

Full wwPDB X-ray Structure Validation Report (i)

Jan 30, 2021 – 03:47 PM EST

PDB ID	:	3FEF
Title	:	Crystal structure of putative glucosidase lplD from bacillus subtilis
Authors	:	Ramagopal, U.A.; Rajashankar, K.R.; Toro, R.; Burley, S.K.; Almo, S.C.; New
		York SGX Research Center for Structural Genomics (NYSGXRC)
Deposited on	:	2008-11-28
Resolution	:	2.20 Å(reported)
Authors Deposited on Resolution	:	Ramagopal, U.A.; Rajashankar, K.R.; Toro, R.; Burley, S.K.; Almo, S.C.; N York SGX Research Center for Structural Genomics (NYSGXRC) 2008-11-28 2.20 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.16
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.16

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.20 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	130704	4898 (2.20-2.20)
Clashscore	141614	5594 (2.20-2.20)
Ramachandran outliers	138981	5503 (2.20-2.20)
Sidechain outliers	138945	5504 (2.20-2.20)
RSRZ outliers	127900	4800 (2.20-2.20)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	450	% 8 2%	13%	••
1	В	450	83%	12%	•••
1	С	450	.% 77%	18%	•••
1	D	450	% 76%	18%	•••

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 14117 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		Atoms					ZeroOcc	AltConf	Trace
1	Δ	434	Total	С	Ν	Ο	\mathbf{S}	Se	0	1	0
1	Л	404	3388	2149	594	631	6	8	0	I	0
1	В	434	Total	С	Ν	Ο	S	Se	0	0	0
1	I D		3383	2146	594	629	6	8	0		U
1	C	434	Total	С	Ν	0	S	Se	0	0	0
1			3386	2147	594	631	6	8	0		
1 D	434	Total	С	Ν	0	S	Se	0	0	0	
		3386	2147	594	631	6	8			U	

• Molecule 1 is a protein called Putative glucosidase lplD, ALPHA-GALACTURONIDASE.

There are 40 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	5	MSE	-	expression tag	UNP P39130
А	6	SER	-	expression tag	UNP P39130
А	447	GLU	-	expression tag	UNP P39130
А	448	GLY	-	expression tag	UNP P39130
А	449	HIS	-	expression tag	UNP P39130
А	450	HIS	-	expression tag	UNP P39130
А	451	HIS	-	expression tag	UNP P39130
А	452	HIS	-	expression tag	UNP P39130
А	453	HIS	-	expression tag	UNP P39130
А	454	HIS	-	expression tag	UNP P39130
В	5	MSE	-	expression tag	UNP P39130
В	6	SER	-	expression tag	UNP P39130
В	447	GLU	-	expression tag	UNP P39130
В	448	GLY	-	expression tag	UNP P39130
В	449	HIS	-	expression tag	UNP P39130
В	450	HIS	-	expression tag	UNP P39130
В	451	HIS	-	expression tag	UNP P39130
В	452	HIS	-	expression tag	UNP P39130
В	453	HIS	-	expression tag	UNP P39130
В	454	HIS	-	expression tag	UNP P39130
С	5	MSE	-	expression tag	UNP P39130

Chain	Residue	Modelled	Actual	Comment	Reference
С	6	SER	-	expression tag	UNP P39130
С	447	GLU	-	expression tag	UNP P39130
С	448	GLY	-	expression tag	UNP P39130
С	449	HIS	-	expression tag	UNP P39130
С	450	HIS	-	expression tag	UNP P39130
С	451	HIS	-	expression tag	UNP P39130
С	452	HIS	-	expression tag	UNP P39130
С	453	HIS	-	expression tag	UNP P39130
С	454	HIS	-	expression tag	UNP P39130
D	5	MSE	-	expression tag	UNP P39130
D	6	SER	-	expression tag	UNP P39130
D	447	GLU	-	expression tag	UNP P39130
D	448	GLY	-	expression tag	UNP P39130
D	449	HIS	-	expression tag	UNP P39130
D	450	HIS	-	expression tag	UNP P39130
D	451	HIS	-	expression tag	UNP P39130
D	452	HIS	-	expression tag	UNP P39130
D	453	HIS	-	expression tag	UNP P39130
D	454	HIS	-	expression tag	UNP P39130

• Molecule 2 is SULFATE ION (three-letter code: SO4) (formula: O_4S).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
2	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
2	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
2	С	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
2	D	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
2	D	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0

