

wwPDB X-ray Structure Validation Summary Report (i)

Jun 25, 2024 – 03:58 AM EDT

PDB ID	:	6FB3
Title	:	Teneurin 2 Partial Extracellular Domain
Authors	:	Jackson, V.A.; Carrasquero, M.; Lowe, E.D.; Seiradake, E.
Deposited on	:	2017-12-18
Resolution	:	2.38 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.37.1
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.37.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\;DIFFRACTION$

The reported resolution of this entry is 2.38 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	130704	5509(2.40-2.36)
Clashscore	141614	6082 (2.40-2.36)
Ramachandran outliers	138981	5973(2.40-2.36)
Sidechain outliers	138945	5975(2.40-2.36)
RSRZ outliers	127900	5397 (2.40-2.36)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length		Quality of chain	
			18%		
1	А	1859		91%	7% •
			15%		
1	В	1859		91%	8% •
			8%		
1	С	1859		91%	7% •
			14%		
1	D	1859		91%	7% •
2	Ε	8	25%	75%	

Mol	Chain	Length	Quality of chain
2	K	8	25% 75%
2	Q	8	12% 88%
2	W	8	25% 75%
3	F	2	100%
3	G	2	100%
3	Н	2	50% 50%
3	Ι	2	100%
3	J	2	50% 50%
3	L	2	100%
3	М	2	100%
3	N	2	50%
3	0	2	100%
3	Р	2	100%
3	B	2	100 /0 F.00/
2	S	2	30% 30%
		2	100%
ວ 	I	2	50% 50%
3	U	2	50% 50%
3	V	2	50% 50%
3	X	2	100%
3	Y	2	100%
3	Z	2	50% 50%
3	a	2	100%
3	b	2	100%

2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 59451 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		A	toms			ZeroOcc	AltConf	Trace
1	Λ	1836	Total	С	Ν	Ο	\mathbf{S}	0	1	0
1	Л	1000	14513	9168	2508	2774	63	0		U
1	В	1836	Total	С	Ν	Ο	S	0	1	0
1	D	1000	14513	9168	2508	2774	63	0		
1	C	1826	Total	С	Ν	Ο	S	0	1	0
	U	1030	14513	9168	2508	2774	63	0		U
1	П	D 1996	Total	С	Ν	Ο	S	0	1	0
		1030	14513	9168	2508	2774	63			0

• Molecule 1 is a protein called Teneurin-2.

There are 44 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	953	THR	-	expression tag	UNP Q9DER5
А	954	GLY	-	expression tag	UNP Q9DER5
А	2803	GLY	-	expression tag	UNP Q9DER5
А	2804	THR	-	expression tag	UNP Q9DER5
А	2805	LYS	-	expression tag	UNP Q9DER5
А	2806	HIS	-	expression tag	UNP Q9DER5
А	2807	HIS	-	expression tag	UNP Q9DER5
А	2808	HIS	-	expression tag	UNP Q9DER5
А	2809	HIS	-	expression tag	UNP Q9DER5
А	2810	HIS	-	expression tag	UNP Q9DER5
А	2811	HIS	-	expression tag	UNP Q9DER5
В	953	THR	-	expression tag	UNP Q9DER5
В	954	GLY	-	expression tag	UNP Q9DER5
В	2803	GLY	-	expression tag	UNP Q9DER5
В	2804	THR	-	expression tag	UNP Q9DER5
В	2805	LYS	-	expression tag	UNP Q9DER5
В	2806	HIS	-	expression tag	UNP Q9DER5
В	2807	HIS	-	expression tag	UNP Q9DER5
В	2808	HIS	-	expression tag	UNP Q9DER5
В	2809	HIS	-	expression tag	UNP Q9DER5
В	2810	HIS	-	expression tag	UNP Q9DER5

Chain	Residue	Modelled	Actual	Comment	Reference
В	2811	HIS	-	expression tag	UNP Q9DER5
С	953	THR	-	expression tag	UNP Q9DER5
С	954	GLY	-	expression tag	UNP Q9DER5
С	2803	GLY	-	expression tag	UNP Q9DER5
С	2804	THR	-	expression tag	UNP Q9DER5
С	2805	LYS	-	expression tag	UNP Q9DER5
С	2806	HIS	-	expression tag	UNP Q9DER5
С	2807	HIS	-	expression tag	UNP Q9DER5
С	2808	HIS	-	expression tag	UNP Q9DER5
С	2809	HIS	-	expression tag	UNP Q9DER5
С	2810	HIS	-	expression tag	UNP Q9DER5
С	2811	HIS	-	expression tag	UNP Q9DER5
D	953	THR	-	expression tag	UNP Q9DER5
D	954	GLY	-	expression tag	UNP Q9DER5
D	2803	GLY	-	expression tag	UNP Q9DER5
D	2804	THR	-	expression tag	UNP Q9DER5
D	2805	LYS	-	expression tag	UNP Q9DER5
D	2806	HIS	-	expression tag	UNP Q9DER5
D	2807	HIS	-	expression tag	UNP Q9DER5
D	2808	HIS	-	expression tag	UNP Q9DER5
D	2809	HIS	-	expression tag	UNP Q9DER5
D	2810	HIS	-	expression tag	UNP Q9DER5
D	2811	HIS	-	expression tag	UNP Q9DER5

• Molecule 2 is an oligosaccharide called alpha-D-mannopyranose-(1-2)-alpha-D-mannopyran ose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-3)-alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace	
2	Е	8	Total C N O	0	0	0	
			94 52 2 40				
2	K	8	Total C N O	0	0	0	
	Γ	0	94 52 2 40	0			
0	0	0	Total C N O	0	0	0	
	Q	8	94 52 2 40	0	0	0	
0	W	0	Total C N O	0	0	0	
	vv	0	94 52 2 40	0	0	U	

• Molecule 3 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
3	F	2	Total C N O 28 16 2 10	0	0	0
3	G	2	Total C N O 28 16 2 10	0	0	0
3	Н	2	Total C N O 28 16 2 10	0	0	0
3	Ι	2	Total C N O 28 16 2 10	0	0	0
3	J	2	Total C N O 28 16 2 10	0	0	0
3	L	2	Total C N O 28 16 2 10	0	0	0
3	М	2	Total C N O 28 16 2 10	0	0	0
3	Ν	2	Total C N O 28 16 2 10	0	0	0
3	0	2	Total C N O 28 16 2 10	0	0	0
3	Р	2	Total C N O 28 16 2 10	0	0	0
3	R	2	Total C N O 28 16 2 10	0	0	0
3	S	2	Total C N O 28 16 2 10	0	0	0
3	Т	2	Total C N O 28 16 2 10	0	0	0
3	U	2	Total C N O 28 16 2 10	0	0	0
3	V	2	Total C N O 28 16 2 10	0	0	0
3	Х	2	Total C N O 28 16 2 10	0	0	0
3	Y	2	Total C N O 28 16 2 10	0	0	0
3	Z	2	Total C N O 28 16 2 10	0	0	0

