

Full wwPDB X-ray Structure Validation Report (i)

Jan 2, 2024 – 12:56 pm GMT

PDB ID	:	5FJI
Title	:	Three-dimensional structures of two heavily N-glycosylated Aspergillus sp.
		Family GH3 beta-D-glucosidases
Authors	:	Agirre, J.; Ariza, A.; Offen, W.A.; Turkenburg, J.P.; Roberts, S.M.; McNi-
		cholas, S.; Harris, P.V.; McBrayer, B.; Dohnalek, J.; Cowtan, K.D.; Davies,
		G.J.; Wilson, K.S.
Deposited on	:	2015-10-09
Resolution	:	1.95 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.4, CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 1.95 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	Similar resolution
	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
R_{free}	130704	2580 (1.96-1.96)
Clashscore	141614	2705 (1.96-1.96)
Ramachandran outliers	138981	2678(1.96-1.96)
Sidechain outliers	138945	2678 (1.96-1.96)
RSRZ outliers	127900	2539 (1.96-1.96)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	844	94%	5%
1	В	844	95%	•
2	С	7	86%	14%
2	J	7	71%	29%

Mol	Chain	Length	Quality of chain	
3	D	6	67%	33%
3	К	6	67%	33%
4	Е	3	100%	
4	Ι	3	100%	
4	L	3	100%	
4	Р	3	67%	33%
5	F	11	64%	36%
5	М	11	73%	27%
6	G	4	100%	
7	Н	9	56%	44%
7	Ο	9	89%	11%
8	Ν	5	80%	20%

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
10	EDO	А	1866	-	-	Х	-

2 Entry composition (i)

There are 12 unique types of molecules in this entry. The entry contains 15929 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called BETA-GLUCOSIDASE.

Mol	Chain	Residues		А	toms			ZeroOcc	AltConf	Trace
1	А	840	Total 6576	C 4147	N 1140	O 1270	S 19	0	15	0
1	В	840	Total 6513	C 4116	N 1120	O 1257	S 20	0	10	0

• Molecule 2 is an oligosaccharide called alpha-D-mannopyranose-(1-2)-alpha-D-mannopyran ose-(1-3)-alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]beta-D-mannopyran ose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace
2	С	7	Total 0 83 4	C N 46 2	O 35	0	0	0
2	J	7	Total 83 4	C N 46 2	O 35	0	0	0

• Molecule 3 is an oligosaccharide called alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
3	D	6	Total 72	C 40	N 2	O 30	0	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
3	K	6	Total 83	C 46	N 2	O 35	0	1	0

• Molecule 4 is an oligosaccharide called beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-b eta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
4	Е	3	Total C N O 39 22 2 15	0	0	0
4	Ι	3	Total C N O 39 22 2 15	0	0	0
4	L	3	Total C N O 39 22 2 15	0	0	0
4	Р	3	Total C N O 39 22 2 15	0	0	0

• Molecule 5 is an oligosaccharide called alpha-D-mannopyranose-(1-2)-alpha-D-mannopyran ose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-6)]alpha-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	I	Aton	ns		ZeroOcc	AltConf	Trace
5	F	11	Total 127	С 70	N 2	O 55	0	0	0
5	М	11	Total 127	С 70	N 2	O 55	0	0	0

• Molecule 6 is an oligosaccharide called alpha-D-mannopyranose-(1-3)-beta-D-mannopyranos e-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluco pyranose.

Mol	Chain	Residues	I	Aton	ns		ZeroOcc	AltConf	Trace
6	G	4	Total 50	C 28	N 2	O 20	0	0	0

• Molecule 7 is an oligosaccharide called alpha-D-mannopyranose-(1-2)-alpha-D-mannopyran ose-(1-6)-[alpha-D-mannopyranose-(1-3)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deox y-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
7	Н	9	Total C N O 119 66 3 50	0	1	0
7	0	9	Total C N O 105 58 2 45	0	0	0

• Molecule 8 is an oligosaccharide called alpha-D-mannopyranose-(1-2)-alpha-D-mannopyran ose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
8	Ν	5	Total C N O 61 34 2 25	0	0	0

• Molecule 9 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

Mol	Chain	Residues	A	ton	ns		ZeroOcc	AltConf
9	А	1	Total	C o	N 1	O E	0	0
			Total	0 C	I N	$\frac{0}{0}$		
9	А	1	14	8	1	$\frac{1}{5}$	0	0
9	В	1	Total	С	Ν	0	0	0
		-	14	8	1	5	Ŭ	
9	В	1	Total 14	${ m C} 8$	N 1	${ m O} 5$	0	0

• Molecule 10 is 1,2-ETHANEDIOL (three-letter code: EDO) (formula: $C_2H_6O_2$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
10	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
10	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
10	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
10	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
10	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
10	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
10	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
10	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
10	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
10	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
10	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
10	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
10	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
10	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
10	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
10	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
10	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
10	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
10	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
10	А	1	$\begin{array}{c ccc} \hline \text{Total} & \text{C} & \text{O} \\ \hline 4 & 2 & 2 \end{array}$	0	0
10	В	1	TotalCO422	0	0
10	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
10	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
10	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
10	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
10	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
10	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
10	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
10	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
10	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
10	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
10	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
10	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
10	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
10	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
10	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
10	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
10	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
10	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0

• Molecule 11 is IMIDAZOLE (three-letter code: IMD) (formula: $C_3H_5N_2$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
11	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{N} \\ 5 & 3 & 2 \end{array}$	0	0
11	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{N} \\ 5 & 3 & 2 \end{array}$	0	0
11	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{N} \\ 5 & 3 & 2 \end{array}$	0	0
11	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{N} \\ 5 & 3 & 2 \end{array}$	0	0
11	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{N} \\ 5 & 3 & 2 \end{array}$	0	0
11	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{N} \\ 5 & 3 & 2 \end{array}$	0	0
11	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{N} \\ 5 & 3 & 2 \end{array}$	0	0

• Molecule 12 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
12	А	807	Total O 812 812	0	5
12	В	715	Total O 715 715	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

Chain A:	94%	5%
GLN E21 65 66 66 66 66 66 66 66 19 66 812 65 8125 8125 8125 8125 8125 8125 8125 812	F306 D307 D308 D308 D308 R349 R349 R449 R449 R469 R469 F479	D516 E606 R641 N642 E643
R664 N664 SER SER SER SER SER SER M674 V675 V675 V675 V676 K703 K703 R703 R704 R708 R704 R708 R708 R708 R708 R708 R708 R708 R708	K843 R866 V862 V863	
• Molecule 1: BETA-GLUCOSIDASE		
Chain B:	95%	•
GLN E21 E39 E45 E49 M68 B69 B69 C90 C90 C90 B69 B69 E196 E1156 E1156 E1158 E15	W282 B308 W313 R330 R334 R330 R421 F421 F439 F449 F449 F449 F449 F449 F449	E510 Y588 E606 G619
E643 R664 S670 S670 S670 SER SER SER S674 V675 P677 P677 P677 P676 P679 P679 R709 F709 F709 F709 F709 F709 F709 F709 F		

• Molecule 1: BETA-GLUCOSIDASE

 $\label{eq:mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-alpha-D-mannopyranose-(1-3)-alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose \\ D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose \\ \end{array}$

Chain C:	86%	14%
NAG1 NAG2 BMA3 MAN4 MAN5 MAN5 MAN6 MAN6		

 $\label{eq:mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-alpha-D-mannopyranose-(1-3)-alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose \\ D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose \\ \end{array}$

Chain J:	71%	29%
NAG1 NAG2 BMA3 MAN4 MAN5 MAN5 MAN5 MAN5		
	WORLDWIDE	

 $\label{eq:mannopyranose-(1-2)-alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-bet$

33%

33%

67%

67%

Chain D:

 $\label{eq:mannopyranose-(1-2)-alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-bet$

Chain K:

NAG1 NAG2 BMA3 MAN4 MAN5 MAN6

• Molecule 4: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain E:

100%

NAG1 NAG2 BMA3

• Molecule 4: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain I:

100%

NAG1 NAG2 BMA3

 \bullet Molecule 4: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain L:	100%
NAG1 NAG2 BMA3	

67%

• Molecule 4: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain P:

33%

NAG1 NAG2 BMA3

 $\bullet \ Molecule \ 5: \ alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-3$

(1-2)-alpha-D-mannopyranose-(1-6)] alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-a

36%

Chain F:

NAG1 NAG2 BMA3 BMA3 MAN4 MAN5 MAN5 MAN5 MAN10 MAN11

 $\label{eq:constraint} \bullet \mbox{Molecule 5: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-2)-alpha-D-man$

Chain M:	73%	27%
NAG1 NAG2 BMA3 MAN4 MAN5 MAN5 MAN5 MAN6 MAN8 MAN10 MAN11		

64%

 $\bullet \ Molecule \ 6: \ alpha-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose$

Chain G: 100%

• Molecule 7: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranoy-2-deoxy-beta-D-glucopyranoy-2-deoxy-beta-D-glucopyranoy-

Chain H:	56%	44%
NAG1 NAG2 MAN5 MAN5 MAN6 MAN6 MAN7 MAN9 MAN9		

• Molecule 7: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranoy-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-b

Chain O: 89% 11%

 \bullet Molecule 8: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain N:	80%	20%
BNA3 MAN4 MAN5		

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 21 21 21	Depositor
Cell constants	88.52Å 129.67Å 217.72Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Bosolution (Å)	111.41 - 1.95	Depositor
Resolution (A)	69.31 - 1.95	EDS
% Data completeness	96.8 (111.41-1.95)	Depositor
(in resolution range)	96.8(69.31-1.95)	EDS
R_{merge}	0.08	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	2.37 (at 1.95 Å)	Xtriage
Refinement program	REFMAC 5.8.0131	Depositor
P. P.	0.149 , 0.174	Depositor
n, n_{free}	0.159 , 0.182	DCC
R_{free} test set	8876 reflections $(5.02%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	19.2	Xtriage
Anisotropy	0.619	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.34 , 49.3	EDS
L-test for $twinning^2$	$ < L >=0.48, < L^2>=0.31$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.96	EDS
Total number of atoms	15929	wwPDB-VP
Average B, all atoms $(Å^2)$	23.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.87% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: BMA, NAG, EDO, MAN, IMD