• Molecule 3 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	В	1	Total Mg 1 1	0	0
3	А	1	Total Mg 1 1	0	0
3	D	1	Total Mg 1 1	0	0
3	С	1	Total Mg 1 1	0	0

• Molecule 4 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	139	Total O 139 139	0	0
4	В	154	Total O 154 154	0	0
4	С	130	Total O 130 130	0	0
4	D	112	Total O 112 112	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Putative glucosidase lplD, ALPHA-GALACTURONIDASE

N334 N334 N345 834 N345 1373 N375 1373 N377 1373 N377 1373 N376 1365 N377 1373 N376 1365 N377 1373 N399 1365 N399 1365 N399 1373 N399 1373 N399 1373 N399 1373 N399 1373 N140 1405 H15

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1	Depositor
Cell constants	81.99Å 84.84Å 86.05Å	Deperitor
a, b, c, α , β , γ	69.80° 68.10° 64.07°	Depositor
$\mathbf{P}_{\text{acclution}}(\hat{\mathbf{A}})$	50.00 - 2.20	Depositor
Resolution (A)	38.10 - 2.20	EDS
% Data completeness	93.5 (50.00-2.20)	Depositor
(in resolution range)	93.6 (38.10-2.20)	EDS
R _{merge}	0.07	Depositor
R _{sym}	0.07	Depositor
$< I/\sigma(I) > 1$	4.26 (at 2.20Å)	Xtriage
Refinement program	REFMAC	Depositor
D D.	0.187 , 0.243	Depositor
n, n_{free}	0.182 , 0.236	DCC
R_{free} test set	4505 reflections $(5.00%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	31.5	Xtriage
Anisotropy	0.069	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.34 , 42.8	EDS
L-test for twinning ²	$< L > = 0.49, < L^2 > = 0.32$	Xtriage
Estimated twinning fraction	0.065 for -k,-h,-l	Xtriage
F_o, F_c correlation	0.95	EDS
Total number of atoms	14117	wwPDB-VP
Average B, all atoms $(Å^2)$	33.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 4.74% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MG, SO4

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles	
		RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.49	0/3449	0.60	0/4664
1	В	0.51	0/3444	0.62	1/4657~(0.0%)
1	С	0.48	0/3447	0.61	0/4661
1	D	0.49	0/3447	0.62	0/4661
All	All	0.49	0/13787	0.61	1/18643~(0.0%)

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	В	225	LEU	CA-CB-CG	-5.24	103.26	115.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	3388	0	3366	60	0
1	В	3383	0	3366	56	0
1	С	3386	0	3368	73	0
1	D	3386	0	3368	64	0
2	А	10	0	0	1	0
2	В	10	0	0	0	0

λ.σ.1		NT TT	$\mathbf{T} = \mathbf{T} = $	TT(-11-1)		
IVIOI	Chain	Non-H	H(model)	H(added)	Clasnes	Symm-Clasnes
2	С	5	0	0	0	0
2	D	10	0	0	0	0
3	А	1	0	0	0	0
3	В	1	0	0	0	0
3	С	1	0	0	0	0
3	D	1	0	0	0	0
4	А	139	0	0	3	0
4	В	154	0	0	4	0
4	С	130	0	0	2	0
4	D	112	0	0	2	0
All	All	14117	0	13468	234	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 9.

All (234) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:B:64:ARG:HG3	1:B:64:ARG:HH11	1.11	1.08	
1:C:306:ARG:HD3	1:C:310:ARG:CZ	1.86	1.03	
1:B:316:LEU:HD23	1:B:321:ARG:NH1	1.72	1.03	
1:D:362:ILE:HG13	1:D:363:GLN:HG2	1.46	0.96	
1:A:216:LYS:HD3	1:B:376:ARG:HD2	1.46	0.95	
1:A:64:ARG:HH11	1:A:64:ARG:HG3	1.29	0.95	
1:B:316:LEU:HD23	1:B:321:ARG:HH12	1.29	0.95	
1:D:64:ARG:HG3	1:D:64:ARG:HH11	1.32	0.94	
1:B:64:ARG:HG3	1:B:64:ARG:NH1	1.87	0.89	
1:A:376:ARG:HD2	1:B:216:LYS:HD2	1.53	0.88	
1:A:62:ASN:HD22	1:A:62:ASN:N	1.76	0.83	
1:B:62:ASN:N	1:B:62:ASN:HD22	1.76	0.82	
1:C:316:LEU:HD23	1:C:321:ARG:NH1	1.93	0.82	
1:A:202:ARG:HD2	1:B:344:GLU:OE1	1.83	0.79	
1:A:306:ARG:HD3	1:A:310:ARG:CZ	2.13	0.79	
1:C:357:VAL:HG11	1:C:360:LEU:HD22	1.65	0.78	
1:B:100:HIS:CD2	1:B:299:ILE:HG12	2.19	0.78	
1:C:344:GLU:OE1	1:D:202:ARG:CD	2.32	0.77	
1:C:312:GLU:CG	1:C:315:ARG:HH12	1.97	0.77	
1:A:306:ARG:HD3	1:A:310:ARG:NH1	1.99	0.77	
1:B:316:LEU:CD2	1:B:321:ARG:NH1	2.47	0.77	
1:D:27:MSE:HE1	1:D:53:ASN:HB3	1.67	0.77	
1:B:316:LEU:CD2	1:B:321:ARG:HH12	1.99	0.76	