Continued from previous page									
Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace			
3	a	2	Total C N O	0	0	0			
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
3	b	2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	0			

• Molecule 4 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	1	Total C N O 14 8 1 5	0	0
4	А	1	Total C N O 14 8 1 5	0	0
4	А	1	Total C N O 14 8 1 5	0	0
4	А	1	Total C N O 14 8 1 5	0	0
4	А	1	Total C N O 14 8 1 5	0	0
4	В	1	Total C N O 14 8 1 5	0	0
4	В	1	Total C N O 14 8 1 5	0	0
4	В	1	Total C N O 14 8 1 5	0	0
4	В	1	Total C N O 14 8 1 5	0	0

Mol	Chain	Residues	A	ton	ns		ZeroOcc	AltConf
1	Р	1	Total	С	Ν	0	0	0
4	D	L	14	8	1	5	0	0
4	С	1	Total	С	Ν	0	0	0
4	U	T	14	8	1	5	0	0
4	С	1	Total	С	Ν	Ο	0	0
-1	U	T	14	8	1	5	0	0
4	С	1	Total	С	Ν	Ο	0	0
-1	U	T	14	8	1	5	0	0
4	С	1	Total	С	Ν	Ο	0	0
-1	U	T	14	8	1	5	0	0
4	С	1	Total	С	Ν	0	0	Ο
т	U	I	14	8	1	5	0	0
4	Л	1	Total	С	Ν	Ο	0	0
	D	T	14	8	1	5	0	0
4	Л	1	Total	С	Ν	Ο	0	0
	D	T	14	8	1	5	0	0
4	D 1	1	Total	С	Ν	Ο	0	0
	D	T	14	8	1	5	0	0
4	О	1	Total	С	Ν	Ο	0	0
т		1	14	8	1	5	0	0
	а	1	Total	С	Ν	0	0	0
- T		L 1	14	8	1	5	0	

• Molecule 5 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	А	17	Total O 17 17	0	0
5	В	29	TotalO2929	0	0
5	С	105	Total O 105 105	0	0
5	D	32	$\begin{array}{cc} \text{Total} & \text{O} \\ 32 & 32 \end{array}$	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Teneurin-2

M2205 T2205 V2205 M2210 K2215 L2220 C2221 F2223 V2225 L2225 L2225 L2225 L2226 L2226 L2226 L2226 R2261 L2226 R2261 R2261 L2266 V2366 V26 V26 V26 V26 V26 V26 V26 V26 V26 V
V2395 T2402 T2403 T2413 T2413 T2413 T2413 T2413 T2414 T2413 T2414 T2413 T2414 T2413 T2414 T2413 T2445 T2522 T2553 T2545 T2554 </td
T.26 45 H.36 47 Y.26 48 H.36 47 L.26 65 L.26 65 L.26 65 L.26 65 L.26 68 R.25 95 H.26 68 R.25 98 R.25 98 R.27 98 R.19 R.19 H.15 H.15 H.15 H.15
• Molecule 1: Teneurin-2
Chain B: 91% 8% .
THR CLA CLY CLY CLY CLY CLY CLY CLA CLA CLA CLA CLA CLA CLA CLA CLA CLA
L11035 W1037 W1037 L1035 M1037 L188 R1045 SER L1049 SER L1049 L1049 L1049 L1049 L1049 L1049 L1049 L1049 L1049 L1049 L1049 L1049 L1049 L1049 L1106 L1110 L1110 L112
Y1178 Y1178 P1182 P1182 P1182 P1182 P1182 S1184 L1184 L1184 L1185 L1186 L1186 L1186 L1186 L1186 L1186 L1199 P1201 P1202 P1203 L1286 L1286 </td
II 290 II 290 II 296 II 296 II 296 II 296 II 296 II 296 II 296 II 296 II 296 II 290 II 290 II 290 II 290 II 300 II
Cl 359 T1359 T1355 F1355 F1356 F1356 F1356 F1359 F1405 F1415 F1415<
V1440 R1441 R1441 R1441 R1445 R1445 R1445 R1445 R1446 R1446 R1446 R1446 R1457 R1456 R1456 R1456 R1468 R14888 R1488 R1488 R1488 R14888 R14888 R14888 R148888 R14888 R14888 R14888 R1488888 R148888 R148888 R1
P1574 A1578 A1578 A1589 A1589 A1589 A1589 A1589 A1589 A1589 A1589 A1589 A1580 A1580 A1580 A1580 A1580 A1594 A1595 A1596 A1596 A1596 A1596 A1596 A1596 A1596 A1597 A1596 A1597 A1598 A1573 A1573 A1573 A1573 A1573 A1573 A1573 A1569 A1573 A1569 A1573 A1569 A1569 A1569 A1569 A1569 A1569 A1569 A1569 </td
11.965 11.965 11.790 11.790 11.790 11.793 11.1923 11.825 11.825 11.825 11.825 11.825 11.825 11.875 11.8555 11.8555 11.8555 11.8555 11.85555 11.85555555555
P1 995 81 996 81 996 81 996 12014 P2018 P2018 P2018 P2018 P2014 P2014 P2014 P2014 P2014 P2015 P2016 P2016 P2140 P2141 P2142 P2141 P2142 P2142 P2142 P2142 P2143 P2

