

Full wwPDB X-ray Structure Validation Report (i)

Aug 19, 2023 – 11:46 PM EDT

PDB ID	:	2G25
Title	:	E. Coli Pyruvate Dehydrogenase Phosphonolactylthiamin Diphosphate Com-
		plex
Authors	:	Furey, W.; Arjunan, P.; Chandrasekhar, K.
Deposited on	:	2006-02-15
Resolution	:	2.10 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.35
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.35

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\;DIFFRACTION$

The reported resolution of this entry is 2.10 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Matria	Whole archive	Similar resolution
Metric	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
R _{free}	130704	5197(2.10-2.10)
Clashscore	141614	5710 (2.10-2.10)
Ramachandran outliers	138981	5647 (2.10-2.10)
Sidechain outliers	138945	5648 (2.10-2.10)
RSRZ outliers	127900	5083 (2.10-2.10)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	886	^{2%} 71%	20%	• 6%
1	В	886	% 72%	19%	• 6%

2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 13841 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Pyruvate dehydrogenase E1 component.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace	
1	А	831	Total 6591	C 4172	N 1140	O 1252	S 27	0	0	0
1	В	831	Total 6591	C 4172	N 1140	O 1252	S 27	0	0	0

• Molecule 2 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	1	Total Mg 1 1	0	0
2	В	1	Total Mg 1 1	0	0

• Molecule 3 is PHOSPHATE ION (three-letter code: PO4) (formula: O_4P).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
3	А	1	TotalOP541	0	0
3	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
3	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
3	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0

• Molecule 4 is 3-[(4-AMINO-2-METHYLPYRIMIDIN-5-YL)METHYL]-2-{(1S)-1-HYDR OXY-1-[(R)-HYDROXY(METHOXY)PHOSPHORYL]ETHYL}-5-(2-{[(S)-HYDROXY(PHOSPHONOOXY)PHOSPHORYL]OXY}ETHYL)-4-METHYL-1,3-THIAZOL-3-IUM (three-letter code: TDK) (formula: $C_{15}H_{26}N_4O_{11}P_3S$).

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	
4	4 A	1	Total	С	Ν	Ο	Р	\mathbf{S}	0	0
4 A	1	34	15	4	11	3	1	0	0	
4	4 D	1	Total	С	Ν	Ο	Р	S	0	0
4 B	1	34	15	4	11	3	1	0	0	

• Molecule 5 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	А	273	Total O 273 273	0	0

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	В	291	Total O 291 291	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Pyruvate dehydrogenase E1 component

<mark>S193</mark> G197 P198 K326 S327 1244 A245 0265 1266 1266 L278 E279 1262 1263 F424 N425 V426 P427 V428 S429 D430 L4<mark>36</mark> P437 <mark>Y438</mark> I439 I440 <mark>Q408</mark> V409 K410 K411 K328 (**457** (458 (458 1400 3401 402 403 404 405 V348 135 S477 L478 Y545 T546 P547 1552 1553 1554 1548 1549 1550 L716 E717 T718 1719 E720 P591 [713 L764 A765 K723 A851 4851 1855 4857 4857 4855 4856 6860 1862 1862 1862 8864 4886 886 886 A845 D844 V849 Y847

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	81.57Å 142.51Å 82.09Å	Deperitor
a, b, c, α , β , γ	90.00° 102.37° 90.00°	Depositor
$\mathbf{P}_{\text{assolution}}(\hat{\mathbf{A}})$	8.00 - 2.10	Depositor
Resolution (A)	39.18 - 2.10	EDS
% Data completeness	94.0 (8.00-2.10)	Depositor
(in resolution range)	93.7(39.18-2.10)	EDS
R _{merge}	0.07	Depositor
R_{sym}	0.09	Depositor
$< I/\sigma(I) > 1$	$3.85 (at 2.10 \text{\AA})$	Xtriage
Refinement program	X-PLOR 3.851	Depositor
P. P.	0.185 , 0.244	Depositor
n, n_{free}	0.178 , 0.230	DCC
R_{free} test set	5035 reflections $(5.05%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	10.8	Xtriage
Anisotropy	0.092	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.35 , 52.8	EDS
L-test for $twinning^2$	$< L >=0.46, < L^2>=0.29$	Xtriage
Estimated twinning fraction	0.028 for l,-k,h	Xtriage
F_o, F_c correlation	0.93	EDS
Total number of atoms	13841	wwPDB-VP
Average B, all atoms $(Å^2)$	10.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.58% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MG, TDK, PO4

