

Full wwPDB X-ray Structure Validation Report (i)

May 14, 2020 – 11:10 am BST

PDB ID : 5G0N

Title: Structure of rat neuronal nitric oxide synthase D597N mutant heme domain

in complex with N1-(5-(2-(6-AMINO-4-METHYLPYRIDIN-2-YL)ETHYL)

PYRIDIN-3-YL)-N1,N2-DIMETHYLETHANE-1,2-DIAMINE

Authors : Li, H.; Poulos, T.L.

Deposited on : 2016-03-21

Resolution : 1.94 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
https://www.wwpdb.org/validation/2017/XrayValidationReportHelp
with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity : 4.02b-467

Mogul : 1.8.5 (274361), CSD as541be (2020)

Xtriage (Phenix) : 1.13 EDS : 2.11

buster-report : 1.1.7 (2018)

Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)

 $Refmac \quad : \quad 5.8.0158$

CCP4 : 7.0.044 (Gargrove)

Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996)


Validation Pipeline (wwPDB-VP) : 2.11

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 1.94 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$\begin{array}{c} \text{Whole archive} \\ (\#\text{Entries}) \end{array}$	$\begin{array}{c} {\rm Similar \; resolution} \\ (\#{\rm Entries, \; resolution \; range(\AA)}) \end{array}$
R_{free}	130704	4310 (1.96-1.92)
Clashscore	141614	1023 (1.94-1.94)
Ramachandran outliers	138981	1007 (1.94-1.94)
Sidechain outliers	138945	1007 (1.94-1.94)
RSRZ outliers	127900	4250 (1.96-1.92)

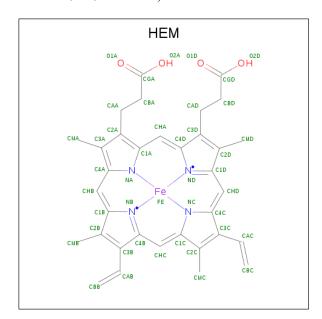
The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	A	422	84%	12%	
1	В	422	6% 88%	9%	•

2 Entry composition (i)

There are 7 unique types of molecules in this entry. The entry contains 7354 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

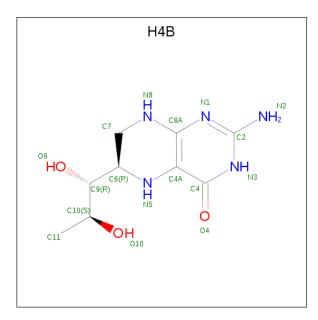

• Molecule 1 is a protein called NITRIC OXIDE SYNTHASE, BRAIN.

Mo	ol	Chain	Residues	${f Atoms}$			ZeroOcc	AltConf	Trace		
1		A	408	Total 3323	C 2127	N 568	O 606	S 22	0	3	1
1		В	411	Total 3360	C 2150	N 575	O 613	S 22	0	4	0

There are 2 discrepancies between the modelled and reference sequences:

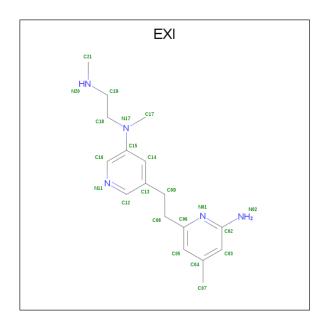
Chain	Residue	Modelled	Actual	Comment	Reference
A	597	ASN	ASP	engineered mutation	UNP P29476
В	597	ASN	ASP	engineered mutation	UNP P29476

• Molecule 2 is PROTOPORPHYRIN IX CONTAINING FE (three-letter code: HEM) (formula: C₃₄H₃₂FeN₄O₄).

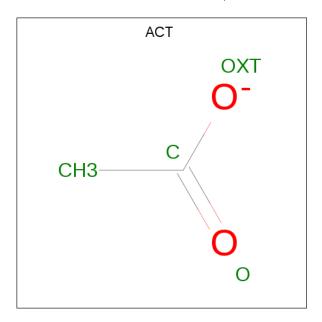

Mol	Chain	Residues		\mathbf{At}	oms			ZeroOcc	AltConf
2	A	1	Total 43	C 34	Fe 1	N 4	O 4	0	0

 $Continued\ from\ previous\ page...$

Mol	Chain	Residues		Ato	oms			ZeroOcc	AltConf
9	D	1	Total	С	Fe	N	О	0	0
	Ъ	1	43	34	1	4	4	U	U


• Molecule 3 is 5,6,7,8-TETRAHYDROBIOPTERIN (three-letter code: H4B) (formula: $C_9H_{15}N_5O_3$).

	Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
	3	A	1	Total C N O 17 9 5 3	0	0
Ī	3	В	1	Total C N O 17 9 5 3	0	0


• Molecule 4 is N1-(5-(2-(6-Amino-4-methylpyridin-2-yl)ethyl)pyridin-3-yl)-N1,N2-dimethylet hane-1,2-diamine (three-letter code: EXI) (formula: $C_{17}H_{25}N_5$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	A	1	Total C N 22 17 5	0	0
4	В	1	Total C N 22 17 5	0	0

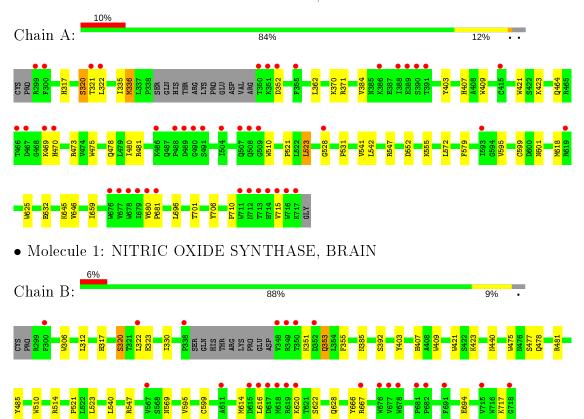
 \bullet Molecule 5 is ACETATE ION (three-letter code: ACT) (formula: $\mathrm{C_2H_3O_2}).$

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	A	1	Total C O 4 2 2	0	0
5	В	1	Total C O 4 2 2	0	0

• Molecule 6 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	A	1	Total Zn 1 1	0	0

• Molecule 7 is water.


Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	A	225	Total O 225 225	0	0
7	В	273	Total O 273 273	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: NITRIC OXIDE SYNTHASE, BRAIN

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 21 21 21	Depositor
Cell constants	51.78Å 110.20Å 164.17Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Resolution (Å)	38.83 - 1.94	Depositor
Resolution (A)	38.83 - 1.94	EDS
% Data completeness	99.2 (38.83-1.94)	Depositor
(in resolution range)	99.5 (38.83-1.94)	EDS
R_{merge}	0.11	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	1.43 (at 1.94Å)	Xtriage
Refinement program	PHENIX (PHENIX.REFINE)	Depositor
D D.	0.175 , 0.216	Depositor
R, R_{free}	0.173 , 0.214	DCC
R_{free} test set	3497 reflections (4.96%)	wwPDB-VP
Wilson B-factor (Å ²)	29.4	Xtriage
Anisotropy	0.551	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	$0.37\;,52.5$	EDS
L-test for twinning ²	$ < L > = 0.48, < L^2> = 0.32$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.97	EDS
Total number of atoms	7354	wwPDB-VP
Average B, all atoms $(Å^2)$	40.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 5.68% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of <|L|>, $< L^2>$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: HEM, ZN, ACT, H4B, EXI

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bond angles		
MIOI	Chain	RMSZ	# Z >5	RMSZ	# Z > 5	
1	A	0.38	0/3422	0.52	0/4643	
1	В	0.38	0/3465	0.51	0/4697	
All	All	0.38	0/6887	0.51	0/9340	

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

Mol	Chain	Non-H	H(model)	$\mathbf{H}(\mathbf{added})$	Clashes	Symm-Clashes
1	A	3323	0	3234	29	0
1	В	3360	0	3282	21	0
2	A	43	0	30	4	0
2	В	43	0	30	2	0
3	A	17	0	15	0	0
3	В	17	0	15	0	0
4	A	22	0	25	1	0
4	В	22	0	25	3	0
5	A	4	0	3	0	0
5	В	4	0	3	0	0
6	A	1	0	0	0	0

Continued from previous page...

Mol	Chain	Non-H	$\mathbf{H}(\mathbf{model})$	$\mathbf{H}(\mathbf{added})$	Clashes	Symm-Clashes
7	A	225	0	0	1	0
7	В	273	0	0	3	0
All	All	7354	0	6662	52	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 4.

All (52) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	${ m distance}({ m \AA})$	overlap (Å)
1:A:523:LEU:HD22	1:A:531:PRO:HB2	1.68	0.74
2:B:750:HEM:HHC	2:B:750:HEM:HBB2	1.72	0.70
1:B:478:GLN:HB2	1:B:481:ARG:HG3	1.75	0.68
2:A:750:HEM:HMC2	2:A:750:HEM:HBC2	1.75	0.67
2:A:750:HEM:HBB2	2:A:750:HEM:HHC	1.81	0.63
1:A:480:ILE:HD13	1:A:541:VAL:HG13	1.83	0.61
1:A:475:TRP:HB2	1:A:523:LEU:HB3	1.82	0.60
1:A:478:GLN:HB2	1:A:481:ARG:HG3	1.83	0.60
1:B:614:MET:HE2	1:B:616:LEU:HD21	1.89	0.54
1:A:317:HIS:O	1:A:320:SER:HB3	2.08	0.53
1:A:542:LEU:HD21	1:A:646:VAL:HG22	1.91	0.53
1:A:470:HIS:HA	1:A:528:GLY:HA3	1.92	0.52
1:B:355:PHE:CE1	1:B:385:ASN:HB2	2.46	0.50
1:A:552:ASP:OD1	1:A:555:LYS:NZ	2.45	0.50
2:A:750:HEM:C1C	4:A:800:EXI:H07B	2.47	0.49
1:B:317:HIS:O	1:B:320:SER:HB3	2.13	0.49
2:B:750:HEM:C1C	4:B:800:EXI:H07B	2.48	0.48
4:B:800:EXI:H21A	7:B:2218:HOH:O	2.13	0.48
4:B:800:EXI:H12	4:B:800:EXI:H08	1.56	0.47
1:A:706:TYR:OH	2:A:750:HEM:O2D	2.25	0.47
1:B:595:VAL:O	1:B:599:CYS:HB2	2.15	0.47
1:A:336:MET:HE3	1:B:306:TRP:CD2	2.50	0.46
1:B:620:LYS:HA	1:B:620:LYS:HD3	1.80	0.46
1:B:510:TRP:CE2	1:B:521:PRO:HD3	2.51	0.45
1:B:403:TYR:CE1	1:B:407:HIS:CE1	3.04	0.45
1:A:336:MET:HB2	1:A:336:MET:HE2	1.92	0.45
1:A:336:MET:HE3	1:B:306:TRP:CE2	2.51	0.45
1:A:362:LEU:HD11	1:A:384:VAL:HG21	1.99	0.45
1:A:475:TRP:CZ2	1:A:531:PRO:HG3	2.52	0.44
1:B:312:LEU:HB3	1:B:666:TYR:CD2	2.53	0.43
1:A:572:LEU:HB3	1:A:579:PHE:HB2	2.01	0.43

Continued from previous page...

A 4 a rea 1	A 4 a ma 2	Interatomic	Clash
Atom-1	Atom-2	${\rm distance}({\rm \AA})$	overlap (Å)
1:A:335:ILE:HD13	1:B:694:GLU:HB3	2.01	0.43
1:A:403:TYR:CE1	1:A:407:HIS:CE1	3.06	0.43
1:A:510:TRP:CE2	1:A:521:PRO:HD3	2.53	0.43
1:B:475:TRP:HB2	1:B:523:LEU:HB3	2.01	0.42
1:B:667:ARG:NH2	7:B:2246:HOH:O	2.53	0.42
1:B:440:ASN:ND2	7:B:2099:HOH:O	2.49	0.42
1:A:696:LEU:HB3	1:B:330:ILE:HD11	2.02	0.41
1:A:464:GLN:HB3	1:A:579:PHE:CE1	2.55	0.41
1:B:477:SER:HA	1:B:569:ASN:HB3	2.02	0.41
1:A:595:VAL:O	1:A:599:CYS:HB2	2.20	0.41
1:B:409:TRP:CE3	1:B:421:TRP:HA	2.55	0.41
1:B:353:GLN:HG2	1:B:353:GLN:H	1.59	0.41
1:A:409:TRP:CE3	1:A:421:TRP:HA	2.55	0.41
1:B:485:TYR:CE2	1:B:514:ARG:HA	2.55	0.41
1:A:680:VAL:HA	1:A:681:PRO:HD3	1.90	0.41
1:A:618:MET:HA	1:A:625:TRP:CD1	2.54	0.41
1:A:321:THR:HG23	1:A:322:LEU:HG	2.02	0.40
1:A:473:ARG:NH2	1:A:710:PRO:HD3	2.36	0.40
1:A:659:ILE:HA	1:A:659:ILE:HD13	1.88	0.40
1:A:632:GLU:OE2	1:B:628:GLN:NE2	2.51	0.40
1:A:701:THR:HG23	7:A:2024:HOH:O	2.20	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	${f Analysed}$	Favoured	Allowed	Outliers	Perce	ntiles
1	A	$406/422 \ (96\%)$	392 (97%)	14 (3%)	0	100	100
1	В	411/422 (97%)	404 (98%)	7 (2%)	0	100	100
All	All	817/844 (97%)	796 (97%)	21 (3%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percen	tiles
1	A	$365/377 \ (97\%)$	353 (97%)	12 (3%)	38	24
1	В	370/377 (98%)	359 (97%)	11 (3%)	41	27
All	All	735/754 (98%)	712 (97%)	23 (3%)	39	26