T1034 L1035 V1035 M1037 LYS THR CLV CLV CLU GLU GLU SER SER	P1045 P1045 S1046 S1046 D10445 L1049 S1050 S1050 C1051 F1052 V1053 R1054	11059 11060 E1067 E1087 L1100 11113 11113 11114 M1115 T1116	P11121 L1122 L1124 L1125 L1126 L1126 L1126 L1126 L1127 L1128 L1129 P1121 V1131 V1172 V1174 V1174 V1174
G1175 F1176 E1177 E1177 S1183 L1184 L1185 U1185 W1187 E1188	L1199 D1200 P1201 P1201 L1242 R1249 R1249 S1250 I1251	81252 61253 P1255 81255 01255 01255 01255 01255 01255 01255 11265 11265 11265 11265 11265 11265 01265	V1273 G1274 L1279 L1279 N1286 N1286 N1296 N1296 L1300 L1300 L1300 L1300 L1300 L1300 L1300 L1300 L1300 L1300 L1300
F1307 K1308 H1309 S1310 N1312 N1312 P1313 A1314 H1315 K1316	1121/ 11321 61326 71329 71329 71333 71333	V1340 V1341 L1344 T1345 01346 01346 L1356 V1356 V1356 V1356 V1356 C1359 C1359 C1359	L1365 P1366 11389 11389 V1391 V1395 V1396 V1396 V1396 V1396 V1401 A1402 V1401 A1405 K1407 K1407 K1407 K1407
11413 11417 11417 11418 61418 81420 81420 81422 11423 11423	V1425 V1427 P1428 L1429 M1435 N1435 V1435 V1435 V1435 V1438 Q1439	L1442 E1443 W1444 V1460 D1454 L1460 E1460 E1460	11400 11473 11477 11477 11477 11485 11486 11486 11488 11488 11488 11490 11490 11490 11490 11498 11498 11498 11498 11498 11498 11451
11522 11526 11529 11529 01547	V1554 P1574 A1578 A1578 A1578 A1586 A1586 L1590	11593 11599 11599 11599 11519 11573 11573 11573 11573	L1697 L1697 L1707 S1721 S1723 P1744 M1755 B1744 M1755 B1769 D1769 D1769
11773 11774 11775 11775 01789 01789 01789 01789 11792 11792	11814 S1815 P1820 H1821 H1821 T1825 F1825 P1829 P1829 T1830	R1847 11847 11847 11861 11861 11861 11861 11871 11872 11873 11873 11873	F1925 L1932 D1944 K1946 A1965 L1965 E1966 E1966 E1966 B1980 S1986 P1980 S1986 P1980 V1997
M2002 12006 52007 12008 72010 12008 12010	R2033 12034 L2035 S2033 F2039 F2039 R2044 R2044	12056 12059 12082 12082 12131 12135 12135 12135 12135	H2156 V2162 V2162 V2173 V2173 V2173 V2175 V2177 V2193 V2192 V2192 V2193 V2192 V2192 V2193 V2192 V2216 V2215 V2215 V2215
82253 82254 02256 122565 122565 122661 122661 12262 12262	2344 82369 12363 12378 23389 92418	Y2427 Y2426 H2440 Y2451 P2468 H2468 H2468 L2485	V2511 12521 12521 12522 12539 02545 02545 02545 02545 12591 12591 12591 12692 12693 82608 82608
H2632 Y2633 L2634 E2635 K2635 F2641 E2641 E2643 C2643	12652 12652 12652 12652 12655 12655 12655 12655	V2679 T2683 12684 12685 12685 12685 72685 72691 72692 72693 72693	12695 12697 12698 12698 12705 12705 12705 12705 12705 12705 12710 127111 127111 12711 127111 12711 127111 127111 1271111 127111 127111 127
V2723 12724 12725 12725 12727 12727 12725 12732 12732	42 5.5 42 7.58 72773 72773 72773 82768 82798 82798 82798 827 1278 1278 1278 8480 6177	THR LVS HLS HLS HLS HLS HLS HLS	

• Molecule 2: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-3)-alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose e

Chain E:

25%

75%

NAG1 NAG2 BMA3 MAN4 MAN5 MAN5 MAN6 MAN7 MAN8

 $\bullet \ Molecule \ 2: \ alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-alpha-D-mannopyranose-(1-3)-alpha-D-mannopyranose-(1-6)] \\ beta-D-mannopyranose-(1-3)-alpha-D-mannopyranose-(1-6)] \\ beta-D-mannopyranose-(1-6)] \\ beta-D-mannopyranose-(1$

-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranos e

75%

Chain K: 25%

NAG1 NAG2 BMA3 MAN4 MAN5 MAN5 MAN5 MAN7 MAN8

• Molecule 2: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-3)-alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose e

Chain Q: 12%

88%

NAG1 NAG2 BMA3 MAN4 MAN5 MAN5 MAN5 MAN7 MAN8

• Molecule 2: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-3)-alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose e

Chain W: –	25%	75%

NAG1 NAG2 BMA3 MAN4 MAN5 MAN5 MAN6 MAN7 MAN8

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain F: 100%

NAG1 NAG2

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain G:

100%

NAG1 NAG2

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain l	H:
---------	----

50%

50%

• Molecule 3:	$2\-acetamido-2\-deoxy-beta-D-glucopyranose-(1-4)-2\-deoxy-beta-D-glucopyranose-(1-4)-2\-deoxy-beta-D-glucopyranose-(1-4)-2\-deoxy-beta-D-glucopyranose-(1-4)-2\-deoxy-beta-D-glucopyranose-(1-4)-2\-deoxy-beta-D-glucopyranose-(1-4)-2\-deoxy-beta-D-glucopyranose-(1-4)-2\-deoxy-beta-D-glucopyranose-(1-4)-2\-deoxy-beta-D-glucopyranose-(1-4)-2\-deoxy-beta-D-glucopyranose-(1-4)-2\-deoxy-beta-D-glucopyranose-(1-4)-2\-deoxy-beta-D-glucopyranose-(1-4)-2\-deoxy-beta-D-glucopyranose-(1-4)-2\-deoxy-beta-D-glucopyranose-(1-4)-2\-deoxy$
opyranose	

Chain I:

NAG1 NAG2

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluc opyranose

Chain J:	50%	50%

100%

NAG1 NAG2

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain L:	100%
MAG2 MAG2	

50%

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain M:

100%

NAG1 NAG2

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

50%

Chain N:

NAG1 NAG2

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluc opyranose

Chain O:

100%

NAG1 NAG2

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain P:

100%

NAG1 NAG2

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain R:	50%	50%	
NAG1 NAG2			
• Molecule 3 opyranose	3: 2-acetamido-2-deoxy-beta	a-D-glucopyranose-(1-4)-2-acetamid	o-2-deoxy-beta-D-gluc
Chain S:		100%	
NAG1 NAG2			
• Molecule 3 opyranose	3: 2-acetamido-2-deoxy-beta	a-D-glucopyranose-(1-4)-2-acetamid	o-2-deoxy-beta-D-gluc
Chain T:	50%	50%	
NAG1 NAG2			
• Molecule 3 opyranose	3: 2-acetamido-2-deoxy-beta	a-D-glucopyranose-(1-4)-2-acetamid	o-2-deoxy-beta-D-gluc
Chain U:	50%	50%	
NAG1 NAG2			
• Molecule 3 opyranose	3: 2-acetamido-2-deoxy-beta	a-D-glucopyranose-(1-4)-2-acetamid	o-2-deoxy-beta-D-gluc
Chain V:	50%	50%	
NAG1 NAG2			
• Molecule 3 opyranose	3: 2-acetamido-2-deoxy-beta	a-D-glucopyranose-(1-4)-2-acetamid	o-2-deoxy-beta-D-gluc

