PDB ID : 5FXK
EMDB ID: : EMD-3356
Title : GluN1b-GluN2B NMDA receptor structure-Class Y
Authors : Tajima, N.; Karakas, E.; Grant, T.; Simorowski, N.; Diaz-Avalos, R.; Grigori-eff, N.; Furukawa, H.
Deposited on : 2016-03-02
Resolution : 6.40 Å(reported)

MolProbity : 4.02b-467
Percentile statistics : 20171227.v01 (using entries in the PDB archive December 27th 2017)
Ideal geometry (proteins) : Engh & Huber (2001)
Ideal geometry (DNA, RNA) : Parkinson et. al. (1996)
Validation Pipeline (wwPDB-VP) : 2.4
1 Overall quality at a glance

The following experimental techniques were used to determine the structure:

ELECTRON MICROSCOPY

The reported resolution of this entry is 6.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Whole archive (#Entries)</th>
<th>EM structures (#Entries)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clashscore</td>
<td>136327</td>
<td>1886</td>
</tr>
<tr>
<td>Ramachandran outliers</td>
<td>132723</td>
<td>1663</td>
</tr>
</tbody>
</table>

The table below summarises the geometric issues observed across the polymeric chains. The red, orange, yellow and green segments on the bar indicate the fraction of residues that contain outliers for ≥ 3, 2, 1 and 0 types of geometric quality criteria. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $<5\%$

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>846</td>
<td>71% 22% 6%</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>846</td>
<td>71% 22% 6%</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>827</td>
<td>72% 21% 7%</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>827</td>
<td>72% 20% 7%</td>
</tr>
</tbody>
</table>
2 Entry composition

There are 2 unique types of molecules in this entry. The entry contains 15386 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called N-METHYL-D-ASPARTATE RECEPTOR GLUN1.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>793</td>
<td>Total C N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3913 2327 793 793</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>792</td>
<td>Total C N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3908 2324 792 792</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

There are 28 discrepancies between the modelled and reference sequences:

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>61</td>
<td>GLN</td>
<td>ASN</td>
<td>engineered mutation</td>
<td>UNP P35439</td>
</tr>
<tr>
<td>A</td>
<td>260</td>
<td>ASP</td>
<td>ASN</td>
<td>engineered mutation</td>
<td>UNP P35439</td>
</tr>
<tr>
<td>A</td>
<td>371</td>
<td>GLN</td>
<td>ASN</td>
<td>engineered mutation</td>
<td>UNP P35439</td>
</tr>
<tr>
<td>A</td>
<td>492</td>
<td>GLN</td>
<td>ASN</td>
<td>engineered mutation</td>
<td>UNP P35439</td>
</tr>
<tr>
<td>A</td>
<td>512</td>
<td>GLN</td>
<td>ASN</td>
<td>engineered mutation</td>
<td>UNP P35439</td>
</tr>
<tr>
<td>A</td>
<td>615</td>
<td>GLN</td>
<td>GLU</td>
<td>engineered mutation</td>
<td>UNP P35439</td>
</tr>
<tr>
<td>A</td>
<td>616</td>
<td>SER</td>
<td>GLU</td>
<td>engineered mutation</td>
<td>UNP P35439</td>
</tr>
<tr>
<td>A</td>
<td>618</td>
<td>SER</td>
<td>GLU</td>
<td>engineered mutation</td>
<td>UNP P35439</td>
</tr>
<tr>
<td>A</td>
<td>619</td>
<td>THR</td>
<td>GLU</td>
<td>engineered mutation</td>
<td>UNP P35439</td>
</tr>
<tr>
<td>A</td>
<td>792</td>
<td>GLN</td>
<td>ASN</td>
<td>engineered mutation</td>
<td>UNP P35439</td>
</tr>
<tr>
<td>A</td>
<td>831</td>
<td>CYS</td>
<td>PHE</td>
<td>engineered mutation</td>
<td>UNP P35439</td>
</tr>
<tr>
<td>A</td>
<td>865</td>
<td>ASN</td>
<td>ARG</td>
<td>engineered mutation</td>
<td>UNP P35439</td>
</tr>
<tr>
<td>A</td>
<td>866</td>
<td>GLY</td>
<td>ARG</td>
<td>engineered mutation</td>
<td>UNP P35439</td>
</tr>
<tr>
<td>A</td>
<td>867</td>
<td>ALA</td>
<td>LYS</td>
<td>engineered mutation</td>
<td>UNP P35439</td>
</tr>
<tr>
<td>C</td>
<td>61</td>
<td>GLN</td>
<td>ASN</td>
<td>engineered mutation</td>
<td>UNP P35439</td>
</tr>
<tr>
<td>C</td>
<td>260</td>
<td>ASP</td>
<td>ASN</td>
<td>engineered mutation</td>
<td>UNP P35439</td>
</tr>
<tr>
<td>C</td>
<td>371</td>
<td>GLN</td>
<td>ASN</td>
<td>engineered mutation</td>
<td>UNP P35439</td>
</tr>
<tr>
<td>C</td>
<td>492</td>
<td>GLN</td>
<td>ASN</td>
<td>engineered mutation</td>
<td>UNP P35439</td>
</tr>
<tr>
<td>C</td>
<td>512</td>
<td>GLN</td>
<td>ASN</td>
<td>engineered mutation</td>
<td>UNP P35439</td>
</tr>
<tr>
<td>C</td>
<td>615</td>
<td>GLN</td>
<td>GLU</td>
<td>engineered mutation</td>
<td>UNP P35439</td>
</tr>
<tr>
<td>C</td>
<td>616</td>
<td>SER</td>
<td>GLU</td>
<td>engineered mutation</td>
<td>UNP P35439</td>
</tr>
<tr>
<td>C</td>
<td>618</td>
<td>SER</td>
<td>GLU</td>
<td>engineered mutation</td>
<td>UNP P35439</td>
</tr>
<tr>
<td>C</td>
<td>619</td>
<td>THR</td>
<td>GLU</td>
<td>engineered mutation</td>
<td>UNP P35439</td>
</tr>
<tr>
<td>C</td>
<td>792</td>
<td>GLN</td>
<td>ASN</td>
<td>engineered mutation</td>
<td>UNP P35439</td>
</tr>
<tr>
<td>C</td>
<td>831</td>
<td>CYS</td>
<td>PHE</td>
<td>engineered mutation</td>
<td>UNP P35439</td>
</tr>
<tr>
<td>C</td>
<td>865</td>
<td>ASN</td>
<td>ARG</td>
<td>engineered mutation</td>
<td>UNP P35439</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>866</td>
<td>GLY</td>
<td>ARG</td>
<td>engineered mutation</td>
<td>UNP P35439</td>
</tr>
<tr>
<td>C</td>
<td>867</td>
<td>ALA</td>
<td>LYS</td>
<td>engineered mutation</td>
<td>UNP P35439</td>
</tr>
</tbody>
</table>

- Molecule 2 is a protein called N-METHYL-D-ASPARTATE RECEPTOR GLUN2B.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>B</td>
<td>767</td>
<td>Total C 3785</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N 2251</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O 767</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>766</td>
<td>Total C 3780</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N 2248</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O 766</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There are 12 discrepancies between the modelled and reference sequences:

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>26</td>
<td>GLY</td>
<td>-</td>
<td>expression tag</td>
<td>UNP Q00960</td>
</tr>
<tr>
<td>B</td>
<td>348</td>
<td>ASP</td>
<td>ASN</td>
<td>engineered mutation</td>
<td>UNP Q00960</td>
</tr>
<tr>
<td>B</td>
<td>557</td>
<td>CYS</td>
<td>ASP</td>
<td>engineered mutation</td>
<td>UNP Q00960</td>
</tr>
<tr>
<td>B</td>
<td>588</td>
<td>SER</td>
<td>CYS</td>
<td>engineered mutation</td>
<td>UNP Q00960</td>
</tr>
<tr>
<td>B</td>
<td>838</td>
<td>SER</td>
<td>CYS</td>
<td>engineered mutation</td>
<td>UNP Q00960</td>
</tr>
<tr>
<td>B</td>
<td>849</td>
<td>SER</td>
<td>CYS</td>
<td>engineered mutation</td>
<td>UNP Q00960</td>
</tr>
<tr>
<td>D</td>
<td>26</td>
<td>GLY</td>
<td>-</td>
<td>expression tag</td>
<td>UNP Q00960</td>
</tr>
<tr>
<td>D</td>
<td>348</td>
<td>ASP</td>
<td>ASN</td>
<td>engineered mutation</td>
<td>UNP Q00960</td>
</tr>
<tr>
<td>D</td>
<td>557</td>
<td>CYS</td>
<td>ASP</td>
<td>engineered mutation</td>
<td>UNP Q00960</td>
</tr>
<tr>
<td>D</td>
<td>588</td>
<td>SER</td>
<td>CYS</td>
<td>engineered mutation</td>
<td>UNP Q00960</td>
</tr>
<tr>
<td>D</td>
<td>838</td>
<td>SER</td>
<td>CYS</td>
<td>engineered mutation</td>
<td>UNP Q00960</td>
</tr>
<tr>
<td>D</td>
<td>849</td>
<td>SER</td>
<td>CYS</td>
<td>engineered mutation</td>
<td>UNP Q00960</td>
</tr>
</tbody>
</table>
3 Residue-property plots

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Molecule 1: N-METHYL-D-ASPARTATE RECEPTOR GLUN1

Chain A:

- Molecule 1: N-METHYL-D-ASPARTATE RECEPTOR GLUN1

Chain C:
- Molecule 2: N-METHYL-D-ASPARTATE RECEPTOR GLUN2B

Chain B:

<table>
<thead>
<tr>
<th>Residue</th>
<th>72%</th>
<th>21%</th>
<th>7%</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LYS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LYS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LYS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LYS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LYS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LYS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LYS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LYS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LYS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LYS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LYS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chain D:

<table>
<thead>
<tr>
<th>Residue</th>
<th>72%</th>
<th>21%</th>
<th>7%</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LYS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LYS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LYS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LYS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LYS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LYS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LYS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LYS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LYS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LYS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LYS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LYS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LYS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LYS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LYS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LYS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LYS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LYS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4 Experimental information

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reconstruction method</td>
<td>SINGLE PARTICLE</td>
<td>Depositor</td>
</tr>
<tr>
<td>Imposed symmetry</td>
<td>POINT, C2</td>
<td>Depositor</td>
</tr>
<tr>
<td>Number of particles used</td>
<td>15000</td>
<td>Depositor</td>
</tr>
<tr>
<td>Resolution determination method</td>
<td>Not provided</td>
<td>Depositor</td>
</tr>
<tr>
<td>CTF correction method</td>
<td>Not provided</td>
<td>Depositor</td>
</tr>
<tr>
<td>Microscope</td>
<td>FEI TITAN KRIOS</td>
<td>Depositor</td>
</tr>
<tr>
<td>Voltage (kV)</td>
<td>300</td>
<td>Depositor</td>
</tr>
<tr>
<td>Electron dose (e⁻/Å²)</td>
<td>100</td>
<td>Depositor</td>
</tr>
<tr>
<td>Minimum defocus (nm)</td>
<td>1000</td>
<td>Depositor</td>
</tr>
<tr>
<td>Maximum defocus (nm)</td>
<td>2500</td>
<td>Depositor</td>
</tr>
<tr>
<td>Magnification</td>
<td>22500</td>
<td>Depositor</td>
</tr>
<tr>
<td>Image detector</td>
<td>GATAN K2 SUMMIT (4k x 4k)</td>
<td>Depositor</td>
</tr>
</tbody>
</table>
5 Model quality

5.1 Standard geometry

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with \(|Z| > 5 \) is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RMSZ</td>
<td>#(</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>0.37</td>
<td>2/3907 (0.1%)</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>0.37</td>
<td>2/3902 (0.1%)</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>0.26</td>
<td>0/3780</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>0.26</td>
<td>0/3775</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>0.32</td>
<td>4/15364 (0.0%)</td>
</tr>
</tbody>
</table>

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>#Chirality outliers</th>
<th>#Planarity outliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

All (4) bond length outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>450</td>
<td>ASP</td>
<td>C-N</td>
<td>-14.11</td>
<td>1.07</td>
<td>1.34</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>450</td>
<td>ASP</td>
<td>C-N</td>
<td>-14.11</td>
<td>1.07</td>
<td>1.34</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>209</td>
<td>GLY</td>
<td>C-N</td>
<td>-5.71</td>
<td>1.23</td>
<td>1.34</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>209</td>
<td>GLY</td>
<td>C-N</td>
<td>-5.71</td>
<td>1.23</td>
<td>1.34</td>
</tr>
</tbody>
</table>

There are no bond angle outliers.

There are no chirality outliers.

All (4) planarity outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>389</td>
<td>ASN</td>
<td>Peptide</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>B</td>
<td>544</td>
<td>THR</td>
<td>Peptide</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>389</td>
<td>ASN</td>
<td>Peptide</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>544</td>
<td>THR</td>
<td>Peptide</td>
</tr>
</tbody>
</table>

5.2 Too-close contacts

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>3913</td>
<td>0</td>
<td>1774</td>
<td>113</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>3908</td>
<td>0</td>
<td>1773</td>
<td>111</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>3785</td>
<td>0</td>
<td>1690</td>
<td>114</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>3780</td>
<td>0</td>
<td>1688</td>
<td>111</td>
<td>0</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>15386</td>
<td>0</td>
<td>6925</td>
<td>446</td>
<td>0</td>
</tr>
</tbody>
</table>

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 20.