All (23) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	A	320	SER
1	A	336	MET
1	A	352	ASP
1	A	370	LYS
1	A	371	ARG
1	A	423	LYS
1	A	469	LYS
1	A	523	LEU
1	A	547	ARG
1	A	601	ASN
1	A	645	LYS
1	A	715	VAL
1	В	320	SER
1	В	322	LEU
1	В	323	GLU
1	В	351	LYS
1	В	353	GLN
1	В	392	SER
1	В	423	LYS
1	В	540	LEU
1	В	547	ARG
1	В	622	SER
1	В	717	LYS

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (1) such

sidechains are listed below:

Mol	Chain	Res	Type
1	В	353	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no carbohydrates in this entry.

5.6 Ligand geometry (i)

Of 9 ligands modelled in this entry, 1 is monoatomic - leaving 8 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Trino	Chain	Res	Link	Во	nd leng	$ ag{ths}$	В	ond ang	les
MIOI	Type	Chain	nes	Lilik	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
4	EXI	В	800	-	23,23,23	0.43	0	29,30,30	1.75	7 (24%)
2	HEM	В	750	1	27,50,50	2.17	5 (18%)	17,82,82	1.84	3 (17%)
3	H4B	A	760	-	16,18,18	0.77	0	11,26,26	2.77	5 (45%)
2	HEM	A	750	1	27,50,50	2.17	5 (18%)	17,82,82	2.44	3 (17%)
5	ACT	A	860	-	1,3,3	1.16	0	0,3,3	0.00	-
5	ACT	В	860	_	1,3,3	1.35	0	0,3,3	0.00	-
4	EXI	A	800	-	23,23,23	0.38	0	29,30,30	1.68	7 (24%)
3	H4B	В	760	-	16,18,18	1.04	1 (6%)	11,26,26	2.60	5 (45%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the

Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	EXI	В	800	_	-	2/13/13/13	0/2/2/2
3	H4B	A	760	-	-	0/8/17/17	0/2/2/2
2	HEM	A	750	1	-	0/6/54/54	-
2	HEM	В	750	1	-	0/6/54/54	-
3	H4B	В	760	_	-	0/8/17/17	0/2/2/2
4	EXI	A	800	_	-	3/13/13/13	0/2/2/2

All (11) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$\operatorname{Observed}(\operatorname{\AA})$	Ideal(A)
2	В	750	HEM	C3D-C2D	5.20	1.53	1.37
2	A	750	HEM	C3D-C2D	5.17	1.53	1.37
2	A	750	HEM	C3B-C2B	-4.98	1.33	1.40
2	В	750	HEM	C3B-C2B	-4.23	1.34	1.40
2	В	750	HEM	C3C-CAC	4.14	1.56	1.47
2	A	750	HEM	C3C-CAC	3.88	1.55	1.47
2	В	750	HEM	C3C-C2C	-3.84	1.35	1.40
2	A	750	HEM	C3B-CAB	3.67	1.55	1.47
2	В	750	HEM	C3B-CAB	3.50	1.55	1.47
2	A	750	HEM	C3C-C2C	-3.23	1.35	1.40
3	В	760	H4B	C4-C4A	-2.02	1.38	1.41

All (30) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^o)$	$\operatorname{Ideal}({}^{o})$
2	A	750	HEM	CBA-CAA-C2A	-6.30	100.87	112.49
3	В	760	H4B	C4-C4A-C8A	5.95	119.86	114.57
2	A	750	HEM	CBD-CAD-C3D	-5.60	102.16	112.48
3	A	760	H4B	C4-C4A-C8A	4.96	118.98	114.57
2	В	750	HEM	CBA-CAA-C2A	-4.96	103.34	112.49
4	В	800	EXI	C02-N01-C06	4.01	121.14	118.10
3	A	760	H4B	C4-C4A-N5	3.99	122.47	119.12
2	В	750	HEM	CBD-CAD-C3D	-3.80	105.47	112.48
4	В	800	EXI	C08-C09-C13	-3.63	100.53	113.28
4	A	800	EXI	C14-C13-C12	3.53	120.12	116.71
3	A	760	H4B	N3-C2-N1	-3.45	120.00	125.42
4	A	800	EXI	C02-N01-C06	3.42	120.69	118.10
2	A	750	HEM	C1D-C2D-C3D	-3.39	104.64	107.00
3	В	760	H4B	C4-N3-C2	3.28	121.14	115.93
3	A	760	H4B	C4-N3-C2	3.27	121.12	115.93

Continued from previous page...