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bo	ond lengths	Bond angles		
NIOI	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	1.04	7/6765~(0.1%)	0.97	21/9222~(0.2%)	
1	В	1.02	9/6705~(0.1%)	0.98	21/9144~(0.2%)	
All	All	1.03	16/13470~(0.1%)	0.97	42/18366~(0.2%)	

All (16) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
1	А	160	GLU	CD-OE1	8.30	1.34	1.25
1	В	823	ARG	CD-NE	-7.11	1.34	1.46
1	В	69	GLU	CD-OE1	-6.17	1.18	1.25
1	В	510	GLU	CD-OE2	6.16	1.32	1.25
1	А	464	GLU	CD-OE2	6.05	1.32	1.25
1	А	416	GLU	CD-OE2	5.65	1.31	1.25
1	В	160	GLU	CD-OE1	5.42	1.31	1.25
1	В	49	GLU	CD-OE2	5.42	1.31	1.25
1	А	606	GLU	CD-OE2	5.28	1.31	1.25
1	В	198	GLU	CD-OE2	5.23	1.31	1.25
1	А	823	ARG	CD-NE	-5.14	1.37	1.46
1	А	271	GLU	CD-OE2	5.13	1.31	1.25
1	В	464	GLU	CD-OE2	5.11	1.31	1.25
1	В	39	GLU	CG-CD	5.07	1.59	1.51
1	A	479	PHE	CG-CD2	-5.04	1.31	1.38
1	В	606	GLU	CG-CD	5.02	1.59	1.51

All (42) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	В	823	ARG	NE-CZ-NH2	-17.16	111.72	120.30
1	А	823	ARG	NE-CZ-NH2	-17.04	111.78	120.30
1	В	469	ARG	NE-CZ-NH1	13.52	127.06	120.30

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	В	469	ARG	NE-CZ-NH2	-12.41	114.09	120.30
1	В	823	ARG	NE-CZ-NH1	11.51	126.05	120.30
1	А	823	ARG	NE-CZ-NH1	11.38	125.99	120.30
1	А	861	ARG	NE-CZ-NH2	-8.71	115.94	120.30
1	В	102	ASP	CB-CG-OD1	8.17	125.66	118.30
1	А	102	ASP	CB-CG-OD1	7.85	125.36	118.30
1	А	46	ARG	NE-CZ-NH1	7.54	124.07	120.30
1	А	439	ARG	NE-CZ-NH1	7.53	124.06	120.30
1	В	45	ARG	NE-CZ-NH1	7.17	123.89	120.30
1	А	822	ARG	NE-CZ-NH1	7.11	123.85	120.30
1	А	102	ASP	CB-CG-OD2	-6.92	112.08	118.30
1	В	439	ARG	NE-CZ-NH1	6.77	123.69	120.30
1	А	125	ARG	NE-CZ-NH2	-6.46	117.07	120.30
1	В	330	ARG	NE-CZ-NH1	6.40	123.50	120.30
1	А	861	ARG	NE-CZ-NH1	6.35	123.47	120.30
1	В	664	ARG	NE-CZ-NH1	6.30	123.45	120.30
1	А	236	ASP	CB-CG-OD1	6.21	123.89	118.30
1	В	236	ASP	CB-CG-OD1	6.20	123.88	118.30
1	В	829	ASP	CB-CG-OD1	6.18	123.86	118.30
1	А	308	ASP	CB-CG-OD1	6.08	123.77	118.30
1	В	861	ARG	NE-CZ-NH1	6.02	123.31	120.30
1	В	239	ARG	NE-CZ-NH2	-5.92	117.34	120.30
1	В	102	ASP	CB-CG-OD2	-5.76	113.11	118.30
1	А	708	LYS	CD-CE-NZ	-5.72	98.54	111.70
1	А	664	ARG	NE-CZ-NH1	5.70	123.15	120.30
1	А	794	ASN	N-CA-C	5.69	126.37	111.00
1	А	829	ASP	CB-CG-OD1	5.61	123.34	118.30
1	В	362	ASP	CB-CG-OD2	-5.49	113.36	118.30
1	В	45	ARG	NE-CZ-NH2	-5.41	117.60	120.30
1	А	801	ARG	NE-CZ-NH1	5.40	123.00	120.30
1	А	46	ARG	NE-CZ-NH2	-5.35	117.62	120.30
1	В	469	ARG	CD-NE-CZ	5.23	130.92	123.60
1	В	708	LYS	CD-CE-NZ	-5.22	99.69	111.70
1	В	93	ASP	CB-CG-OD1	-5.18	113.64	118.30
1	А	239	ARG	NE-CZ-NH2	-5.12	117.74	120.30
1	В	308	ASP	CB-CG-OD1	5.10	122.89	118.30
1	А	160	GLU	OE1-CD-OE2	5.08	129.39	123.30
1	В	422	LEU	CA-CB-CG	-5.05	103.67	115.30
1	А	330	ARG	NE-CZ-NH1	5.03	122.81	120.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	6576	0	6298	23	0
1	В	6513	0	6246	12	0
2	С	83	0	70	0	0
2	J	83	0	70	1	0
3	D	72	0	61	0	0
3	Κ	83	0	70	0	0
4	Е	39	0	34	0	0
4	Ι	39	0	34	0	0
4	L	39	0	34	0	0
4	Р	39	0	34	0	0
5	F	127	0	106	0	0
5	М	127	0	106	0	0
6	G	50	0	43	0	0
7	Н	119	0	100	1	0
7	0	105	0	88	0	0
8	Ν	61	0	52	0	0
9	А	28	0	26	0	0
9	В	28	0	26	0	0
10	А	80	0	120	5	0
10	В	76	0	114	1	0
11	А	15	0	15	0	0
11	В	20	0	20	0	0
12	А	812	0	0	5	0
12	В	715	0	0	3	0
All	All	15929	0	13767	36	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 1.

All (36) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:A:641[A]:ARG:NE	1:A:643[A]:GLU:OE2	1.69	1.25
1:A:641[A]:ARG:NH2	1:A:643[A]:GLU:OE2	1.77	1.18
1:A:641[A]:ARG:CZ	1:A:643[A]:GLU:OE2	1.95	1.12

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:843:LYS:NZ	1:A:856[B]:ARG:HH22	1.76	0.83
1:A:436:CYS:HG	1:A:441:CYS:HG	0.89	0.81
1:A:641[A]:ARG:HE	1:A:643[A]:GLU:CD	1.87	0.78
1:A:349[B]:ARG:HD3	12:A:2314:HOH:O	1.91	0.71
1:A:843:LYS:HZ1	1:A:856[B]:ARG:HH22	1.37	0.71
1:A:843:LYS:NZ	1:A:856[B]:ARG:NH2	2.49	0.58
1:B:643[B]:GLU:HG3	12:B:2512:HOH:O	2.05	0.56
1:A:436:CYS:HG	1:A:441:CYS:CB	2.22	0.51
1:A:178:LYS:HE2	12:A:2245:HOH:O	2.11	0.51
1:B:794[A]:ASN:HB3	12:B:2621:HOH:O	2.11	0.51
1:A:641[A]:ARG:HH21	1:A:643[A]:GLU:CD	2.10	0.49
1:B:313:TRP:CH2	1:B:334[B]:MET:HE3	2.48	0.48
1:A:843:LYS:HZ2	1:A:856[B]:ARG:HH22	1.57	0.48
10:A:1866:EDO:H22	12:A:2805:HOH:O	2.15	0.47
1:A:306:PHE:CZ	10:A:1882:EDO:H21	2.51	0.45
1:B:313:TRP:CH2	1:B:334[B]:MET:CE	3.01	0.43
1:B:588:TYR:CD2	10:B:1881:EDO:H22	2.53	0.43
1:A:786:LEU:C	1:A:786:LEU:HD23	2.38	0.43
10:A:1866:EDO:H12	1:B:469:ARG:HB2	2.01	0.43
1:A:516:ASP:CB	7:H:2[A]:NAG:H82	2.49	0.43
1:A:843:LYS:HZ1	1:A:856[B]:ARG:NH2	2.10	0.43
1:A:823:ARG:HD3	12:A:2719:HOH:O	2.19	0.42
1:B:159:TRP:CE2	1:B:449:ALA:HB3	2.55	0.42
1:A:469[B]:ARG:HB2	10:A:1866:EDO:H21	2.02	0.41
1:B:823:ARG:HD3	12:B:2644:HOH:O	2.20	0.41
1:A:68:TRP:CD1	1:A:69:GLU:HG3	2.56	0.41
1:B:96:LEU:C	1:B:96:LEU:HD12	2.41	0.41
1:A:469[A]:ARG:HB2	10:A:1866:EDO:H21	2.02	0.41
1:A:46:ARG:NH1	12:A:2049:HOH:O	2.47	0.41
1:A:96:LEU:HD12	1:A:96:LEU:C	2.41	0.41
1:B:68:TRP:CD1	1:B:69:GLU:HG3	2.56	0.41
1:B:421:VAL:C	1:B:422:LEU:HG	2.40	0.40
1:B:709:PHE:CZ	2:J:2:NAG:H82	2.55	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	852/844~(101%)	828~(97%)	24 (3%)	0	100	100
1	В	846/844~(100%)	825~(98%)	21 (2%)	0	100	100
All	All	1698/1688~(101%)	1653 (97%)	45 (3%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
1	А	698/686~(102%)	689~(99%)	9 (1%)	69	65
1	В	692/686~(101%)	687~(99%)	5(1%)	84	82
All	All	1390/1372~(101%)	1376 (99%)	14 (1%)	76	74

All (14) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	21	GLU
1	А	90	CYS
1	А	282	TRP
1	А	422	LEU
1	А	703	LEU
1	А	704	LYS
1	А	830	VAL
1	А	856[A]	ARG

Continued from previous page...