Chain X:

100%

NAG1 NAG2

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Ch	ain	Y:	
~			

100%

NAG1 NAG2

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain Z:	50%	50%	
NAG1 NAG2			
• Molecule 3 opyranose	: 2-acetamido-2-deoxy-beta-I	D-glucopyranose-(1-4)-2-acetamic	lo-2-deoxy-beta-D-gluc
Chain a:	10	00%	•

NAG1 NAG2

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain b:

100%

NAG1 NAG2

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	88.56Å 452.56Å 146.36Å	Depositor
a, b, c, α , β , γ	90.00° 95.12° 90.00°	Depositor
Bosolution (Å)	89.38 - 2.38	Depositor
Resolution (A)	89.38 - 2.38	EDS
% Data completeness	94.3 (89.38-2.38)	Depositor
(in resolution range)	94.3 (89.38-2.38)	EDS
R_{merge}	(Not available)	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.31 (at 2.37 \text{\AA})$	Xtriage
Refinement program	BUSTER 2.10.3	Depositor
P. P.	0.225 , 0.242	Depositor
n, n_{free}	0.242 , 0.261	DCC
R_{free} test set	21455 reflections $(4.99%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	47.8	Xtriage
Anisotropy	0.297	Xtriage
Bulk solvent $k_{sol}(e/A^3), B_{sol}(A^2)$	0.32 , 44.3	EDS
L-test for $twinning^2$	$ < L >=0.48, < L^2>=0.30$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.93	EDS
Total number of atoms	59451	wwPDB-VP
Average B, all atoms $(Å^2)$	76.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 45.90 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 1.2374e-04. The detected translational NCS is most likely also responsible for the elevated intensity ratio.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: BMA, NAG, MAN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles	
INIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.37	0/14827	0.62	0/20108
1	В	0.37	0/14827	0.62	0/20108
1	С	0.37	0/14827	0.62	0/20108
1	D	0.37	0/14827	0.62	0/20108
All	All	0.37	0/59308	0.62	0/80432

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	14513	0	14253	66	0
1	В	14513	0	14253	69	0
1	С	14513	0	14253	63	0
1	D	14513	0	14253	64	0
2	Е	94	0	79	0	0
2	K	94	0	79	0	0
2	Q	94	0	79	0	0
2	W	94	0	79	0	0
3	F	28	0	25	0	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
3	G	28	0	25	0	0
3	Н	28	0	25	0	0
3	Ι	28	0	25	0	0
3	J	28	0	25	0	0
3	L	28	0	25	0	0
3	М	28	0	25	0	0
3	N	28	0	25	0	0
3	0	28	0	25	0	0
3	Р	28	0	25	0	0
3	R	28	0	25	0	0
3	S	28	0	25	0	0
3	Т	28	0	25	0	0
3	U	28	0	25	0	0
3	V	28	0	25	0	0
3	Х	28	0	25	0	0
3	Y	28	0	25	0	0
3	Ζ	28	0	25	0	0
3	a	28	0	25	0	0
3	b	28	0	25	0	0
4	А	70	0	65	0	0
4	В	70	0	65	0	0
4	С	70	0	65	0	0
4	D	70	0	65	0	0
5	А	17	0	0	0	0
5	В	29	0	0	0	0
5	С	105	0	0	0	0
5	D	32	0	0	0	0
All	All	59451	0	58088	260	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 2.

The worst 5 of 260 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:C:1821:HIS:HD2	1:C:1830:THR:HG21	1.41	0.85
1:A:1821:HIS:HD2	1:A:1830:THR:HG21	1.41	0.85
1:B:1821:HIS:HD2	1:B:1830:THR:HG21	1.41	0.83
1:D:1821:HIS:HD2	1:D:1830:THR:HG21	1.42	0.82
1:D:982:TYR:HB3	1:D:983:PRO:HD3	1.65	0.79

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	1833/1859~(99%)	1769~(96%)	57~(3%)	7~(0%)	34	46
1	В	1833/1859~(99%)	1763~(96%)	63~(3%)	7~(0%)	34	46
1	С	1833/1859~(99%)	1768 (96%)	59~(3%)	6~(0%)	41	53
1	D	1833/1859~(99%)	1765~(96%)	61 (3%)	7~(0%)	34	46
All	All	7332/7436~(99%)	7065 (96%)	240 (3%)	27(0%)	34	46

5 of 27 Ramachandran outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	982	TYR
1	В	982	TYR
1	С	982	TYR
1	D	982	TYR
1	А	1997	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percen	ntiles
1	А	1601/1620~(99%)	1574~(98%)	27~(2%)	60	76
1	В	1601/1620~(99%)	1573~(98%)	28 (2%)	60	76
1	С	1601/1620~(99%)	1574~(98%)	27 (2%)	60	76

Continuada fronte procesas pagoni							
Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles	3
1	D	1601/1620~(99%)	1572 (98%)	29~(2%)	59	75	
All	All	6404/6480~(99%)	6293~(98%)	111 (2%)	60	76	

5 of 111 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	С	1012	ARG
1	D	2591	THR
1	С	1965	LEU
1	D	2440	HIS
1	D	1944	ASP

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 18 such sidechains are listed below:

Mol	Chain	Res	Type
1	D	2185	HIS
1	D	2587	HIS
1	D	2362	HIS
1	С	1311	ASN
1	D	1892	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