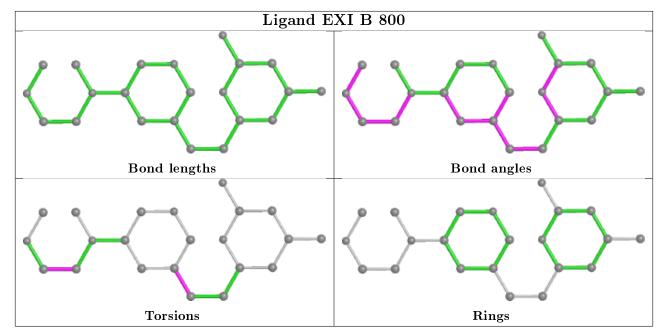
Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$\mathbf{Observed}(^o)$	$\operatorname{Ideal}({}^o)$
3	В	760	H4B	N3-C2-N1	-3.08	120.58	125.42
3	A	760	H4B	C2-N1-C8A	3.05	121.37	114.54
4	В	800	EXI	C14-C13-C12	3.03	119.64	116.71
2	В	750	HEM	C1D-C2D-C3D	-2.94	104.95	107.00
4	A	800	EXI	C21-N20-C19	2.77	119.96	111.95
4	В	800	EXI	C21-N20-C19	2.66	119.64	111.95
4	A	800	EXI	C08-C06-N01	2.56	119.77	115.95
4	A	800	EXI	C08-C09-C13	-2.56	104.31	113.28
3	В	760	H4B	C2-N1-C8A	2.53	120.21	114.54
4	В	800	EXI	C15-C14-C13	-2.32	117.61	120.43
3	В	760	H4B	N2-C2-N3	2.27	120.78	117.25
4	В	800	EXI	C09-C13-C12	-2.26	118.19	121.83
4	A	800	EXI	C16-N11-C12	2.06	120.29	117.48
4	A	800	EXI	C15-C14-C13	-2.05	117.94	120.43
4	В	800	EXI	C19-C18-N17	-2.02	104.97	112.31

There are no chirality outliers.

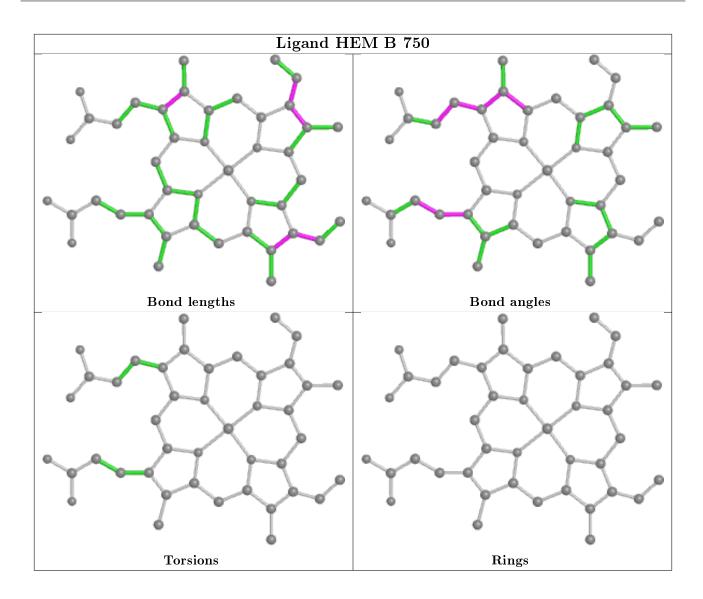
All (5) torsion outliers are listed below:

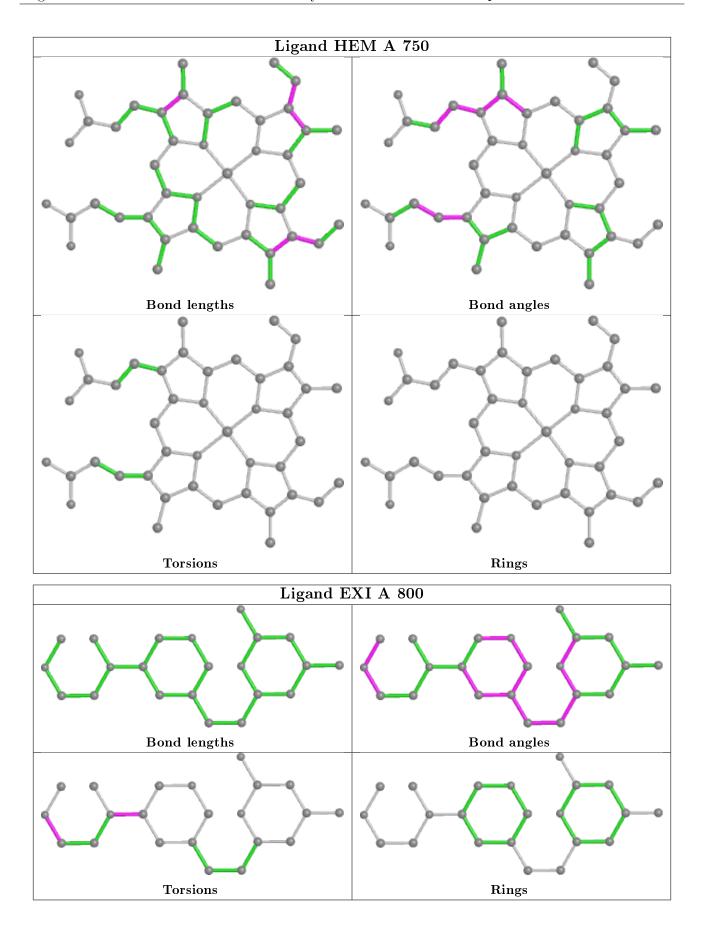
Mol	Chain	Res	Type	Atoms
4	В	800	EXI	N17-C18-C19-N20
4	A	800	EXI	C18-C19-N20-C21
4	A	800	EXI	C16-C15-N17-C17
4	A	800	EXI	C14-C15-N17-C17
4	В	800	EXI	C08-C09-C13-C14

There are no ring outliers.


4 monomers are involved in 8 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
4	В	800	EXI	3	0
2	В	750	HEM	2	0
2	A	750	HEM	4	0
4	A	800	EXI	1	0


The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring


in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ>2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$ $#$ RSRZ $>$ 2		$OWAB(Å^2)$	Q < 0.9
1	A	408/422 (96%)	0.53	43 (10%) 6 9	20, 40, 78, 111	0
1	В	411/422 (97%)	0.08	24 (5%) 23 29	19, 33, 59, 91	0
All	All	819/844 (97%)	0.30	67 (8%) 11 17	19, 36, 73, 111	0

All (67) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	A	715	VAL	7.6
1	A	488	PRO	6.9
1	В	300	PHE	6.9
1	A	352	ASP	6.8
1	A	717	LYS	6.0
1	В	348	VAL	5.6
1	A	716	TRP	5.6
1	A	351	LYS	5.2
1	A	300	PHE	4.6
1	В	350	THR	4.2
1	В	620	LYS	4.2
1	A	507	GLN	4.1
1	A	355	PHE	4.0
1	A	486	LYS	3.9
1	A	350	THR	3.9
1	В	352	ASP	3.8
1	A	388	ILE	3.6
1	A	619	ARG	3.5
1	A	713	THR	3.5
1	В	616	LEU	3.4
1	A	678	TRP	3.4
1	В	619	ARG	3.3
1	В	338	PRO	3.3
1	В	611	ALA	3.2

Continued from previous page...

