

Full wwPDB X-ray Structure Validation Report (i)

Oct 8, 2023 – 08:53 AM EDT

PDB ID	:	6E7D
Title	:	Structure of the inhibitory NKR-P1B receptor bound to the host-encoded lig-
		and, Clr-b
Authors	:	Balaji, G.R.; Rossjohn, J.; Berry, R.
Deposited on	:	2018-07-26
Resolution	:	2.90 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.35.1
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.35.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.90 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motria	Whole archive	Similar resolution		
	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$		
R _{free}	130704	1957 (2.90-2.90)		
Clashscore	141614	2172 (2.90-2.90)		
Ramachandran outliers	138981	2115 (2.90-2.90)		
Sidechain outliers	138945	2117 (2.90-2.90)		
RSRZ outliers	127900	1906 (2.90-2.90)		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	124	77%	20%	••
1	В	124	% 85%	13%	·
1	С	124	85%	10%	•••
1	D	124	82%	13%	••
1	Е	124	80%	18%	••

IVIOI	Chain	Length	Quality of chain	
1	F	124	79%	19% ••
1	G	124	79%	16% • •
1	Н	124	82%	15% ••
1	Ι	124	79%	16% · ·
1	J	124	85%	13% ••
1	К	124	80%	13% • 5%
1	L	124	.% • 87%	10% ••
1	М	124	84%	12% •
1	Ν	124	.% 82%	15% ••
1	О	124	83%	10% • 5%
1	Р	124	82%	16% •
2	Q	137	.% • 77%	8% 15%
2	R	137	% • 77%	5% 18%
2	S	137	82%	7% 11%
2	Т	137	84%	5% 11%
2	U	137	% • 74%	10% • 15%
2	V	137	79%	9% • 12%
2	W	137	% 82%	• 14%
2	Х	137	3% 	5% 13%

2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 22989 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	А	121	Total 997	C 635	N 171	0 184	S 7	0	0	0
1	В	121	Total 974	C 624	N 169	0 173	S 8	0	0	0
1	С	120	Total 979	C 625	N 166	0 181	${f S}$ 7	0	0	0
1	D	121	Total 1006	C 641	N 173	0 185	${f S}$ 7	0	0	0
1	Е	122	Total 994	C 637	N 175	O 175	S 7	0	0	0
1	F	122	Total 982	C 629	N 170	O 176	S 7	0	0	0
1	G	119	Total 986	C 630	N 170	O 179	S 7	0	0	0
1	Н	122	Total 984	C 632	N 168	0 177	S 7	0	0	0
1	Ι	119	Total 993	C 634	N 171	O 181	S 7	0	0	0
1	J	122	Total 987	C 634	N 170	0 175	S 8	0	0	0
1	K	118	Total 984	C 625	N 171	0 181	S 7	0	0	0
1	L	122	Total 993	C 639	N 172	0 174	S 8	0	0	0
1	М	119	Total 983	C 628	N 170	0 178	${f S}7$	0	0	0
1	Ν	122	Total 979	C 628	N 170	0 174	${f S} 7$	0	0	0
1	0	118	Total 960	С 615	N 167	0 171	${f S}{7}$	0	0	0
1	Р	122	Total 1002	C 639	N 175	0 181	S 7	0	0	0

• Molecule 1 is a protein called C-type lectin domain family 2 member D.

Chain	Residue	Modelled	Actual	Comment	Reference
А	73	MET	-	initiating methionine	UNP Q91V08
А	195	ALA	-	expression tag	UNP Q91V08
А	196	SER	-	expression tag	UNP Q91V08
В	73	MET	-	initiating methionine	UNP Q91V08
В	195	ALA	-	expression tag	UNP Q91V08
В	196	SER	-	expression tag	UNP Q91V08
С	73	MET	-	initiating methionine	UNP Q91V08
С	195	ALA	-	expression tag	UNP Q91V08
С	196	SER	-	expression tag	UNP Q91V08
D	73	MET	-	initiating methionine	UNP Q91V08
D	195	ALA	-	expression tag	UNP Q91V08
D	196	SER	-	expression tag	UNP Q91V08
E	73	MET	-	initiating methionine	UNP Q91V08
E	195	ALA	-	expression tag	UNP Q91V08
E	196	SER	-	expression tag	UNP Q91V08
F	73	MET	-	initiating methionine	UNP Q91V08
F	195	ALA	-	expression tag	UNP Q91V08
F	196	SER	-	expression tag	UNP Q91V08
G	73	MET	-	initiating methionine	UNP $Q91V08$
G	195	ALA	-	expression tag	UNP Q91V08
G	196	SER	-	expression tag	UNP Q91V08
Н	73	MET	-	initiating methionine	UNP Q91V08
H	195	ALA	-	expression tag	UNP Q91V08
H	196	SER	-	expression tag	UNP Q91V08
Ι	73	MET	-	initiating methionine	UNP Q91V08
Ι	195	ALA	-	expression tag	UNP Q91V08
Ι	196	SER	-	expression tag	UNP Q91V08
J	73	MET	-	initiating methionine	UNP Q91V08
J	195	ALA	-	expression tag	UNP Q91V08
J	196	SER	-	expression tag	UNP Q91V08
K	73	MET	-	initiating methionine	UNP Q91V08
K	195	ALA	-	expression tag	UNP Q91V08
K	196	SER	-	expression tag	UNP Q91V08
L	73	MET	-	initiating methionine	UNP Q91V08
L	195	ALA	-	expression tag	UNP Q91V08
L	196	SER	-	expression tag	UNP Q91V08
М	73	MET	-	initiating methionine	UNP Q91V08
M	195	ALA	-	expression tag	UNP Q91V08
M	196	SER	-	expression tag	UNP $Q9\overline{1}V08$
N	73	MET	-	initiating methionine	UNP Q91V08
N	195	ALA	-	expression tag	UNP $Q91V08$
N	196	SER	-	expression tag	UNP $Q9\overline{1V08}$

There are 48 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
0	73	MET	-	initiating methionine	UNP Q91V08
0	195	ALA	-	expression tag	UNP Q91V08
0	196	SER	-	expression tag	UNP Q91V08
Р	73	MET	-	initiating methionine	UNP Q91V08
Р	195	ALA	-	expression tag	UNP Q91V08
Р	196	SER	-	expression tag	UNP Q91V08

• Molecule 2 is a protein called Killer cell lectin-like receptor subfamily B member 1B allele B.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
0	2 0	117	Total	С	Ν	0	S	0	0	0
	Q	111	892	561	152	173	6	0	0	0
0	D	119	Total	С	Ν	0	S	0	0	0
	n	112	812	514	136	157	5	0	0	0
0	C	199	Total	С	Ν	0	S	0	0	0
	G	122	918	573	154	184	7	0	0	0
0	о т	Г 122	Total	С	Ν	0	S	0	0	0
	1		924	579	155	183	7	0	0	0
0	T	II 11C	Total	С	Ν	0	S	0	0	0
	U	110	861	541	149	164	7	0	0	0
9	V	191	Total	С	Ν	0	S	0	0	0
	v	121	897	564	151	175	7	0	0	0
2	\mathbf{a} \mathbf{w}	118	Total	С	Ν	0	S	0	0	0
	vv	110	876	546	149	174	7	0	0	0
9	v	110	Total	С	Ν	0	S	0	0	0
	Λ	119	861	538	144	172	7			U

