D	6	0	8	0	0
8	A	489	0	0	5	0
8	В	342	0	0	1	0

Continued on next page...

Continued from previous page...

Mol	Chain	Non-H	H(model)	$\mathbf{H}(\mathbf{added})$	Clashes	Symm-Clashes
8	С	241	0	0	1	0
8	D	522	0	0	4	0
8	Е	339	0	0	4	0
8	F	264	0	0	2	0
All	All	21340	0	18667	131	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 3.

The worst 5 of 131 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	$\begin{array}{c} {\rm Interatomic} \\ {\rm distance} \ ({\rm \AA}) \end{array}$	Clash overlap (Å)
1:D:4551[B]:ARG:NH2	1:D:4551[B]:ARG:CZ	1.69	1.56
1:D:4551[B]:ARG:CD	1:D:4551[B]:ARG:CG	1.76	1.55
1:D:4551[B]:ARG:CG	1:D:4551[B]:ARG:NE	1.87	1.38
1:D:4551[B]:ARG:CD	1:D:4551[B]:ARG:CB	2.38	1.01
1:D:4551[B]:ARG:HE	1:D:4551[B]:ARG:HG2	1.24	1.01

There are no symmetry-related clashes.

3.3 Torsion angles (i)

3.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	A	566/569~(100%)	546 (96%)	19 (3%)	1 (0%)	47	26
1	D	565/569~(99%)	546 (97%)	18 (3%)	1 (0%)	47	26
2	В	434/433 (100%)	428 (99%)	6 (1%)	0	100	100
2	E	432/433 (100%)	426 (99%)	6 (1%)	0	100	100
3	С	244/247 (99%)	239 (98%)	5 (2%)	0	100	100
3	F	245/247 (99%)	237 (97%)	8 (3%)	0	100	100

Continued on next page...

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
All	All	2486/2498 (100%)	2422 (97%)	62 (2%)	2 (0%)	51 29

All (2) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	A	1525	VAL
1	D	4525	VAL

3.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	A	446/443 (101%)	436 (98%)	10 (2%)	52	27
1	D	445/443 (100%)	436 (98%)	9 (2%)	55	31
2	В	335/332 (101%)	333 (99%)	2 (1%)	86	77
2	Е	333/332 (100%)	331 (99%)	2 (1%)	86	77
3	С	201/201 (100%)	197 (98%)	4 (2%)	55	31
3	F	202/201 (100%)	198 (98%)	4 (2%)	55	31
All	All	1962/1952 (100%)	1931 (98%)	31 (2%)	65	41

5 of 31 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
3	С	3178	LEU
3	F	6176	ARG
1	D	4131	GLU
3	F	6195	ASP
1	D	4551[B]	ARG

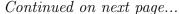
Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 12 such sidechains are listed below:

Mol	Chain	Res	Type
3	С	3239	GLN
1	D	4019	GLN
3	F	6133	GLN
2	Е	5402	GLN
2	В	2241	GLN

3.3.3 RNA (i)

There are no RNA molecules in this entry.

3.4 Non-standard residues in protein, DNA, RNA chains (i)


10 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Res	Link	Bo	ond leng	ths	В	ond ang	gles
MIOI	Type	Chain	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
1	MHS	D	4271	1	7,11,12	1.81	1 (14%)	6,14,16	1.29	1 (16%)
3	OCS	F	6065	3	7,8,9	1.24	2 (28%)	6,11,13	1.68	3 (50%)
3	OCS	С	3065	3	7,8,9	1.34	2 (28%)	6,11,13	1.70	2 (33%)
1	MHS	A	1271	1	7,11,12	1.82	1 (14%)	6,14,16	1.35	1 (16%)
1	SMC	A	1472	1	5,6,7	0.61	0	2,6,8	0.53	0
1	AGM	A	1285	1	10,11,12	0.49	0	6,13,15	0.33	0
1	AGM	D	4285	1	10,11,12	0.46	0	6,13,15	0.25	0
1	SMC	D	4472	1	5,6,7	0.60	0	2,6,8	0.52	0
1	GL3	A	1465	1	2,3,4	3.52	1 (50%)	1,2,4	0.12	0
1	GL3	D	4465	1	2,3,4	3.47	1 (50%)	1,2,4	0.03	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	MHS	D	4271	1	-	0/5/6/8	0/1/1/1

Continued from previous page...