All (446) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:252:VAL:O</td>
<td>1:A:256:ALA:HB2</td>
<td>1.66</td>
<td>0.96</td>
</tr>
<tr>
<td>1:C:252:VAL:O</td>
<td>1:C:256:ALA:HB2</td>
<td>1.66</td>
<td>0.96</td>
</tr>
<tr>
<td>2:B:539:SER:HA</td>
<td>2:B:748:LEU:HA</td>
<td>1.50</td>
<td>0.94</td>
</tr>
<tr>
<td>2:D:539:SER:HA</td>
<td>2:D:748:LEU:HA</td>
<td>1.50</td>
<td>0.91</td>
</tr>
<tr>
<td>2:D:702:MET:O</td>
<td>2:D:706:MET:N</td>
<td>2.14</td>
<td>0.80</td>
</tr>
<tr>
<td>2:D:700:ALA:O</td>
<td>2:D:704:ALA:HB3</td>
<td>1.81</td>
<td>0.80</td>
</tr>
<tr>
<td>2:B:702:MET:O</td>
<td>2:B:706:MET:N</td>
<td>2.14</td>
<td>0.79</td>
</tr>
<tr>
<td>2:B:700:ALA:O</td>
<td>2:B:704:ALA:HB3</td>
<td>1.81</td>
<td>0.79</td>
</tr>
<tr>
<td>1:C:301:HIS:O</td>
<td>1:C:305:ALA:HB2</td>
<td>1.82</td>
<td>0.79</td>
</tr>
<tr>
<td>1:A:301:HIS:O</td>
<td>1:A:305:ALA:HB2</td>
<td>1.82</td>
<td>0.78</td>
</tr>
<tr>
<td>1:C:301:HIS:O</td>
<td>1:A:305:ALA:HB2</td>
<td>1.82</td>
<td>0.78</td>
</tr>
<tr>
<td>1:C:301:HIS:O</td>
<td>1:C:373:SER:N</td>
<td>2.14</td>
<td>0.78</td>
</tr>
<tr>
<td>2:B:363:VAL:HA</td>
<td>2:B:378:LYS:HA</td>
<td>1.65</td>
<td>0.77</td>
</tr>
<tr>
<td>2:D:363:VAL:HA</td>
<td>2:D:378:LYS:HA</td>
<td>1.64</td>
<td>0.77</td>
</tr>
<tr>
<td>1:A:120:GLY:N</td>
<td>1:A:138:LEU:O</td>
<td>2.18</td>
<td>0.77</td>
</tr>
<tr>
<td>1:C:559:LEU:HA</td>
<td>1:C:754:SER:H</td>
<td>1.49</td>
<td>0.77</td>
</tr>
<tr>
<td>2:B:635:TRP:O</td>
<td>2:B:639:ALA:HB3</td>
<td>1.85</td>
<td>0.77</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:C:120:GLY:N</td>
<td>1:C:138:LEU:O</td>
<td>2.18</td>
<td>0.76</td>
</tr>
<tr>
<td>2:B:112:LEU:O</td>
<td>2:B:116:SER:CB</td>
<td>2.34</td>
<td>0.76</td>
</tr>
<tr>
<td>2:D:635:TRP:O</td>
<td>2:D:639:ALA:HB3</td>
<td>1.85</td>
<td>0.76</td>
</tr>
<tr>
<td>1:C:419:LEU:N</td>
<td>1:C:494:THR:O</td>
<td>2.17</td>
<td>0.76</td>
</tr>
<tr>
<td>1:A:559:LEU:HA</td>
<td>1:A:754:SER:H</td>
<td>1.49</td>
<td>0.76</td>
</tr>
<tr>
<td>2:D:112:LEU:O</td>
<td>2:D:116:SER:CB</td>
<td>2.34</td>
<td>0.76</td>
</tr>
<tr>
<td>2:B:534:ILE:N</td>
<td>2:B:757:PHE:O</td>
<td>2.19</td>
<td>0.75</td>
</tr>
<tr>
<td>1:C:169:ASP:N</td>
<td>1:C:218:PHE:O</td>
<td>2.18</td>
<td>0.75</td>
</tr>
<tr>
<td>1:A:419:LEU:N</td>
<td>1:A:494:THR:O</td>
<td>2.17</td>
<td>0.74</td>
</tr>
<tr>
<td>1:A:353:ASP:HA</td>
<td>1:A:358:ARG:HA</td>
<td>1.69</td>
<td>0.74</td>
</tr>
<tr>
<td>2:B:413:GLU:O</td>
<td>2:B:417:VAL:N</td>
<td>2.20</td>
<td>0.74</td>
</tr>
<tr>
<td>2:D:413:GLU:O</td>
<td>2:D:417:VAL:N</td>
<td>2.20</td>
<td>0.74</td>
</tr>
<tr>
<td>1:A:169:ASP:N</td>
<td>1:A:218:PHE:O</td>
<td>2.18</td>
<td>0.74</td>
</tr>
<tr>
<td>2:D:487:GLY:H</td>
<td>2:D:498:ILE:H</td>
<td>1.36</td>
<td>0.74</td>
</tr>
<tr>
<td>2:B:668:ASP:O</td>
<td>2:B:672:GLN:N</td>
<td>2.21</td>
<td>0.73</td>
</tr>
<tr>
<td>1:C:353:ASP:HA</td>
<td>1:C:358:ARG:HA</td>
<td>1.69</td>
<td>0.73</td>
</tr>
<tr>
<td>2:D:534:ILE:N</td>
<td>2:D:757:PHE:O</td>
<td>2.19</td>
<td>0.73</td>
</tr>
<tr>
<td>2:D:668:ASP:O</td>
<td>2:D:672:GLN:N</td>
<td>2.21</td>
<td>0.73</td>
</tr>
<tr>
<td>2:B:435:PRO:HA</td>
<td>2:B:456:CYS:HA</td>
<td>1.72</td>
<td>0.72</td>
</tr>
<tr>
<td>2:B:344:PHE:N</td>
<td>2:B:347:ARG:O</td>
<td>2.23</td>
<td>0.71</td>
</tr>
<tr>
<td>2:D:344:PHE:N</td>
<td>2:D:347:ARG:O</td>
<td>2.23</td>
<td>0.71</td>
</tr>
<tr>
<td>2:D:435:PRO:HA</td>
<td>2:D:456:CYS:HA</td>
<td>1.72</td>
<td>0.71</td>
</tr>
<tr>
<td>2:B:600:PHE:O</td>
<td>2:B:604:LYS:N</td>
<td>2.23</td>
<td>0.71</td>
</tr>
<tr>
<td>2:B:487:GLY:H</td>
<td>2:B:498:ILE:H</td>
<td>1.36</td>
<td>0.71</td>
</tr>
<tr>
<td>1:A:374:ILE:O</td>
<td>1:A:385:VAL:N</td>
<td>2.24</td>
<td>0.70</td>
</tr>
<tr>
<td>1:A:389:ASN:H</td>
<td>1:A:392:HIS:H</td>
<td>1.39</td>
<td>0.70</td>
</tr>
<tr>
<td>2:B:536:VAL:HA</td>
<td>2:B:730:ILE:HA</td>
<td>1.73</td>
<td>0.70</td>
</tr>
<tr>
<td>1:C:238:ARG:O</td>
<td>1:C:267:VAL:N</td>
<td>2.23</td>
<td>0.70</td>
</tr>
<tr>
<td>1:A:701:ILE:O</td>
<td>1:A:749:ALA:N</td>
<td>2.26</td>
<td>0.69</td>
</tr>
<tr>
<td>2:D:38:ALA:O</td>
<td>2:D:98:VAL:N</td>
<td>2.25</td>
<td>0.69</td>
</tr>
<tr>
<td>2:B:38:ALA:O</td>
<td>2:B:98:VAL:N</td>
<td>2.25</td>
<td>0.69</td>
</tr>
<tr>
<td>1:C:389:ASN:H</td>
<td>1:C:392:HIS:H</td>
<td>1.39</td>
<td>0.69</td>
</tr>
<tr>
<td>2:D:536:VAL:HA</td>
<td>2:D:730:ILE:HA</td>
<td>1.73</td>
<td>0.69</td>
</tr>
<tr>
<td>2:B:532:THR:N</td>
<td>2:B:760:THR:O</td>
<td>2.26</td>
<td>0.69</td>
</tr>
<tr>
<td>1:C:374:ILE:O</td>
<td>1:C:385:VAL:N</td>
<td>2.24</td>
<td>0.69</td>
</tr>
<tr>
<td>1:C:505:PHE:O</td>
<td>1:C:522:MET:N</td>
<td>2.26</td>
<td>0.69</td>
</tr>
<tr>
<td>2:D:532:THR:N</td>
<td>2:D:760:THR:O</td>
<td>2.26</td>
<td>0.68</td>
</tr>
<tr>
<td>1:C:580:GLN:H</td>
<td>2:D:814:ASP:O</td>
<td>1.42</td>
<td>0.68</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:D:352:SER:N</td>
<td>2:D:356:TYR:O</td>
<td>2.20</td>
<td>0.68</td>
</tr>
<tr>
<td>1:A:535:VAL:HA</td>
<td>1:A:781:ILE:HA</td>
<td>1.75</td>
<td>0.68</td>
</tr>
<tr>
<td>1:C:565:LYS:N</td>
<td>1:C:766:ASP:O</td>
<td>2.27</td>
<td>0.68</td>
</tr>
<tr>
<td>1:A:505:PHE:O</td>
<td>1:A:522:MET:N</td>
<td>2.26</td>
<td>0.68</td>
</tr>
<tr>
<td>2:B:438:LYS:O</td>
<td>2:B:453:ILE:N</td>
<td>2.26</td>
<td>0.68</td>
</tr>
<tr>
<td>1:C:509:GLU:N</td>
<td>1:C:518:GLU:O</td>
<td>2.24</td>
<td>0.68</td>
</tr>
<tr>
<td>2:B:538:VAL:O</td>
<td>2:B:749:VAL:N</td>
<td>2.24</td>
<td>0.67</td>
</tr>
<tr>
<td>2:B:815:ILE:O</td>
<td>2:B:819:ALA:N</td>
<td>2.26</td>
<td>0.67</td>
</tr>
<tr>
<td>1:A:565:LYS:N</td>
<td>1:A:766:ASP:O</td>
<td>2.27</td>
<td>0.67</td>
</tr>
<tr>
<td>1:A:580:GLN:H</td>
<td>2:B:814:ASP:H</td>
<td>1.42</td>
<td>0.67</td>
</tr>
<tr>
<td>2:B:516:ASN:O</td>
<td>2:B:520:SER:N</td>
<td>2.19</td>
<td>0.67</td>
</tr>
<tr>
<td>2:D:538:VAL:O</td>
<td>2:D:749:VAL:N</td>
<td>2.24</td>
<td>0.67</td>
</tr>
<tr>
<td>2:D:173:THR:O</td>
<td>2:D:205:LEU:N</td>
<td>2.21</td>
<td>0.67</td>
</tr>
<tr>
<td>2:B:173:THR:O</td>
<td>2:B:205:LEU:N</td>
<td>2.21</td>
<td>0.66</td>
</tr>
<tr>
<td>1:C:343:LYS:O</td>
<td>1:C:347:MET:CB</td>
<td>2.42</td>
<td>0.66</td>
</tr>
<tr>
<td>2:D:436:CYS:N</td>
<td>2:D:455:LYS:O</td>
<td>2.28</td>
<td>0.66</td>
</tr>
<tr>
<td>2:B:532:THR:O</td>
<td>2:B:760:THR:N</td>
<td>2.26</td>
<td>0.66</td>
</tr>
<tr>
<td>1:A:343:LYS:O</td>
<td>1:A:347:MET:CB</td>
<td>2.42</td>
<td>0.66</td>
</tr>
<tr>
<td>1:C:535:VAL:HA</td>
<td>1:C:781:ILE:HA</td>
<td>1.76</td>
<td>0.66</td>
</tr>
<tr>
<td>1:C:804:GLY:O</td>
<td>1:C:808:ASP:N</td>
<td>2.21</td>
<td>0.66</td>
</tr>
<tr>
<td>2:B:352:SER:N</td>
<td>2:B:356:TYR:O</td>
<td>2.20</td>
<td>0.66</td>
</tr>
<tr>
<td>1:A:161:ASN:O</td>
<td>1:A:211:LYS:N</td>
<td>2.29</td>
<td>0.66</td>
</tr>
<tr>
<td>1:A:810:ASP:O</td>
<td>1:A:815:ARG:N</td>
<td>2.29</td>
<td>0.66</td>
</tr>
<tr>
<td>1:A:654:GLY:O</td>
<td>1:A:658:ALA:HB2</td>
<td>1.96</td>
<td>0.65</td>
</tr>
<tr>
<td>1:C:691:PRO:O</td>
<td>1:C:695:ASN:N</td>
<td>2.30</td>
<td>0.65</td>
</tr>
<tr>
<td>1:C:701:ILE:O</td>
<td>1:C:749:ALA:N</td>
<td>2.26</td>
<td>0.65</td>
</tr>
<tr>
<td>2:D:532:THR:O</td>
<td>2:D:760:THR:N</td>
<td>2.26</td>
<td>0.65</td>
</tr>
<tr>
<td>1:A:167:VAL:O</td>
<td>1:A:218:PHE:N</td>
<td>2.24</td>
<td>0.65</td>
</tr>
<tr>
<td>2:B:720:SER:O</td>
<td>2:B:724:GLY:N</td>
<td>2.28</td>
<td>0.65</td>
</tr>
<tr>
<td>1:C:161:ASN:O</td>
<td>1:C:211:LYS:N</td>
<td>2.29</td>
<td>0.65</td>
</tr>
<tr>
<td>2:D:228:ILE:O</td>
<td>2:D:257:ILE:N</td>
<td>2.24</td>
<td>0.65</td>
</tr>
<tr>
<td>1:C:508:GLN:HA</td>
<td>1:C:519:TRP:HA</td>
<td>1.79</td>
<td>0.65</td>
</tr>
<tr>
<td>1:C:431:TYR:N</td>
<td>1:C:477:TYR:O</td>
<td>2.29</td>
<td>0.65</td>
</tr>
<tr>
<td>2:D:600:PHE:O</td>
<td>2:D:604:LYS:N</td>
<td>2.23</td>