72 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the

expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Trune	Chain	Dec	Tinle	Bond lengths		ths	Bond angles			
	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2	
2	NAG	Ε	1	1,2	14,14,15	0.42	0	$17,\!19,\!21$	0.69	1 (5%)	
2	NAG	Е	2	2	14,14,15	0.42	0	17,19,21	0.86	0	
2	BMA	Е	3	2	11,11,12	0.50	0	$15,\!15,\!17$	0.72	0	
2	MAN	Ε	4	2	11,11,12	0.59	0	$15,\!15,\!17$	0.93	1 (6%)	
2	MAN	Е	5	2	11,11,12	0.65	0	$15,\!15,\!17$	0.76	1 (6%)	
2	MAN	Е	6	2	11,11,12	0.61	0	$15,\!15,\!17$	0.91	1 (6%)	
2	MAN	Е	7	2	11,11,12	0.67	0	$15,\!15,\!17$	1.06	1 (6%)	
2	MAN	Е	8	2	11,11,12	0.48	0	$15,\!15,\!17$	1.07	2 (13%)	
3	NAG	F	1	1,3	14,14,15	0.41	0	$17,\!19,\!21$	0.69	0	
3	NAG	F	2	3	14,14,15	0.43	0	17,19,21	0.61	0	
3	NAG	G	1	1,3	14,14,15	0.43	0	$17,\!19,\!21$	0.59	0	
3	NAG	G	2	3	14,14,15	0.44	0	17,19,21	0.68	0	
3	NAG	Н	1	1,3	14,14,15	0.43	0	$17,\!19,\!21$	0.91	2 (11%)	
3	NAG	Н	2	3	14,14,15	0.43	0	17,19,21	0.62	0	
3	NAG	Ι	1	1,3	14,14,15	0.43	0	17,19,21	0.78	0	
3	NAG	Ι	2	3	14,14,15	0.42	0	17,19,21	0.56	0	
3	NAG	J	1	1,3	14,14,15	0.42	0	17,19,21	0.78	0	
3	NAG	J	2	3	14,14,15	0.44	0	17,19,21	0.72	1 (5%)	
2	NAG	K	1	1,2	14,14,15	0.42	0	17,19,21	0.69	0	
2	NAG	K	2	2	14,14,15	0.41	0	17,19,21	0.87	1 (5%)	
2	BMA	K	3	2	11,11,12	0.50	0	15,15,17	0.71	0	
2	MAN	K	4	2	11,11,12	0.58	0	15,15,17	0.92	1 (6%)	
2	MAN	K	5	2	11,11,12	0.63	0	15,15,17	0.76	1 (6%)	
2	MAN	K	6	2	11,11,12	0.62	0	15,15,17	0.90	1 (6%)	
2	MAN	K	7	2	11,11,12	0.67	0	$15,\!15,\!17$	1.05	1 (6%)	
2	MAN	К	8	2	11,11,12	0.55	0	$15,\!15,\!17$	1.02	2 (13%)	
3	NAG	L	1	1,3	14,14,15	0.41	0	17,19,21	0.71	0	
3	NAG	L	2	3	14,14,15	0.42	0	17,19,21	0.71	0	
3	NAG	М	1	1,3	14,14,15	0.43	0	17,19,21	0.58	0	
3	NAG	М	2	3	14,14,15	0.42	0	17,19,21	0.65	0	
3	NAG	N	1	1,3	14,14,15	0.41	0	17,19,21	0.88	2 (11%)	
3	NAG	N	2	3	14,14,15	0.43	0	17,19,21	0.60	0	
3	NAG	0	1	1,3	14,14,15	0.43	0	17,19,21	0.81	0	
3	NAG	0	2	3	14,14,15	0.43	0	17,19,21	0.56	0	
3	NAG	Р	1	1,3	14,14,15	0.42	0	17,19,21	0.79	1 (5%)	
3	NAG	Р	2	3	14,14,15	0.45	0	17,19,21	0.69	1 (5%)	
2	NAG	Q	1	1,2	14,14,15	0.42	0	17,19,21	0.72	1 (5%)	
2	NAG	Q	2	2	14,14,15	0.42	0	17,19,21	0.85	1 (5%)	

Mal	Turne	Chain	Dec	Tinle	Bond lengths		$_{\rm ths}$	Bond angles		
IVIOI	туре	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
2	BMA	Q	3	2	11,11,12	0.48	0	$15,\!15,\!17$	0.71	0
2	MAN	Q	4	2	11,11,12	0.62	0	$15,\!15,\!17$	0.89	1 (6%)
2	MAN	Q	5	2	11,11,12	0.68	0	$15,\!15,\!17$	0.77	1 (6%)
2	MAN	Q	6	2	11,11,12	0.66	0	$15,\!15,\!17$	0.90	1 (6%)
2	MAN	Q	7	2	11,11,12	0.67	0	$15,\!15,\!17$	1.06	1 (6%)
2	MAN	Q	8	2	11,11,12	0.56	0	$15,\!15,\!17$	1.03	2 (13%)
3	NAG	R	1	1,3	14,14,15	0.43	0	17,19,21	0.75	1 (5%)
3	NAG	R	2	3	14,14,15	0.42	0	17,19,21	0.58	0
3	NAG	S	1	1,3	14,14,15	0.41	0	17,19,21	0.58	0
3	NAG	S	2	3	14,14,15	0.42	0	17,19,21	0.64	0
3	NAG	Т	1	1,3	14,14,15	0.45	0	17,19,21	0.86	2 (11%)
3	NAG	Т	2	3	14,14,15	0.42	0	17,19,21	0.61	0
3	NAG	U	1	1,3	14,14,15	0.44	0	17,19,21	0.83	1 (5%)
3	NAG	U	2	3	14,14,15	0.43	0	17,19,21	0.58	0
3	NAG	V	1	1,3	14,14,15	0.43	0	17,19,21	0.80	1 (5%)
3	NAG	V	2	3	14,14,15	0.44	0	17,19,21	0.76	0
2	NAG	W	1	1,2	14,14,15	0.41	0	17,19,21	0.71	1 (5%)
2	NAG	W	2	2	14,14,15	0.40	0	17,19,21	0.83	0
2	BMA	W	3	2	11,11,12	0.54	0	$15,\!15,\!17$	0.68	0
2	MAN	W	4	2	11,11,12	0.58	0	$15,\!15,\!17$	0.91	1 (6%)
2	MAN	W	5	2	11,11,12	0.68	0	$15,\!15,\!17$	0.76	1 (6%)
2	MAN	W	6	2	11,11,12	0.62	0	$15,\!15,\!17$	0.86	1 (6%)
2	MAN	W	7	2	11,11,12	0.65	0	$15,\!15,\!17$	1.03	1 (6%)
2	MAN	W	8	2	11,11,12	0.61	0	$15,\!15,\!17$	1.05	2 (13%)
3	NAG	Х	1	1,3	14,14,15	0.43	0	17,19,21	0.71	0
3	NAG	Х	2	3	14,14,15	0.44	0	17,19,21	0.62	0
3	NAG	Y	1	1,3	14,14,15	0.43	0	17,19,21	0.60	0
3	NAG	Y	2	3	14,14,15	0.43	0	17,19,21	0.64	0
3	NAG	Z	1	1,3	14,14,15	0.45	0	17,19,21	0.86	2 (11%)
3	NAG	Ζ	2	3	14,14,15	0.42	0	17,19,21	0.58	0
3	NAG	a	1	1,3	14,14,15	0.43	0	$17,\!19,\!21$	0.79	0
3	NAG	a	2	3	14,14,15	0.42	0	$17,\!19,\!21$	0.56	0
3	NAG	b	1	1,3	14,14,15	0.42	0	17,19,21	0.77	0
3	NAG	b	2	3	14,14,15	0.44	0	$17,\!19,\!21$	0.72	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	NAG	Е	1	1,2	-	0/6/23/26	0/1/1/1
2	NAG	Е	2	2	-	0/6/23/26	0/1/1/1
2	BMA	Ε	3	2	-	2/2/19/22	0/1/1/1
2	MAN	Е	4	2	-	0/2/19/22	0/1/1/1
2	MAN	Е	5	2	-	0/2/19/22	0/1/1/1
2	MAN	E	6	2	-	0/2/19/22	0/1/1/1
2	MAN	E	7	2	-	2/2/19/22	0/1/1/1
2	MAN	Ε	8	2	-	2/2/19/22	0/1/1/1
3	NAG	F	1	1,3	-	2/6/23/26	0/1/1/1
3	NAG	F	2	3	-	2/6/23/26	0/1/1/1
3	NAG	G	1	1,3	-	2/6/23/26	0/1/1/1
3	NAG	G	2	3	-	2/6/23/26	0/1/1/1
3	NAG	Н	1	1,3	-	0/6/23/26	0/1/1/1
3	NAG	Н	2	3	-	2/6/23/26	0/1/1/1
3	NAG	Ι	1	1,3	-	2/6/23/26	0/1/1/1
3	NAG	Ι	2	3	-	3/6/23/26	0/1/1/1
3	NAG	J	1	1,3	-	0/6/23/26	0/1/1/1
3	NAG	J	2	3	-	2/6/23/26	0/1/1/1
2	NAG	K	1	1,2	_	0/6/23/26	0/1/1/1
2	NAG	Κ	2	2	-	0/6/23/26	0/1/1/1
2	BMA	Κ	3	2	-	2/2/19/22	0/1/1/1
2	MAN	Κ	4	2	-	0/2/19/22	0/1/1/1
2	MAN	K	5	2	-	0/2/19/22	0/1/1/1
2	MAN	K	6	2	-	0/2/19/22	0/1/1/1
2	MAN	K	7	2	-	2/2/19/22	0/1/1/1
2	MAN	Κ	8	2	-	2/2/19/22	0/1/1/1
3	NAG	L	1	1,3	-	2/6/23/26	0/1/1/1
3	NAG	L	2	3	-	2/6/23/26	0/1/1/1
3	NAG	М	1	1,3	-	2/6/23/26	0/1/1/1
3	NAG	М	2	3	-	2/6/23/26	0/1/1/1
3	NAG	N	1	1,3	-	0/6/23/26	0/1/1/1
3	NAG	N	2	3	-	2/6/23/26	0/1/1/1
3	NAG	Ο	1	1,3	-	2/6/23/26	0/1/1/1
3	NAG	Ο	2	3	-	4/6/23/26	0/1/1/1
3	NAG	Р	1	1,3	-	0/6/23/26	0/1/1/1
3	NAG	Р	2	3	-	2/6/23/26	0/1/1/1
2	NAG	Q	1	1,2	-	0/6/23/26	0/1/1/1
2	NAG	Q	2	2	-	$\overline{0/6}/23/26$	$\overline{0/1/1/1}$