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bond angles		
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.37	0/6741	0.61	1/9114~(0.0%)	
1	В	0.38	0/6741	0.62	2/9114~(0.0%)	
All	All	0.37	0/13482	0.62	3/18228~(0.0%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	В	0	2

There are no bond length outliers.

All (3) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	638	LEU	CA-CB-CG	5.31	127.52	115.30
1	В	638	LEU	CA-CB-CG	5.23	127.34	115.30
1	В	264	LEU	CA-CB-CG	5.04	126.88	115.30

There are no chirality outliers.

All (2) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	В	598	TYR	Sidechain
1	В	686	TYR	Sidechain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	6591	0	6422	143	0
1	В	6591	0	6422	135	0
2	А	1	0	0	0	0
2	В	1	0	0	0	0
3	А	10	0	0	0	0
3	В	15	0	0	2	0
4	А	34	0	22	2	0
4	В	34	0	22	4	0
5	А	273	0	0	6	0
5	B	291	0	0	4	0
All	All	13841	0	12888	270	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 10.

All (270) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	$distance ({ m \AA})$	overlap (Å)
1:A:550:ARG:HA	1:A:550:ARG:HH11	1.18	1.06
1:A:309:LYS:HG3	1:A:344:THR:HG23	1.52	0.91
1:A:549:ASP:HB3	1:A:555:TYR:HA	1.53	0.91
1:A:550:ARG:HH11	1:A:550:ARG:CA	1.87	0.88
1:A:550:ARG:HA	1:A:550:ARG:NH1	1.89	0.86
1:B:311:ILE:HA	1:B:314:MET:HE2	1.61	0.82
1:A:91:MET:O	1:A:95:ARG:HG3	1.84	0.77
1:B:506:LEU:HD13	1:B:515:LEU:HD12	1.67	0.77
1:A:507:LYS:HG2	1:A:507:LYS:O	1.84	0.76
1:B:428:VAL:HG12	1:B:439:ILE:HD11	1.67	0.75
1:B:323:GLN:O	1:B:326:LYS:HG3	1.86	0.75
1:A:88:ASN:O	1:A:92:THR:HG23	1.87	0.73
1:A:728:LEU:HD23	1:A:798:VAL:HG13	1.72	0.72
1:A:506:LEU:HD13	1:A:515:LEU:HD12	1.70	0.72
1:B:533:ARG:HE	1:B:554:ALA:H	1.36	0.71
1:A:160:GLU:HG2	1:A:161:GLN:N	2.07	0.69
1:B:707:GLU:O	1:B:711:LYS:HG2	1.93	0.68