There are 88 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Q	87	THR	-	expression tag	UNP Q99JB4
Q	88	GLY	-	expression tag	UNP Q99JB4
Q	118	GLY	CYS	engineered mutation	UNP Q99JB4
Q	216	GLY	-	expression tag	UNP Q99JB4
Q	217	THR	-	expression tag	UNP Q99JB4
Q	218	HIS	-	expression tag	UNP Q99JB4
Q	219	HIS	-	expression tag	UNP Q99JB4
Q	220	HIS	-	expression tag	UNP Q99JB4
Q	221	HIS	-	expression tag	UNP Q99JB4
Q	222	HIS	-	expression tag	UNP Q99JB4
Q	223	HIS	-	expression tag	UNP Q99JB4
R	87	THR	_	expression tag	UNP Q99JB4

Chain	Residue	Modelled	Actual	Comment	Reference
R	88	GLY	-	- expression tag	
R	118	GLY	CYS	engineered mutation	UNP Q99JB4
R	216	GLY	-	expression tag	UNP Q99JB4
R	217	THR	-	expression tag	UNP Q99JB4
R	218	HIS	-	expression tag	UNP Q99JB4
R	219	HIS	-	expression tag	UNP Q99JB4
R	220	HIS	-	expression tag	UNP Q99JB4
R	221	HIS	-	expression tag	UNP Q99JB4
R	222	HIS	-	expression tag	UNP Q99JB4
R	223	HIS	-	expression tag	UNP Q99JB4
S	87	THR	-	expression tag	UNP Q99JB4
S	88	GLY	-	expression tag	UNP Q99JB4
S	118	GLY	CYS	engineered mutation	UNP Q99JB4
S	216	GLY	-	expression tag	UNP Q99JB4
S	217	THR	-	expression tag	UNP Q99JB4
S	218	HIS	-	expression tag	UNP Q99JB4
S	219	HIS	-	expression tag	UNP Q99JB4
S	220	HIS	-	expression tag	UNP Q99JB4
S	221	HIS	-	expression tag	UNP Q99JB4
S	222	HIS	-	expression tag	UNP Q99JB4
S	223	HIS	-	expression tag	UNP Q99JB4
Т	87	THR	-	expression tag	UNP Q99JB4
Т	88	GLY	-	expression tag	UNP Q99JB4
Т	118	GLY	CYS	engineered mutation	UNP Q99JB4
Т	216	GLY	-	expression tag	UNP Q99JB4
Т	217	THR	-	expression tag	UNP Q99JB4
Т	218	HIS	-	expression tag	UNP Q99JB4
Т	219	HIS	-	expression tag	UNP Q99JB4
Т	220	HIS	-	expression tag	UNP Q99JB4
Т	221	HIS	-	expression tag	UNP Q99JB4
Т	222	HIS	-	expression tag	UNP Q99JB4
Т	223	HIS	-	expression tag	UNP Q99JB4
U	87	THR	-	expression tag	UNP Q99JB4
U	88	GLY	-	expression tag	UNP Q99JB4
U	118	GLY	CYS	engineered mutation	UNP Q99JB4
U	216	GLY	-	expression tag	UNP Q99JB4
U	217	THR	-	expression tag	UNP Q99JB4
U	218	HIS	-	expression tag	UNP Q99JB4
U	219	HIS	-	expression tag	UNP Q99JB4
U	220	HIS	-	expression tag	UNP Q99JB4
U	221	HIS	-	expression tag	UNP Q99JB4
U	222	HIS	-	expression tag	UNP Q99JB4

Chain	Residue	Modelled	Actual	Comment	Reference
U	223	HIS	_	expression tag	UNP Q99JB4
V	87	THR	_	expression tag	UNP Q99JB4
V	88	GLY	-	expression tag	UNP Q99JB4
V	118	GLY	CYS	engineered mutation	UNP Q99JB4
V	216	GLY	-	expression tag	UNP Q99JB4
V	217	THR	-	expression tag	UNP Q99JB4
V	218	HIS	-	expression tag	UNP Q99JB4
V	219	HIS	-	expression tag	UNP Q99JB4
V	220	HIS	-	expression tag	UNP Q99JB4
V	221	HIS	-	expression tag	UNP Q99JB4
V	222	HIS	-	expression tag	UNP Q99JB4
V	223	HIS	-	expression tag	UNP Q99JB4
W	87	THR	-	expression tag	UNP Q99JB4
W	88	GLY	-	expression tag	UNP Q99JB4
W	118	GLY	CYS	engineered mutation	UNP Q99JB4
W	216	GLY	-	expression tag	UNP Q99JB4
W	217	THR	-	expression tag	UNP Q99JB4
W	218	HIS	-	expression tag	UNP Q99JB4
W	219	HIS	-	expression tag	UNP Q99JB4
W	220	HIS	-	expression tag	UNP Q99JB4
W	221	HIS	-	expression tag	UNP Q99JB4
W	222	HIS	-	expression tag	UNP Q99JB4
W	223	HIS	-	expression tag	UNP Q99JB4
Х	87	THR	-	expression tag	UNP Q99JB4
Х	88	GLY	-	expression tag	UNP Q99JB4
Х	118	GLY	CYS	engineered mutation	UNP Q99JB4
Х	216	GLY	_	expression tag	UNP Q99JB4
Х	217	THR	_	expression tag	UNP Q99JB4
Х	218	HIS	-	expression tag	UNP Q99JB4
Х	219	HIS	-	expression tag	UNP Q99JB4
Х	220	HIS	-	expression tag	UNP Q99JB4
Х	221	HIS	-	expression tag	UNP Q99JB4
Х	222	HIS	_	expression tag	UNP Q99JB4
Х	223	HIS	-	expression tag	UNP Q99JB4

• Molecule 3 is SULFATE ION (three-letter code: SO4) (formula: O_4S).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	D	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	Q	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	R	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	S	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	Т	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	U	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	V	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	W	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	Х	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0

• Molecule 4 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	Q	1	$\begin{array}{cccc} \text{Total} & \text{C} & \text{N} & \text{O} \\ 14 & 8 & 1 & 5 \end{array}$	0	0
4	R	1	Total C N O 14 8 1 5	0	0
4	S	1	I4 O I J Total C N O 14 S 1 5	0	0
4	Т	1	14 8 1 5 Total C N O 14 0 1 5	0	0
4	U	1	14 8 1 5 Total C N O	0	0
	V	1	14 8 1 5 Total C N O	0	0
4	•	1	14 8 1 5 Total C N O	0	0
4	W	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0
4	Х	1	Total C N O 14 8 1 5	0	0