<td>0.65</td>
</tr>
<tr>
<td>2:D:668:ASP:H</td>
<td>2:D:672:GLN:H</td>
<td>1.43</td>
<td>0.65</td>
</tr>
<tr>
<td>1:C:120:GLY:O</td>
<td>1:C:140:THR:N</td>
<td>2.30</td>
<td>0.65</td>
</tr>
<tr>
<td>1:A:120:GLY:O</td>
<td>1:A:140:THR:N</td>
<td>2.30</td>
<td>0.65</td>
</tr>
<tr>
<td>1:A:272:GLU:O</td>
<td>1:A:276:SER:N</td>
<td>2.29</td>
<td>0.65</td>
</tr>
<tr>
<td>1:C:540:ILE:N</td>
<td>1:C:778:GLY:O</td>
<td>2.30</td>
<td>0.65</td>
</tr>
<tr>
<td>2:B:436:CYS:N</td>
<td>2:B:455:LYS:O</td>
<td>2.28</td>
<td>0.65</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:C:673:ALA:O</td>
<td>1:C:677:VAL:N</td>
<td>2.29</td>
<td>0.65</td>
</tr>
<tr>
<td>2:D:815:ILE:O</td>
<td>2:D:819:ALA:N</td>
<td>2.26</td>
<td>0.65</td>
</tr>
<tr>
<td>1:A:691:PRO:O</td>
<td>1:A:695:ASN:N</td>
<td>2.30</td>
<td>0.64</td>
</tr>
<tr>
<td>1:C:810:ASP:O</td>
<td>1:C:815:ARG:N</td>
<td>2.29</td>
<td>0.64</td>
</tr>
<tr>
<td>1:A:673:ALA:O</td>
<td>1:A:677:VAL:N</td>
<td>2.29</td>
<td>0.64</td>
</tr>
<tr>
<td>1:C:654:GLY:O</td>
<td>1:C:658:ALA:HB2</td>
<td>1.96</td>
<td>0.64</td>
</tr>
<tr>
<td>1:A:540:ILE:N</td>
<td>1:A:778:GLY:O</td>
<td>2.29</td>
<td>0.64</td>
</tr>
<tr>
<td>1:C:167:VAL:O</td>
<td>1:C:218:PHE:N</td>
<td>2.24</td>
<td>0.64</td>
</tr>
<tr>
<td>1:C:402:TRP:N</td>
<td>1:C:406:GLU:O</td>
<td>2.29</td>
<td>0.64</td>
</tr>
<tr>
<td>1:C:45:ALA:O</td>
<td>1:C:49:ALA:CB</td>
<td>2.46</td>
<td>0.64</td>
</tr>
<tr>
<td>1:A:804:GLY:O</td>
<td>1:A:808:ASP:N</td>
<td>2.21</td>
<td>0.64</td>
</tr>
<tr>
<td>1:A:508:GLN:HA</td>
<td>1:A:519:TRP:HA</td>
<td>1.78</td>
<td>0.64</td>
</tr>
<tr>
<td>1:C:182:THR:O</td>
<td>1:C:186:GLU:N</td>
<td>2.28</td>
<td>0.64</td>
</tr>
<tr>
<td>2:D:167:TYR:O</td>
<td>2:D:198:GLU:N</td>
<td>2.31</td>
<td>0.64</td>
</tr>
<tr>
<td>1:A:458:THR:HA</td>
<td>1:A:473:PRO:HA</td>
<td>1.79</td>
<td>0.64</td>
</tr>
<tr>
<td>2:B:307:MET:O</td>
<td>2:B:312:SER:N</td>
<td>2.29</td>
<td>0.64</td>
</tr>
<tr>
<td>1:A:417:THR:O</td>
<td>1:A:494:THR:N</td>
<td>2.31</td>
<td>0.64</td>
</tr>
<tr>
<td>2:D:307:MET:O</td>
<td>2:D:312:SER:N</td>
<td>2.29</td>
<td>0.64</td>
</tr>
<tr>
<td>2:B:228:ILE:O</td>
<td>2:B:257:ILE:N</td>
<td>2.24</td>
<td>0.63</td>
</tr>
<tr>
<td>2:B:436:CYS:O</td>
<td>2:B:455:LYS:N</td>
<td>2.31</td>
<td>0.63</td>
</tr>
<tr>
<td>1:C:167:VAL:N</td>
<td>1:C:216:LEU:O</td>
<td>2.31</td>
<td>0.63</td>
</tr>
<tr>
<td>2:D:537:MET:N</td>
<td>2:D:729:PHE:O</td>
<td>2.31</td>
<td>0.63</td>
</tr>
<tr>
<td>1:A:45:ALA:O</td>
<td>1:A:49:ALA:CB</td>
<td>2.46</td>
<td>0.63</td>
</tr>
<tr>
<td>2:B:668:ASP:H</td>
<td>2:B:672:GLN:H</td>
<td>1.44</td>
<td>0.63</td>
</tr>
<tr>
<td>2:D:516:ASN:O</td>
<td>2:D:520:SER:N</td>
<td>2.19</td>
<td>0.63</td>
</tr>
<tr>
<td>2:B:167:TYR:O</td>
<td>2:B:198:GLU:N</td>
<td>2.31</td>
<td>0.63</td>
</tr>
<tr>
<td>1:C:374:ILE:N</td>
<td>1:C:386:GLY:O</td>
<td>2.31</td>
<td>0.63</td>
</tr>
<tr>
<td>1:C:417:THR:O</td>
<td>1:C:494:THR:N</td>
<td>2.31</td>
<td>0.63</td>
</tr>
<tr>
<td>1:C:622:LEU:O</td>
<td>1:C:626:SER:N</td>
<td>2.31</td>
<td>0.63</td>
</tr>
<tr>
<td>2:D:434:VAL:O</td>
<td>2:D:457:CYS:N</td>
<td>2.32</td>
<td>0.63</td>
</tr>
<tr>
<td>2:D:720:SER:O</td>
<td>2:D:724:GLY:N</td>
<td>2.28</td>
<td>0.62</td>
</tr>
<tr>
<td>1:A:622:LEU:O</td>
<td>1:A:626:SER:N</td>
<td>2.31</td>
<td>0.62</td>
</tr>
<tr>
<td>2:B:277:LEU:O</td>
<td>2:B:367:LEU:N</td>
<td>2.24</td>
<td>0.62</td>
</tr>
<tr>
<td>1:A:374:ILE:N</td>
<td>1:A:386:GLY:O</td>
<td>2.31</td>
<td>0.62</td>
</tr>
<tr>
<td>1:C:458:THR:HA</td>
<td>1:C:473:PRO:HA</td>
<td>1.79</td>
<td>0.62</td>
</tr>
<tr>
<td>1:A:595:ALA:HB1</td>
<td>1:A:627:ALA:HB1</td>
<td>1.82</td>
<td>0.62</td>
</tr>
<tr>
<td>2:D:437:GLN:HA</td>
<td>2:D:454:LYS:HA</td>
<td>1.82</td>
<td>0.62</td>
</tr>
<tr>
<td>1:C:562:LEU:N</td>
<td>1:C:750:PHE:O</td>
<td>2.33</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:D:160:ILE:O</td>
<td>2:D:164:TYR:N</td>
<td>2.32</td>
<td>0.62</td>
</tr>
<tr>
<td>2:D:436:CYS:O</td>
<td>2:D:455:LYS:N</td>
<td>2.31</td>
<td>0.62</td>
</tr>
<tr>
<td>1:C:595:ALA:HB1</td>
<td>1:C:627:ALA:HB1</td>
<td>1.82</td>
<td>0.62</td>
</tr>
<tr>
<td>2:B:434:VAL:O</td>
<td>2:B:457:CYS:N</td>
<td>2.32</td>
<td>0.61</td>
</tr>
<tr>
<td>1:C:847:ALA:O</td>
<td>1:C:851:LEU:CB</td>
<td>2.48</td>
<td>0.61</td>
</tr>
<tr>
<td>2:B:437:GLN:HA</td>
<td>2:B:454:LYS:HA</td>
<td>1.82</td>
<td>0.61</td>
</tr>
<tr>
<td>1:C:272:GLU:O</td>
<td>1:C:276:SER:N</td>
<td>2.29</td>
<td>0.61</td>
</tr>
<tr>
<td>1:C:737:GLU:O</td>
<td>1:C:741:ALA:HB2</td>
<td>2.01</td>
<td>0.61</td>
</tr>
<tr>
<td>2:B:299:ILE:O</td>
<td>2:B:303:ALA:HB2</td>
<td>2.00</td>
<td>0.61</td>
</tr>
<tr>
<td>1:A:507:THR:O</td>
<td>1:A:520:ASN:N</td>
<td>2.28</td>
<td>0.61</td>
</tr>
<tr>
<td>1:A:847:ALA:O</td>
<td>1:A:851:LEU:CB</td>
<td>2.48</td>
<td>0.61</td>
</tr>
<tr>
<td>1:A:737:GLU:O</td>
<td>1:A:741:ALA:HB2</td>
<td>2.01</td>
<td>0.61</td>
</tr>
<tr>
<td>1:C:559:LEU:HA</td>
<td>1:C:754:SER:N</td>
<td>2.16</td>
<td>0.61</td>
</tr>
<tr>
<td>2:D:651:ALA:O</td>
<td>2:D:655:ILE:N</td>
<td>2.22</td>
<td>0.61</td>
</tr>
<tr>
<td>2:B:418:ILE:O</td>
<td>2:B:458:LYS:N</td>
<td>2.25</td>
<td>0.61</td>
</tr>
<tr>
<td>2:B:379:TRP:HA</td>
<td>2:B:384:LEU:HA</td>
<td>1.83</td>
<td>0.60</td>
</tr>
<tr>
<td>2:D:299:ILE:O</td>
<td>2:D:303:ALA:HB2</td>
<td>2.00</td>
<td>0.60</td>
</tr>
<tr>
<td>1:A:708:SER:O</td>
<td>1:A:712:ILE:N</td>
<td>2.34</td>
<td>0.60</td>
</tr>
<tr>
<td>2:D:366:LEU:O</td>
<td>2:D:374:GLU:N</td>
<td>2.34</td>
<td>0.60</td>
</tr>
<tr>
<td>1:C:798:LEU:O</td>
<td>1:C:802:GLU:CB</td>
<td>2.49</td>
<td>0.60</td>
</tr>
<tr>
<td>2:D:379:TRP:HA</td>
<td>2:D:384:LEU:HA</td>
<td>1.83</td>
<td>0.60</td>
</tr>
<tr>
<td>2:D:277:LEU:O</td>
<td>2:D:367:LEU:N</td>
<td>2.24</td>
<td>0.60</td>
</tr>
<tr>
<td>2:D:438:LYS:O</td>
<td>2:D:453:ILE:N</td>
<td>2.26</td>
<td>0.60</td>
</tr>
<tr>
<td>1:A:182:THR:O</td>
<td>1:A:186:GLU:N</td>
<td>2.28</td>
<td>0.60</td>
</tr>
<tr>
<td>2:B:460:PHE:O</td>
<td>2:B:463:ASP:N</td>
<td>2.35</td>
<td>0.60</td>
</tr>
<tr>
<td>1:C:507:THR:O</td>
<td>1:C:520:ASN:N</td>
<td>2.28</td>
<td>0.60</td>
</tr>
<tr>
<td>1:C:562:LEU:H</td>
<td>1:C:751:ILE:HA</td>
<td>1.67</td>
<td>0.60</td>
</tr>
<tr>
<td>2:B:700:ALA:O</td>
<td>2:B:704:ALA:CB</td>
<td>2.49</td>
<td>0.60</td>
</tr>
<tr>
<td>1:A:798:LEU:O</td>
<td>1:A:802:GLU:CB</td>
<td>2.49</td>
<td>0.60</td>
</tr>
<tr>
<td>1:C:376:ASN:N</td>
<td>1:C:383:VAL:O</td>
<td>2.30</td>
<td>0.60</td>
</tr>
<tr>
<td>1:C:708:SER:O</td>
<td>1:C:712:ILE:N</td>
<td>2.35</td>
<td>0.59</td>
</tr>
<tr>
<td>2:B:366:LEU:O</td>
<td>2:B:374:GLU:N</td>
<td>2.34</td>
<td>0.59</td>
</tr>
<tr>
<td>1:C:301:HIS:O</td>
<td>1:C:305:ALA:CB</td>
<td>2.51</td>
<td>0.59</td>
</tr>
<tr>
<td>2:D:460:PHE:O</td>
<td>2:D:463:ASP:N</td>
<td>2.35</td>
<td>0.59</td>
</tr>
<tr>
<td>2:B:160:ILE:O</td>
<td>2:B:164:TYR:N</td>
<td>2.32</td>
<td>0.59</td>
</tr>
<tr>
<td>2:D:700:ALA:O</td>
<td>2:D:704:ALA:CB</td>
<td>2.49</td>
<td>0.59</td>
</tr>
<tr>
<td>2:D:406:LEU:O</td>
<td>2:D:477:ASP:N</td>
<td>2.34</td>
<td>0.59</td>
</tr>
<tr>
<td>2:B:537:MET:N</td>
<td>2:B:729:PHE:O</td>
<td>2.31</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:B:544:THR:O</td>
<td>2:B:546:SER:N</td>
<td>2.36</td>
<td>0.58</td>
</tr>
<tr>
<td>2:D:418:ILE:O</td>
<td>2:D:458:LYS:N</td>
<td>2.25</td>
<td>0.58</td>
</tr>
<tr>
<td>2:D:149:SER:O</td>
<td>2:D:153:GLN:N</td>
<td>2.33</td>
<td>0.58</td>
</tr>
<tr>
<td>1:A:789:TRP:O</td>
<td>1:A:793:VAL:CB</td>
<td>2.51</td>
<td>0.58</td>
</tr>
<tr>
<td>2:D:544:THR:O</td>
<td>2:D:546:SER:N</td>
<td>2.36</td>
<td>0.58</td>
</tr>
<tr>
<td>1:C:525:GLU:O</td>
<td>1:C:529:GLY:N</td>
<td>2.37</td>
<td>0.58</td>
</tr>
<tr>
<td>1:A:559:LEU:HA</td>
<td>1:A:754:SER:N</td>
<td>2.16</td>
<td>0.57</td>
</tr>
<tr>
<td>1:C:187:ARG:O</td>