	louo pugom	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:426:VAL:HG12	1:B:428:VAL:HG13	1.77	0.67
4:A:887:TDK:OM4	1:B:106:HIS:HE1	1.78	0.67
1:A:309:LYS:HG2	1:A:343:GLU:HG3	1.76	0.67
1:A:494:THR:OG1	1:A:692:LEU:HG	1.94	0.67
1:B:76:GLU:CD	1:B:76:GLU:H	1.96	0.66
1:A:274:ILE:HG13	1:A:319:ASP:OD2	1.96	0.65
1:A:728:LEU:HD23	1:A:798:VAL:CG1	2.26	0.65
1:A:261:LEU:HD23	1:A:274:ILE:HD11	1.79	0.65
1:B:64:PRO:HB2	1:B:66:GLU:OE2	1.97	0.65
1:A:140:GLN:O	1:A:143:ILE:HG13	1.98	0.64
1:A:400:ALA:HB1	1:A:406:ALA:HA	1.78	0.64
1:A:638:LEU:HD22	1:A:828:PHE:HB3	1.79	0.64
1:A:290:ILE:HD11	1:A:375:LYS:HD2	1.80	0.64
1:A:150:ARG:NH2	5:A:956:HOH:O	2.32	0.63
1:A:832:ASP:OD2	1:B:169:VAL:HB	1.98	0.63
1:A:859:ARG:HD3	1:A:861:GLU:OE2	1.99	0.63
1:A:344:THR:HA	1:A:347:LEU:HD12	1.81	0.62
1:A:301:LEU:HD13	1:A:351:TRP:CZ2	2.34	0.62
1:A:177:TYR:CD2	1:A:192:VAL:HG11	2.35	0.62
1:A:300:GLU:HG3	1:A:301:LEU:N	2.15	0.61
1:A:261:LEU:HD12	1:A:323:GLN:HG2	1.82	0.61
1:A:536:GLY:HA2	1:A:557:LYS:HD2	1.82	0.60
1:A:297:ARG:HB3	1:A:359:LEU:HD23	1.83	0.60
1:B:128:ARG:HG3	1:B:128:ARG:HH11	1.67	0.60
1:A:434:GLU:H	1:A:434:GLU:CD	2.04	0.59
1:A:864:LYS:HE2	1:B:779:PRO:O	2.02	0.59
1:B:311:ILE:HA	1:B:314:MET:CE	2.32	0.59
1:B:326:LYS:HD3	1:B:391:ILE:HG23	1.84	0.59
1:A:304:LYS:HE2	1:A:347:LEU:HD23	1.84	0.59
1:B:287:TRP:CE3	1:B:385:VAL:HG22	2.37	0.58
1:A:309:LYS:HD2	1:A:341:TYR:CG	2.37	0.58
1:B:857:ALA:HB1	1:B:864:LYS:HD3	1.85	0.58
1:A:466:GLN:O	1:A:466:GLN:HG3	2.03	0.58
1:B:233:MET:O	1:B:239:LYS:HE3	2.04	0.58
1:A:821:ARG:HD2	1:A:855:GLU:CG	2.34	0.58
1:B:86:ARG:NH1	3:B:889:PO4:O2	2.37	0.58
1:B:863:ASP:OD1	1:B:865:LYS:HG3	2.05	0.57
1:A:536:GLY:HA3	1:A:557:LYS:NZ	2.18	0.57
1:B:323:GLN:HA	1:B:326:LYS:HE3	1.86	0.57
1:A:502:LEU:HA	1:A:505:MET:CE	2.34	0.57
1:A:400:ALA:HB2	1:A:409:VAL:HG21	1.85	0.57

	louis page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:851:ALA:O	1:A:855:GLU:HG3	2.05	0.57
1:A:550:ARG:HH12	1:A:555:TYR:HB2	1.70	0.57
1:B:638:LEU:HD22	1:B:828:PHE:HB3	1.87	0.57
1:A:863:ASP:OD1	1:A:863:ASP:N	2.35	0.57
1:B:90:ILE:CG2	1:B:94:LEU:HD22	2.36	0.56
1:A:106:HIS:HE1	4:B:887:TDK:OM4	1.87	0.56
1:A:532:PHE:O	1:A:536:GLY:HA2	2.06	0.56
1:B:506:LEU:CD1	1:B:515:LEU:HD12	2.36	0.56
1:A:550:ARG:NH1	1:A:555:TYR:HB2	2.21	0.55
1:A:692:LEU:HD22	1:A:733:SER:HB3	1.88	0.55
1:A:863:