• Molecule 5 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	С	2	Total O 2 2	0	0
5	F	1	Total O 1 1	0	0
5	Н	1	Total O 1 1	0	0
5	Κ	2	$\begin{array}{cc} \text{Total} & \text{O} \\ 2 & 2 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	М	1	Total O 1 1	0	0
5	Ο	1	Total O 1 1	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Chain A: 77% 20% • Molecule 1: C-type lectin domain family 2 member D Chain B: 85% 13% • Molecule 1: C-type lectin domain family 2 member D Chain C: 85% 10% • Molecule 1: C-type lectin domain family 2 member D Chain D: 82% 13% • Molecule 1: C-type lectin domain family 2 member D Chain E: 80% 18% • Molecule 1: C-type lectin domain family 2 member D Chain F: 79% 19%
- Molecule 1: C-type lectin domain family 2 member D

• Molecule 1: C-type lectin domain family 2 member D

Chain G:	79%	16% ••
MET ASN LYS LYZ W84 W84 F92 Y93	Fig.4 Fig.4 Fig.4 Fig.4 Fig.6 Fig.6 Fig.6 Fig.7 Fig.7 <th< td=""><td></td></th<>	
• Molecule 1:	C-type lectin domain family 2 member D	
Chain H:	82%	15% ••
M73 A78 A79 Y93 Q111 A116	0121 124 1230 1233 1333 1333 1333 1334 1335 1335 1335 13	
• Molecule 1:	C-type lectin domain family 2 member D	
Chain I:	79%	16% ••
MET ASN LYS THR Y77 Y93 W101	A110 A116 A116 A116 B129 B138 B138 B138 B138 B138 B138 B138 B188 A198 B188 A198 B188 A198 B188 A198 B188 A198 B188 A198 B188 A198 B188 A198 A198 A198 A198 A198 A198 A198 A	
• Molecule 1:	C-type lectin domain family 2 member D	
Chain J:	85%	13% ••
M73 A78 A79 E96 E96 A116 A116 A116 A112	L1 24 11 24 133 133 11 36 11 40 11 53 11 80 11 53 11 94 11 94 ALA SER	
• Molecule 1:	C-type lectin domain family 2 member D	
Chain K:	80%	13% • 5%
MET ASN LYS TYR AIA A104 4105 q105	Q114 L115 A116 Q121 C115 A116 A116 A133 F133 F133 F133 F133 F133 A178 A187	
• Molecule 1:	C-type lectin domain family 2 member D	
Chain L:	87%	10% ••
M73 599 6116 F134 F134 I138	H147 1153 1153 1171 1171 1182	
• Molecule 1:	C-type lectin domain family 2 member D	
Chain M:	84%	12% •

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1	Depositor
Cell constants	66.93Å 122.07Å 131.56Å	Depositor
a, b, c, α , β , γ	73.12° 82.08° 84.46°	Depositor
Bosolution (Å)	42.46 - 2.90	Depositor
Resolution (A)	66.17 - 2.90	EDS
% Data completeness	92.6 (42.46-2.90)	Depositor
(in resolution range)	$92.5\ (66.17-2.90)$	EDS
R_{merge}	0.18	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	2.13 (at 2.91\AA)	Xtriage
Refinement program	BUSTER 2.10.2	Depositor
B B.	0.186 , 0.225	Depositor
$\mathbf{n}, \mathbf{n}_{free}$	0.206 , 0.225	DCC
R_{free} test set	4054 reflections $(5.02%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	40.2	Xtriage
Anisotropy	0.529	Xtriage
Bulk solvent $k_{sol}(e/A^3), B_{sol}(A^2)$	0.33, 38.6	EDS
L-test for $twinning^2$	$ < L >=0.44, < L^2>=0.27$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.89	EDS
Total number of atoms	22989	wwPDB-VP
Average B, all atoms $(Å^2)$	52.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 5.34% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: SO4, NAG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond	lengths	Bond angles	
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.55	0/1029	0.72	0/1399
1	В	0.50	0/1006	0.70	0/1370
1	С	0.52	0/1011	0.71	0/1377
1	D	0.59	0/1038	0.76	0/1410
1	Е	0.52	0/1026	0.71	0/1396
1	F	0.55	0/1014	0.70	0/1381
1	G	0.56	0/1018	0.75	0/1384
1	Н	0.55	0/1016	0.72	0/1385
1	Ι	0.58	0/1025	0.77	0/1392
1	J	0.53	0/1019	0.69	0/1387
1	Κ	0.58	0/1015	0.78	0/1377
1	L	0.53	0/1025	0.70	0/1393
1	М	0.50	0/1015	0.71	0/1379
1	Ν	0.49	0/1011	0.67	0/1378
1	0	0.53	0/990	0.73	0/1345
1	Р	0.54	0/1034	0.69	0/1406
2	Q	0.49	0/910	0.71	0/1235
2	R	0.45	0/829	0.68	0/1128
2	S	0.50	0/937	0.69	0/1276
2	Т	0.48	0/943	0.70	0/1282
2	U	0.51	0/880	0.72	0/1197
2	V	0.56	0/916	0.75	0/1248
2	W	0.46	0/894	0.66	0/1216
2	Х	0.48	0/880	0.69	0/1202
All	All	0.53	0/23481	0.71	0/31943

There are no bond length outliers. There are no bond angle outliers. There are no chirality outliers. There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	997	0	899	21	0
1	В	974	0	861	7	0
1	С	979	0	867	9	0
1	D	1006	0	917	10	0
1	Е	994	0	898	12	0
1	F	982	0	873	16	0
1	G	986	0	892	11	0
1	Н	984	0	873	12	0
1	Ι	993	0	905	15	0
1	J	987	0	877	8	0
1	K	984	0	895	14	0
1	L	993	0	897	4	0
1	М	983	0	888	12	0
1	N	979	0	855	13	0
1	0	960	0	875	11	0
1	Р	1002	0	899	9	0
2	Q	892	0	795	6	0
2	R	812	0	685	3	0
2	S	918	0	800	5	0
2	Т	924	0	818	3	0
2	U	861	0	756	26	0
2	V	897	0	786	17	0
2	W	876	0	735	3	0
2	Х	861	0	709	4	0
3	D	5	0	0	0	0
3	Q	5	0	0	0	0
3	R	5	0	0	0	0
3	S	5	0	0	0	0
3	Т	5	0	0	0	0
3	U	5	0	0	0	0
3	V	5	0	0	0	0
3	W	5	0	0	0	0
3	Х	5	0	0	0	0
4	Q	14	0	13	0	0
4	R	14	0	13	0	0
4	S	14	0	13	0	0
4	Т	14	0	13	0	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
4	U	14	0	13	0	0
4	V	14	0	13	0	0
4	W	14	0	13	0	0
4	Х	14	0	13	0	0
5	С	2	0	0	0	0
5	F	1	0	0	0	0
5	Н	1	0	0	0	0
5	Κ	2	0	0	0	0
5	М	1	0	0	0	0
5	0	1	0	0	0	0
All	All	22989	0	20359	211	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 5.