	lo ao pagom	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:C:312:GLU:HG3	1:C:315:ARG:HH12	1.51	0.76	
1:A:216:LYS:CD	1:B:376:ARG:HD2	2.16	0.75	
1:D:99:VAL:HG21	1:D:299:ILE:HD11	1.68	0.74	
1:C:316:LEU:CD2	1:C:321:ARG:NH1	2.51	0.74	
1:A:62:ASN:ND2	1:A:62:ASN:N	2.35	0.73	
1:C:306:ARG:HD3	1:C:310:ARG:NH2	2.04	0.73	
1:D:64:ARG:NH1	1:D:64:ARG:HG3	1.96	0.73	
1:A:362:ILE:HG13	1:A:363:GLN:HG2	1.70	0.73	
1:B:100:HIS:NE2	1:B:299:ILE:HG12	2.05	0.71	
1:B:96:GLU:HA	1:B:299:ILE:HG13	1.73	0.70	
1:B:362:ILE:HG13	1:B:363:GLN:HG2	1.72	0.70	
1:C:306:ARG:NE	1:C:310:ARG:NH2	2.39	0.70	
1:C:312:GLU:HA	1:C:315:ARG:NH1	2.06	0.70	
1:A:64:ARG:HG2	1:A:65:TRP:CD1	2.26	0.70	
1:A:64:ARG:HG3	1:A:64:ARG:NH1	2.03	0.70	
1:B:315:ARG:HH11	1:B:315:ARG:HG2	1.57	0.69	
1:B:362:ILE:O	1:B:363:GLN:HB2	1.91	0.69	
1:A:357:VAL:HG11	1:A:360:LEU:HD22	1.76	0.67	
1:A:189:GLU:OE1	1:A:240:TYR:HE1	1.78	0.66	
1:D:304:GLN:O	1:D:308:GLU:HG2	1.96	0.66	
1:D:308:GLU:HA	1:D:311:GLN:HE21	1.61	0.65	
1:C:316:LEU:CD2	1:C:321:ARG:HH12	2.09	0.65	
1:D:189:GLU:OE1	1:D:240:TYR:HE1	1.80	0.65	
1:A:141:ALA:N	1:A:142:PRO:CD	2.61	0.65	
1:A:11:LYS:HG2	1:A:80:ALA:HA	1.79	0.64	
1:D:357:VAL:HG11	1:D:360:LEU:HD22	1.80	0.64	
1:C:216:LYS:HD3	1:D:376:ARG:HD2	1.79	0.64	
1:D:362:ILE:O	1:D:363:GLN:HB2	1.97	0.64	
1:C:306:ARG:CD	1:C:310:ARG:NH2	2.61	0.63	
1:D:104:ARG:NH2	1:D:438:ASP:OD2	2.30	0.63	
1:B:64:ARG:HH11	1:B:64:ARG:CG	1.95	0.63	
1:B:33:ASP:OD1	1:B:35:ARG:HB2	1.98	0.63	
1:C:316:LEU:HD23	1:C:321:ARG:HH11	1.62	0.62	
1:D:362:ILE:O	1:D:363:GLN:CB	2.48	0.62	
1:B:357:VAL:HG11	1:B:360:LEU:HD22	1.82	0.62	
1:C:357:VAL:CG1	1:C:360:LEU:HD22	2.30	0.61	
1:D:19:SER:HB3	1:D:23:ALA:HB2	1.83	0.61	
1:C:64:ARG:HH11	1:C:64:ARG:HG3	1.65	0.61	
1:C:344:GLU:OE1	1:D:202:ARG:NE	2.34	0.61	
1:C:197:ARG:HB3	1:C:199:GLU:OE1	2.00	0.60	
1:B:315:ARG:NH1	1:B:315:ARG:HG2	2.16	0.60	