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	OCS	F	6065	3	-	0/4/7/9	-
3	OCS	С	3065	3	-	0/4/7/9	-
1	MHS	A	1271	1	-	0/5/6/8	0/1/1/1
1	SMC	A	1472	1	-	1/3/5/7	-
1	AGM	A	1285	1	-	0/10/11/13	-
1	AGM	D	4285	1	-	0/10/11/13	-
1	SMC	D	4472	1	-	1/3/5/7	-
1	GL3	A	1465	1	-	1/1/1/2	-
1	GL3	D	4465	1	-	1/1/1/2	-

The worst 5 of 8 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$\operatorname{Observed}(\mathring{\mathrm{A}})$	$\operatorname{Ideal}(ext{\AA})$
1	A	1465	GL3	C-S	-4.97	1.63	1.80
1	D	4465	GL3	C-S	-4.91	1.63	1.80
1	D	4271	MHS	CM-ND1	4.57	1.58	1.47
1	A	1271	MHS	CM-ND1	4.49	1.57	1.47
3	С	3065	OCS	OD1-SG	2.29	1.51	1.45

The worst 5 of 7 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^o)$	$\operatorname{Ideal}(^{o})$
3	С	3065	OCS	OD3-SG-CB	2.55	109.97	106.94
3	F	6065	OCS	OD2-SG-CB	2.43	109.61	105.74
3	С	3065	OCS	OD2-SG-CB	2.20	109.25	105.74
1	D	4271	MHS	NE2-CE1-ND1	-2.10	109.14	112.26
1	A	1271	MHS	NE2-CE1-ND1	-2.10	109.14	112.26

There are no chirality outliers.

All (4) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
1	A	1472	SMC	CA-CB-SG-CS
1	D	4472	SMC	CA-CB-SG-CS
1	A	1465	GL3	S-C-CA-N
1	D	4465	GL3	S-C-CA-N

There are no ring outliers.

6 monomers are involved in 6 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
1	D	4271	MHS	1	0
1	A	1271	MHS	1	0
1	A	1472	SMC	1	0
1	D	4472	SMC	1	0
1	A	1465	GL3	1	0
1	D	4465	GL3	1	0

3.5 Carbohydrates (i)

There are no monosaccharides in this entry.

3.6 Ligand geometry (i)

9 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Trino	Chain	Res	Link	В	Bond lengths			Bond angles		
Mol	Type	Chain	nes	Lilik	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2	
5	TP7	D	5571	-	19,20,20	2.05	4 (21%)	24,26,26	1.23	2 (8%)	
4	F43	A	2570	6,1	61,71,71	3.85	20 (32%)	64,118,118	2.11	15 (23%)	
6	COM	D	5572	4	6,6,6	1.56	1 (16%)	7,8,8	1.39	1 (14%)	
7	GOL	A	2573	-	5,5,5	1.02	0	5,5,5	0.49	0	
7	GOL	A	2574	_	5,5,5	0.89	0	5,5,5	0.48	0	
5	TP7	A	2571	-	19,20,20	2.03	5 (26%)	24,26,26	1.23	2 (8%)	
6	COM	A	2572	4	6,6,6	1.66	2 (33%)	7,8,8	1.35	1 (14%)	
7	GOL	D	5573	-	5,5,5	1.05	0	5,5,5	0.55	0	
4	F43	D	5570	6,1	61,71,71	3.87	21 (34%)	64,118,118	2.10	16 (25%)	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
5	TP7	D	5571	-	-	2/24/24/24	-
4	F43	A	2570	6,1	-	10/28/185/185	-
6	COM	D	5572	4	-	2/4/4/4	-
7	GOL	A	2573	-	-	1/4/4/4	-
7	GOL	A	2574	-	-	0/4/4/4	-
5	TP7	A	2571	-	-	2/24/24/24	-
6	COM	A	2572	4	-	0/4/4/4	-
7	GOL	D	5573	-	-	0/4/4/4	-
4	F43	D	5570	6,1	-	10/28/185/185	-