All (211) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:U:183:VAL:HG21	2:U:199:SER:N	1.65	1.11
2:V:183:VAL:HG21	2:V:199:SER:N	1.66	1.11
2:U:183:VAL:HG21	2:U:199:SER:H	0.98	1.09
2:V:183:VAL:HG21	2:V:199:SER:H	1.01	1.08
2:U:183:VAL:CG2	2:U:199:SER:H	1.79	0.95
2:V:183:VAL:CG2	2:V:199:SER:H	1.81	0.93
1:I:183:TYR:CE1	2:U:183:VAL:HG12	2.03	0.93
2:U:183:VAL:CG2	2:U:199:SER:HB3	2.00	0.90
2:V:183:VAL:CG2	2:V:199:SER:HB3	2.01	0.89
2:V:183:VAL:HG21	2:V:199:SER:HB3	1.62	0.81
1:H:116:ALA:HA	1:H:191:SER:HB3	1.62	0.81
2:U:183:VAL:HG21	2:U:199:SER:HB3	1.62	0.81
1:A:80:CYS:SG	1:A:81:PRO:HD2	2.24	0.76
1:C:142:ARG:HD3	1:C:147:HIS:O	1.86	0.75
2:U:183:VAL:HG21	2:U:199:SER:CB	2.18	0.74
1:E:85:ILE:HG21	1:E:126:PHE:CZ	2.23	0.73
2:V:182:GLY:C	2:V:183:VAL:HG22	2.09	0.73
1:J:134:PHE:HB3	1:J:187:MET:HG3	1.67	0.73
2:V:183:VAL:HG21	2:V:199:SER:CB	2.19	0.73
1:G:142:ARG:HD2	1:G:149:TRP:CE2	2.25	0.72
1:A:142:ARG:HD3	1:A:147:HIS:O	1.93	0.69
1:M:142:ARG:HD2	1:M:149:TRP:CE2	2.28	0.68
2:U:182:GLY:C	2:U:183:VAL:HG22	2.14	0.67

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:K:121:GLN:CD	1:K:121:GLN:H	1.98	0.66
1:A:116:ALA:HA	1:A:191:SER:HB3	1.77	0.66
1:G:142:ARG:HD2	1:G:149:TRP:CZ2	2.31	0.66
1:B:134:PHE:HB3	1:B:187:MET:HG3	1.79	0.64
1:D:149:TRP:CZ2	1:D:163:ILE:HG21	2.33	0.63
1:A:117:ARG:HD2	1:F:74:ASN:HD21	1.64	0.63
1:A:117:ARG:HD2	1:F:74:ASN:ND2	2.12	0.63
1:O:80:CYS:SG	1:O:81:PRO:HD2	2.39	0.62
2:U:182:GLY:O	2:U:183:VAL:HG13	1.98	0.62
1:I:183:TYR:HE1	2:U:183:VAL:HG12	1.65	0.60
1:F:134:PHE:HB3	1:F:187:MET:HG3	1.82	0.60
1:F:116:ALA:HB3	1:F:138:ILE:HG22	1.84	0.59
1:H:78:ALA:O	1:H:79:ALA:HB3	2.02	0.59
1:N:134:PHE:HB3	1:N:187:MET:HG3	1.84	0.59
2:U:183:VAL:HG21	2:U:199:SER:CA	2.31	0.59
2:V:183:VAL:HG21	2:V:199:SER:CA	2.31	0.59
1:A:165:GLY:HA2	2:Q:203:SER:HB2	1.85	0.59
2:U:183:VAL:HG11	2:U:198:THR:OG1	2.03	0.59
1:C:142:ARG:HG3	1:C:149:TRP:CD2	2.38	0.59
1:P:134:PHE:HB3	1:P:187:MET:HG3	1.84	0.59
1:A:116:ALA:HB3	1:A:138:ILE:HG22	1.86	0.58
1:E:116:ALA:HA	1:E:191:SER:HB3	1.85	0.58
1:H:134:PHE:HB3	1:H:187:MET:HG3	1.84	0.58
1:L:116:ALA:HB3	1:L:138:ILE:HG22	1.85	0.58
1:P:93:TYR:HB3	1:P:190:CYS:HB2	1.86	0.58
1:D:165:GLY:HA2	2:S:203:SER:HB2	1.86	0.57
1:D:140:LEU:HB2	1:D:170:ALA:HB3	1.87	0.57
1:A:117:ARG:HH11	1:F:74:ASN:HD21	1.51	0.56
1:E:85:ILE:HG21	1:E:126:PHE:HZ	1.70	0.56
1:E:116:ALA:HB2	1:E:189:ILE:HB	1.87	0.56
1:G:101:TRP:HD1	1:G:137:TRP:CE3	2.24	0.56
1:A:173:ASN:HD21	1:A:178:SER:HB2	1.71	0.55
1:F:96:GLU:HG2	1:J:96:GLU:HG2	1.89	0.55
1:I:140:LEU:HD13	1:I:163:ILE:HD11	1.89	0.55
1:H:111:GLN:HE22	1:K:121:GLN:HG3	1.73	0.54
1:C:98:PRO:HD3	2:R:149:TYR:CD1	2.43	0.54
1:G:129:ARG:HD2	1:H:130:TYR:CE1	2.43	0.54
1:D:142:ARG:HG3	1:D:144:SER:O	2.08	0.54
1:K:114:GLN:NE2	1:N:74:ASN:HB2	2.23	0.54
1:I:183:TYR:CE1	2:U:183:VAL:CG1	2.84	0.53
1:M:82:GLN:HA	1:N:88:GLU:OE1	2.08	0.53