1 A 679 ILE 3.0 1 A 677 VAL 3.0 1 A 391 THR 3.0 1 A 299 ARG 2.9 1 B 718 GLY 2.9 1 A 712 ASN 2.9 1 A 390 SER 2.8 1 A 390 SER 2.8 1 A 390 SER 2.8 1 A 489 ASP 2.8 1 A 508 GLN 2.8 1 A 508 GLN 2.8 1 A 676 TRP 2.7 1 A 676 TRP 2.7 1 A 676 TRP 2.7 1 A 321 THR 2.6 1 A 711 TRP 2.5		$\frac{nued\ from}{}$			
1 A 677 VAL 3.0 1 A 391 THR 3.0 1 A 299 ARG 2.9 1 B 718 GLY 2.9 1 A 712 ASN 2.9 1 A 390 SER 2.8 1 B 322 LEU 2.8 1 A 489 ASP 2.8 1 A 508 GLN 2.8 1 A 508 GLN 2.8 1 A 508 GLN 2.8 1 A 676 TRP 2.7 1 A 676 TRP 2.7 1 A 676 TRP 2.7 1 A 630 VAL 2.7 1 B 617 VAL 2.6 1 A 711 TRP 2.5	Mol	Chain	Res	Type	RSRZ
1 A 391 THR 3.0 1 A 299 ARG 2.9 1 B 718 GLY 2.9 1 A 712 ASN 2.9 1 A 390 SER 2.8 1 B 322 LEU 2.8 1 A 489 ASP 2.8 1 A 508 GLN 2.8 1 A 508 GLN 2.8 1 A 508 GLN 2.8 1 A 676 TRP 2.7 1 A 676 TRP 2.7 1 A 680 VAL 2.7 1 A 676 TRP 2.7 1 A 321 THR 2.6 1 A 321 THR 2.6 1 A 470 HIS 2.5					
1 A 299 ARG 2.9 1 B 718 GLY 2.9 1 A 712 ASN 2.9 1 A 390 SER 2.8 1 B 322 LEU 2.8 1 A 489 ASP 2.8 1 A 508 GLN 2.8 1 A 676 TRP 2.7 1 A 676 TRP 2.7 1 A 680 VAL 2.7 1 A 676 TRP 2.7 1 A 321 THR 2.6 1 A 321 THR 2.6 1 A 470 HIS 2.5					
1 B 718 GLY 2.9 1 A 712 ASN 2.9 1 A 390 SER 2.8 1 B 322 LEU 2.8 1 A 489 ASP 2.8 1 A 508 GLN 2.8 1 A 322 LEU 2.7 1 A 676 TRP 2.7 1 A 676 TRP 2.7 1 A 680 VAL 2.7 1 A 321 THR 2.6 1 A 711 TRP 2.5 1 A 470 HIS 2.5 1 A 469 LYS 2.5					
1 A 712 ASN 2.9 1 A 390 SER 2.8 1 B 322 LEU 2.8 1 A 489 ASP 2.8 1 A 508 GLN 2.8 1 A 508 GLN 2.8 1 A 508 GLN 2.8 1 A 676 TRP 2.7 1 A 676 TRP 2.7 1 A 680 VAL 2.7 1 A 680 VAL 2.7 1 A 680 VAL 2.7 1 A 321 THR 2.6 1 A 321 THR 2.6 1 A 711 TRP 2.5 1 A 470 HIS 2.5 1 A 469 LYS 2.5					
1 A 390 SER 2.8 1 B 322 LEU 2.8 1 A 489 ASP 2.8 1 A 508 GLN 2.8 1 A 508 GLN 2.8 1 A 508 GLN 2.8 1 A 676 TRP 2.7 1 A 676 TRP 2.7 1 A 680 VAL 2.7 1 A 680 VAL 2.7 1 A 680 VAL 2.6 1 A 321 THR 2.6 1 A 321 THR 2.6 1 A 711 TRP 2.5 1 A 711 TRP 2.5 1 A 470 HIS 2.5 1 A 469 LYS 2.4					
1 B 322 LEU 2.8 1 A 489 ASP 2.8 1 A 508 GLN 2.8 1 A 508 GLN 2.8 1 A 322 LEU 2.7 1 A 676 TRP 2.7 1 A 680 VAL 2.6 1 A 321 THR 2.6 1 A 321 THR 2.6 1 A 711 TRP 2.5 1 A 711 TRP 2.5 1 A 470 HIS 2.5 1 A 469 LYS 2.5 1 A 490 GLY 2.4					
1 A 489 ASP 2.8 1 A 508 GLN 2.8 1 A 322 LEU 2.7 1 A 676 TRP 2.7 1 A 680 VAL 2.7 1 B 677 VAL 2.6 1 A 321 THR 2.6 1 A 321 THR 2.6 1 B 615 ASP 2.6 1 A 711 TRP 2.5 1 B 615 ASP 2.6 1 A 711 TRP 2.5 1 A 470 HIS 2.5 1 A 469 LYS 2.5 1 A 490 GLY 2.4 1 A 490 GLY 2.4 1 A 467 ASP 2.4					
1 A 508 GLN 2.8 1 A 322 LEU 2.7 1 A 676 TRP 2.7 1 A 680 VAL 2.7 1 B 677 VAL 2.6 1 A 321 THR 2.6 1 A 711 TRP 2.5 1 A 470 HIS 2.5 1 A 469 LYS 2.5 1 A 469 LYS 2.5 1 A 469 LYS 2.4 1 A 467 ASP 2.4					
1 A 322 LEU 2.7 1 A 676 TRP 2.7 1 A 680 VAL 2.7 1 B 677 VAL 2.6 1 A 321 THR 2.6 1 A 349 ARG 2.5 1 A 470 HIS 2.5 1 A 469 LYS 2.5 1 A 469 LYS 2.4 1 A 490 GLY 2.4 1 A 467 ASP 2.4 1 A 467 ASP 2.4					
1 A 676 TRP 2.7 1 A 680 VAL 2.7 1 B 677 VAL 2.6 1 A 321 THR 2.6 1 A 711 TRP 2.5 1 A 470 HIS 2.5 1 A 469 LYS 2.5 1 A 469 LYS 2.5 1 A 490 GLY 2.4 1 A 474 HIS 2.4 1 A 467 ASP 2.4 1 A 467 ASP 2.4 1 A 467 ASP 2.2					