<td>1:C:191:SER:N</td>
<td>2.35</td>
<td>0.57</td>
</tr>
<tr>
<td>1:C:789:TRP:O</td>
<td>1:C:793:VAL:CB</td>
<td>2.51</td>
<td>0.57</td>
</tr>
<tr>
<td>2:B:706:MET:O</td>
<td>2:B:710:ASN:N</td>
<td>2.37</td>
<td>0.57</td>
</tr>
<tr>
<td>1:A:301:HIS:O</td>
<td>1:A:305:ALA:CB</td>
<td>2.51</td>
<td>0.57</td>
</tr>
<tr>
<td>2:B:406:LEU:H</td>
<td>2:B:476:TYR:HA</td>
<td>1.70</td>
<td>0.57</td>
</tr>
<tr>
<td>1:C:445:PHE:HA</td>
<td>1:C:451:PRO:HA</td>
<td>1.85</td>
<td>0.57</td>
</tr>
<tr>
<td>2:B:362:LEU:O</td>
<td>2:B:379:TRP:N</td>
<td>2.33</td>
<td>0.57</td>
</tr>
<tr>
<td>1:C:45:ALA:O</td>
<td>1:C:49:ALA:HB2</td>
<td>2.05</td>
<td>0.57</td>
</tr>
<tr>
<td>2:D:365:ILE:HA</td>
<td>2:D:376:VAL:H</td>
<td>1.69</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:525:GLU:O</td>
<td>1:A:529:GLY:N</td>
<td>2.37</td>
<td>0.56</td>
</tr>
<tr>
<td>2:D:362:LEU:O</td>
<td>2:D:379:TRP:N</td>
<td>2.33</td>
<td>0.56</td>
</tr>
<tr>
<td>2:D:408:ILE:HA</td>
<td>2:D:509:ALA:HA</td>
<td>1.88</td>
<td>0.56</td>
</tr>
<tr>
<td>2:B:116:SER:O</td>
<td>2:B:120:LEU:N</td>
<td>2.39</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:82:LEU:O</td>
<td>1:A:86:GLN:N</td>
<td>2.35</td>
<td>0.56</td>
</tr>
<tr>
<td>1:C:181:GLU:O</td>
<td>1:C:185:GLU:N</td>
<td>2.24</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:163:ILE:O</td>
<td>1:A:213:GLU:N</td>
<td>2.38</td>
<td>0.56</td>
</tr>
<tr>
<td>2:D:228:ILE:N</td>
<td>2:D:255:THR:O</td>
<td>2.39</td>
<td>0.56</td>
</tr>
<tr>
<td>2:B:406:LEU:O</td>
<td>2:B:477:ASP:N</td>
<td>2.34</td>
<td>0.56</td>
</tr>
<tr>
<td>1:C:163:ILE:O</td>
<td>1:C:213:GLU:N</td>
<td>2.38</td>
<td>0.56</td>
</tr>
<tr>
<td>1:C:857:ALA:O</td>
<td>1:C:861:HIS:CB</td>
<td>2.54</td>
<td>0.56</td>
</tr>
<tr>
<td>2:D:706:MET:O</td>
<td>2:D:710:ASN:N</td>
<td>2.37</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:45:ALA:O</td>
<td>1:A:49:ALA:HB2</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>2:D:406:LEU:H</td>
<td>2:D:476:TYR:HA</td>
<td>1.70</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:72:ILE:O</td>
<td>1:A:76:LEU:CB</td>
<td>2.54</td>
<td>0.56</td>
</tr>
<tr>
<td>2:B:408:ILE:HA</td>
<td>2:B:509:ALA:HA</td>
<td>1.88</td>
<td>0.56</td>
</tr>
<tr>
<td>2:B:782:GLN:O</td>
<td>2:B:785:GLY:N</td>
<td>2.39</td>
<td>0.56</td>
</tr>
<tr>
<td>2:D:116:SER:O</td>
<td>2:D:120:LEU:N</td>
<td>2.39</td>
<td>0.56</td>
</tr>
<tr>
<td>2:D:793:GLU:O</td>
<td>2:D:798:THR:N</td>
<td>2.39</td>
<td>0.56</td>
</tr>
<tr>
<td>1:C:564:LYS:HA</td>
<td>1:C:767:LEU:HA</td>
<td>1.88</td>
<td>0.55</td>
</tr>
<tr>
<td>1:C:72:ILE:O</td>
<td>1:C:76:LEU:CB</td>
<td>2.54</td>
<td>0.55</td>
</tr>
<tr>
<td>2:B:228:ILE:N</td>
<td>2:B:255:THR:O</td>
<td>2.39</td>
<td>0.55</td>
</tr>
<tr>
<td>2:D:782:GLN:O</td>
<td>2:D:785:GLY:N</td>
<td>2.39</td>
<td>0.55</td>
</tr>
<tr>
<td>1:C:633:GLY:O</td>
<td>1:C:637:ASN:N</td>
<td>2.21</td>
<td>0.55</td>
</tr>
<tr>
<td>2:B:365:ILE:HA</td>
<td>2:B:376:VAL:H</td>
<td>1.69</td>
<td>0.55</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:C:81:ASP:O</td>
<td>1:C:85:SER:N</td>
<td>2.35</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:857:ALA:O</td>
<td>1:A:861:HIS:CB</td>
<td>2.54</td>
<td>0.55</td>
</tr>
<tr>
<td>2:B:793:GLU:O</td>
<td>2:B:798:THR:N</td>
<td>2.39</td>
<td>0.55</td>
</tr>
<tr>
<td>1:C:833:ASN:O</td>
<td>1:C:836:GLY:N</td>
<td>2.40</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:564:LYS:HA</td>
<td>1:A:767:LEU:HA</td>
<td>1.88</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:81:ASP:O</td>
<td>1:A:85:SER:N</td>
<td>2.35</td>
<td>0.55</td>
</tr>
<tr>
<td>2:B:540:ARG:N</td>
<td>2:B:747:LYS:O</td>
<td>2.39</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:833:ASN:O</td>
<td>1:A:836:GLY:N</td>
<td>2.40</td>
<td>0.54</td>
</tr>
<tr>
<td>2:B:651:ALA:O</td>
<td>2:B:655:ILE:N</td>
<td>2.22</td>
<td>0.54</td>
</tr>
<tr>
<td>2:D:500:GLU:O</td>
<td>2:D:504:LYS:N</td>
<td>2.41</td>
<td>0.54</td>
</tr>
<tr>
<td>2:D:610:TRP:O</td>
<td>2:D:614:PHE:N</td>
<td>2.35</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:187:ARG:O</td>
<td>1:A:191:SER:N</td>
<td>2.35</td>
<td>0.54</td>
</tr>
<tr>
<td>1:C:740:GLN:O</td>
<td>1:C:744:ASP:N</td>
<td>2.33</td>
<td>0.54</td>
</tr>
<tr>
<td>2:B:36:GLY:HA3</td>
<td>2:B:94:ILE:HA</td>
<td>1.90</td>
<td>0.53</td>
</tr>
<tr>
<td>2:B:500:GLU:O</td>
<td>2:B:504:LYS:N</td>
<td>2.41</td>
<td>0.54</td>
</tr>
<tr>
<td>2:B:533:GLY:HA2</td>
<td>2:B:758:ALA:O</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:740:GLN:O</td>
<td>1:A:744:ASP:N</td>
<td>2.33</td>
<td>0.54</td>
</tr>
<tr>
<td>1:C:236:THR:O</td>
<td>1:C:230:MET:CB</td>
<td>2.56</td>
<td>0.54</td>
</tr>
<tr>
<td>2:B:136:ILE:H</td>
<td>2:B:143:PHE:HA</td>
<td>1.73</td>
<td>0.53</td>
</tr>
<tr>
<td>1:C:375:MET:HA</td>
<td>1:C:384:GLN:HA</td>
<td>1.89</td>
<td>0.53</td>
</tr>
<tr>
<td>2:D:36:GLY:HA3</td>
<td>2:D:94:ILE:HA</td>
<td>1.90</td>
<td>0.53</td>
</tr>
<tr>
<td>1:C:388:TYR:HA</td>
<td>1:C:392:HIS:O</td>
<td>2.07</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:226:THR:O</td>
<td>1:A:230:MET:CB</td>
<td>2.56</td>
<td>0.53</td>
</tr>
<tr>
<td>2:B:149:SER:O</td>
<td>2:B:153:GLN:N</td>
<td>2.33</td>
<td>0.53</td>
</tr>
<tr>
<td>2:B:226:PRO:O</td>
<td>2:B:255:THR:N</td>
<td>2.28</td>
<td>0.53</td>
</tr>
<tr>
<td>2:D:342:VAL:O</td>
<td>2:D:349:LEU:N</td>
<td>2.40</td>
<td>0.53</td>
</tr>
<tr>
<td>2:D:533:GLY:HA2</td>
<td>2:D:758:ALA:O</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:280:LEU:HA</td>
<td>1:A:283:ALA:HB2</td>
<td>1.91</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:633:GLY:O</td>
<td>1:A:637:ASN:N</td>
<td>2.21</td>
<td>0.53</td>
</tr>
<tr>
<td>2:D:123:ILE:H</td>
<td>2:D:143:PHE:HA</td>
<td>1.73</td>
<td>0.53</td>
</tr>
<tr>
<td>2:B:294:ARG:O</td>
<td>2:B:298:ALA:CB</td>
<td>2.57</td>
<td>0.53</td>
</tr>
<tr>
<td>1:C:541:ASN:O</td>
<td>1:C:545:ALA:N</td>
<td>2.42</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:375:MET:HA</td>
<td>1:A:384:GLN:HA</td>
<td>1.89</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:112:GLY:C</td>
<td>1:A:115:ARG:H</td>
<td>2.13</td>
<td>0.52</td>
</tr>
<tr>
<td>2:B:558:VAL:O</td>
<td>2:B:562:MET:CB</td>
<td>2.57</td>
<td>0.52</td>
</tr>
<tr>
<td>2:D:335:LEU:O</td>
<td>2:D:339:LEU:N</td>
<td>2.40</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:32:VAL:N</td>
<td>1:A:91:LEU:O</td>
<td>2.43</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:541:ASN:O</td>
<td>1:A:545:ALA:N</td>
<td>2.42</td>
<td>0.52</td>
</tr>
<tr>
<td>1:C:419:LEU:O</td>
<td>1:C:496:GLU:N</td>
<td>2.26</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Continued from previous page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:C:32:VAL:N</td>
<td>1:C:91:LEU:O</td>
<td>2.43</td>
<td>0.52</td>
</tr>
<tr>
<td>1:C:280:LEU:HA</td>
<td>1:C:283:ALA:HB2</td>
<td>1.91</td>
<td>0.51</td>
</tr>
<tr>
<td>2:D:558:VAL:O</td>
<td>2*D:562:MET:CB</td>
<td>2.57</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:118:VAL:O</td>
<td>1:A:138:LEU:N</td>
<td>2.44</td>
<td>0.51</td>
</tr>
<tr>
<td>2:B:407:SER:HA</td>
<td>2:B:477:ASP:O</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>2:D:682:ARG:O</td>
<td>2*D:728:ALA:N</td>
<td>2.29</td>
<td>0.51</td>
</tr>
<tr>
<td>2:D:169:PHE:O</td>
<td>2*D:200:GLU:N</td>
<td>2.37</td>
<td>0.51</td>
</tr>
<tr>
<td>2:B:169:PHE:N</td>
<td>2*B:198:GLU:O</td>
<td>2.34</td>
<td>0.51</td>
</tr>
<tr>
<td>2:D:490:ILE:N</td>
<td>2*D:298:ALA:CB</td>
<td>2.57</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:118:VAL:O</td>
<td>1:C:138:LEU:N</td>
<td>2.43</td>
<td>0.51</td>
</tr>
<tr>
<td>2:D:169:PHE:N</td>
<td>2*D:198:GLU:O</td>
<td>2.34</td>
<td>0.51</td>
</tr>
<tr>
<td>2:D:294:ARG:O</td>
<td>2*D:298:ALA:CB</td>
<td>2.57</td>
<td>0.51</td>
</tr>
<tr>
<td>2:B:378:LYS:O</td>