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:L:134:PHE:HB3	1:L:187:MET:HG3	1.91	0.53
2:V:183:VAL:HG23	2:V:199:SER:HB3	1.89	0.53
1:H:93:TYR:HB3	1:H:190:CYS:HB2	1.91	0.53
1:P:157:TYR:CE2	1:P:159:ASN:HA	2.43	0.53
1:D:196:SER:HB3	1:F:77:TYR:HE2	1.73	0.52
1:0:171:TYR:HE2	1:O:180:THR:HG1	1.57	0.52
1:J:78:ALA:O	1:J:79:ALA:HB3	2.10	0.52
2:V:182:GLY:O	2:V:183:VAL:HG13	2.09	0.52
1:O:116:ALA:HB3	1:O:138:ILE:HG22	1.92	0.52
1:I:134:PHE:HB3	1:I:187:MET:HG3	1.91	0.51
1:A:105:GLN:OE1	1:A:152:THR:HG21	2.10	0.51
1:B:93:TYR:HB3	1:B:190:CYS:HB2	1.91	0.51
1:P:127:LEU:HD22	1:P:189:ILE:HG21	1.92	0.51
1:D:129:ARG:HD2	1:F:130:TYR:CE1	2.46	0.51
1:K:116:ALA:HA	1:K:191:SER:HB3	1.92	0.51
2:R:169:ASN:N	2:R:170:GLY:HA2	2.26	0.51
1:D:101:TRP:HD1	1:D:137:TRP:CE3	2.29	0.50
1:A:116:ALA:HB2	1:A:189:ILE:HG22	1.93	0.50
1:I:183:TYR:HE1	2:U:183:VAL:CG1	2.24	0.50
1:K:104:ALA:HB1	1:K:115:LEU:HD21	1.93	0.50
1:A:121:GLN:HG3	1:P:111:GLN:NE2	2.26	0.50
1:J:180:THR:HG21	1:J:186:ARG:NH2	2.26	0.50
1:K:133:ASN:HD22	2:V:207:ARG:HH21	1.59	0.50
1:I:164:ARG:NH2	2:U:205:ASP:OD1	2.39	0.49
2:S:130:LEU:HA	2:S:211:GLN:HG2	1.94	0.49
2:U:130:LEU:HA	2:U:211:GLN:HG2	1.95	0.49
1:K:105:GLN:OE1	1:K:152:THR:HG21	2.12	0.49
2:X:130:LEU:HA	2:X:211:GLN:HG2	1.94	0.49
2:S:169:ASN:N	2:S:170:GLY:HA2	2.28	0.49
2:U:193:SER:HB3	2:U:198:THR:HG21	1.94	0.49
2:R:130:LEU:HA	2:R:211:GLN:HG2	1.95	0.49
2:Q:130:LEU:HA	2:Q:211:GLN:HG2	1.94	0.49
2:U:169:ASN:N	2:U:170:GLY:HA2	2.27	0.49
1:E:136:SER:HA	1:E:187:MET:O	2.12	0.49
1:0:134:PHE:HB3	1:0:187:MET:HG3	1.93	0.49
1:J:116:ALA:HB3	1:J:138:ILE:HG22	1.93	0.49
2:W:169:ASN:N	2:W:170:GLY:HA2	2.28	0.49
1:A:142:ARG:HG3	1:A:149:TRP:CD2	2.48	0.48
2:Q:165:TRP:HE1	2:Q:185:GLU:HG2	1.77	0.48
2:T:169:ASN:N	2:T:170:GLY:HA2	2.28	0.48
2:W:130:LEU:HA	2:W:211:GLN:HG2	1.94	0.48

	lo uo pugom	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:M:116:ALA:HA	1:M:191:SER:HB2	1.95	0.48
1:P:121:GLN:HE22	1:P:124:LEU:HD23	1.78	0.48
1:B:78:ALA:O	1:B:79:ALA:HB3	2.14	0.48
2:Q:169:ASN:N	2:Q:170:GLY:HA2	2.29	0.48
2:U:183:VAL:CG1	2:U:198:THR:OG1	2.62	0.48
1:A:140:LEU:HD13	1:A:163:ILE:HD11	1.95	0.48
1:M:89:ASN:HA	1:N:77:TYR:O	2.14	0.48
1:N:181:ARG:NE	1:N:183:TYR:HB2	2.29	0.48
1:A:121:GLN:CG	1:P:111:GLN:NE2	2.77	0.48
1:E:167:GLU:HB2	1:E:179:SER:HB3	1.96	0.48
1:J:121:GLN:HE22	1:J:124:LEU:HD23	1.78	0.48
1:H:169:PHE:CE2	1:H:182:ILE:HG12	2.50	0.47
1:G:84:TRP:HA	1:G:92:PHE:O	2.13	0.47
1:A:77:TYR:HB2	1:E:194:ASN:HD21	1.78	0.47
2:T:130:LEU:HA	2:T:211:GLN:HG2	1.95	0.47
1:E:121:GLN:HE22	1:E:124:LEU:HD23	1.79	0.47
2:U:193:SER:CB	2:U:198:THR:HG21	2.44	0.47
1:K:114:GLN:HE22	1:N:74:ASN:HB2	1.80	0.47
2:V:130:LEU:HA	2:V:211:GLN:HG2	1.96	0.47
1:A:140:LEU:HB2	1:A:170:ALA:HB3	1.96	0.47
1:K:183:TYR:CE1	2:V:183:VAL:HG12	2.49	0.47
1:L:171:TYR:CZ	1:L:178:SER:HB3	2.49	0.47
2:V:169:ASN:N	2:V:170:GLY:HA2	2.29	0.47
1:O:105:GLN:HE22	1:O:114:GLN:NE2	2.12	0.47
1:A:157:TYR:CE2	1:A:159:ASN:HA	2.49	0.47
1:H:121:GLN:HE22	1:H:124:LEU:HD23	1.80	0.47
1:M:140:LEU:HB2	1:M:170:ALA:HB3	1.97	0.47
1:P:93:TYR:O	1:P:189:ILE:HA	2.14	0.47
1:C:93:TYR:O	1:C:189:ILE:HA	2.14	0.46
1:N:116:ALA:HB3	1:N:138:ILE:HG22	1.96	0.46
1:E:93:TYR:HB3	1:E:190:CYS:HB2	1.97	0.46
1:H:169:PHE:HE2	1:H:182:ILE:HG12	1.81	0.46
1:I:93:TYR:O	1:I:189:ILE:HA	2.16	0.46
1:L:167:GLU:HB2	1:L:179:SER:HB3	1.98	0.46
1:N:121:GLN:HE22	1:N:124:LEU:HD23	1.80	0.46
1:K:134:PHE:HB3	1:K:187:MET:HG3	1.97	0.46
1:C:102:THR:HG21	1:O:83:ASN:HD21	1.81	0.45
1:F:113:ALA:HB1	1:F:191:SER:O	2.17	0.45
1:M:116:ALA:HA	1:M:191:SER:CB	2.46	0.45
1:A:173:ASN:ND2	1:A:178:SER:HB2	2.32	0.45
1:C:110:ALA:HA	1:O:110:ALA:HB2	1.99	0.45