Mol	Chain	Res	Type
1	А	856[B]	ARG
1	В	90	CYS
1	В	282	TRP
1	В	422	LEU
1	В	703	LEU
1	В	704	LYS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

89 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Res	Link	Bo	ond leng	ths	B	ond ang	les
	туре	Chain			Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
2	NAG	С	1	2,1	14,14,15	0.45	0	17,19,21	0.41	0
2	NAG	С	2	2	14,14,15	0.44	0	17,19,21	0.64	0
2	BMA	С	3	2	11,11,12	0.30	0	15,15,17	0.55	0
2	MAN	С	4	2	11,11,12	0.26	0	15,15,17	0.51	0
2	MAN	С	5	2	11,11,12	0.50	0	15,15,17	0.73	1 (6%)
2	MAN	С	6	2	11,11,12	0.28	0	15,15,17	0.45	0
2	MAN	С	7	2	11,11,12	0.26	0	15,15,17	0.41	0
3	NAG	D	1	3,1	14,14,15	0.60	0	17,19,21	0.58	0
3	NAG	D	2	3	14,14,15	0.66	0	17,19,21	1.01	1 (5%)

Mal	Trune	Chain	Dec	Timle	Bond lengths		Bond angles			
10101	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
3	BMA	D	3	3	11,11,12	0.22	0	$15,\!15,\!17$	0.51	0
3	MAN	D	4	3	11,11,12	0.28	0	$15,\!15,\!17$	0.62	1 (6%)
3	MAN	D	5	3	11,11,12	0.28	0	$15,\!15,\!17$	0.56	0
3	MAN	D	6	3	11,11,12	0.24	0	$15,\!15,\!17$	0.45	0
4	NAG	Е	1	4,1	14,14,15	0.49	0	17,19,21	0.54	0
4	NAG	E	2	4	14,14,15	0.54	0	17,19,21	0.63	0
4	BMA	E	3	4	11,11,12	0.33	0	$15,\!15,\!17$	0.49	0
5	NAG	F	1	5,1	14,14,15	0.82	1 (7%)	$17,\!19,\!21$	0.59	0
5	MAN	F	10	5	11,11,12	0.40	0	$15,\!15,\!17$	0.76	0
5	MAN	F	11	5	11,11,12	0.41	0	$15,\!15,\!17$	0.70	1 (6%)
5	NAG	F	2	5	14,14,15	0.94	1 (7%)	17,19,21	0.72	0
5	BMA	F	3	5	11,11,12	0.16	0	15,15,17	0.50	0
5	MAN	F	4	5	11,11,12	0.22	0	$15,\!15,\!17$	0.40	0
5	MAN	F	5	5	11,11,12	0.40	0	$15,\!15,\!17$	0.77	1 (6%)
5	MAN	F	6	5	11,11,12	0.32	0	$15,\!15,\!17$	0.56	0
5	MAN	F	7	5	11,11,12	0.29	0	$15,\!15,\!17$	0.52	0
5	MAN	F	8	5	11,11,12	0.38	0	$15,\!15,\!17$	0.74	0
5	MAN	F	9	5	11,11,12	0.27	0	$15,\!15,\!17$	0.37	0
6	NAG	G	1	6,1	14,14,15	0.61	0	$17,\!19,\!21$	0.55	0
6	NAG	G	2	6	14,14,15	0.53	0	17,19,21	0.59	0
6	BMA	G	3	6	11,11,12	0.32	0	$15,\!15,\!17$	0.49	0
6	MAN	G	4	6	11,11,12	0.29	0	15, 15, 17	0.46	0
7	NAG	Н	1	7,1	14,14,15	0.55	0	$17,\!19,\!21$	0.67	1 (5%)
7	NAG	Н	2[A]	7	14,14,15	0.51	0	17,19,21	0.70	0
7	NAG	Н	2[B]	7	14,14,15	0.49	0	17,19,21	0.60	0
7	BMA	Н	3	7	11,11,12	0.21	0	15, 15, 17	0.53	0
7	MAN	Н	4	7	11,11,12	0.28	0	15,15,17	0.44	0
7	MAN	H	5	7	11,11,12	0.34	0	15,15,17	0.37	0
7	MAN	Н	6	7	11,11,12	0.37	0	15, 15, 17	0.67	1 (6%)
7	MAN	Н	7	7	11,11,12	0.42	0	$15,\!15,\!17$	0.72	1 (6%)
7	MAN	Н	8	7	11,11,12	0.28	0	15, 15, 17	0.47	0
7	MAN	Н	9	7	11,11,12	0.25	0	15,15,17	0.50	0
4	NAG	I	1	4,1	14,14,15	0.36	0	17,19,21	0.41	0
4	NAG	I	2	4	14,14,15	0.52	0	17,19,21	0.53	0
4	BMA		3	4	11,11,12	0.34	0	15,15,17	0.40	0
$\frac{2}{2}$	NAG	J		2,1	14,14,15	0.42	0	17,19,21	0.60	0
2	NAG DMA	J	2	2	14,14,15	0.00	0	16,19,21	0.39	0
2	BMA	J	<u> </u>	2	11,11,12	0.28	0	15,15,17	0.59	0
2	MAN	J	4 F	2	11,11,12	0.27	0	15,15,17	0.49	
2	MAN	J	6	2	11,11,12	0.41	0	15,15,17	0.73	1 (6%)
2	MAN	J	6	2	11,11,12	0.30	0	$15,\!15,\!17$	0.55	0

Mal	Turne	Chain	Dec	Tink	Bond lengths		Bond angles			
WIOI	туре	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
2	MAN	J	7	2	$11,\!11,\!12$	0.39	0	$15,\!15,\!17$	0.57	0
3	NAG	Κ	1	3,1	$14,\!14,\!15$	0.46	0	$17,\!19,\!21$	0.60	0
3	NAG	Κ	2	3	14,14,15	0.84	1 (7%)	$17,\!19,\!21$	1.01	1 (5%)
3	BMA	Κ	3[A]	3	11,11,12	0.27	0	$15,\!15,\!17$	0.52	0
3	BMA	K	3[B]	3	11,11,12	0.23	0	$15,\!15,\!17$	0.46	0
3	MAN	Κ	4	3	11,11,12	0.33	0	$15,\!15,\!17$	0.58	0
3	MAN	K	5	3	11,11,12	0.29	0	$15,\!15,\!17$	0.68	1 (6%)
3	MAN	K	6	3	11,11,12	0.24	0	$15,\!15,\!17$	0.44	0
4	NAG	L	1	4,1	14,14,15	0.68	0	17,19,21	0.70	0
4	NAG	L	2	4	14,14,15	0.56	0	17,19,21	0.52	0
4	BMA	L	3	4	11,11,12	0.30	0	$15,\!15,\!17$	0.41	0
5	NAG	М	1	5,1	14,14,15	0.40	0	17,19,21	0.47	0
5	MAN	М	10	5	11,11,12	0.39	0	$15,\!15,\!17$	0.65	0
5	MAN	М	11	5	11,11,12	0.39	0	$15,\!15,\!17$	0.76	1 (6%)
5	NAG	М	2	5	14,14,15	1.00	1 (7%)	17,19,21	0.63	0
5	BMA	М	3	5	11,11,12	0.19	0	$15,\!15,\!17$	0.46	0
5	MAN	М	4	5	11,11,12	0.26	0	$15,\!15,\!17$	0.53	0
5	MAN	М	5	5	11,11,12	0.48	0	$15,\!15,\!17$	0.68	0
5	MAN	М	6	5	11,11,12	0.32	0	$15,\!15,\!17$	0.67	1 (6%)
5	MAN	М	7	5	11,11,12	0.22	0	$15,\!15,\!17$	0.47	0
5	MAN	М	8	5	11,11,12	0.38	0	$15,\!15,\!17$	0.72	0
5	MAN	М	9	5	11,11,12	0.27	0	$15,\!15,\!17$	0.36	0
8	NAG	N	1	8,1	14,14,15	0.63	0	17,19,21	0.45	0
8	NAG	N	2	8	14,14,15	0.43	0	17,19,21	0.59	0
8	BMA	N	3	8	11,11,12	0.25	0	$15,\!15,\!17$	0.39	0
8	MAN	Ν	4	8	11,11,12	0.33	0	$15,\!15,\!17$	0.66	1 (6%)
8	MAN	N	5	8	11,11,12	0.26	0	$15,\!15,\!17$	0.47	0
7	NAG	0	1	7,1	14,14,15	0.61	0	17,19,21	0.60	0
7	NAG	0	2	7	14,14,15	0.59	0	17,19,21	0.62	0
7	BMA	0	3	7	11,11,12	0.32	0	$15,\!15,\!17$	0.47	0
7	MAN	0	4	7	11,11,12	0.22	0	$15,\!15,\!17$	0.42	0
7	MAN	0	5	7	11,11,12	0.31	0	$15,\!15,\!17$	0.41	0
7	MAN	O	6	7	11,11,12	0.39	0	$15,\!1\overline{5,\!17}$	0.72	1 (6%)
7	MAN	0	7	7	11,11,12	0.34	0	$15,\!15,\!17$	0.67	0
7	MAN	0	8	7	11,11,12	0.25	0	$15,\!15,\!17$	0.46	0
7	MAN	0	9	7	11,11,12	0.28	0	$15,\!15,\!17$	0.51	0
4	NAG	Р	1	4,1	14,14,15	0.56	0	17,19,21	0.57	0
4	NAG	Р	2	4	14,14,15	0.79	1 (7%)	17,19,21	0.79	1 (5%)
4	BMA	Р	3	4	11,11,12	0.31	0	$15,\!15,\!17$	0.35	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral

3

4

4

4

5

5

5

5

5

5

5

5

5

5

5

6

6

6

6

7

7

7

7

7

7

7

7

MAN

NAG

NAG

BMA

NAG

MAN

MAN

NAG

BMA

MAN

MAN

MAN

MAN

MAN

MAN

NAG

NAG

BMA

MAN

NAG

NAG

NAG

BMA

MAN

MAN

MAN

MAN

D

Е

Е

Ε

F

F

F

F

F

F

F

F

F

F

F

G

G

G

G

Η

Η

Η

Η

Η

Η

Η

Η

6

1

2

3

1

10

11

2

3

4

5

6

7

8

9

1

 $\mathbf{2}$

3

4

1

2[A]

2[B]

3

4

5

6

 $\overline{7}$

3

4,1

4

4

5,1

5

5

5

5

5

5

5

5

5

5

6,1

6

6

6

7,1

7

7

7

7

7

7

7

centers	centers analysed, the number of these observed in the model and the number defined in												
Chemi	Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings colu												
'-' mea	'-' means no outliers of that kind were identified.												
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings						
2	NAG	С	1	2,1	-	0/6/23/26	0/1/1/1						
2	NAG	С	2	2	-	0/6/23/26	0/1/1/1						
2	BMA	С	3	2	-	0/2/19/22	0/1/1/1						
2	MAN	С	4	2	-	0/2/19/22	0/1/1/1						
2	MAN	С	5	2	-	0/2/19/22	0/1/1/1						
2	MAN	С	6	2	-	0/2/19/22	0/1/1/1						
2	MAN	С	7	2	-	2/2/19/22	0/1/1/1						
3	NAG	D	1	3,1	-	0/6/23/26	0/1/1/1						
3	NAG	D	2	3	-	0/6/23/26	0/1/1/1						
3	BMA	D	3	3	-	2/2/19/22	0/1/1/1						
3	MAN	D	4	3	-	2/2/19/22	0/1/1/1						
3	MAN	D	5	3	-	0/2/19/22	0/1/1/1						