1 A 680 VAL 2.7 1 B 677 VAL 2.6 1 A 321 THR 2.6 1 B 615 ASP 2.6 1 A 711 TRP 2.5 1 B 349 ARG 2.5 1 A 470 HIS 2.5 1 A 469 LYS 2.5 1 A 469 LYS 2.5 1 A 490 GLY 2.4 1 A 386 LYS 2.4 1 A 386 LYS 2.4 1 A 528 GLY 2.4 1 A 528 GLY 2.4 1 A 681 PRO 2.3 1 A 681 PRO 2.3 1 A 485 GLY 2.2					
1 B 677 VAL 2.6 1 A 321 THR 2.6 1 B 615 ASP 2.6 1 A 711 TRP 2.5 1 B 349 ARG 2.5 1 A 470 HIS 2.5 1 A 469 LYS 2.5 1 A 469 LYS 2.5 1 A 490 GLY 2.4 1 A 386 LYS 2.4 1 A 714 HIS 2.4 1 A 714 HIS 2.4 1 A 528 GLY 2.4 1 A 681 PRO 2.3 1 A 681 PRO 2.3 1 A 389 GLU 2.3 1 A 491 SER 2.2					
1 A 321 THR 2.6 1 B 615 ASP 2.6 1 A 711 TRP 2.5 1 B 349 ARG 2.5 1 A 470 HIS 2.5 1 A 469 LYS 2.5 1 A 469 LYS 2.5 1 A 469 LYS 2.5 1 A 490 GLY 2.4 1 A 386 LYS 2.4 1 A 714 HIS 2.4 1 A 528 GLY 2.4 1 A 528 GLY 2.4 1 A 467 ASP 2.4 1 A 681 PRO 2.3 1 B 618 MET 2.3 1 A 491 SER 2.2 1 B 676 TRP 2.1 1 B 6					
1 B 615 ASP 2.6 1 A 711 TRP 2.5 1 B 349 ARG 2.5 1 A 470 HIS 2.5 1 A 469 LYS 2.5 1 A 469 GLY 2.4 1 A 386 LYS 2.4 1 A 386 LYS 2.4 1 A 714 HIS 2.4 1 A 528 GLY 2.4 1 A 528 GLY 2.4 1 A 467 ASP 2.4 1 A 681 PRO 2.3 1 A 681 PRO 2.3 1 A 389 GLU 2.3 1 A 491 SER 2.2 1 A 491 SER 2.2 1 B 676 TRP 2.1 1 B 6					
1 A 711 TRP 2.5 1 B 349 ARG 2.5 1 A 470 HIS 2.5 1 A 469 LYS 2.5 1 A 490 GLY 2.4 1 A 386 LYS 2.4 1 A 714 HIS 2.4 1 A 528 GLY 2.4 1 A 528 GLY 2.4 1 A 467 ASP 2.4 1 A 467 ASP 2.4 1 A 681 PRO 2.3 1 B 618 MET 2.3 1 A 389 GLU 2.3 1 A 491 SER 2.2 1 B 676 TRP 2.1 1 B 676 TRP 2.1 1 B 667 ARG 2.0 1 B 6					
1 B 349 ARG 2.5 1 A 470 HIS 2.5 1 A 469 LYS 2.5 1 A 490 GLY 2.4 1 A 386 LYS 2.4 1 A 714 HIS 2.4 1 A 528 GLY 2.4 1 A 467 ASP 2.4 1 A 467 ASP 2.4 1 A 681 PRO 2.3 1 B 618 MET 2.3 1 A 389 GLU 2.3 1 A 389 GLU 2.3 1 A 491 SER 2.2 1 B 676 TRP 2.1 1 B 676 TRP 2.1 1 B 667 ARG 2.0 1 B 667 ARG 2.0 1 B 6					
1 A 470 HIS 2.5 1 A 469 LYS 2.5 1 A 490 GLY 2.4 1 A 386 LYS 2.4 1 A 714 HIS 2.4 1 A 528 GLY 2.4 1 A 467 ASP 2.4 1 A 467 ASP 2.4 1 A 681 PRO 2.3 1 B 618 MET 2.3 1 A 389 GLU 2.3 1 A 491 SER 2.2 1 A 491 SER 2.2 1 B 676 TRP 2.1 1 B 678 TRP 2.1 1 B 667 ARG 2.0 1 B 667 ARG 2.0 1 B 681 PRO 2.0 1 B 6	1	A	711	TRP	2.5
1 A 469 LYS 2.5 1 A 490 GLY 2.4 1 A 386 LYS 2.4 1 A 714 HIS 2.4 1 A 528 GLY 2.4 1 A 467 ASP 2.4 1 A 467 ASP 2.4 1 A 681 PRO 2.3 1 B 618 MET 2.3 1 A 389 GLU 2.3 1 A 389 GLU 2.3 1 A 491 SER 2.2 1 B 676 TRP 2.1 1 B 676 TRP 2.1 1 B 678 TRP 2.1 1 B 667 ARG 2.0 1 B 681 PRO 2.0 1 B 681 PRO 2.0 1 B 6	1	В	349	ARG	2.5
1 A 490 GLY 2.4 1 A 386 LYS 2.4 1 A 714 HIS 2.4 1 A 528 GLY 2.4 1 A 467 ASP 2.4 1 A 467 ASP 2.4 1 A 681 PRO 2.3 1 B 618 MET 2.3 1 A 389 GLU 2.3 1 A 389 GLU 2.3 1 A 491 SER 2.2 1 B 676 TRP 2.1 1 B 676 TRP 2.1 1 B 667 ARG 2.0 1 B 667 ARG 2.0 1 B 681 PRO 2.0 1 B 682 PRO 2.0 1 B 567 VAL 2.0 1 B 5	1	A	470	HIS	2.5
1 A 386 LYS 2.4 1 A 714 HIS 2.4 1 A 528 GLY 2.4 1 A 467 ASP 2.4 1 A 467 ASP 2.4 1 A 681 PRO 2.3 1 B 618 MET 2.3 1 A 389 GLU 2.3 1 A 389 GLU 2.3 1 A 491 SER 2.2 1 A 491 SER 2.2 1 B 676 TRP 2.1 1 B 678 TRP 2.1 1 B 667 ARG 2.0 1 B 667 ARG 2.0 1 B 681 PRO 2.0 1 B 682 PRO 2.0 1 B 567 VAL 2.0 1 B 7	1	A	469	LYS	2.5
1 A 714 HIS 2.4 1 A 528 GLY 2.4 1 A 467 ASP 2.4 1 A 681 PRO 2.3 1 B 618 MET 2.3 1 A 389 GLU 2.3 1 A 415 CYS 2.2 1 A 491 SER 2.2 1 B 676 TRP 2.1 1 B 678 TRP 2.1 1 B 667 ARG 2.0 1 B 667 ARG 2.0 1 B 617 ASP 2.0 1 B 681 PRO 2.0 1 B 682 PRO 2.0 1 B 567 VAL 2.0 1 B 715 VAL 2.0 1 A 509 GLY 2.0	1	A	490	GLY	2.4