	A L O	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:D:209:ASN:ND2	4:D:463:HOH:O	2.29	0.60	
1:C:62:ASN:N	1:C:62:ASN:OD1	2.35	0.59	
1:C:153:MSE:CE	1:C:173:CYS:HB2	2.32	0.59	
1:D:218:SER:HA	1:D:224:LEU:HG	1.83	0.59	
1:A:186:MSE:O	1:A:190:ARG:HG2	2.02	0.59	
1:B:62:ASN:N	1:B:62:ASN:ND2	2.49	0.58	
1:D:34:GLU:HA	1:D:64:ARG:CZ	2.33	0.57	
1:B:395:ARG:O	1:B:398:SER:HB2	2.04	0.57	
1:D:308:GLU:HA	1:D:311:GLN:NE2	2.19	0.57	
1:C:116:GLY:O	1:C:120:ILE:HG12	2.05	0.57	
1:A:96:GLU:HA	1:A:299:ILE:HG13	1.85	0.57	
1:A:381:LEU:HD21	1:B:381:LEU:HD21	1.85	0.57	
1:D:8:ASP:OD1	1:D:37:SER:HB3	2.05	0.56	
1:A:426:GLN:C	1:C:426:GLN:HE22	2.08	0.56	
1:C:344:GLU:OE1	1:D:202:ARG:HD3	2.04	0.56	
1:A:351:MSE:SE	1:A:377:VAL:HG12	2.55	0.56	
1:D:62:ASN:N	1:D:62:ASN:OD1	2.39	0.56	
1:A:426:GLN:HA	1:C:426:GLN:HE22	1.71	0.56	
1:B:362:ILE:O	1:B:363:GLN:CB	2.54	0.56	
1:C:376:ARG:HD2	1:D:216:LYS:HD2	1.88	0.55	
1:B:87:ILE:CD1	1:B:129:ILE:HG21	2.36	0.55	
1:C:242:LEU:O	1:C:245:GLU:HB2	2.07	0.55	
1:D:23:ALA:O	1:D:27:MSE:HG3	2.07	0.55	
1:C:52:LYS:HB3	1:C:317:ILE:HD11	1.86	0.55	
1:D:330:GLU:OE1	1:D:330:GLU:HA	2.07	0.55	
1:A:99:VAL:HG21	1:A:299:ILE:HD11	1.89	0.55	
1:A:62:ASN:H	1:A:62:ASN:ND2	2.05	0.55	
1:C:51:GLN:O	1:C:54:GLU:HB3	2.07	0.55	
1:B:64:ARG:CG	1:B:64:ARG:NH1	2.58	0.54	
1:C:162:LYS:NZ	1:C:405:ASP:OD1	2.33	0.54	
1:B:209:ASN:ND2	4:B:458:HOH:O	2.39	0.54	
1:C:362:ILE:HG13	1:C:363:GLN:HG2	1.88	0.54	
1:A:52:LYS:HG2	1:A:317:ILE:CD1	2.38	0.54	
1:A:64:ARG:CG	1:A:64:ARG:NH1	2.70	0.54	
1:D:261:ASP:OD2	1:D:285:TYR:OH	2.21	0.53	
1:D:319:GLN:OE1	1:D:321:ARG:HD3	2.08	0.53	
1:A:92:LEU:HD12	1:A:306:ARG:CZ	2.39	0.53	
1:A:426:GLN:CA	1:C:426:GLN:HE22	2.21	0.53	
1:A:362:ILE:O	1:A:363:GLN:HB2	2.09	0.53	
1:A:116:GLY:HA2	1:A:422:ASP:OD1	2.08	0.53	
1:C:362:ILE:O	1:C:363:GLN:HB2	2.09	0.53	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:D:27:MSE:HE1	1:D:53:ASN:CB	2.37	0.52	
1:A:306:ARG:HD2	4:A:588:HOH:O	2.10	0.52	
1:B:124:LEU:HD21	1:B:415:ALA:HB1	1.91	0.52	
1:A:190:ARG:HD3	1:A:231:PHE:HD1	1.75	0.52	
1:C:306:ARG:HD3	1:C:310:ARG:NE	2.20	0.51	
1:C:44:ASP:O	1:C:45:LEU:C	2.48	0.51	
1:A:344:GLU:OE1	1:B:202:ARG:HD2	2.09	0.51	
1:B:100:HIS:CD2	1:B:299:ILE:CG1	2.93	0.51	
1:B:52:LYS:HG2	1:B:317:ILE:CD1	2.40	0.51	
1:C:306:ARG:CD	1:C:310:ARG:CZ	2.76	0.51	
1:C:64:ARG:HG3	1:C:64:ARG:NH1	2.26	0.51	
1:D:328:SER:OG	1:D:330:GLU:HG2	2.11	0.51	
1:A:357:VAL:CG1	1:A:360:LEU:HD22	2.42	0.50	
1:A:362:ILE:O	1:A:363:GLN:CB	2.60	0.50	
1:C:23:ALA:O	1:C:27:MSE:HG3	2.11	0.50	
1:C:61:GLY:HA2	1:C:325:GLU:OE2	2.12	0.50	
1:A:27:MSE:HE1	1:A:53:ASN:HB3	1.94	0.49	
1:D:186:MSE:O	1:D:190:ARG:HG2	2.12	0.49	
1:A:426:GLN:HA	1:C:426:GLN:NE2	2.26	0.49	
1:D:246:CYS:HB3	1:D:249:ASP:OD1	2.13	0.49	
1:B:197:ARG:HB3	1:B:199:GLU:OE1	2.12	0.48	
1:A:258:VAL:HB	1:A:274:ASP:CG	2.33	0.48	
1:D:176:VAL:HG23	4:D:674:HOH:O	2.13	0.48	
1:D:153:MSE:CE	1:D:173:CYS:HB2	2.43	0.48	
1:D:34:GLU:HA	1:D:64:ARG:NH2	2.28	0.48	
1:B:122:ARG:HD2	4:B:472:HOH:O	2.14	0.48	
1:D:399:ASN:O	1:D:403:VAL:HG23	2.13	0.48	
1:A:189:GLU:OE1	1:A:240:TYR:CE1	2.64	0.48	
1:B:116:GLY:O	1:B:120:ILE:HG12	2.14	0.47	
1:B:153:MSE:CE	1:B:173:CYS:HB2	2.43	0.47	
1:D:406:ALA:O	1:D:410:LYS:N	2.48	0.47	
1:B:357:VAL:CG1	1:B:360:LEU:HD22	2.44	0.47	
1:B:206:LEU:N	1:B:206:LEU:HD23	2.29	0.47	
1:C:206:LEU:HD23	1:C:206:LEU:N	2.29	0.47	
1:C:259:ALA:HA	1:C:270:PRO:HG2	1.97	0.47	
1:C:258:VAL:O	1:C:262:LEU:HG	2.14	0.47	
1:A:11:LYS:NZ	1:A:78:SER:O	2.46	0.47	
1:A:426:GLN:CA	1:C:426:GLN:NE2	2.78	0.47	
1:C:124:LEU:HD21	1:C:415:ALA:HB1	1.96	0.47	
1:A:190:ARG:HD3	1:A:231:PHE:CD1	2.50	0.47	
1:A:284:PRO:HG3	2:A:455:SO4:O4	2.15	0.47	