<td>2*B:385:GLN:N</td>
<td>2.43</td>
<td>0.51</td>
</tr>
<tr>
<td>1*C:112:GLY:C</td>
<td>1*C:115:ARG:H</td>
<td>2.13</td>
<td>0.51</td>
</tr>
<tr>
<td>2:B:610:TRP:O</td>
<td>2*B:614:PHE:N</td>
<td>2.35</td>
<td>0.50</td>
</tr>
<tr>
<td>2:B:34:SER:HA</td>
<td>2*B:65:VAL:O</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1*C:422:VAL:HA</td>
<td>1*C:498:HIS:O</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>2*D:288:GLY:O</td>
<td>2*D:292:ARG:N</td>
<td>2.40</td>
<td>0.50</td>
</tr>
<tr>
<td>2*D:625:GLY:O</td>
<td>2*D:629:LYS:N</td>
<td>2.45</td>
<td>0.50</td>
</tr>
<tr>
<td>1*A:422:VAL:HA</td>
<td>1*A:498:HIS:O</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1*C:291:GLN:N</td>
<td>1*C:373:SER:O</td>
<td>2.41</td>
<td>0.50</td>
</tr>
<tr>
<td>1*A:534:ILE:O</td>
<td>1*A:782:GLY:N</td>
<td>2.44</td>
<td>0.50</td>
</tr>
<tr>
<td>2*D:34:SER:HA</td>
<td>2*D:65:VAL:O</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1*A:250:ALA:O</td>
<td>1*A:254:ARG:CB</td>
<td>2.60</td>
<td>0.50</td>
</tr>
<tr>
<td>1*C:250:ALA:O</td>
<td>1*C:254:ARG:CB</td>
<td>2.60</td>
<td>0.50</td>
</tr>
<tr>
<td>2*B:635:TRP:O</td>
<td>2*B:639:ALA:CB</td>
<td>2.59</td>
<td>0.50</td>
</tr>
<tr>
<td>1*C:534:ILE:O</td>
<td>1*C:782:GLY:N</td>
<td>2.44</td>
<td>0.50</td>
</tr>
<tr>
<td>2*B:342:VAL:O</td>
<td>2*B:349:LEU:N</td>
<td>2.40</td>
<td>0.49</td>
</tr>
<tr>
<td>2*B:343:THR:HA</td>
<td>2*B:349:LEU:H</td>
<td>1.76</td>
<td>0.49</td>
</tr>
<tr>
<td>2*B:288:GLY:O</td>
<td>2*B:292:ARG:N</td>
<td>2.40</td>
<td>0.49</td>
</tr>
<tr>
<td>2*B:537:MET:HA</td>
<td>2*B:751:ILE:H</td>
<td>1.77</td>
<td>0.49</td>
</tr>
<tr>
<td>1*C:82:LEU:O</td>
<td>1*C:86:GLN:N</td>
<td>2.35</td>
<td>0.49</td>
</tr>
<tr>
<td>2*D:226:PRO:O</td>
<td>2*D:255:THR:N</td>
<td>2.28</td>
<td>0.49</td>
</tr>
<tr>
<td>2*D:407:SER:HA</td>
<td>2*D:477:ASP:O</td>
<td>2.11</td>
<td>0.49</td>
</tr>
<tr>
<td>2*B:487:GLY:N</td>
<td>2*B:498:ILE:H</td>
<td>2.08</td>
<td>0.49</td>
</tr>
<tr>
<td>2*B:625:GLY:O</td>
<td>2*B:629:LYS:N</td>
<td>2.45</td>
<td>0.49</td>
</tr>
<tr>
<td>2*D:692:GLU:O</td>
<td>2*D:696:ARG:N</td>
<td>2.37</td>
<td>0.49</td>
</tr>
<tr>
<td>2*D:537:MET:HA</td>
<td>2*D:751:ILE:H</td>
<td>1.77</td>
<td>0.49</td>
</tr>
<tr>
<td>1*C:436:MET:N</td>
<td>1*C:440:THR:O</td>
<td>2.32</td>
<td>0.49</td>
</tr>
<tr>
<td>2*B:490:ILE:N</td>
<td>2*B:493:THR:O</td>
<td>2.34</td>
<td>0.49</td>
</tr>
<tr>
<td>1*C:430:VAL:HA</td>
<td>1*C:478:GLY:HA3</td>
<td>1.94</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:D:343:THR:HA</td>
<td>2:D:349:LEU:H</td>
<td>1.76</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:526:LEU:C</td>
<td>1:A:529:GLY:H</td>
<td>2.16</td>
<td>0.49</td>
</tr>
<tr>
<td>2:B:406:LEU:N</td>
<td>2:B:475:THR:O</td>
<td>2.46</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:526:LEU:C</td>
<td>1:C:529:GLY:H</td>
<td>2.16</td>
<td>0.48</td>
</tr>
<tr>
<td>2:D:635:TRP:O</td>
<td>2:D:639:ALA:CB</td>
<td>2.59</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:181:GLU:O</td>
<td>1:A:185:GLU:N</td>
<td>2.24</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:446:THR:N</td>
<td>1:A:450:ASP:O</td>
<td>2.47</td>
<td>0.48</td>
</tr>
<tr>
<td>2:B:682:ARG:O</td>
<td>2:B:728:ALA:N</td>
<td>2.29</td>
<td>0.48</td>
</tr>
<tr>
<td>2:B:124:LEU:HA</td>
<td>2:B:144:PHE:O</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>2:B:335:LEU:O</td>
<td>2:B:339:LEU:N</td>
<td>2.40</td>
<td>0.48</td>
</tr>
<tr>
<td>2:D:378:LYS:O</td>
<td>2:D:385:GLN:N</td>
<td>2.43</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:430:VAL:HA</td>
<td>1:A:478:GLY:HA3</td>
<td>1.94</td>
<td>0.48</td>
</tr>
<tr>
<td>2:D:488:LYS:O</td>
<td>2:D:495:ASN:N</td>
<td>2.29</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:240:ILE:N</td>
<td>1:A:267:VAL:O</td>
<td>2.27</td>
<td>0.48</td>
</tr>
<tr>
<td>2:D:406:LEU:N</td>
<td>2:D:475:THR:O</td>
<td>2.46</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:257:ALA:C</td>
<td>1:A:260:ASP:H</td>
<td>2.17</td>
<td>0.48</td>
</tr>
<tr>
<td>2:B:792:LEU:O</td>
<td>2:B:796:TRP:N</td>
<td>2.30</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:757:LEU:O</td>
<td>1:C:761:ALA:N</td>
<td>2.45</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:741:ALA:O</td>
<td>1:C:746:LYS:N</td>
<td>2.30</td>
<td>0.47</td>
</tr>
<tr>
<td>2:B:103:THR:O</td>
<td>2:B:129:GLY:N</td>
<td>2.28</td>
<td>0.47</td>
</tr>
<tr>
<td>2:B:343:THR:HA</td>
<td>2:B:348:ASP:HA</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>2:B:488:LYS:O</td>
<td>2:B:495:ASN:N</td>
<td>2.29</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:45:ALA:O</td>
<td>1:A:49:ALA:HB3</td>
<td>2.14</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:446:THR:N</td>
<td>1:C:450:ASP:O</td>
<td>2.47</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:654:GLY:O</td>
<td>1:C:658:ALA:CB</td>
<td>2.62</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:70:ASN:O</td>
<td>1:C:74:MET:N</td>
<td>2.45</td>
<td>0.47</td>
</tr>
<tr>
<td>2:D:299:ILE:O</td>
<td>2:D:303:ALA:CB</td>
<td>2.63</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:833:ASN:C</td>
<td>1:C:836:GLY:H</td>
<td>2.18</td>
<td>0.47</td>
</tr>
<tr>
<td>2:B:169:PHE:O</td>
<td>2:B:200:GLU:N</td>
<td>2.37</td>
<td>0.47</td>
</tr>
<tr>
<td>2:B:380:LYS:N</td>
<td>2:B:383:SER:O</td>
<td>2.48</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:240:ILE:N</td>
<td>1:C:267:VAL:O</td>
<td>2.27</td>
<td>0.47</td>
</tr>
<tr>
<td>2:D:124:LEU:HA</td>
<td>2:D:144:PHE:O</td>
<td>2.13</td>
<td>0.47</td>
</tr>
<tr>
<td>2:D:423:ASP:O</td>
<td>2:D:428:THR:N</td>
<td>2.47</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:841:VAL:O</td>
<td>1:A:844:GLY:N</td>
<td>2.48</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:861:HIS:HA</td>
<td>1:A:864:ALA:HB2</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>2:B:423:ASP:O</td>
<td>2:B:428:THR:N</td>
<td>2.47</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:757:LEU:O</td>
<td>1:A:761:ALA:N</td>
<td>2.45</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:833:ASN:C</td>
<td>1:A:836:GLY:H</td>
<td>2.18</td>
<td>0.47</td>
</tr>
<tr>
<td>2:D:364:ILE:O</td>
<td>2:D:377:GLY:N</td>
<td>2.48</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:45:ALA:O</td>
<td>1:C:49:ALA:HB3</td>
<td>2.14</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:B:439:ARG:HA</td>
<td>2:B:452:TYR:N</td>
<td>2.30</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:861:HIS:HA</td>
<td>1:C:864:ALA:HB2</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>2:B:364:ILE:O</td>
<td>2:B:377:GLY:N</td>
<td>2.48</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:706:LYS:N</td>
<td>1:A:732:TYR:O</td>
<td>2.48</td>
<td>0.46</td>
</tr>
<tr>
<td>2:D:380:LYS:N</td>
<td>2:D:383:SER:O</td>
<td>2.48</td>
<td>0.46</td>
</tr>
<tr>
<td>2:B:299:ILE:O</td>
<td>2:B:303:ALA:CB</td>
<td>2.63</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:257:ALA:C</td>
<td>1:C:260:ASP:H</td>
<td>2.17</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:706:LYS:N</td>
<td>1:C:732:TYR:O</td>
<td>2.48</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:835:ALA:O</td>
<td>1:A:839:MET:CB</td>
<td>2.63</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:841:VAL:O</td>
<td>1:C:844:GLY:N</td>
<td>2.48</td>
<td>0.46</td>
</tr>
<tr>
<td>2:D:343:THR:HA</td>
<td>2:D:348:ASP:HA</td>
<td>1.96</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:419:LEU:O</td>
<td>1:A:496:GLU:N</td>
<td>2.26</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:835:ALA:O</td>
<td>1:C:839:MET:CB</td>
<td>2.63</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:291:GLN:N</td>
<td>1:A:373:SER:O</td>
<td>2.41</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:292:LEU:HA</td>