-

-

-

_

_

-

_

-

_

_

_

_

_

_

_

-

_

-

-

_

_

_

-

_

_

_

-

0/2/19/22

0/6/23/26

0/6/23/26

0/2/19/22

0/6/23/26

0/2/19/22

0/2/19/22

0/6/23/26

0/2/19/22

0/2/19/22

0/2/19/22

0/2/19/22

0/2/19/22

0/2/19/22

0/2/19/22

0/6/23/26

0/6/23/26

0/2/19/22

0/2/19/22

0/6/23/26

0/6/23/26

0/6/23/26

0/2/19/22

0/2/19/22

0/2/19/22

0/2/19/22

0/2/19/22

0/1/1/1

0/1/1/1

0/1/1/1

0/1/1/1

0/1/1/1

0/1/1/1

0/1/1/1

0/1/1/1

0/1/1/1

0/1/1/1

0/1/1/1

0/1/1/1

0/1/1/1

0/1/1/1

0/1/1/1

0/1/1/1

0/1/1/1

0/1/1/1

0/1/1/1

0/1/1/1

0/1/1/1

0/1/1/1

0/1/1/1

0/1/1/1

0/1/1/1

0/1/1/1

0/1/1/1

. 1 and th ւհ f th ogo obgor rad in th a dal 1. 1.0 ed in the imns.

Mol	Type	Chain	\mathbf{Res}	Link	Chirals	Torsions	Rings
7	MAN	Н	8	7	-	2/2/19/22	0/1/1/1
7	MAN	Н	9	7	-	2/2/19/22	0/1/1/1
4	NAG	Ι	1	4,1	-	0/6/23/26	0/1/1/1
4	NAG	Ι	2	4	-	2/6/23/26	0/1/1/1
4	BMA	Ι	3	4	-	0/2/19/22	0/1/1/1
2	NAG	J	1	2,1	-	0/6/23/26	0/1/1/1
2	NAG	J	2	2	-	0/6/23/26	0/1/1/1
2	BMA	J	3	2	-	0/2/19/22	0/1/1/1
2	MAN	J	4	2	-	0/2/19/22	0/1/1/1
2	MAN	J	5	2	-	1/2/19/22	0/1/1/1
2	MAN	J	6	2	-	2/2/19/22	0/1/1/1
2	MAN	J	7	2	-	0/2/19/22	0/1/1/1
3	NAG	K	1	3,1	-	0/6/23/26	0/1/1/1
3	NAG	Κ	2	3	-	0/6/23/26	0/1/1/1
3	BMA	K	3[A]	3	-	1/2/19/22	0/1/1/1
3	BMA	K	3[B]	3	-	0/2/19/22	0/1/1/1
3	MAN	Κ	4	3	-	0/2/19/22	0/1/1/1
3	MAN	K	5	3	-	0/2/19/22	0/1/1/1
3	MAN	K	6	3	-	0/2/19/22	0/1/1/1
4	NAG	L	1	4,1	-	0/6/23/26	0/1/1/1
4	NAG	L	2	4	-	0/6/23/26	0/1/1/1
4	BMA	L	3	4	-	0/2/19/22	0/1/1/1
5	NAG	М	1	5,1	-	0/6/23/26	0/1/1/1
5	MAN	М	10	5	-	0/2/19/22	0/1/1/1
5	MAN	М	11	5	-	0/2/19/22	0/1/1/1
5	NAG	М	2	5	-	0/6/23/26	0/1/1/1
5	BMA	М	3	5	-	1/2/19/22	0/1/1/1
5	MAN	М	4	5	-	0/2/19/22	0/1/1/1
5	MAN	M	5	5	-	1/2/19/22	0/1/1/1
5	MAN	M	6	5	-	0/2/19/22	0/1/1/1
5	MAN	M	7	5	-	0/2/19/22	0/1/1/1
5	MAN	M	8	5	-	0/2/19/22	0/1/1/1
5	MAN	M	9	5	-	0/2/19/22	0/1/1/1
8	NAG	N	1	8,1	-	0/6/23/26	0/1/1/1
8	NAG	N	2	8	-	0/6/23/26	0/1/1/1
8	BMA	N	3	8	-	$\frac{0/2}{19/22}$	$\frac{0/1}{1/1}$
8	MAN	N N	4	8	-	$\frac{0/2}{19/22}$	$\frac{0/1}{1/1}$
8	MAN	N C	5	8	-	$\frac{0/2}{19/22}$	$\frac{0/1}{1/1}$
	NAG	0		7,1	-	$\frac{0/6}{23/26}$	$\frac{U/1/1/1}{1}$
	NAG DMA	0	2		-	$\frac{0/6}{23/26}$	$\frac{0/1/1/1}{1}$
1	ВМА	0	3	1	-	0/2/19/22	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
7	MAN	0	4	7	-	0/2/19/22	0/1/1/1
7	MAN	0	5	7	-	0/2/19/22	0/1/1/1
7	MAN	0	6	7	-	0/2/19/22	0/1/1/1
7	MAN	0	7	7	-	0/2/19/22	0/1/1/1
7	MAN	0	8	7	-	0/2/19/22	0/1/1/1
7	MAN	0	9	7	-	2/2/19/22	0/1/1/1
4	NAG	Р	1	4,1	-	0/6/23/26	0/1/1/1
4	NAG	Р	2	4	-	0/6/23/26	0/1/1/1
4	BMA	Р	3	4	-	2/2/19/22	0/1/1/1

All (5) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
5	М	2	NAG	C1-C2	3.01	1.56	1.52
5	F	2	NAG	C1-C2	2.86	1.56	1.52
5	F	1	NAG	C1-C2	2.59	1.56	1.52
3	Κ	2	NAG	C1-C2	-2.50	1.48	1.52
4	Р	2	NAG	C1-C2	2.29	1.55	1.52

All (16) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
3	Κ	2	NAG	O5-C1-C2	-3.37	105.96	111.29
3	D	2	NAG	O5-C1-C2	-3.34	106.01	111.29
5	М	11	MAN	C1-O5-C5	2.37	115.41	112.19
5	F	5	MAN	C1-O5-C5	2.28	115.28	112.19
3	Κ	5	MAN	C1-O5-C5	2.22	115.19	112.19
5	М	6	MAN	C1-O5-C5	2.21	115.18	112.19
2	J	5	MAN	C1-O5-C5	2.16	115.12	112.19
4	Р	2	NAG	O5-C1-C2	2.14	114.67	111.29
7	0	6	MAN	C1-O5-C5	2.14	115.09	112.19
8	Ν	4	MAN	C1-O5-C5	2.14	115.09	112.19
7	Н	6	MAN	C1-O5-C5	2.13	115.08	112.19
2	С	5	MAN	C1-O5-C5	2.05	114.97	112.19
7	Н	1	NAG	O3-C3-C2	-2.05	105.23	109.47
7	Н	7	MAN	C1-O5-C5	2.04	114.95	112.19
5	F	11	MAN	C1-O5-C5	2.01	114.91	112.19
3	D	4	MAN	C1-O5-C5	2.00	114.90	112.19

There are no chirality outliers.

All (22) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
4	Ι	2	NAG	O5-C5-C6-O6
2	J	6	MAN	O5-C5-C6-O6
7	0	9	MAN	C4-C5-C6-O6
4	Ι	2	NAG	C4-C5-C6-O6
2	С	7	MAN	O5-C5-C6-O6
2	J	6	MAN	C4-C5-C6-O6
7	Н	8	MAN	O5-C5-C6-O6
3	D	3	BMA	C4-C5-C6-O6
7	0	9	MAN	O5-C5-C6-O6
2	С	7	MAN	C4-C5-C6-O6
3	D	3	BMA	O5-C5-C6-O6
7	Н	8	MAN	C4-C5-C6-O6
7	Н	9	MAN	C4-C5-C6-O6
4	Р	3	BMA	C4-C5-C6-O6
3	D	4	MAN	C4-C5-C6-O6
7	Н	9	MAN	O5-C5-C6-O6
3	Κ	3[A]	BMA	C4-C5-C6-O6
4	Р	3	BMA	O5-C5-C6-O6
2	J	5	MAN	O5-C5-C6-O6
5	М	3	BMA	C4-C5-C6-O6
5	М	5	MAN	O5-C5-C6-O6
3	D	4	MAN	O5-C5-C6-O6

There are no ring outliers.

2 monomers are involved in 2 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
7	Н	2[A]	NAG	1	0
2	J	2	NAG	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

50 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Timle	Bo	ond leng	ths	B	ond ang	les
	туре	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
10	EDO	В	1873	-	3,3,3	0.31	0	2,2,2	0.63	0
10	EDO	А	1879	-	3,3,3	0.38	0	2,2,2	1.05	0
10	EDO	A	1875	-	3,3,3	0.63	0	2,2,2	0.29	0
10	EDO	В	1867	-	3,3,3	0.78	0	2,2,2	0.26	0
9	NAG	А	1801	1	14,14,15	0.77	1 (7%)	17,19,21	0.48	0
10	EDO	В	1875	-	3,3,3	0.43	0	2,2,2	0.46	0
10	EDO	В	1881	-	3,3,3	0.66	0	2,2,2	0.89	0
11	IMD	А	1883	-	$3,\!5,\!5$	0.58	0	4,5,5	0.50	0
10	EDO	А	1876	-	3,3,3	0.89	0	2,2,2	0.68	0
10	EDO	В	1870	-	3,3,3	0.75	0	2,2,2	0.19	0
11	IMD	В	1884	-	$3,\!5,\!5$	0.44	0	4,5,5	0.53	0