COUU	nueu jio	ni previoi	is puye	•••			
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	BMA	Q	3	2	-	2/2/19/22	0/1/1/1
2	MAN	Q	4	2	-	0/2/19/22	0/1/1/1
2	MAN	Q	5	2	-	0/2/19/22	0/1/1/1
2	MAN	Q	6	2	-	0/2/19/22	0/1/1/1
2	MAN	Q	7	2	-	2/2/19/22	0/1/1/1
2	MAN	Q	8	2	-	2/2/19/22	0/1/1/1
3	NAG	R	1	1,3	-	2/6/23/26	0/1/1/1
3	NAG	R	2	3	-	2/6/23/26	0/1/1/1
3	NAG	S	1	1,3	-	2/6/23/26	0/1/1/1
3	NAG	S	2	3	-	2/6/23/26	0/1/1/1
3	NAG	Т	1	1,3	-	0/6/23/26	0/1/1/1
3	NAG	Т	2	3	-	2/6/23/26	0/1/1/1
3	NAG	U	1	1,3	-	3/6/23/26	0/1/1/1
3	NAG	U	2	3	-	4/6/23/26	0/1/1/1
3	NAG	V	1	1,3	-	0/6/23/26	0/1/1/1
3	NAG	V	2	3	-	2/6/23/26	0/1/1/1
2	NAG	W	1	1,2	-	0/6/23/26	0/1/1/1
2	NAG	W	2	2	-	0/6/23/26	0/1/1/1
2	BMA	W	3	2	-	2/2/19/22	0/1/1/1
2	MAN	W	4	2	-	0/2/19/22	0/1/1/1
2	MAN	W	5	2	-	0/2/19/22	0/1/1/1
2	MAN	W	6	2	-	0/2/19/22	0/1/1/1
2	MAN	W	7	2	-	2/2/19/22	0/1/1/1
2	MAN	W	8	2	-	2/2/19/22	0/1/1/1
3	NAG	Х	1	1,3	-	2/6/23/26	0/1/1/1
3	NAG	Х	2	3	-	2/6/23/26	0/1/1/1
3	NAG	Y	1	1,3	-	2/6/23/26	0/1/1/1
3	NAG	Y	2	3	-	2/6/23/26	0/1/1/1
3	NAG	Z	1	1,3	-	0/6/23/26	0/1/1/1
3	NAG	Z	2	3	-	2/6/23/26	0/1/1/1
3	NAG	a	1	1,3	-	2/6/23/26	0/1/1/1
3	NAG	a	2	3	-	3/6/23/26	0/1/1/1
3	NAG	b	1	1,3	-	0/6/23/26	0/1/1/1
3	NAG	b	2	3	-	2/6/23/26	0/1/1/1

There are no bond length outliers.

The worst 5 of 43 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$\operatorname{Ideal}(^{o})$
2	Ε	7	MAN	C1-O5-C5	3.32	116.69	112.19
2	Κ	7	MAN	C1-O5-C5	3.29	116.65	112.19
2	Q	7	MAN	C1-O5-C5	3.24	116.58	112.19
2	W	7	MAN	C1-O5-C5	3.20	116.53	112.19
2	Κ	4	MAN	C1-O5-C5	2.90	116.12	112.19

There are no chirality outliers.

5 of 95 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
3	G	1	NAG	C8-C7-N2-C2
3	G	1	NAG	O7-C7-N2-C2
3	Н	2	NAG	C8-C7-N2-C2
3	Н	2	NAG	O7-C7-N2-C2
3	М	1	NAG	C8-C7-N2-C2

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

Rings

Torsions

Rings

5.6 Ligand geometry (i)

20 ligands are modelled in this entry.