<td>1:C:372:TYR:HA</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:436:MET:N</td>
<td>1:A:440:THR:O</td>
<td>2.32</td>
<td>0.45</td>
</tr>
<tr>
<td>2:D:103:THR:O</td>
<td>2:D:129:GLY:N</td>
<td>2.28</td>
<td>0.45</td>
</tr>
<tr>
<td>2:B:171:ILE:O</td>
<td>2:B:203:LEU:N</td>
<td>2.49</td>
<td>0.45</td>
</tr>
<tr>
<td>2:D:122:PRO:HA</td>
<td>2:D:143:PHE:HA</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>2:D:439:ARG:HA</td>
<td>2:D:452:TYR:N</td>
<td>2.30</td>
<td>0.45</td>
</tr>
<tr>
<td>2:B:122:PRO:HA</td>
<td>2:B:143:PHE:HA</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:737:GLU:O</td>
<td>1:C:741:ALA:CB</td>
<td>2.65</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:111:ALA:O</td>
<td>1:C:116:ILE:N</td>
<td>2.30</td>
<td>0.45</td>
</tr>
<tr>
<td>2:D:171:ILE:O</td>
<td>2:D:203:LEU:N</td>
<td>2.49</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:252:VAL:O</td>
<td>1:C:256:ALA:CB</td>
<td>2.53</td>
<td>0.45</td>
</tr>
<tr>
<td>2:B:367:LEU:HA</td>
<td>2:B:373:TRP:HA</td>
<td>1.99</td>
<td>0.44</td>
</tr>
<tr>
<td>2:D:123:ILE:O</td>
<td>2:D:144:PHE:N</td>
<td>2.29</td>
<td>0.44</td>
</tr>
<tr>
<td>2:B:537:MET:O</td>
<td>2:B:729:PHE:N</td>
<td>2.44</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:737:GLU:O</td>
<td>1:A:741:ALA:CB</td>
<td>2.65</td>
<td>0.44</td>
</tr>
<tr>
<td>2:B:489:LYS:HA</td>
<td>2:B:494:TRP:HA</td>
<td>1.99</td>
<td>0.44</td>
</tr>
<tr>
<td>2:B:537:MET:HA</td>
<td>2:B:751:ILE:N</td>
<td>2.32</td>
<td>0.44</td>
</tr>
<tr>
<td>2:B:702:MET:O</td>
<td>2:B:705:TYR:N</td>
<td>2.51</td>
<td>0.44</td>
</tr>
<tr>
<td>2:D:537:MET:HA</td>
<td>2:D:751:ILE:N</td>
<td>2.32</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:741:ALA:O</td>
<td>1:A:746:LYS:N</td>
<td>2.30</td>
<td>0.44</td>
</tr>
<tr>
<td>2:D:367:LEU:HA</td>
<td>2:D:373:TRP:HA</td>
<td>1.99</td>
<td>0.44</td>
</tr>
<tr>
<td>2:D:702:MET:O</td>
<td>2:D:705:TYR:N</td>
<td>2.51</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:701:ILE:H</td>
<td>1:C:748:HIS:CB</td>
<td>2.31</td>
<td>0.43</td>
</tr>
<tr>
<td>2:B:692:GLU:O</td>
<td>2:B:696:ARG:N</td>
<td>2.37</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:315:GLU:O</td>
<td>1:C:319:LYS:N</td>
<td>2.51</td>
<td>0.43</td>
</tr>
<tr>
<td>2:D:486:HIS:O</td>
<td>2:D:496:GLY:HA3</td>
<td>2.19</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:D:487:GLY:N</td>
<td>2:D:498:ILE:H</td>
<td>2.08</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:315:GLU:O</td>
<td>1:A:319:LYS:N</td>
<td>2.51</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:701:ILE:H</td>
<td>1:A:748:HIS:CB</td>
<td>2.31</td>
<td>0.43</td>
</tr>
<tr>
<td>2:D:488:LYS:C</td>
<td>2:D:494:TRP:HA</td>
<td>2.39</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:561:ILE:HA</td>
<td>2:A:751:ILE:HA</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>2:B:488:LYS:C</td>
<td>2:B:494:TRP:HA</td>
<td>2.39</td>
<td>0.43</td>
</tr>
<tr>
<td>2:B:486:HIS:O</td>
<td>2:B:496:GLY:HA3</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>2:B:438:LYS:H</td>
<td>2:B:453:ILE:N</td>
<td>2.17</td>
<td>0.43</td>
</tr>
<tr>
<td>2:D:489:LYS:HA</td>
<td>2:D:494:TRP:HA</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>2:D:793:GLU:HA</td>
<td>2:D:797:LEU:CB</td>
<td>2.49</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:299:SER:O</td>
<td>1:A:302:ILE:N</td>
<td>2.48</td>
<td>0.43</td>
</tr>
<tr>
<td>2:B:782:GLN:C</td>
<td>2:B:785:GLY:H</td>
<td>2.22</td>
<td>0.43</td>
</tr>
<tr>
<td>2:B:793:GLU:HA</td>
<td>2:B:797:LEU:CB</td>
<td>2.49</td>
<td>0.43</td>
</tr>
<tr>
<td>2:D:798:MET:O</td>
<td>2:D:792:LEU:N</td>
<td>2.52</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:275:ILE:O</td>
<td>1:C:279:ALA:HB3</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:727:MET:O</td>
<td>1:C:731:ASN:N</td>
<td>2.52</td>
<td>0.42</td>
</tr>
<tr>
<td>2:D:278:ILE:HA</td>
<td>2:D:366:LEU:CB</td>
<td>2.48</td>
<td>0.42</td>
</tr>
<tr>
<td>2:D:438:LYS:H</td>
<td>2:D:453:ILE:N</td>
<td>2.17</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:275:ILE:O</td>
<td>1:A:279:ALA:HB3</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:727:MET:O</td>
<td>1:A:731:ASN:N</td>
<td>2.52</td>
<td>0.42</td>
</tr>
<tr>
<td>2:B:123:ILE:O</td>
<td>2:B:144:PHE:N</td>
<td>2.29</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:362:ASN:H</td>
<td>1:C:366:ASP:H</td>
<td>1.68</td>
<td>0.42</td>
</tr>
<tr>
<td>2:B:278:ILE:HA</td>
<td>2:B:366:LEU:CB</td>
<td>2.48</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:480:CYS:O</td>
<td>1:C:483:LEU:N</td>
<td>2.53</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:420:LYS:C</td>
<td>1:C:531:ALA:HB1</td>
<td>2.40</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:420:LYS:C</td>
<td>1:A:531:ALA:HB1</td>
<td>2.40</td>
<td>0.42</td>
</tr>
<tr>
<td>2:D:782:GLN:C</td>
<td>2:D:785:GLY:H</td>
<td>2.22</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:480:CYS:O</td>
<td>1:A:483:LEU:N</td>
<td>2.53</td>
<td>0.42</td>
</tr>
<tr>
<td>2:B:789:MET:O</td>
<td>2:B:792:LEU:N</td>
<td>2.52</td>
<td>0.42</td>
</tr>
<tr>
<td>2:B:279:SER:H</td>
<td>2:B:366:LEU:HA</td>
<td>1.85</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:561:ILE:HA</td>
<td>1:C:751:ILE:HA</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:741:ALA:O</td>
<td>1:C:745:ASN:N</td>
<td>2.53</td>
<td>0.42</td>
</tr>
<tr>
<td>2:D:537:MET:O</td>
<td>2:D:729:PHE:N</td>
<td>2.44</td>
<td>0.42</td>
</tr>
<tr>
<td>2:B:518:GLU:O</td>
<td>2:B:522:VAL:N</td>
<td>2.53</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:91:LEU:HA</td>
<td>1:C:119:LEU:O</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>2:B:793:GLU:C</td>
<td>2:B:798:THR:H</td>
<td>2.24</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:580:GLN:H</td>
<td>2:B:814:ASP:N</td>
<td>2.14</td>
<td>0.41</td>
</tr>
<tr>
<td>2:B:438:LYS:N</td>
<td>2:B:453:ILE:O</td>
<td>2.54</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:627:ALA:O</td>
<td>1:A:630:PHE:N</td>
<td>2.54</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:741:ALA:O</td>
<td>1:A:745:ASN:N</td>
<td>2.53</td>
<td>0.41</td>
</tr>
<tr>
<td>2:D:793:GLU:C</td>
<td>2:D:798:THR:H</td>
<td>2.24</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:70:ASN:O</td>
<td>1:A:74:MET:N</td>
<td>2.45</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:524:GLY:O</td>
<td>1:C:528:SER:N</td>
<td>2.36</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:111:ALA:O</td>
<td>1:A:116:ILE:N</td>
<td>2.30</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:627:ALA:O</td>
<td>1:C:630:PHE:N</td>
<td>2.54</td>
<td>0.41</td>
</tr>
<tr>
<td>2:D:294:ARG:O</td>
<td>2:D:298:ALA:HB2</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>2:D:279:SER:H</td>
<td>2:D:366:LEU:HA</td>
<td>1.85</td>
<td>0.41</td>
</tr>
<tr>
<td>2:B:294:ARG:O</td>
<td>2:B:298:ALA:HB2</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>2:B:294:ARG:O</td>
<td>2:B:298:ALA:HB3</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:244:ALA:HB1</td>
<td>1:C:248:ASP:CB</td>
<td>2.51</td>
<td>0.41</td>
</tr>
<tr>
<td>2:D:308:LEU:HA</td>
<td>2:D:312:SER:HA</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:31:ALA:HA</td>
<td>1:C:91:LEU:N</td>
<td>2.36</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:860:ARG:O</td>
<td>1:A:864:ALA:N</td>
<td>2.55</td>
<td>0.40</td>
</tr>
<tr>
<td>2:B:343:THR:HA</td>
<td>2:B:349:LEU:N</td>
<td>2.36</td>
<td>0.40</td>
</tr>
<tr>
<td>2:D:343:THR:HA</td>
<td>2:D:349:LEU:N</td>
<td>2.36</td>
<td>0.40</td>
</tr>
<tr>
<td>1:A:244:ALA:HB1</td>
<td>1:A:248:ASP:CB</td>
<td>2.51</td>
<td>0.40</td>
</tr>
<tr>
<td>2:D:438:LYS:N</td>
<td>2:D:453:ILE:O</td>
<td>2.54</td>
<td>0.40</td>
</tr>
<tr>
<td>1:A:31:ALA:HA</td>
<td>1:A:91:LEU:N</td>
<td>2.36</td>
<td>0.40</td>
</tr>
</tbody>
</table>