Interstomic Clash						
Atom-1	Atom-2	distance (Å)	overlap (Å)			
1:A:92:LEU:HD12	1:A:306:ABG:NH1	2.30	0.47			
1:C:319:GLN:OE1	1:C:321:ARG:CD	2.63	0.47			
1:C:312:GLU:CG	1:C:315:ARG:NH1	2.73	0.47			
1:C:48:GLU:O	1:C:52:LYS:HG3	2.15	0.47			
1:C:27:MSE:HE1	1:C:53:ASN:HB3	1.98	0.46			
1:C:376:ARG:HD2	1:D:216:LYS:CD	2.45	0.46			
1:D:210:HIS:HB3	1:D:276:HIS:HB3	1.98	0.46			
1:B:262:LEU:HD21	1:B:281:LEU:HD21	1.97	0.46			
1:D:26:LEU:HD22	1:D:84:ILE:HD13	1.97	0.46			
1:A:153:MSE:CE	1:A:173:CYS:HB2	2.45	0.46			
1:A:197:ARG:HB3	1:A:199:GLU:OE1	2.16	0.46			
1:D:362:ILE:C	1:D:363:GLN:HG2	2.36	0.46			
1:D:206:LEU:HD23	1:D:206:LEU:N	2.31	0.46			
1:C:229:ARG:NH1	4:C:540:HOH:O	2.39	0.45			
1:C:72:THR:OG1	1:C:75:LYS:HB2	2.16	0.45			
1:D:351:MSE:SE	1:D:377:VAL:HG12	2.66	0.45			
1:A:260:PHE:O	1:A:264:GLU:HG2	2.16	0.45			
1:D:114:THR:HG22	1:D:115:VAL:HG13	1.99	0.45			
1:D:127:VAL:HG11	1:D:407:GLY:C	2.37	0.45			
1:B:36:MSE:HE1	1:B:333:VAL:HG13	1.99	0.45			
1:C:75:LYS:HE2	1:C:75:LYS:HB2	1.64	0.45			
1:D:33:ASP:OD1	1:D:35:ARG:HB2	2.16	0.45			
1:C:122:ARG:HG2	1:C:152:PRO:HD3	1.98	0.45			
1:C:318:VAL:HG12	1:C:319:GLN:HG3	1.99	0.45			
1:C:87:ILE:CD1	1:C:129:ILE:HG21	2.47	0.45			
1:D:87:ILE:O	1:D:150:THR:HG23	2.16	0.45			
1:D:189:GLU:OE1	1:D:240:TYR:CE1	2.66	0.45			
1:D:288:GLN:HB3	1:D:291:VAL:HB	1.99	0.45			
1:D:290:GLU:CD	1:D:290:GLU:H	2.20	0.45			
1:B:360:LEU:HG	1:B:397:ILE:CD1	2.47	0.45			
1:D:96:GLU:HA	1:D:299:ILE:HG13	1.99	0.45			
1:A:33:ASP:OD1	1:A:35:ARG:HB2	2.17	0.44			
1:B:360:LEU:HG	1:B:397:ILE:HD12	1.99	0.44			
1:B:162:LYS:NZ	4:B:567:HOH:O	2.41	0.44			
1:C:351:MSE:SE	1:C:377:VAL:HG12	2.68	0.44			
1:D:197:ARG:HB3	1:D:199:GLU:OE1	2.17	0.44			
1:D:247:TRP:CE2	1:D:293:LYS:HG2	2.52	0.44			
1:A:351:MSE:SE	1:A:377:VAL:CG1	3.16	0.44			
1:C:319:GLN:HB2	1:C:321:ARG:HD3	1.98	0.44			
1:B:287:LYS:NZ	4:B:552:HOH:O	2.46	0.43			
1:A:426:GLN:C	1:C:426:GLN:NE2	2.71	0.43			