Torsions

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Type Chain	Turne	Chain	Dec	Tink	Bo	ond leng	$_{\rm ths}$	Bond angles		
	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2		
4	NAG	С	3000	1	14,14,15	0.42	0	17,19,21	1.35	2 (11%)
4	NAG	А	3019	1	14,14,15	0.44	0	17,19,21	0.68	0
4	NAG	В	3019	1	14,14,15	0.44	0	17,19,21	0.70	0

Mal	Turne	Chain	Dec	Link	Bo	Bond lengths			Bond angles		
	туре	Unain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2	
4	NAG	C	3014	1	14,14,15	0.45	0	17,19,21	1.43	3 (17%)	
4	NAG	В	3011	1	14,14,15	0.43	0	17,19,21	0.69	0	
4	NAG	С	3011	1	14,14,15	0.42	0	17,19,21	0.72	0	
4	NAG	D	3022	1	14,14,15	0.42	0	17,19,21	0.67	0	
4	NAG	А	3022	1	14,14,15	0.43	0	17,19,21	0.67	0	
4	NAG	С	3019	1	14,14,15	0.42	0	17,19,21	0.68	0	
4	NAG	А	3000	1	14,14,15	0.41	0	17,19,21	1.35	2 (11%)	
4	NAG	А	3014	1	14,14,15	0.45	0	17,19,21	1.46	3 (17%)	
4	NAG	D	3000	1	14,14,15	0.41	0	17,19,21	1.34	2 (11%)	
4	NAG	D	3011	1	14,14,15	0.42	0	17,19,21	0.72	0	
4	NAG	D	3019	1	14,14,15	0.44	0	17,19,21	0.69	0	
4	NAG	А	3011	1	14,14,15	0.42	0	17,19,21	0.71	0	
4	NAG	D	3014	1	14,14,15	0.45	0	17,19,21	1.45	3 (17%)	
4	NAG	С	3022	1	14,14,15	0.42	0	17,19,21	0.70	0	
4	NAG	В	3022	1	14,14,15	0.42	0	17,19,21	0.70	0	
4	NAG	В	3000	1	14,14,15	0.41	0	17,19,21	1.35	2 (11%)	
4	NAG	В	3014	1	14,14,15	0.44	0	17,19,21	1.47	3 (17%)	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	NAG	С	3000	1	-	3/6/23/26	0/1/1/1
4	NAG	А	3019	1	-	2/6/23/26	0/1/1/1
4	NAG	В	3019	1	-	3/6/23/26	0/1/1/1
4	NAG	С	3014	1	-	5/6/23/26	0/1/1/1
4	NAG	В	3011	1	-	4/6/23/26	0/1/1/1
4	NAG	С	3011	1	-	4/6/23/26	0/1/1/1
4	NAG	D	3022	1	-	2/6/23/26	0/1/1/1
4	NAG	А	3022	1	-	2/6/23/26	0/1/1/1
4	NAG	С	3019	1	-	2/6/23/26	0/1/1/1
4	NAG	А	3000	1	-	3/6/23/26	0/1/1/1
4	NAG	А	3014	1	-	5/6/23/26	0/1/1/1
4	NAG	D	3000	1	-	3/6/23/26	0/1/1/1
4	NAG	D	3011	1	-	4/6/23/26	0/1/1/1
4	NAG	D	3019	1	-	3/6/23/26	0/1/1/1

Continued on next page...

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	NAG	А	3011	1	-	4/6/23/26	0/1/1/1
4	NAG	D	3014	1	-	5/6/23/26	0/1/1/1
4	NAG	С	3022	1	-	2/6/23/26	0/1/1/1
4	NAG	В	3022	1	-	2/6/23/26	0/1/1/1
4	NAG	В	3000	1	-	3/6/23/26	0/1/1/1
4	NAG	В	3014	1	-	5/6/23/26	0/1/1/1

Continued from previous page...

There are no bond length outliers.

The worst 5 of 20 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
4	А	3014	NAG	C2-N2-C7	4.17	128.84	122.90
4	В	3014	NAG	C2-N2-C7	4.07	128.70	122.90
4	D	3014	NAG	C2-N2-C7	4.07	128.70	122.90
4	А	3000	NAG	C1-C2-N2	4.02	117.36	110.49
4	В	3000	NAG	C1-C2-N2	4.02	117.35	110.49

There are no chirality outliers.

5 of 66 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
4	А	3000	NAG	C8-C7-N2-C2
4	А	3000	NAG	O7-C7-N2-C2
4	А	3019	NAG	C8-C7-N2-C2
4	А	3019	NAG	O7-C7-N2-C2
4	А	3022	NAG	O7-C7-N2-C2

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	1836/1859~(98%)	1.25	337 (18%) 1 1	39, 80, 142, 183	0
1	В	1836/1859~(98%)	1.18	283 (15%) 2 2	40, 74, 129, 163	0
1	C	1836/1859~(98%)	0.95	146 (7%) 12 13	33, 57, 103, 143	0
1	D	1836/1859~(98%)	1.19	266 (14%) 2 2	33, 72, 136, 176	0
All	All	7344/7436~(98%)	1.14	1032 (14%) 2 3	33, 71, 130, 183	0

The worst 5 of 1032 RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	В	1421	ASN	17.5
1	В	1491	TYR	16.2
1	А	1491	TYR	11.4
1	D	2686	ILE	11.4
1	А	1184	LEU	11.2

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B-factors(Å ²)	Q < 0.9
2	MAN	Ε	7	11/12	0.55	0.23	172,175,175,176	0
2	MAN	Е	6	11/12	0.61	0.20	182,185,186,186	0

Continued on next page...