1 A 528 GLY 2.4 1 A 467 ASP 2.4 1 A 681 PRO 2.3 1 B 618 MET 2.3 1 A 389 GLU 2.3 1 A 415 CYS 2.2 1 A 491 SER 2.2 1 B 676 TRP 2.1 1 A 504 ILE 2.1 1 B 678 TRP 2.1 1 B 667 ARG 2.0 1 B 667 ARG 2.0 1 B 617 ASP 2.0 1 B 681 PRO 2.0 1 B 682 PRO 2.0 1 B 567 VAL 2.0 1 B 715 VAL 2.0 1 A 509 GLY 2.0	1	A	386	LYS	2.4
1 A 467 ASP 2.4 1 A 681 PRO 2.3 1 B 618 MET 2.3 1 A 389 GLU 2.3 1 A 415 CYS 2.2 1 A 491 SER 2.2 1 B 676 TRP 2.1 1 B 678 TRP 2.1 1 B 667 ARG 2.0 1 B 667 ARG 2.0 1 B 617 ASP 2.0 1 B 681 PRO 2.0 1 B 682 PRO 2.0 1 B 567 VAL 2.0 1 B 715 VAL 2.0 1 A 509 GLY 2.0	1		714	HIS	2.4
1 A 681 PRO 2.3 1 B 618 MET 2.3 1 A 389 GLU 2.3 1 A 415 CYS 2.2 1 A 491 SER 2.2 1 B 676 TRP 2.1 1 A 504 ILE 2.1 1 B 678 TRP 2.1 1 B 667 ARG 2.0 1 A 466 THR 2.0 1 B 681 PRO 2.0 1 B 682 PRO 2.0 1 B 567 VAL 2.0 1 B 715 VAL 2.0 1 A 509 GLY 2.0	1	A	528	GLY	2.4
1 B 618 MET 2.3 1 A 389 GLU 2.3 1 A 415 CYS 2.2 1 A 491 SER 2.2 1 B 676 TRP 2.1 1 A 504 ILE 2.1 1 B 678 TRP 2.1 1 B 667 ARG 2.0 1 A 466 THR 2.0 1 B 681 PRO 2.0 1 B 682 PRO 2.0 1 B 567 VAL 2.0 1 B 715 VAL 2.0 1 A 509 GLY 2.0	1	A	467	ASP	2.4
1 A 389 GLU 2.3 1 A 415 CYS 2.2 1 A 491 SER 2.2 1 B 676 TRP 2.1 1 A 504 ILE 2.1 1 B 678 TRP 2.1 1 B 667 ARG 2.0 1 A 466 THR 2.0 1 B 681 PRO 2.0 1 B 682 PRO 2.0 1 B 567 VAL 2.0 1 B 715 VAL 2.0 1 A 509 GLY 2.0	1	A	681	PRO	2.3
1 A 415 CYS 2.2 1 A 491 SER 2.2 1 B 676 TRP 2.1 1 A 504 ILE 2.1 1 B 678 TRP 2.1 1 B 667 ARG 2.0 1 A 466 THR 2.0 1 B 681 PRO 2.0 1 B 682 PRO 2.0 1 B 567 VAL 2.0 1 B 715 VAL 2.0 1 A 509 GLY 2.0	1	В	618	MET	2.3
1 A 491 SER 2.2 1 B 676 TRP 2.1 1 A 504 ILE 2.1 1 B 678 TRP 2.1 1 B 667 ARG 2.0 1 A 466 THR 2.0 1 B 681 PRO 2.0 1 B 682 PRO 2.0 1 B 567 VAL 2.0 1 B 715 VAL 2.0 1 A 509 GLY 2.0	1	A	389		2.3
1 B 676 TRP 2.1 1 A 504 ILE 2.1 1 B 678 TRP 2.1 1 B 667 ARG 2.0 1 A 466 THR 2.0 1 B 617 ASP 2.0 1 B 681 PRO 2.0 1 B 682 PRO 2.0 1 B 567 VAL 2.0 1 B 715 VAL 2.0 1 A 509 GLY 2.0	1	A	415	CYS	2.2
1 A 504 ILE 2.1 1 B 678 TRP 2.1 1 B 667 ARG 2.0 1 A 466 THR 2.0 1 B 617 ASP 2.0 1 B 681 PRO 2.0 1 B 682 PRO 2.0 1 B 567 VAL 2.0 1 B 715 VAL 2.0 1 A 509 GLY 2.0	1	A	491	SER	2.2
1 B 678 TRP 2.1 1 B 667 ARG 2.0 1 A 466 THR 2.0 1 B 617 ASP 2.0 1 B 681 PRO 2.0 1 B 682 PRO 2.0 1 B 567 VAL 2.0 1 B 715 VAL 2.0 1 A 509 GLY 2.0	1	В	676	TRP	2.1
1 B 667 ARG 2.0 1 A 466 THR 2.0 1 B 617 ASP 2.0 1 B 681 PRO 2.0 1 B 682 PRO 2.0 1 B 567 VAL 2.0 1 B 715 VAL 2.0 1 A 509 GLY 2.0	1	A	504	ILE	2.1
1 A 466 THR 2.0 1 B 617 ASP 2.0 1 B 681 PRO 2.0 1 B 682 PRO 2.0 1 B 567 VAL 2.0 1 B 715 VAL 2.0 1 A 509 GLY 2.0	1	В	678	TRP	2.1
1 B 617 ASP 2.0 1 B 681 PRO 2.0 1 B 682 PRO 2.0 1 B 567 VAL 2.0 1 B 715 VAL 2.0 1 A 509 GLY 2.0	1	В	667	ARG	2.0
1 B 681 PRO 2.0 1 B 682 PRO 2.0 1 B 567 VAL 2.0 1 B 715 VAL 2.0 1 A 509 GLY 2.0	1	A	466	THR	2.0
1 B 682 PRO 2.0 1 B 567 VAL 2.0 1 B 715 VAL 2.0 1 A 509 GLY 2.0	1	В	617	ASP	2.0
1 B 567 VAL 2.0 1 B 715 VAL 2.0 1 A 509 GLY 2.0	1	В	681	PRO	2.0
1 B 715 VAL 2.0 1 A 509 GLY 2.0	1	В	682	PRO	2.0
1 A 509 GLY 2.0	1	В	567	VAL	2.0
1 A 509 GLY 2.0	1	В	715	VAL	2.0
	1	A			
1 B 691 PHE 2.0	1	В	691	PHE	2.0