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:K:181:ARG:HD3	1:K:183:TYR:OH	2.16	0.45	
1:F:81:PRO:HG2	1:F:84:TRP:CD1	2.51	0.45	
1:G:129:ARG:HD2	1:H:130:TYR:CZ	2.52	0.45	
1:I:116:ALA:HB3	1:I:138:ILE:HG22	1.98	0.45	
1:I:183:TYR:CD1	2:U:183:VAL:HG12	2.49	0.45	
2:U:183:VAL:HG23	2:U:199:SER:HB3	1.89	0.45	
1:C:81:PRO:O	1:C:84:TRP:HB2	2.17	0.45	
1:M:140:LEU:HD13	1:M:163:ILE:HD11	1.97	0.45	
1:E:181:ARG:HG2	1:E:183:TYR:H	1.82	0.45	
1:G:93:TYR:CE1	1:G:95:SER:HA	2.52	0.45	
1:I:129:ARG:HD2	1:J:130:TYR:CE1	2.52	0.45	
2:X:169:ASN:N	2:X:170:GLY:HA2	2.30	0.45	
1:C:110:ALA:CB	1:O:107:PHE:HA	2.47	0.45	
1:F:121:GLN:HE22	1:F:124:LEU:HD23	1.82	0.45	
1:G:169:PHE:O	1:G:179:SER:HA	2.18	0.44	
2:Q:164:ASN:ND2	2:Q:165:TRP:H	2.15	0.44	
1:D:93:TYR:O	1:D:189:ILE:HA	2.18	0.43	
1:B:140:LEU:HD13	1:B:163:ILE:HD11	2.00	0.43	
1:E:101:TRP:HD1	1:E:137:TRP:CE3	2.36	0.43	
1:K:135:ASP:O	1:K:186:ARG:HG2	2.18	0.43	
1:A:104:ALA:HB1	1:A:115:LEU:HD21	2.01	0.43	
1:D:195:ALA:HA	1:F:76:THR:HA	2.01	0.43	
1:I:133:ASN:HD22	2:U:207:ARG:HH21	1.66	0.43	
1:E:137:TRP:NE1	1:E:186:ARG:HB2	2.34	0.42	
1:K:116:ALA:HB3	1:K:138:ILE:HG22	2.01	0.42	
2:Q:165:TRP:HE1	2:Q:185:GLU:CG	2.32	0.42	
2:V:183:VAL:HB	2:V:184:THR:H	1.68	0.42	
1:K:173:ASN:HD21	1:K:178:SER:HB2	1.84	0.42	
1:N:157:TYR:CE2	1:N:159:ASN:HA	2.54	0.42	
1:C:140:LEU:HB2	1:C:170:ALA:HB3	2.02	0.42	
1:G:164:ARG:HG3	1:G:177:ILE:O	2.20	0.42	
1:B:93:TYR:O	1:B:189:ILE:HA	2.20	0.42	
1:M:129:ARG:HD3	1:N:130:TYR:CZ	2.54	0.42	
1:H:78:ALA:O	1:H:79:ALA:CB	2.67	0.42	
2:U:191:ALA:O	2:U:198:THR:HG22	2.20	0.42	
1:G:107:PHE:HA	1:I:110:ALA:CB	2.49	0.42	
1:I:165:GLY:HA2	2:U:203:SER:HB2	2.01	0.42	
2:S:115:TRP:CZ3	2:S:119:ARG:HD2	2.55	0.42	
1:H:93:TYR:O	1:H:189:ILE:HA	2.20	0.41	
1:M:142:ARG:HD2	1:M:149:TRP:CZ2	2.55	0.41	
2:V:115:TRP:CZ3	2:V:119:ARG:HD2	2.56	0.41	

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:M:165:GLY:HA2	2:W:203:SER:HB2	2.02	0.41
1:A:116:ALA:HB2	1:A:189:ILE:CG2	2.49	0.41
1:J:140:LEU:HD13	1:J:163:ILE:HD11	2.02	0.41
1:B:75:LYS:HE2	1:G:119:ASP:OD2	2.21	0.41
1:D:169:PHE:CE2	1:D:182:ILE:HB	2.55	0.41
1:M:78:ALA:O	1:N:79:ALA:HA	2.20	0.41
1:O:105:GLN:NE2	1:0:114:GLN:NE2	2.69	0.41
1:P:171:TYR:CZ	1:P:178:SER:HB3	2.56	0.41
1:F:104:ALA:HB1	1:F:115:LEU:HD21	2.03	0.41
1:B:105:GLN:HE21	1:B:109:MET:HG3	1.86	0.41
1:F:115:LEU:O	1:F:116:ALA:C	2.58	0.41
1:M:84:TRP:CD2	1:M:93:TYR:HB2	2.56	0.41
2:S:119:ARG:HG2	2:S:129:LEU:HD12	2.03	0.41
2:X:105:CYS:O	2:X:211:GLN:HA	2.21	0.41
2:T:115:TRP:CZ3	2:T:119:ARG:HD2	2.56	0.41
1:N:128:MET:SD	1:N:172:LEU:HD22	2.61	0.40
1:N:171:TYR:CZ	1:N:178:SER:HB3	2.56	0.40
1:O:133:ASN:HD22	2:X:207:ARG:HH21	1.68	0.40
1:F:144:SER:HA	1:F:168:ARG:HE	1.85	0.40
1:O:105:GLN:NE2	1:O:114:GLN:HE22	2.20	0.40
2:U:183:VAL:HB	2:U:184:THR:H	1.67	0.40
1:F:93:TYR:HB3	1:F:190:CYS:HB2	2.02	0.40
1:I:101:TRP:HD1	1:I:137:TRP:CE3	2.39	0.40
2:V:105:CYS:O	2:V:211:GLN:HA	2.21	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentil	\mathbf{es}
1	А	119/124~(96%)	111 (93%)	8 (7%)	0	100 10	0

6E7	7D
-----	----

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	В	119/124~(96%)	110 (92%)	8 (7%)	1 (1%)	19	51
1	С	118/124~(95%)	109 (92%)	9~(8%)	0	100	100
1	D	119/124 (96%)	113 (95%)	6~(5%)	0	100	100
1	Ε	120/124~(97%)	111 (92%)	8 (7%)	1 (1%)	19	51
1	F	120/124~(97%)	113 (94%)	6~(5%)	1 (1%)	19	51
1	G	117/124~(94%)	110 (94%)	6~(5%)	1 (1%)	17	48
1	Н	120/124~(97%)	111 (92%)	8 (7%)	1 (1%)	19	51
1	Ι	117/124~(94%)	113~(97%)	3~(3%)	1 (1%)	17	48
1	J	120/124~(97%)	110 (92%)	10 (8%)	0	100	100
1	Κ	116/124~(94%)	111 (96%)	5 (4%)	0	100	100
1	L	120/124~(97%)	111 (92%)	8 (7%)	1 (1%)	19	51
1	М	117/124~(94%)	112 (96%)	5 (4%)	0	100	100
1	Ν	120/124~(97%)	112 (93%)	7 (6%)	1 (1%)	19	51
1	Ο	116/124~(94%)	110 (95%)	6~(5%)	0	100	100
1	Р	120/124~(97%)	113 (94%)	7 (6%)	0	100	100
2	Q	111/137~(81%)	102 (92%)	8 (7%)	1 (1%)	17	48
2	R	104/137~(76%)	97~(93%)	6 (6%)	1 (1%)	15	45
2	S	118/137~(86%)	108 (92%)	9~(8%)	1 (1%)	19	51
2	Т	118/137~(86%)	108 (92%)	9~(8%)	1 (1%)	19	51
2	U	112/137~(82%)	103~(92%)	8 (7%)	1 (1%)	17	48
2	V	$\overline{117/137}\ (85\%)$	105 (90%)	11 (9%)	1 (1%)	17	48
2	W	112/137~(82%)	104 (93%)	7 (6%)	1 (1%)	17	48
2	Х	115/137~(84%)	106 (92%)	8 (7%)	1 (1%)	17	48
All	All	2805/3080~(91%)	2613 (93%)	176 (6%)	16 (1%)	25	58