			is page	•••	Daga	Dab	\mathbf{D}	
Mol	Type	Chain	Res	Atoms	RSCC	RSR	B -factors(A^2)	Q < 0.9
2	MAN	W	8	11/12	0.66	0.23	137,141,146,147	0
2	MAN	K	7	11/12	0.70	0.18	117,122,127,129	0
2	MAN	E	8	11/12	0.72	0.25	175,176,176,176	0
2	MAN	W	7	11/12	0.74	0.18	120,124,130,133	0
3	NAG	N	2	14/15	0.76	0.24	128,132,136,136	0
3	NAG	0	2	14/15	0.76	0.30	104,107,110,111	0
3	NAG	S	2	14/15	0.76	0.18	93,95,97,97	0
3	NAG	Y	2	14/15	0.76	0.20	111,114,116,117	0
2	MAN	Q	7	11/12	0.77	0.20	103,109,113,113	0
3	NAG	Р	2	14/15	0.77	0.16	86,89,92,92	0
3	NAG	J	2	14/15	0.77	0.15	$93,\!94,\!97,\!99$	0
2	MAN	Κ	8	11/12	0.77	0.20	132,135,139,140	0
2	MAN	Ε	4	11/12	0.78	0.25	164, 166, 168, 171	0
3	NAG	a	2	14/15	0.79	0.35	107,111,116,117	0
3	NAG	G	2	14/15	0.80	0.24	110,112,117,118	0
3	NAG	b	1	14/15	0.81	0.15	89,99,102,102	0
3	NAG	b	2	14/15	0.81	0.18	96,102,107,110	0
2	MAN	Q	8	11/12	0.82	0.23	116,119,122,122	0
3	NAG	F	2	14/15	0.82	0.25	91,95,100,102	0
3	NAG	L	2	14/15	0.82	0.29	119,122,127,129	0
3	NAG	М	2	14/15	0.82	0.16	103,105,108,108	0
2	MAN	Е	5	11/12	0.83	0.20	173,173,176,179	0
3	NAG	Ι	2	14/15	0.84	0.24	104,107,112,113	0
3	NAG	U	2	14/15	0.84	0.23	91,93,96,97	0
3	NAG	R	2	14/15	0.85	0.21	85,89,92,92	0
3	NAG	V	2	14/15	0.85	0.14	72,76,79,79	0
2	MAN	W	6	11/12	0.85	0.17	114,116,119,120	0
3	NAG	Х	2	14/15	0.86	0.20	93,98,103,105	0
3	NAG	Н	2	14/15	0.86	0.15	104,109,113,114	0
3	NAG	Т	2	14/15	0.86	0.17	91,94,97,98	0
2	MAN	Q	6	11/12	0.86	0.18	92,95,98,99	0
2	BMA	Е	3	11/12	0.86	0.19	156,161,165,168	0
3	NAG	Ι	1	14/15	0.87	0.22	82,90,96,100	0
2	MAN	K	6	11/12	0.87	0.20	118,121,123,123	0
2	MAN	K	5	11/12	0.87	0.16	104,107,111,114	0
2	MAN	W	5	11/12	0.88	0.16	100,102,107,110	0
3	NAG	N	1	14/15	0.88	0.18	100,110,116,122	0
3	NAG	Z	2	14/15	0.88	0.18	100,107,109,110	0
3	NAG	L	1	14/15	0.89	0.14	106,110,112,115	0
3	NAG	0	1	14/15	0.89	0.17	81,90,95,99	0
2	NAG	Е	1	14/15	0.89	0.26	109,116,126,126	0
2	BMA	K	3	11/12	0.90	0.16	92,98,106,112	0

 α d fr ----ntinau

Continued on next page...

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B-factors(Å ²)	Q<0.9
2	BMA	Q	3	11/12	0.91	0.15	76,77,90,97	0
3	NAG	J	1	14/15	0.91	0.16	78,87,93,93	0
3	NAG	Х	1	14/15	0.91	0.14	83,85,88,91	0
2	BMA	W	3	11/12	0.92	0.17	96,99,108,114	0
3	NAG	U	1	14/15	0.92	0.14	$69,\!79,\!83,\!86$	0
3	NAG	a	1	14/15	0.92	0.16	87,95,102,104	0
3	NAG	F	1	14/15	0.93	0.14	77,80,84,87	0
2	MAN	K	4	11/12	0.93	0.14	96,102,107,108	0
2	MAN	Q	5	11/12	0.93	0.16	79,80,83,87	0
3	NAG	R	1	14/15	0.94	0.15	70,73,76,81	0
2	NAG	Е	2	14/15	0.94	0.18	129,136,140,150	0
2	NAG	Q	1	14/15	0.94	0.16	47,52,56,57	0
3	NAG	Ζ	1	14/15	0.94	0.18	59,77,86,92	0
3	NAG	Т	1	14/15	0.94	0.16	61,73,81,86	0
3	NAG	G	1	14/15	0.94	0.15	93,96,100,105	0
2	NAG	W	1	14/15	0.94	0.16	67,73,78,80	0
3	NAG	Н	1	14/15	0.94	0.17	76,89,97,100	0
2	NAG	Q	2	14/15	0.94	0.17	61,63,67,72	0
2	MAN	Q	4	11/12	0.95	0.12	67,72,75,78	0
3	NAG	М	1	14/15	0.95	0.17	91,92,96,99	0
3	NAG	Р	1	14/15	0.95	0.15	$69,\!77,\!80,\!83$	0
2	NAG	K	2	14/15	0.95	0.15	72,74,78,85	0
2	NAG	К	1	14/15	0.95	0.15	55,63,69,70	0
3	NAG	V	1	14/15	0.95	0.16	46,54,58,65	0
2	NAG	W	2	14/15	0.95	0.17	83,89,93,93	0
3	NAG	S	1	14/15	0.95	0.17	79,81,85,88	0
3	NAG	Y	1	14/15	0.96	0.17	$96,\!99,\!103,\!107$	0
2	MAN	W	4	11/12	0.97	0.12	87,97,101,102	0

Continued from previous page...

The following is a graphical depiction of the model fit to experimental electron density for oligosaccharide. Each fit is shown from different orientation to approximate a three-dimensional view.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
4	NAG	А	3019	14/15	0.61	0.30	183,185,186,186	0
4	NAG	D	3019	14/15	0.65	0.25	123,126,128,130	0
4	NAG	А	3000	14/15	0.69	0.26	184,187,188,188	0
4	NAG	С	3011	14/15	0.72	0.22	87,92,93,95	0
4	NAG	В	3022	14/15	0.74	0.18	145,148,152,152	0
4	NAG	D	3014	14/15	0.76	0.21	96,100,101,102	0
4	NAG	С	3014	14/15	0.76	0.23	92,96,96,96	0
4	NAG	А	3011	14/15	0.77	0.19	98,103,107,108	0
4	NAG	С	3019	14/15	0.77	0.21	116,118,120,121	0
4	NAG	А	3014	14/15	0.78	0.22	110,113,116,116	0

Continued on next page...

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
4	NAG	D	3000	14/15	0.78	0.24	150,156,159,160	0
4	NAG	D	3011	14/15	0.79	0.18	117,120,124,125	0
4	NAG	В	3011	14/15	0.80	0.24	106,109,111,112	0
4	NAG	В	3014	14/15	0.81	0.25	91,95,100,102	0
4	NAG	В	3000	14/15	0.82	0.24	166,170,173,174	0
4	NAG	С	3022	14/15	0.82	0.18	111,113,114,115	0
4	NAG	С	3000	14/15	0.82	0.23	121,122,124,124	0
4	NAG	А	3022	14/15	0.83	0.16	134,137,139,139	0
4	NAG	В	3019	14/15	0.84	0.16	128,131,135,135	0
4	NAG	D	3022	14/15	0.85	0.16	124,127,128,128	0

Continued from previous page...

6.5 Other polymers (i)

There are no such residues in this entry.