	T a	Chain	Daa	T : 1-	Bond lengths		В	Bond angles		
IVIOI	Tybe	Chain	Res	LINK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
9	NAG	В	1601	1	14,14,15	1.16	1 (7%)	17,19,21	1.29	1 (5%)
10	EDO	А	1900	-	3,3,3	0.46	0	2,2,2	0.30	0
10	EDO	А	1878	-	3,3,3	0.40	0	2,2,2	0.63	0
10	EDO	В	1880	-	3,3,3	0.54	0	2,2,2	0.36	0
10	EDO	В	1869	-	3,3,3	0.65	0	2,2,2	0.19	0
10	EDO	А	1877	-	3,3,3	0.47	0	2,2,2	0.20	0
10	EDO	В	1879	-	3,3,3	0.74	0	2,2,2	0.21	0
10	EDO	А	1868	-	3,3,3	0.85	0	2,2,2	0.92	0
10	EDO	А	1880	-	3,3,3	0.50	0	2,2,2	0.25	0
10	EDO	А	1865	-	3,3,3	0.73	0	2,2,2	0.31	0
10	EDO	В	1878	-	3,3,3	0.22	0	2,2,2	0.65	0
11	IMD	А	1885	-	$3,\!5,\!5$	0.36	0	$4,\!5,\!5$	0.61	0
10	EDO	В	1868	-	3,3,3	0.60	0	2,2,2	0.42	0
10	EDO	А	1872	-	3,3,3	0.73	0	2,2,2	0.35	0
11	IMD	В	1883	-	$3,\!5,\!5$	0.25	0	4,5,5	0.71	0
10	EDO	В	1876	-	3,3,3	0.47	0	2,2,2	0.61	0
10	EDO	А	1873	-	3,3,3	0.47	0	2,2,2	0.48	0
10	EDO	В	1874	-	3,3,3	0.30	0	2,2,2	0.24	0
10	EDO	А	1864	-	3,3,3	0.93	0	2,2,2	0.11	0
10	EDO	В	1864	-	3,3,3	0.56	0	2,2,2	0.28	0
10	EDO	В	1900	-	3,3,3	0.49	0	2,2,2	0.30	0
11	IMD	А	1884	-	$3,\!5,\!5$	0.21	0	$4,\!5,\!5$	0.44	0
9	NAG	А	1601	1	14,14,15	0.49	0	$17,\!19,\!21$	0.65	1 (5%)
10	EDO	В	1865	-	3,3,3	0.98	0	2,2,2	0.22	0
10	EDO	В	1866	-	3,3,3	0.47	0	2,2,2	0.52	0
10	EDO	В	1871	-	3,3,3	0.28	0	2,2,2	0.51	0
10	EDO	А	1867	-	3,3,3	0.78	0	2,2,2	0.13	0
10	EDO	А	1870	-	3,3,3	0.42	0	2,2,2	0.16	0
10	EDO	А	1874	-	3,3,3	0.29	0	2,2,2	0.41	0
10	EDO	В	1877	-	3,3,3	0.46	0	$2,\!2,\!2$	0.07	0
10	EDO	А	1881	-	3,3,3	0.38	0	2,2,2	0.43	0
10	EDO	А	1866	-	3,3,3	1.03	0	2,2,2	1.67	0
10	EDO	A	1871	-	3,3,3	0.58	0	2,2,2	0.14	0
11	IMD	В	1885	-	3, 5, 5	0.53	0	4,5,5	0.57	0
10	EDO	В	1872	-	3,3,3	0.32	0	2,2,2	0.86	0
10	EDO	А	1882	-	3,3,3	0.16	0	2,2,2	0.85	0
11	IMD	В	1882	-	$3,\!5,\!5$	0.35	0	4,5,5	0.88	0
9	NAG	В	1801	1	$14,\!14,\!15$	0.42	0	17,19,21	0.53	0
10	EDO	A	1869	-	3,3,3	0.35	0	2,2,2	0.36	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns.

'-' mea	-' means no outliers of that kind were identified.											
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings					
10	EDO	В	1873	-	-	0/1/1/1	-					
10	EDO	А	1879	-	-	1/1/1/1	-					
10	EDO	А	1875	-	-	0/1/1/1	-					
10	EDO	В	1867	-	-	0/1/1/1	-					
9	NAG	А	1801	1	-	0/6/23/26	0/1/1/1					
10	EDO	В	1875	-	-	0/1/1/1	-					
10	EDO	В	1881	-	-	0/1/1/1	-					
11	IMD	A	1883	-	-	-	0/1/1/1					
10	EDO	A	1876	-	-	1/1/1/1	-					
10	EDO	В	1870	-	-	0/1/1/1	-					
11	IMD	В	1884	-	-	-	0/1/1/1					
9	NAG	В	1601	1	-	4/6/23/26	0/1/1/1					
10	EDO	А	1900	-	-	0/1/1/1	-					
10	EDO	А	1878	-	-	1/1/1/1	-					
10	EDO	В	1880	-	-	0/1/1/1	-					
10	EDO	В	1869	-	-	0/1/1/1	-					
10	EDO	А	1877	-	-	1/1/1/1	-					
10	EDO	В	1879	-	-	1/1/1/1	-					
10	EDO	А	1868	-	-	0/1/1/1	-					
10	EDO	А	1880	-	-	1/1/1/1	-					
10	EDO	А	1865	-	-	0/1/1/1	-					
10	EDO	В	1878	-	-	1/1/1/1	-					
11	IMD	А	1885	-	-	-	0/1/1/1					
10	EDO	В	1868	-	-	1/1/1/1	-					
10	EDO	А	1872	-	-	0/1/1/1	-					
11	IMD	В	1883	-	-	-	0/1/1/1					
10	EDO	В	1876	-	-	0/1/1/1	-					
10	EDO	A	1873	-	-	1/1/1/1	-					
10	EDO	В	1874	-	-	0/1/1/1	-					
10	EDO	A	1864	-	-	0/1/1/1	-					
10	EDO	В	1864	-	-	0/1/1/1	-					
10	EDO	В	1900	-	-	1/1/1/1	-					
11	IMD	A	1884	-	-	-	0/1/1/1					
9	NAG	А	1601	1	-	4/6/23/26	0/1/1/1					
10	EDO	В	1865	-	-	0/1/1/1	-					
10	EDO	В	1866	-	-	0/1/1/1	-					
10	EDO	В	1871	-	-	0/1/1/1	-					
10	EDO	А	1867	-	-	0/1/1/1	-					
10	EDO	А	1870	-	-	1/1/1/1	-					
10	EDO	А	1874	-	-	0/1/1/1	-					
10	EDO	В	1877	-	-	1/1/1/1	-					
			•		Ca	ontinued on ne	ext page					

5FJI	
------	--

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
10	EDO	А	1881	-	-	0/1/1/1	-
10	EDO	А	1866	-	-	1/1/1/1	-
10	EDO	А	1871	-	-	0/1/1/1	-
11	IMD	В	1885	-	-	-	0/1/1/1
10	EDO	В	1872	-	-	0/1/1/1	-
10	EDO	А	1882	-	-	0/1/1/1	-
11	IMD	В	1882	-	-	-	0/1/1/1
9	NAG	В	1801	1	-	2/6/23/26	0/1/1/1
10	EDO	А	1869	-	-	1/1/1/1	-

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
9	В	1601	NAG	C1-C2	4.04	1.58	1.52
9	А	1801	NAG	C1-C2	2.47	1.56	1.52

All (2) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	В	1601	NAG	O5-C1-C2	4.83	118.92	111.29
9	А	1601	NAG	O5-C1-C2	2.02	114.47	111.29

There are no chirality outliers.

All (24) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
9	А	1601	NAG	O5-C5-C6-O6
9	В	1601	NAG	O5-C5-C6-O6
9	В	1801	NAG	O5-C5-C6-O6
9	А	1601	NAG	C4-C5-C6-O6
9	В	1801	NAG	C4-C5-C6-O6
9	А	1601	NAG	C8-C7-N2-C2
9	В	1601	NAG	C8-C7-N2-C2
9	В	1601	NAG	O7-C7-N2-C2
9	В	1601	NAG	C4-C5-C6-O6
9	А	1601	NAG	O7-C7-N2-C2
10	А	1877	EDO	O1-C1-C2-O2
10	А	1880	EDO	O1-C1-C2-O2
10	В	1900	EDO	O1-C1-C2-O2
10	А	1873	EDO	O1-C1-C2-O2
10	А	1876	EDO	O1-C1-C2-O2

Mol	Chain	Res	Type	Atoms
10	В	1877	EDO	O1-C1-C2-O2
10	В	1878	EDO	O1-C1-C2-O2
10	А	1878	EDO	O1-C1-C2-O2
10	А	1869	EDO	O1-C1-C2-O2
10	А	1870	EDO	O1-C1-C2-O2
10	В	1868	EDO	O1-C1-C2-O2
10	В	1879	EDO	O1-C1-C2-O2
10	А	1866	EDO	O1-C1-C2-O2
10	А	1879	EDO	O1-C1-C2-O2

There are no ring outliers.

3 monomers are involved in 6 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
10	В	1881	EDO	1	0
10	А	1866	EDO	4	0
10	А	1882	EDO	1	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	840/844~(99%)	-0.32	4 (0%) 91 94	12, 19, 32, 44	14 (1%)
1	В	840/844~(99%)	-0.33	3 (0%) 92 95	12, 20, 35, 46	16 (1%)
All	All	1680/1688~(99%)	-0.33	7 (0%) 92 95	12, 20, 34, 46	30 (1%)

All (7) RSRZ outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	RSRZ
1	А	670	SER	3.5
1	А	21	GLU	3.3
1	В	677	PRO	2.5
1	В	619	GLY	2.5
1	А	676	VAL	2.2
1	В	676	VAL	2.2
1	А	669	ASN	2.1

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathrm{\AA}^2)$	Q<0.9
6	MAN	G	4	11/12	0.73	0.27	$60,\!63,\!69,\!76$	0
3	MAN	Κ	6	11/12	0.74	0.22	40,42,46,48	11

Continued from previous page										
Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\operatorname{B-factors}(\operatorname{\AA}^2)$	Q<0.9		
2	MAN	С	6	11/12	0.75	0.17	$45,\!50,\!54,\!55$	11		
4	BMA	Р	3	11/12	0.75	0.32	$57,\!64,\!69,\!78$	0		
3	MAN	D	6	11/12	0.75	0.20	$47,\!48,\!49,\!51$	11		
4	BMA	L	3	11/12	0.76	0.25	$56,\!64,\!71,\!76$	0		
4	BMA	Е	3	11/12	0.77	0.32	$56,\!62,\!70,\!80$	0		
2	MAN	J	6	11/12	0.77	0.31	36,37,38,40	11		
7	MAN	Н	9	11/12	0.78	0.24	49,55,59,62	11		
7	MAN	Н	7	11/12	0.79	0.24	$48,\!53,\!58,\!59$	0		
8	BMA	N	3	11/12	0.79	0.23	50,59,71,73	0		
6	BMA	G	3	11/12	0.81	0.31	49,60,66,67	0		
4	BMA	Ι	3	11/12	0.83	0.22	$58,\!61,\!66,\!72$	0		
2	MAN	С	7	11/12	0.85	0.13	49,57,63,66	0		
4	NAG	Ι	2	14/15	0.85	0.16	40,45,51,56	0		
7	MAN	0	9	11/12	0.86	0.27	57,65,70,71	0		
7	MAN	0	7	11/12	0.86	0.21	48,52,56,56	0		
5	MAN	F	9	11/12	0.87	0.27	51,54,65,67	0		
2	MAN	J	7	11/12	0.87	0.11	45,52,56,57	0		
8	MAN	N	5	11/12	0.87	0.21	45,50,52,54	11		
8	MAN	N	4	11/12	0.88	0.24	55,59,63,64	0		
5	MAN	М	9	11/12	0.88	0.25	51,54,59,61	0		
5	MAN	М	4	11/12	0.89	0.12	38,39,43,45	0		
5	MAN	М	5	11/12	0.90	0.19	47,53,57,63	0		
5	MAN	М	6	11/12	0.90	0.19	51,55,60,70	0		
2	MAN	J	5	11/12	0.90	0.15	38,41,48,57	0		
2	MAN	С	5	11/12	0.90	0.15	45,49,55,66	0		
4	NAG	Р	2	14/15	0.91	0.17	42,48,53,53	0		
7	MAN	Н	8	11/12	0.92	0.16	40,46,53,54	0		
4	NAG	L	2	14/15	0.92	0.13	34,38,41,51	0		
7	MAN	0	5	11/12	0.92	0.17	27,33,42,45	0		
5	MAN	F	5	11/12	0.92	0.22	32,41,50,53	0		
7	MAN	Н	5	11/12	0.93	0.15	29,36,42,47	0		
7	MAN	0	8	11/12	0.93	0.18	42,46,56,60	0		
5	MAN	F	6	11/12	0.93	0.17	37,39,43,49	0		
3	MAN	D	5	11/12	0.93	0.16	45,47,48,53	0		
2	MAN	J	4	11/12	0.93	0.12	32,37,43,52	0		
3	MAN	K	5	11/12	0.93	0.14	40,44,46.53	0		
7	MAN	Н	4	11/12	0.94	0.09	27,30.34.39	0		
2	MAN	С	4	11/12	0.94	0.12	36,38,43.51	0		
7	MAN	H	6	11/12	0.94	0.11	24,29.36.44	0		
7	MAN	0	6	11/12	0.94	0.17	22,27.35.41	0		
5	MAN	F	11	11/12	0.94	0.12	20.22.23.23	0		
3	BMA	K	3[A]	11/12	0.95	0.10	27.28.30.30	11		
3	BMA	K	3[A]	11/12	0.95	0.10	27,28,30,30	11		