	lo ao pagom	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:D:387:LYS:HE2	1:D:387:LYS:HB2	1.80	0.43	
1:B:87:ILE:HD12	1:B:129:ILE:HG21	2.00	0.43	
1:C:185:GLU:CD	1:C:242:LEU:HD22	2.38	0.43	
1:C:36:MSE:HE1	1:C:333:VAL:HG13	2.00	0.43	
1:D:242:LEU:O	1:D:245:GLU:HB2	2.17	0.43	
1:A:141:ALA:N	1:A:142:PRO:HD2	2.31	0.43	
1:A:61:GLY:HA2	1:A:325:GLU:OE2	2.19	0.43	
1:C:381:LEU:HD21	1:D:381:LEU:HD21	2.00	0.43	
1:C:348:ASN:ND2	1:C:367:GLU:OE2	2.46	0.43	
1:B:92:LEU:HD23	1:B:92:LEU:HA	1.84	0.43	
1:C:99:VAL:HG21	1:C:299:ILE:HD11	2.01	0.43	
1:D:281:LEU:N	1:D:281:LEU:HD12	2.34	0.43	
1:D:177:PHE:CZ	1:D:331:GLU:HG3	2.54	0.43	
1:D:357:VAL:CG1	1:D:360:LEU:HD22	2.47	0.43	
1:B:62:ASN:H	1:B:62:ASN:HD22	1.62	0.43	
1:C:399:ASN:O	1:C:403:VAL:HG23	2.19	0.43	
1:B:422:ASP:HA	1:B:423:PRO:HD3	1.91	0.42	
1:B:218:SER:HA	1:B:224:LEU:HG	2.02	0.42	
1:A:344:GLU:CD	4:A:528:HOH:O	2.57	0.42	
1:B:190:ARG:HD3	1:B:231:PHE:HD1	1.84	0.42	
1:C:190:ARG:HD3	1:C:231:PHE:HD1	1.84	0.42	
1:C:209:ASN:ND2	4:C:476:HOH:O	2.44	0.42	
1:C:11:LYS:HG3	1:C:80:ALA:HA	2.02	0.42	
1:A:52:LYS:HB3	1:A:317:ILE:HD11	2.02	0.42	
1:D:116:GLY:N	1:D:422:ASP:OD2	2.52	0.42	
1:A:52:LYS:NZ	1:A:314:GLU:OE2	2.33	0.42	
1:C:186:MSE:SE	1:C:228:PHE:HA	2.70	0.42	
1:C:11:LYS:HE3	1:C:41:ALA:HB2	2.00	0.42	
1:D:187:VAL:O	1:D:191:LEU:HB2	2.20	0.41	
1:B:45:LEU:HA	1:B:45:LEU:HD23	1.83	0.41	
1:B:262:LEU:CD2	1:B:281:LEU:HD21	2.50	0.41	
1:D:51:GLN:O	1:D:54:GLU:HB3	2.20	0.41	
1:A:46:ASP:OD1	1:A:46:ASP:C	2.59	0.41	
1:C:20:GLN:NE2	1:C:309:LYS:HB3	2.35	0.41	
1:B:11:LYS:HG2	1:B:80:ALA:HA	2.03	0.41	
1:A:75:LYS:HE2	1:A:75:LYS:HB2	1.76	0.41	
1:C:262:LEU:HB2	1:C:270:PRO:HG3	2.02	0.41	
1:D:206:LEU:HA	1:D:367:GLU:O	2.20	0.41	
1:A:262:LEU:HB2	1:A:270:PRO:HG2	2.01	0.41	
1:B:290:GLU:CD	1:B:290:GLU:H	2.24	0.41	
1:A:329:GLY:N	4:A:500:HOH:O	2.44	0.41	