The worst 5 of 53 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$\operatorname{Observed}(\text{\AA})$	$\operatorname{Ideal}(ext{\AA})$
4	D	5570	F43	CHB-C1B	-18.14	1.41	1.53
4	A	2570	F43	CHB-C1B	-17.79	1.41	1.53
4	D	5570	F43	NI-NA	12.09	2.15	1.89
4	A	2570	F43	NI-NA	12.02	2.15	1.89
4	D	5570	F43	CHD-C1D	10.48	1.57	1.43

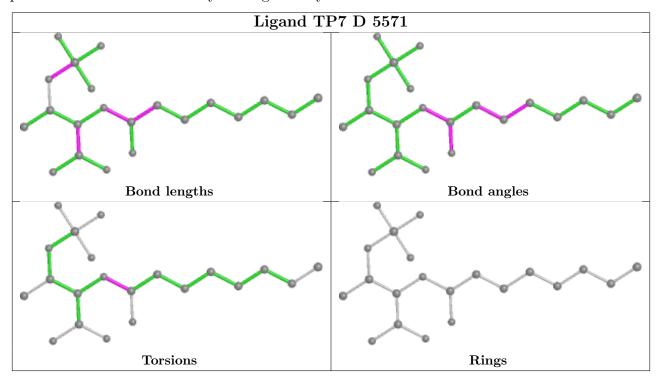
The worst 5 of 37 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$\mathbf{Observed}(^o)$	$\mathbf{Ideal}(^{o})$
4	A	2570	F43	C4D-ND-C1D	-5.83	100.85	108.51
4	D	5570	F43	C4D-ND-C1D	-5.71	101.00	108.51
4	A	2570	F43	CAB-C3B-C2B	-5.62	107.20	119.09
4	D	5570	F43	CAB-C3B-C2B	-5.60	107.24	119.09
4	A	2570	F43	C3B-C4B-CHC	-5.60	111.24	123.32

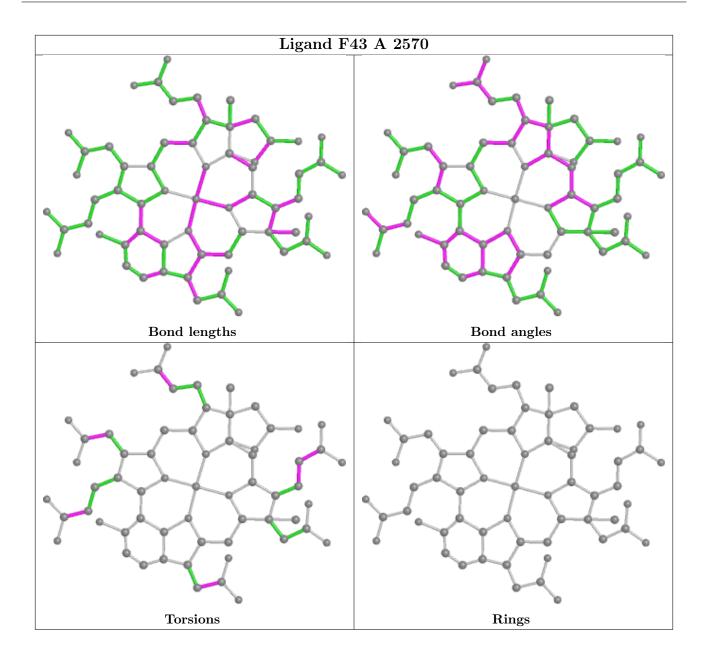
There are no chirality outliers.