All (16) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	F	116	ALA
2	Q	183	VAL
2	R	183	VAL
2	S	183	VAL
2	Т	183	VAL
2	U	183	VAL

Mol	Chain	Res	Type
2	V	183	VAL
2	W	183	VAL
2	Х	183	VAL
1	Н	139	GLY
1	N	116	ALA
1	G	116	ALA
1	L	116	ALA
1	Е	116	ALA
1	В	139	GLY
1	Ι	139	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	\mathbf{ntiles}
1	А	103/110~(94%)	100 (97%)	3~(3%)	42	76
1	В	95/110~(86%)	92~(97%)	3~(3%)	39	73
1	С	99/110~(90%)	96~(97%)	3~(3%)	41	75
1	D	105/110~(96%)	99~(94%)	6~(6%)	20	51
1	Е	99/110~(90%)	95~(96%)	4 (4%)	31	65
1	F	97/110~(88%)	94 (97%)	3(3%)	40	74
1	G	101/110~(92%)	95 (94%)	6 (6%)	19	49
1	Н	97/110~(88%)	91 (94%)	6 (6%)	18	47
1	Ι	103/110~(94%)	98~(95%)	5 (5%)	25	57
1	J	96/110~(87%)	92 (96%)	4 (4%)	30	63
1	K	103/110~(94%)	99~(96%)	4 (4%)	32	66
1	L	98/110~(89%)	92 (94%)	6 (6%)	18	48
1	М	100/110~(91%)	99~(99%)	1 (1%)	76	92
1	Ν	93/110~(84%)	92 (99%)	1 (1%)	73	92
1	Ο	97/110 (88%)	94 (97%)	3 (3%)	40	74
1	Р	101/110~(92%)	94 (93%)	7 (7%)	15	41

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
2	Q	91/122~(75%)	89~(98%)	2(2%)	52	81
2	R	76/122~(62%)	75~(99%)	1 (1%)	69	90
2	S	94/122~(77%)	94 (100%)	0	100	100
2	Т	95/122~(78%)	95~(100%)	0	100	100
2	U	85/122~(70%)	83~(98%)	2(2%)	49	79
2	V	90/122~(74%)	88~(98%)	2(2%)	52	81
2	W	85/122~(70%)	85 (100%)	0	100	100
2	Х	81/122~(66%)	81 (100%)	0	100	100
All	All	2284/2736~(84%)	2212 (97%)	72 (3%)	39	73

All (72) residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
1	А	153	ASP
1	А	186	ARG
1	А	191	SER
1	В	133	ASN
1	В	174	ASN
1	В	180	THR
1	С	142	ARG
1	С	153	ASP
1	С	180	THR
1	D	76	THR
1	D	121	GLN
1	D	129	ARG
1	D	142	ARG
1	D	153	ASP
1	D	182	ILE
1	Е	117	ARG
1	Е	153	ASP
1	Е	180	THR
1	Е	182	ILE
1	F	133	ASN
1	F	154	ASN
1	F	181	ARG
1	G	96	GLU
1	G	129	ARG
1	G	146	GLU
1	G	159	ASN

Mol	Chain	Res	Type
1	G	180	THR
1	G	182	ILE
1	Н	133	ASN
1	Н	153	ASP
1	Н	154	ASN
1	Н	174	ASN
1	Н	182	ILE
1	Н	191	SER
1	Ι	129	ARG
1	Ι	153	ASP
1	Ι	167	GLU
1	Ι	181	ARG
1	Ι	182	ILE
1	J	133	ASN
1	J	138	ILE
1	J	153	ASP
1	J	174	ASN
1	Κ	121	GLN
1	Κ	180	THR
1	Κ	186	ARG
1	К	191	SER
1	L	99	SER
1	L	153	ASP
1	L	174	ASN
1	L	180	THR
1	L	182	ILE
1	L	186	ARG
1	М	153	ASP
1	N	174	ASN
1	Ο	80	CYS
1	0	96	GLU
1	0	180	THR
1	Р	74	ASN
1	P	133	ASN
1	P	153	ASP
1	Р	174	ASN
1	Р	180	THR
1	Р	181	ARG
1	Р	186	ARG
2	Q	111	VAL
2	Q	175	SER
2	R	181	THR

Continued from previous page...

Mol	Chain	Res	Type
2	U	181	THR
2	U	183	VAL
2	V	181	THR
2	V	183	VAL

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (31) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	114	GLN
1	А	121	GLN
1	В	121	GLN
1	С	105	GLN
1	С	174	ASN
1	Е	121	GLN
1	Е	194	ASN
1	F	74	ASN
1	F	121	GLN
1	G	105	GLN
1	Н	111	GLN
1	Н	121	GLN
1	Ι	111	GLN
1	Ι	114	GLN
1	Ι	133	ASN
1	J	121	GLN
1	K	114	GLN
1	Κ	133	ASN
1	K	173	ASN
1	L	121	GLN
1	М	114	GLN
1	М	133	ASN
1	Ν	121	GLN
1	Ν	194	ASN
1	0	83	ASN
1	0	114	GLN
1	0	133	ASN
1	Р	111	GLN
1	Р	121	GLN
2	Q	164	ASN
2	U	186	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

17 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Bos	Link	Bo	ond leng	ths	B	ond ang	les
WIOI	туре	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
4	NAG	Т	300	2	14,14,15	0.33	0	17,19,21	0.72	1 (5%)
3	SO4	W	301	-	4,4,4	0.20	0	6,6,6	0.19	0
4	NAG	Q	300	2	14,14,15	0.32	0	17,19,21	0.84	2 (11%)
3	SO4	Q	301	-	4,4,4	0.41	0	6,6,6	0.36	0
4	NAG	V	300	2	14,14,15	0.28	0	17,19,21	0.90	1 (5%)
3	SO4	Т	301	-	4,4,4	0.38	0	6,6,6	0.21	0
3	SO4	V	301	-	4,4,4	0.14	0	6,6,6	0.31	0
3	SO4	R	301	-	4,4,4	0.15	0	$6,\!6,\!6$	0.19	0
4	NAG	U	300	2	14,14,15	0.30	0	17,19,21	0.96	2 (11%)
3	SO4	S	301	-	4,4,4	0.29	0	6,6,6	0.30	0
4	NAG	R	300	2	14,14,15	0.32	0	17,19,21	0.90	2 (11%)
3	SO4	D	201	-	4,4,4	0.07	0	6,6,6	0.22	0
4	NAG	Х	301	2	14,14,15	0.32	0	17,19,21	0.76	2 (11%)
3	SO4	Х	302	-	4,4,4	0.21	0	6,6,6	0.30	0
4	NAG	W	300	2	14,14,15	0.30	0	17,19,21	0.74	1 (5%)
4	NAG	S	300	2	14,14,15	0.28	0	17,19,21	0.82	2 (11%)

Mol Type	Chain	Dec	Tink	Bond lengths			Bond angles			
	туре	Unam	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
3	SO4	U	301	-	4,4,4	0.19	0	$6,\!6,\!6$	0.23	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	NAG	Т	300	2	-	0/6/23/26	0/1/1/1
4	NAG	V	300	2	-	0/6/23/26	0/1/1/1
4	NAG	Q	300	2	-	0/6/23/26	0/1/1/1
4	NAG	U	300	2	-	0/6/23/26	0/1/1/1
4	NAG	R	300	2	-	0/6/23/26	0/1/1/1
4	NAG	Х	301	2	-	0/6/23/26	0/1/1/1
4	NAG	W	300	2	-	0/6/23/26	0/1/1/1
4	NAG	S	300	2	-	0/6/23/26	0/1/1/1

There are no bond length outliers.