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:C:373:THR:O	1:C:374:ARG:C	2.59	0.41
1:D:319:GLN:O	1:D:320:GLN:C	2.60	0.41
1:B:62:ASN:HB2	1:B:64:ARG:H	1.86	0.40
1:C:141:ALA:N	1:C:142:PRO:CD	2.84	0.40
1:A:164:PHE:CD2	1:A:167:ILE:HB	2.57	0.40
1:B:116:GLY:HA2	1:B:422:ASP:OD1	2.20	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	433/450~(96%)	419 (97%)	14 (3%)	0	100	100
1	В	432/450~(96%)	417 (96%)	15 (4%)	0	100	100
1	С	432/450~(96%)	415 (96%)	17 (4%)	0	100	100
1	D	432/450~(96%)	411 (95%)	21 (5%)	0	100	100
All	All	1729/1800 (96%)	1662 (96%)	67 (4%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles		
1	А	357/363~(98%)	344~(96%)	13~(4%)	35 45		
1	В	357/363~(98%)	343~(96%)	14 (4%)	32 41		
1	С	358/363~(99%)	343~(96%)	15~(4%)	30 38		
1	D	358/363~(99%)	340~(95%)	18 (5%)	24 30		
All	All	1430/1452~(98%)	1370 (96%)	60 (4%)	30 38		

All (60) residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
1	А	25	SER
1	А	62	ASN
1	А	66	ARG
1	А	75	LYS
1	А	197	ARG
1	А	198	ARG
1	А	220	ARG
1	А	225	LEU
1	А	254	SER
1	А	281	LEU
1	А	360	LEU
1	А	362	ILE
1	А	376	ARG
1	В	19	SER
1	В	62	ASN
1	В	66	ARG
1	В	86	SER
1	В	124	LEU
1	В	153	MSE
1	В	189	GLU
1	В	225	LEU
1	В	230	GLU
1	В	281	LEU
1	В	320	GLN
1	В	360	LEU
1	В	362	ILE
1	В	398	SER
1	С	37	SER
1	С	48	GLU
1	С	62	ASN
1	С	124	LEU
1	С	189	GLU
1	С	198	ARG