Continued from previous page...

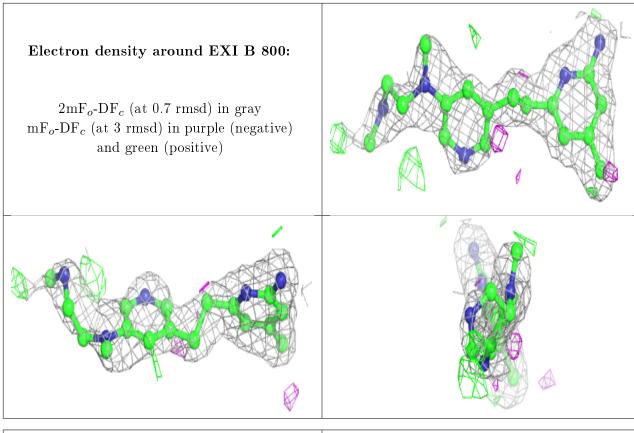
Mol	Chain	Res	Type	RSRZ
1	A	593	ILE	2.0

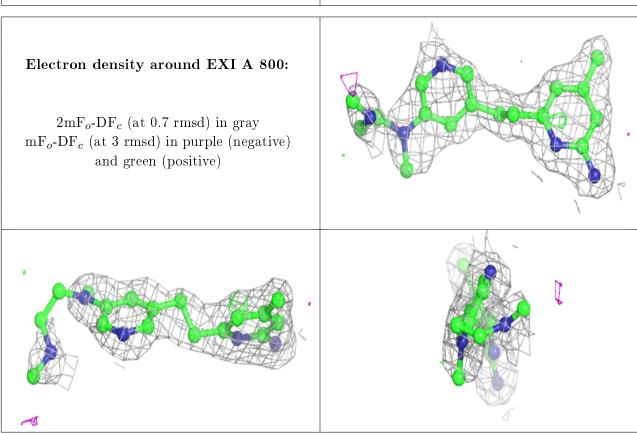
Non-standard residues in protein, DNA, RNA chains (i) 6.2

There are no non-standard protein/DNA/RNA residues in this entry.

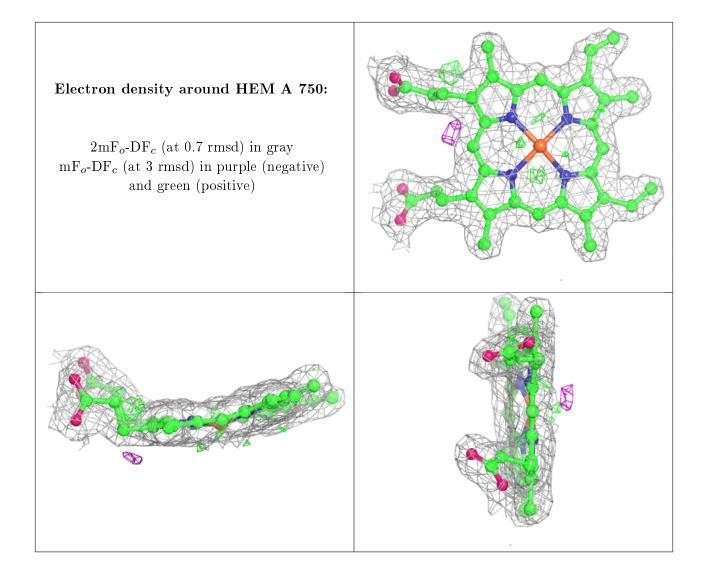
Carbohydrates (i) 6.3

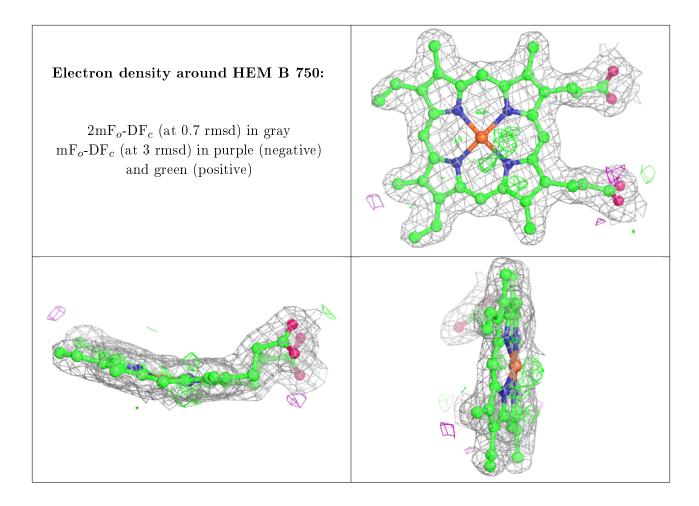
There are no carbohydrates in this entry.


Ligands (i) 6.4


In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q < 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	${f Res}$	Atoms	RSCC	RSR	${f B-factors(\AA^2)}$	Q<0.9
4	EXI	В	800	22/22	0.94	0.23	20,66,78,80	0
4	EXI	A	800	22/22	0.94	0.27	23,63,78,81	0
5	ACT	В	860	4/4	0.95	0.10	39,41,44,48	0
5	ACT	A	860	4/4	0.96	0.13	47,48,49,50	0
3	H4B	В	760	17/17	0.96	0.16	20,25,32,32	0
3	H4B	A	760	17/17	0.97	0.16	22,30,35,35	0
2	HEM	A	750	43/43	0.98	0.18	17,26,37,42	0
2	HEM	В	750	43/43	0.98	0.17	16,26,33,42	0
6	ZN	A	900	1/1	1.00	0.05	30,30,30,30	0


The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.



6.5 Other polymers (i)

There are no such residues in this entry.