Mol Type Chain Res Atoms RSCC RSR B-factors(A ²) Q<0.9	Conti	nued fro	m previou	is page	•••				
4 NAG I 1 14/15 0.05 0.09 24,28,32,35 0 5 MAN M 10 11/12 0.95 0.11 23,25,27,29 0 5 MAN M 11 11/12 0.95 0.11 25,27,0,322 0 3 BMA K 3 [B] 11/12 0.95 0.10 26,28,29,31 11 3 MAN F 10 11/12 0.95 0.10 30,32,35,40 0 3 NAG K 1 14/15 0.95 0.14 27,30,33,43 0 2 NAG J 1 14/15 0.96 0.09 18,20,28,29 0 2 NAG J 1 14/15 0.96 0.10 22,25,31,33 0 5 NAG M 1 14/15 0.96 0.11 22,24,23,36 0 5 NAG M 1 14/15	Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q < 0.9
5 MAN M 10 11/12 0.95 0.11 23,25,27,29 0 5 MAN M 11 11/12 0.95 0.11 25,27,30,32 0 3 BMA K 3[B] 11/12 0.95 0.10 26,28,29,31 11 3 MAN K 4 11/12 0.95 0.11 17,19,21,21 0 3 MAN D 4 11/12 0.95 0.10 30,32,35,40 0 3 NAG K 1 14/15 0.95 0.10 21,32,728 0 4 NAG E 2 14/15 0.96 0.09 18,20,28,29 0 2 NAG J 1 14/15 0.96 0.10 25,26,29,30 0 5 NAG M 2 14/15 0.96 0.11 26,28,34,36 0 4 NAG P 1 14/15 0.96	4	NAG	Ι	1	14/15	0.95	0.09	24,28,32,35	0
5 MAN M 11 11/12 0.95 0.11 25,7,30,32 0 3 BMA K 3[B] 11/12 0.95 0.10 26,28,29,31 11 3 MAN K 4 11/12 0.95 0.10 30,32,35,40 0 3 MAN D 4 11/12 0.95 0.10 30,32,35,40 0 3 MAG K 1 14/15 0.95 0.10 21,23,27,28 0 4 NAG E 2 14/15 0.96 0.08 28,33,35,42 0 2 NAG J 1 14/15 0.96 0.12 22,25,31,33 0 5 NAG M 1 14/15 0.96 0.11 26,28,3,36 0 4 NAG P 1 14/15 0.96 0.11 22,24,27,33 0 7 NAG Q 11/12 0.96 0.11 <td>5</td> <td>MAN</td> <td>М</td> <td>10</td> <td>11/12</td> <td>0.95</td> <td>0.11</td> <td>$23,\!25,\!27,\!29$</td> <td>0</td>	5	MAN	М	10	11/12	0.95	0.11	$23,\!25,\!27,\!29$	0
3 BMA K 3[B] 11/12 0.95 0.10 26,28,29,31 11 3 MAN K 4 11/12 0.95 0.09 29,32,33,38 0 5 MAN D 11/12 0.95 0.10 30,32,5,40 0 3 MAG K 1 14/15 0.95 0.10 21,23,27,28 0 4 NAG E 2 14/15 0.95 0.14 27,30,33,43 0 2 NAG J 1 14/15 0.96 0.08 28,33,542 0 2 NAG J 1 14/15 0.96 0.10 22,25,31,33 0 5 NAG M 1 14/15 0.96 0.10 24,28,30,31 0 5 NAG M 1 14/15 0.96 0.11 26,28,34,36 0 4 NAG P 1 14/15 0.96 0.11	5	MAN	М	11	11/12	0.95	0.11	$25,\!27,\!30,\!32$	0
3 MAN K 4 11/12 0.95 0.09 29,32,33,38 0 5 MAN F 10 11/12 0.95 0.11 17,19,21,21 0 3 MAN D 4 11/12 0.95 0.10 30,32,35,40 0 3 NAG K 1 14/15 0.95 0.14 27,30,33,43 0 2 BMA C 3 11/12 0.96 0.08 28,33,35,42 0 2 NAG J 1 14/15 0.96 0.09 14,22,80,31 0 5 NAG M 2 14/15 0.96 0.10 25,26,29,30 0 5 NAG M 2 14/15 0.96 0.10 24,29,35,36 0 7 NAG O 2 14/15 0.96 0.11 22,24,27,33 0 7 NAG O 2 14/15 0.96	3	BMA	K	3[B]	11/12	0.95	0.10	26,28,29,31	11
5 MAN F 10 $11/12$ 0.95 0.11 $17,19,21,21$ 0 3 MAN D 4 $11/12$ 0.95 0.10 $30,32,35,40$ 0 3 NAG K 1 $14/15$ 0.95 0.10 $21,23,27,28$ 0 4 NAG E 2 $14/15$ 0.95 0.14 $27,30,33,43$ 0 2 NAG J 1 $14/15$ 0.96 0.09 $18,20,28,29$ 0 2 NAG J 2 $14/15$ 0.96 0.10 $22,25,31,33$ 0 5 NAG M 2 $14/15$ 0.96 0.10 $24,29,30,31$ 0 5 NAG M 2 $14/15$ 0.96 0.11 $22,24,3,30,30$ 0 7 NAG O 2 $14/15$ 0.96 0.11 $22,24,27,33$ 0 7 NAG O 3 <	3	MAN	K	4	11/12	0.95	0.09	29,32,33,38	0
3 MAN D 4 11/12 0.95 0.10 30,32,35,40 0 3 NAG K 1 14/15 0.95 0.10 21,23,27,28 0 4 NAG E 2 14/15 0.95 0.14 27,30,33,34 0 2 BMA C 3 11/12 0.96 0.08 28,33,35,42 0 2 NAG J 1 14/15 0.96 0.09 18,20,28,29 0 2 NAG M 1 14/15 0.96 0.10 25,26,29,30 0 5 MAG M 3 11/12 0.96 0.11 26,28,34,36 0 4 NAG P 1 14/15 0.96 0.11 22,24,27,33 0 7 NAG O 2 14/15 0.96 0.11 26,28,34,36 0 2 BMA O 3 11/12 0.96	5	MAN	F	10	11/12	0.95	0.11	17,19,21,21	0
3 NAG K 1 $14/15$ 0.95 0.10 $21,23,27,28$ 0 4 NAG E 2 $14/15$ 0.95 0.14 $27,30,33,43$ 0 2 BMA C 3 $11/12$ 0.96 0.08 $28,33,35,42$ 0 2 NAG J 1 $14/15$ 0.96 0.12 $22,25,31,33$ 0 5 NAG M 1 $14/15$ 0.96 0.10 $25,26,29,30$ 0 5 BMA M 3 $11/12$ 0.96 0.11 $26,28,34,36$ 0 4 NAG P 1 $14/15$ 0.96 0.11 $22,24,27,33$ 0 7 MAM O 4 $11/12$ 0.96 0.11 $22,24,27,33$ 0 7 MAN O 4 $11/12$ 0.96 0.09 $21,42,53,0,39$ 0 7 MAN	3	MAN	D	4	11/12	0.95	0.10	30,32,35,40	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	NAG	K	1	14/15	0.95	0.10	21,23,27,28	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	NAG	Е	2	14/15	0.95	0.14	27,30,33,43	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	BMA	С	3	11/12	0.96	0.08	28,33,35,42	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	NAG	J	1	14/15	0.96	0.09	18,20,28,29	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	NAG	J	2	14/15	0.96	0.12	22,25,31,33	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	NAG	М	1	14/15	0.96	0.09	24,28,30,31	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	NAG	М	2	14/15	0.96	0.10	25,26,29,30	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	BMA	М	3	11/12	0.96	0.11	26,28,34,36	0
7 NAG O 2 $14/15$ 0.96 0.11 $22,24,27,33$ 0 7 BMA O 3 $11/12$ 0.96 0.10 $24,25,30,39$ 0 7 MAN O 4 $11/12$ 0.96 0.01 $24,25,30,39$ 0 2 BMA J 3 $11/12$ 0.96 0.09 $31,32,40,42$ 0 3 NAG K 2 $14/15$ 0.96 0.09 $21,24,27,27$ 0 5 MAN F 4 $11/12$ 0.96 0.09 $21,22,23,24$ 0 3 BMA D 3 $11/12$ 0.96 0.09 $26,30,37,47$ 0 8 NAG N 1 $14/15$ 0.96 0.14 $23,29,35,43$ 0 6 NAG G 1 $14/15$ 0.96 0.13 $27,29,37,39$ 0 4 NAG E<	4	NAG	Р	1	14/15	0.96	0.09	24,29,35,36	0
7 BMA O 3 11/12 0.96 0.10 $24,25,30,39$ 0 7 MAN O 4 11/12 0.96 0.11 $26,28,32,36$ 0 2 BMA J 3 11/12 0.96 0.09 $31,32,40,42$ 0 3 NAG K 2 14/15 0.96 0.09 $21,24,27,27$ 0 5 MAN F 4 11/12 0.96 0.09 $21,22,23,24$ 0 3 NAG D 1 14/15 0.96 0.09 $26,30,37,47$ 0 8 NAG N 1 14/15 0.96 0.11 $22,24,28,28$ 0 8 NAG N 2 14/15 0.96 0.14 $23,29,35,43$ 0 6 NAG G 1 14/15 0.96 0.14 $22,24,26,26$ 0 6 NAG G 2 14/15 0.97 0.14 16,18,20,23 0 5 MAN F 8 </td <td>7</td> <td>NAG</td> <td>0</td> <td>2</td> <td>14/15</td> <td>0.96</td> <td>0.11</td> <td>22,24,27,33</td> <td>0</td>	7	NAG	0	2	14/15	0.96	0.11	22,24,27,33	0
7 MAN O 4 11/12 0.96 0.11 26,28,32,36 0 2 BMA J 3 11/12 0.96 0.09 31,32,40,42 0 3 NAG K 2 14/15 0.96 0.09 21,24,27,27 0 5 MAN F 4 11/12 0.96 0.14 27,32,37,38 0 3 NAG D 1 14/15 0.96 0.09 21,22,23,24 0 3 BMA D 3 11/12 0.96 0.09 26,30,37,47 0 8 NAG N 1 14/15 0.96 0.11 22,24,28,28 0 8 NAG N 2 14/15 0.96 0.13 22,24,26,26 0 6 NAG G 2 14/15 0.96 0.13 27,29,37,39 0 4 NAG E 1 14/15 0.97 0.14 16,18,20,23 0 5 MAN H 3 11/1	7	BMA	0	3	11/12	0.96	0.10	24,25,30,39	0
2BMAJ3 $11/12$ 0.96 0.09 $31,32,40,42$ 0 3NAGK2 $14/15$ 0.96 0.09 $21,24,27,27$ 0 5MANF4 $11/12$ 0.96 0.14 $27,32,37,38$ 0 3NAGD1 $14/15$ 0.96 0.09 $21,22,23,24$ 0 3BMAD3 $11/12$ 0.96 0.09 $26,30,37,47$ 0 8NAGN1 $14/15$ 0.96 0.11 $22,24,28,28$ 0 8NAGN2 $14/15$ 0.96 0.14 $23,29,35,43$ 0 6NAGG1 $14/15$ 0.96 0.14 $22,24,26,26$ 0 6NAGG2 $14/15$ 0.96 0.14 $22,26,35,40$ 0 5MANF8 $11/12$ 0.96 0.13 $27,29,37,39$ 0 4NAGE1 $14/15$ 0.97 0.14 $16,18,20,23$ 0 7BMAH3 $11/12$ 0.97 0.08 $23,25,28,32$ 0 5NAGF1 $14/15$ 0.97 0.11 $17,19,21,22$ 0 5MANM8 $11/12$ 0.97 0.11 $17,19,20,21,20$ 0 5MANF2 $14/15$ 0.97 0.07 $19,22,27,27$ 0 4NAGD2 $14/15$ $0.$	7	MAN	0	4	11/12	0.96	0.11	26,28,32,36	0
3NAGK2 $14/15$ 0.96 0.09 $21,24,27,27$ 0 5MANF4 $11/12$ 0.96 0.14 $27,32,37,38$ 0 3NAGD1 $14/15$ 0.96 0.09 $21,22,23,24$ 0 3BMAD3 $11/12$ 0.96 0.09 $26,30,37,47$ 0 8NAGN1 $14/15$ 0.96 0.11 $22,24,28,28$ 0 8NAGN2 $14/15$ 0.96 0.14 $23,29,35,43$ 0 6NAGG1 $14/15$ 0.96 0.14 $22,24,26,26$ 0 6NAGG2 $14/15$ 0.96 0.13 $22,24,26,26$ 0 6NAGG2 $14/15$ 0.96 0.14 $22,26,35,40$ 0 5MANF8 $11/12$ 0.96 0.13 $27,29,37,39$ 0 4NAGE1 $14/15$ 0.97 0.14 $16,18,20,23$ 0 7BMAH3 $11/12$ 0.97 0.10 $17,19,21,22$ 0 5MANM8 $11/12$ 0.97 0.11 $17,19,21,22$ 0 5MANM8 $11/12$ 0.97 0.11 $17,19,20,21$ 0 5MANM8 $11/12$ 0.97 0.07 $19,22,27,27$ 0 6NAGD2 $14/15$ 0.97	2	BMA	J	3	11/12	0.96	0.09	31,32,40,42	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	NAG	K	2	14/15	0.96	0.09	21,24,27,27	0
3NAGD1 $14/15$ 0.96 0.09 $21,22,3,24$ 03BMAD3 $11/12$ 0.96 0.09 $26,30,37,47$ 08NAGN1 $14/15$ 0.96 0.11 $22,24,28,28$ 08NAGN2 $14/15$ 0.96 0.14 $23,29,35,43$ 06NAGG1 $14/15$ 0.96 0.14 $22,24,26,26$ 06NAGG2 $14/15$ 0.96 0.13 $22,24,26,26$ 06NAGG2 $14/15$ 0.96 0.14 $22,26,35,40$ 05MANF8 $11/12$ 0.96 0.13 $27,29,37,39$ 04NAGE1 $14/15$ 0.97 0.14 $16,18,20,23$ 07BMAH3 $11/12$ 0.97 0.08 $23,25,28,32$ 05NAGF1 $14/15$ 0.97 0.10 $17,19,21,22$ 05MANM8 $11/12$ 0.97 0.11 $19,20,22,25$ 05NAGF2 $14/15$ 0.97 0.07 $19,21,26,29$ 05MAGD2 $14/15$ 0.97 0.07 $19,22,27,27$ 04NAGL1 $14/15$ 0.97 0.07 $19,22,27,27$ 05MANF7 $11/12$ 0.97 0.07 $19,22,$	5	MAN	F	4	11/12	0.96	0.14	27,32,37,38	0
3BMAD3 $11/12$ 0.96 0.09 $26,30,37,47$ 08NAGN1 $14/15$ 0.96 0.11 $22,24,28,28$ 08NAGN2 $14/15$ 0.96 0.14 $23,29,35,43$ 06NAGG1 $14/15$ 0.96 0.13 $22,24,26,26$ 06NAGG2 $14/15$ 0.96 0.13 $22,24,26,26$ 06NAGG2 $14/15$ 0.96 0.13 $27,29,37,39$ 05MANF8 $11/12$ 0.96 0.13 $27,29,37,39$ 04NAGE1 $14/15$ 0.97 0.14 $16,18,20,23$ 05MAHH3 $11/12$ 0.97 0.08 $23,25,28,32$ 05NAGF1 $14/15$ 0.97 0.10 $17,19,21,22$ 05MANM8 $11/12$ 0.97 0.11 $17,18,20,21$ 05MAGF2 $14/15$ 0.97 0.07 $22,25,28,29$ 02NAGD2 $14/15$ 0.97 0.07 $19,21,26,29$ 07NAGD1 $14/15$ 0.97 0.07 $19,22,27,27$ 04NAGL1 $14/15$ 0.97 0.07 $19,22,27,27$ 05MANF7 $11/12$ 0.97 0.07 $19,22$	3	NAG	D	1	14/15	0.96	0.09	21,22,23,24	0
8NAGN1 $14/15$ 0.96 0.11 $22,24,28,28$ 08NAGN2 $14/15$ 0.96 0.14 $23,29,35,43$ 06NAGG1 $14/15$ 0.96 0.13 $22,24,26,26$ 06NAGG2 $14/15$ 0.96 0.13 $22,24,26,26$ 06NAGG2 $14/15$ 0.96 0.14 $22,26,35,40$ 05MANF8 $11/12$ 0.96 0.13 $27,29,37,39$ 04NAGE1 $14/15$ 0.97 0.14 $16,18,20,23$ 07BMAH3 $11/12$ 0.97 0.10 $17,19,21,22$ 05NAGF1 $14/15$ 0.97 0.10 $17,19,21,22$ 05MANM8 $11/12$ 0.97 0.11 $17,18,20,21$ 05MARF3 $11/12$ 0.97 0.11 $19,20,22,25$ 05BMAF3 $11/12$ 0.97 0.07 $19,21,26,29$ 02NAGD2 $14/15$ 0.97 0.07 $19,22,27,27$ 03NAGD2 $14/15$ 0.97 0.07 $19,22,27,27$ 04NAGL1 $14/15$ 0.97 0.07 $19,22,27,27$ 05MANF7 $11/12$ 0.97 0.011 $19,2$	3	BMA	D	3	11/12	0.96	0.09	26,30,37,47	0
8 NAG N 2 $14/15$ 0.96 0.14 $23,29,35,43$ 0 6 NAG G 1 $14/15$ 0.96 0.13 $22,24,26,26$ 0 6 NAG G 2 $14/15$ 0.96 0.13 $22,24,26,26$ 0 6 NAG G 2 $14/15$ 0.96 0.14 $22,26,35,40$ 0 5 MAN F 8 $11/12$ 0.96 0.13 $27,29,37,39$ 0 4 NAG E 1 $14/15$ 0.97 0.14 $16,18,20,23$ 0 7 BMA H 3 $11/12$ 0.97 0.08 $23,25,28,32$ 0 5 NAG F 1 $14/15$ 0.97 0.10 $17,19,21,22$ 0 5 MAN M 8 $11/12$ 0.97 0.11 $17,18,20,21$ 0 5 MAG D<	8	NAG	N	1	14/15	0.96	0.11	22,24,28,28	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	NAG	N	2	14/15	0.96	0.14	23,29,35,43	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	NAG	G	1	14/15	0.96	0.13	22,24,26,26	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	NAG	G	2	14/15	0.96	0.14	22,26,35,40	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	MAN	F	8	11/12	0.96	0.13	27,29,37,39	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	NAG	Е	1	14/15	0.97	0.14	16,18,20,23	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	BMA	Н	3	11/12	0.97	0.08	23,25,28,32	0
5 MAN M 8 11/12 0.97 0.12 30,34,38,42 0 5 NAG F 2 14/15 0.97 0.11 17,18,20,21 0 5 BMA F 3 11/12 0.97 0.11 17,18,20,21 0 5 BMA F 3 11/12 0.97 0.11 19,20,22,25 0 3 NAG D 2 14/15 0.97 0.07 22,25,28,29 0 2 NAG C 2 14/15 0.97 0.07 19,21,26,29 0 7 NAG O 1 14/15 0.97 0.07 19,22,27,27 0 4 NAG L 1 14/15 0.97 0.09 22,26,28,29 0 5 MAN F 7 11/12 0.97 0.11 19,20,21,23 0 5 MAN M 7 11/12 0.98	5	NAG	F	1	14/15	0.97	0.10	17,19,21,22	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	MAN	М	8	11/12	0.97	0.12	30,34,38,42	0
5 BMA F 3 11/12 0.97 0.11 19,20,22,25 0 3 NAG D 2 14/15 0.97 0.07 22,25,28,29 0 2 NAG C 2 14/15 0.97 0.07 19,21,26,29 0 7 NAG O 1 14/15 0.97 0.07 19,21,26,29 0 7 NAG O 1 14/15 0.97 0.07 19,22,27,27 0 4 NAG L 1 14/15 0.97 0.09 22,26,28,29 0 5 MAN F 7 11/12 0.97 0.11 19,20,21,23 0 5 MAN F 7 11/12 0.98 0.07 25,26,27,28 0 7 NAG H 1 14/15 0.98 0.07 17,19,25,26 0	5	NAG	F	2	14/15	0.97	0.11	17.18.20.21	0
3 NAG D 2 14/15 0.97 0.07 22,25,28,29 0 2 NAG C 2 14/15 0.97 0.07 19,21,26,29 0 7 NAG O 1 14/15 0.97 0.07 19,21,26,29 0 7 NAG O 1 14/15 0.97 0.07 19,22,27,27 0 4 NAG L 1 14/15 0.97 0.09 22,26,28,29 0 5 MAN F 7 11/12 0.97 0.11 19,20,21,23 0 5 MAN M 7 11/12 0.98 0.07 25,26,27,28 0 7 NAG H 1 14/15 0.98 0.07 17,19,25,26 0	5	BMA	F	3	11/12	0.97	0.11	19,20,22,25	0
2 NAG C 2 14/15 0.97 0.07 19,21,26,29 0 7 NAG O 1 14/15 0.97 0.07 19,21,26,29 0 4 NAG L 1 14/15 0.97 0.07 19,22,27,27 0 4 NAG L 1 14/15 0.97 0.09 22,26,28,29 0 5 MAN F 7 11/12 0.97 0.11 19,20,21,23 0 5 MAN M 7 11/12 0.98 0.07 25,26,27,28 0 7 NAG H 1 14/15 0.98 0.07 17,19,25,26 0	3	NAG	D	2	14/15	0.97	0.07	22.25.28.29	0
7 NAG O 1 14/15 0.97 0.07 19,22,27,27 0 4 NAG L 1 14/15 0.97 0.09 22,26,28,29 0 5 MAN F 7 11/12 0.97 0.11 19,20,21,23 0 5 MAN M 7 11/12 0.98 0.07 25,26,27,28 0 7 NAG H 1 14/15 0.98 0.07 17 19 25 26 0	2	NAG	C	2	14/15	0.97	0.07	19,21.26.29	0
4 NAG L 1 14/15 0.97 0.09 22,26,28,29 0 5 MAN F 7 11/12 0.97 0.11 19,20,21,23 0 5 MAN M 7 11/12 0.98 0.07 25,26,27,28 0 7 NAG H 1 14/15 0.98 0.07 17,19,25,26 0	7	NAG	0	1	14/15	0.97	0.07	19.22.27.27	0
5 MAN F 7 11/12 0.97 0.11 19,20,21,23 0 5 MAN M 7 11/12 0.98 0.07 25,26,27,28 0 7 NAG H 1 14/15 0.98 0.07 17 19 25 26 0	4	NAG	L	1	14/15	0.97	0.09	22,26.28.29	0
5 MAN M 7 11/12 0.08 0.07 25,26,27,28 0 7 NAG H 1 14/15 0.98 0.07 17 19 25 26 0	5	MAN	F	7	11/12	0.97	0.11	19.20.21.23	0
7 NAG H 1 14/15 0.98 0.07 17.19.25.26 0	5	MAN	M	7	11/12	0.98	0.07	25.26.27.28	0
	7	NAG	H	1	14/15	0.98	0.07	17.19.25.26	0