5 of 27 torsion outliers are listed below:

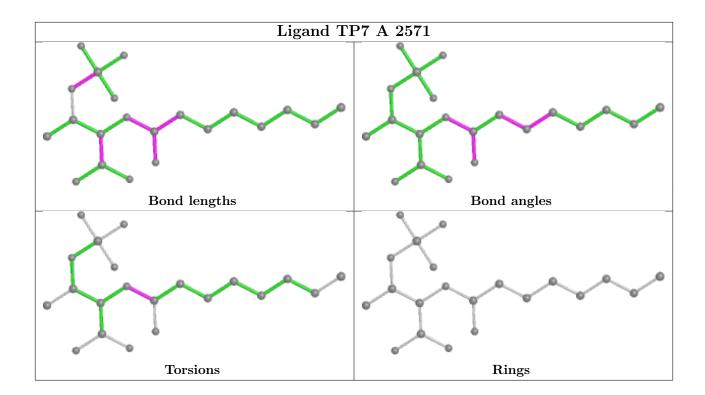
Mol	Chain	Res	Type	Atoms
4	A	2570	F43	C3A-CAA-CBA-CCA
4	D	5570	F43	C3A-CAA-CBA-CCA
5	D	5571	TP7	O1-C1-N-CA
5	A	2571	TP7	O1-C1-N-CA
5	D	5571	TP7	C2-C1-N-CA

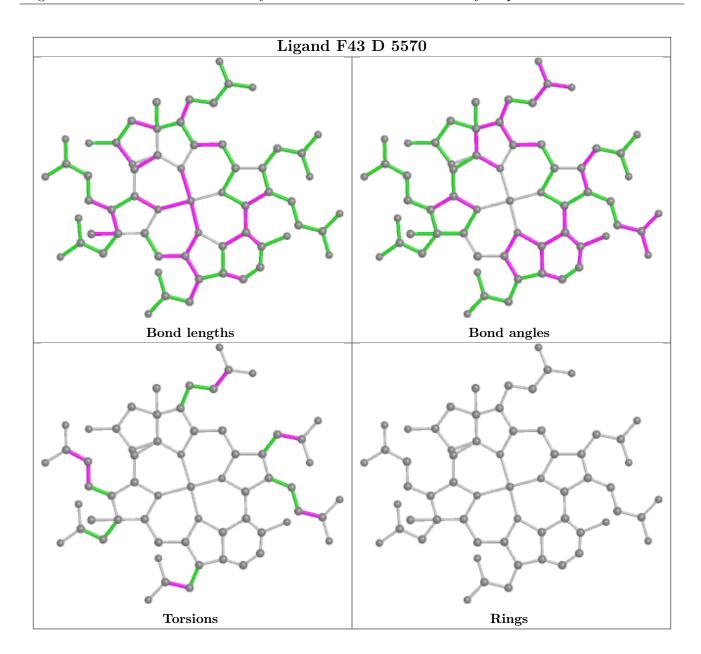

There are no ring outliers.

5 monomers are involved in 15 short contacts:



Mol	Chain	Res	Type	Clashes	Symm-Clashes
5	D	5571	TP7	1	0
4	A	2570	F43	6	0
5	A	2571	TP7	2	0
6	A	2572	COM	1	0
4	D	5570	F43	5	0


The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.



3.7 Other polymers (i)

There are no such residues in this entry.

3.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

4 Fit of model and data (i)

4.1 Protein, DNA and RNA chains (i)

EDS failed to run properly - this section is therefore empty.

4.2 Non-standard residues in protein, DNA, RNA chains (i)

EDS failed to run properly - this section is therefore empty.

4.3 Carbohydrates (i)

EDS failed to run properly - this section is therefore empty.

4.4 Ligands (i)

EDS failed to run properly - this section is therefore empty.

4.5 Other polymers (i)

EDS failed to run properly - this section is therefore empty.