There are no symmetry-related clashes.

5.3 Torsion angles

5.3.1 Protein backbone

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Favoured</th>
<th>Allowed</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>781/846 (92%)</td>
<td>684 (88%)</td>
<td>94 (12%)</td>
<td>3 (0%)</td>
<td>36 77</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>780/846 (92%)</td>
<td>684 (88%)</td>
<td>93 (12%)</td>
<td>3 (0%)</td>
<td>36 77</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>757/827 (92%)</td>
<td>682 (90%)</td>
<td>71 (9%)</td>
<td>4 (0%)</td>
<td>31 74</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>756/827 (91%)</td>
<td>681 (90%)</td>
<td>71 (9%)</td>
<td>4 (0%)</td>
<td>31 74</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>3074/3346 (92%)</td>
<td>2731 (89%)</td>
<td>329 (11%)</td>
<td>14 (0%)</td>
<td>35 74</td>
</tr>
</tbody>
</table>
All (14) Ramachandran outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>B</td>
<td>545</td>
<td>VAL</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>545</td>
<td>VAL</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>523</td>
<td>VAL</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>808</td>
<td>VAL</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>523</td>
<td>VAL</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>808</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>270</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>270</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>147</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>147</td>
<td>GLN</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>340</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>537</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>537</td>
<td>PRO</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>340</td>
<td>ILE</td>
</tr>
</tbody>
</table>

5.3.2 Protein sidechains

There are no protein residues with a non-rotameric sidechain to report in this entry.

5.3.3 RNA

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates

There are no carbohydrates in this entry.

5.6 Ligand geometry

There are no ligands in this entry.

5.7 Other polymers

There are no such residues in this entry.
5.8 Polymer linkage issues

The following chains have linkage breaks:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Number of breaks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>1</td>
</tr>
</tbody>
</table>

All chain breaks are listed below:

<table>
<thead>
<tr>
<th>Model</th>
<th>Chain</th>
<th>Residue-1</th>
<th>Atom-1</th>
<th>Residue-2</th>
<th>Atom-2</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>450:ASP</td>
<td>C</td>
<td>451:PRO</td>
<td>N</td>
<td>1.07</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>450:ASP</td>
<td>C</td>
<td>451:PRO</td>
<td>N</td>
<td>1.07</td>
</tr>
</tbody>
</table>