Co

0.07 17,19,25,26 0 Continued on next page...

Continued from previous page...

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathrm{\AA}^2)$	Q<0.9
7	NAG	Н	2[A]	14/15	0.98	0.11	20,21,24,26	14
7	NAG	Н	2[B]	14/15	0.98	0.11	20,21,23,26	14
2	NAG	С	1	14/15	0.98	0.08	17,18,24,25	0

The following is a graphical depiction of the model fit to experimental electron density for oligosaccharide. Each fit is shown from different orientation to approximate a three-dimensional view.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
10	EDO	В	1900	4/4	0.47	0.17	$55,\!56,\!56,\!60$	4
10	EDO	В	1879	4/4	0.70	0.31	46,50,54,63	0
10	EDO	А	1865	4/4	0.72	0.24	34,38,38,41	4
10	EDO	А	1900	4/4	0.74	0.20	60,60,61,65	0
9	NAG	А	1601	14/15	0.77	0.19	47,60,66,66	0
9	NAG	В	1601	14/15	0.77	0.21	49,62,67,74	0
10	EDO	А	1876	4/4	0.78	0.19	37,42,45,48	0
9	NAG	А	1801	14/15	0.78	0.31	48,54,59,59	0
10	EDO	В	1881	4/4	0.79	0.21	42,44,47,47	0
9	NAG	В	1801	14/15	0.79	0.25	52,62,64,66	0
10	EDO	А	1872	4/4	0.82	0.16	36,39,42,44	0
10	EDO	А	1873	4/4	0.85	0.17	50,50,52,55	0
10	EDO	А	1868	4/4	0.86	0.22	21,35,35,42	0
10	EDO	В	1880	4/4	0.87	0.21	33,34,44,49	0
10	EDO	А	1880	4/4	0.87	0.25	64,64,67,68	0
10	EDO	А	1882	4/4	0.87	0.15	21,21,22,23	4
10	EDO	В	1873	4/4	0.88	0.31	28,29,29,30	4
11	IMD	А	1885	5/5	0.88	0.23	44,45,46,46	0
11	IMD	В	1884	5/5	0.88	0.19	47,47,55,56	0
11	IMD	В	1885	5/5	0.88	0.20	52,56,59,60	0
10	EDO	В	1870	4/4	0.89	0.14	37,39,42,43	0
10	EDO	А	1877	4/4	0.89	0.22	50,51,53,61	0
11	IMD	А	1883	5/5	0.89	0.39	40,41,42,43	5
10	EDO	В	1877	4/4	0.90	0.18	49,56,57,58	0
10	EDO	А	1875	4/4	0.90	0.14	35,45,46,52	0
10	EDO	В	1865	4/4	0.90	0.13	27,28,30,31	0
10	EDO	А	1864	4/4	0.91	0.10	32,33,33,35	0
11	IMD	А	1884	5/5	0.91	0.13	33,33,36,37	0
10	EDO	А	1878	4/4	0.91	0.19	42,48,49,50	0
11	IMD	В	1882	5/5	0.91	0.17	39,39,42,43	5
10	EDO	А	1871	4/4	0.91	0.13	30,36,39,43	0
10	EDO	В	1878	4/4	0.91	0.19	52,53,54,59	0
10	EDO	В	1868	4/4	0.92	0.16	36,37,37,40	0
10	EDO	В	1876	4/4	0.92	0.18	45,46,51,51	0
10	EDO	В	1872	4/4	0.93	0.16	34,36,39,41	0
11	IMD	В	1883	5/5	0.93	0.13	37,39,39,41	0
10	EDO	A	1881	4/4	0.94	0.20	31,31,32,33	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B-factors(Å ²)	Q<0.9
10	EDO	В	1874	4/4	0.94	0.10	$35,\!35,\!36,\!39$	0
10	EDO	А	1866	4/4	0.94	0.10	27,28,28,29	0
10	EDO	В	1866	4/4	0.94	0.10	26,32,32,32	0
10	EDO	В	1871	4/4	0.95	0.13	32,32,33,34	0
10	EDO	А	1869	4/4	0.95	0.09	36,37,39,40	0
10	EDO	А	1879	4/4	0.96	0.14	31,33,36,42	0
10	EDO	А	1867	4/4	0.96	0.11	20,22,24,25	0
10	EDO	В	1869	4/4	0.96	0.11	23,23,26,27	0
10	EDO	В	1875	4/4	0.96	0.19	$25,\!29,\!31,\!36$	0
10	EDO	В	1864	4/4	0.96	0.26	39,43,43,44	0
10	EDO	А	1874	4/4	0.96	0.17	36, 38, 38, 39	0
10	EDO	A	1870	4/4	0.97	0.17	27,30,34,34	0
10	EDO	В	1867	4/4	0.97	0.12	24,30,31,34	0

6.5 Other polymers (i)

There are no such residues in this entry.