All ((13)	bond	angle	outliers	are	listed	below:
-------	------	-----------------------	-------	----------	-----	--------	--------

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
4	R	300	NAG	C1-O5-C5	2.78	115.95	112.19
4	U	300	NAG	C1-O5-C5	2.62	115.74	112.19
4	V	300	NAG	C1-O5-C5	2.61	115.73	112.19
4	U	300	NAG	O5-C1-C2	-2.51	107.33	111.29
4	Q	300	NAG	C1-O5-C5	2.39	115.43	112.19
4	W	300	NAG	C1-O5-C5	2.34	115.36	112.19
4	S	300	NAG	C1-O5-C5	2.32	115.34	112.19
4	Т	300	NAG	C1-O5-C5	2.14	115.10	112.19
4	Х	301	NAG	O5-C1-C2	-2.10	107.98	111.29
4	R	300	NAG	O5-C1-C2	-2.09	107.98	111.29
4	S	300	NAG	O5-C1-C2	-2.05	108.05	111.29
4	Q	300	NAG	O5-C1-C2	-2.03	108.08	111.29
4	Х	301	NAG	C1-O5-C5	2.03	114.94	112.19

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	# RSRZ > 2	$\mathbf{OWAB}(\mathbf{\mathring{A}}^2)$	Q < 0.9
1	А	121/124~(97%)	-0.31	0 100 100	20, 40, 71, 81	1 (0%)
1	В	121/124~(97%)	-0.18	1 (0%) 86 86	24, 56, 101, 117	1 (0%)
1	С	120/124~(96%)	-0.12	0 100 100	27, 52, 83, 107	1 (0%)
1	D	121/124~(97%)	-0.37	0 100 100	16, 34, 60, 82	1 (0%)
1	Е	122/124~(98%)	-0.28	0 100 100	19, 48, 90, 102	0
1	F	122/124~(98%)	-0.41	0 100 100	15, 40, 88, 106	1 (0%)
1	G	119/124~(95%)	-0.37	0 100 100	19,35,66,86	1 (0%)
1	Н	122/124~(98%)	-0.35	0 100 100	14, 44, 89, 111	1 (0%)
1	Ι	119/124~(95%)	-0.31	0 100 100	10, 33, 60, 87	1 (0%)
1	J	122/124~(98%)	-0.21	0 100 100	11, 49, 94, 106	1 (0%)
1	K	118/124~(95%)	-0.35	0 100 100	12, 32, 65, 87	1 (0%)
1	L	122/124~(98%)	-0.23	1 (0%) 86 86	12, 43, 95, 114	1 (0%)
1	М	119/124~(95%)	-0.26	0 100 100	22, 47, 74, 97	1 (0%)
1	Ν	122/124~(98%)	-0.14	1 (0%) 86 86	23, 52, 96, 114	1 (0%)
1	Ο	118/124~(95%)	-0.24	0 100 100	28, 49, 77, 94	1 (0%)
1	Р	122/124~(98%)	-0.23	0 100 100	18, 45, 81, 96	1 (0%)
2	Q	117/137~(85%)	-0.11	1 (0%) 84 84	29,62,85,100	1 (0%)
2	R	112/137~(81%)	0.26	1 (0%) 84 84	43, 81, 103, 110	0
2	S	122/137~(89%)	-0.02	0 100 100	26, 59, 94, 120	2(1%)
2	Т	122/137~(89%)	-0.21	0 100 100	20, 56, 88, 124	1 (0%)
2	U	116/137~(84%)	-0.18	1 (0%) 84 84	$24, 62, \overline{99, 125}$	0
2	V	121/137~(88%)	-0.31	0 100 100	17, 51, 83, 101	1 (0%)
2	W	118/137~(86%)	-0.11	1 (0%) 86 86	38, 69, 103, 125	2(1%)
2	Х	119/137~(86%)	0.08	4 (3%) 45 40	42, 77, 119, 144	0

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2		$\mathbf{OWAB}(\mathrm{\AA}^2)$	Q<0.9
All	All	2877/3080~(93%)	-0.21	11 (0%) 92	93	10,51,95,144	22 (0%)

All (11) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
2	R	95	PRO	2.9
2	Х	181	THR	2.3
2	U	140	PHE	2.3
2	W	181	THR	2.3
2	Х	165	TRP	2.3
1	В	146	GLU	2.2
2	Х	192	ILE	2.1
1	L	147	HIS	2.1
2	Q	192	ILE	2.1
2	Х	213	GLU	2.1
1	Ν	144	SER	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
4	NAG	Х	301	14/15	0.85	0.24	114,125,136,136	0
4	NAG	U	300	14/15	0.87	0.20	80,98,114,119	0
4	NAG	R	300	14/15	0.88	0.24	93,97,108,111	0
4	NAG	S	300	14/15	0.90	0.15	72,86,97,97	0
4	NAG	W	300	14/15	0.93	0.15	79,93,100,101	0
4	NAG	Q	300	14/15	0.93	0.17	58,68,71,73	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B -factors($Å^2$)	Q<0.9
4	NAG	V	300	14/15	0.94	0.17	43,58,75,76	0
3	SO4	D	201	5/5	0.95	0.12	109,109,110,110	0
4	NAG	Т	300	14/15	0.95	0.17	46,62,76,78	0
3	SO4	R	301	5/5	0.96	0.10	86,88,89,93	0
3	SO4	Q	301	5/5	0.97	0.15	52,57,58,62	0
3	SO4	U	301	5/5	0.97	0.14	77,78,84,85	0
3	SO4	W	301	5/5	0.99	0.12	62,64,65,67	0
3	SO4	Х	302	5/5	0.99	0.11	65,67,67,69	0
3	SO4	Т	301	5/5	0.99	0.12	50,52,54,56	0
3	SO4	S	301	5/5	0.99	0.12	62,63,64,66	0
3	SO4	V	301	5/5	0.99	0.11	50,51,53,54	0

6.5 Other polymers (i)

There are no such residues in this entry.