	<u> </u>	1	1 0
Mol	Chain	Res	Type
1	С	212	THR
1	С	220	ARG
1	С	243	GLU
1	С	281	LEU
1	С	334	ASN
1	С	360	LEU
1	С	362	ILE
1	С	398	SER
1	С	426	GLN
1	D	25	SER
1	D	37	SER
1	D	62	ASN
1	D	124	LEU
1	D	197	ARG
1	D	202	ARG
1	D	225	LEU
1	D	232	SER
1	D	243	GLU
1	D	281	LEU
1	D	290	GLU
1	D	308	GLU
1	D	334	ASN
1	D	344	GLU
1	D	360	LEU
1	D	362	ILE
1	D	376	ARG
1	D	410	LYS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (19) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	62	ASN
1	А	174	HIS
1	А	209	ASN
1	А	304	GLN
1	А	354	GLN
1	А	417	GLN
1	А	426	GLN
1	В	62	ASN
1	В	304	GLN
1	В	417	GLN
1	С	20	GLN

Mol	Chain	Res	Type
1	С	209	ASN
1	С	304	GLN
1	С	417	GLN
1	С	426	GLN
1	D	174	HIS
1	D	311	GLN
1	D	417	GLN
1	D	434	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 11 ligands modelled in this entry, 4 are monoatomic - leaving 7 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal True		Chain	Dec	Tink	B	Bond lengths		Bond angles		
Moi Type	Type	Chain	nes	$\mathbf{s} \mid \mathbf{L} \mathbf{I} \mathbf{n} \mathbf{K}$	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
2	SO4	A	455	-	4,4,4	0.15	0	$6,\!6,\!6$	0.08	0
2	SO4	В	455	-	4,4,4	0.14	0	6,6,6	0.16	0
2	SO4	В	1	-	4,4,4	0.16	0	6,6,6	0.13	0
2	SO4	D	4	-	4,4,4	0.14	0	6,6,6	0.07	0
2	SO4	А	2	-	4,4,4	0.17	0	6,6,6	0.11	0
2	SO4	С	3	-	4,4,4	0.16	0	6,6,6	0.11	0

Mol 7	Turne	Chain	Res	Ros Link	Bond lengths			Bond angles		
	туре				Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
2	SO4	D	455	-	4,4,4	0.15	0	$6,\!6,\!6$	0.11	0

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

1 monomer is involved in 1 short contact:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	А	455	SO4	1	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	< RSRZ >	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	426/450~(94%)	-0.31	3 (0%) 87 86	17, 31, 48, 61	0
1	В	426/450~(94%)	-0.46	3 (0%) 87 86	18, 30, 47, 62	0
1	С	426/450~(94%)	-0.40	3 (0%) 87 86	19, 31, 50, 63	0
1	D	426/450~(94%)	-0.37	4 (0%) 84 83	20, 32, 49, 62	0
All	All	1704/1800~(94%)	-0.38	13 (0%) 86 85	17, 31, 49, 63	0

All (13) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	D	62	ASN	4.1
1	D	321	ARG	2.9
1	С	62	ASN	2.9
1	D	60	SER	2.7
1	В	61	GLY	2.7
1	D	61	GLY	2.7
1	А	62	ASN	2.4
1	С	244	GLY	2.4
1	В	244	GLY	2.2
1	С	243	GLU	2.2
1	В	62	ASN	2.2
1	А	318	VAL	2.0
1	А	249	ASP	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} extsf{-}\mathbf{B} extsf{-}\mathbf{factors}(\mathbf{A}^2)$	Q<0.9
2	SO4	А	455	5/5	0.87	0.18	92,92,93,93	0
3	MG	D	1	1/1	0.89	0.17	37,37,37,37	0
2	SO4	D	455	5/5	0.90	0.12	92,93,93,94	0
3	MG	А	1	1/1	0.91	0.14	39,39,39,39	0
3	MG	С	1	1/1	0.91	0.14	34,34,34,34	0
3	MG	В	456	1/1	0.94	0.12	32,32,32,32	0
2	SO4	В	455	5/5	0.95	0.17	71,71,72,72	0
2	SO4	D	4	5/5	0.97	0.10	$66,\!67,\!68,\!69$	0
2	SO4	С	3	5/5	0.98	0.07	59,60,62,63	0
2	SO4	В	1	5/5	0.99	0.07	49,52,53,53	0
2	SO4	А	2	5/5	0.99	0.10	60,60,62,62	0

6.5 Other polymers (i)

There are no such residues in this entry.

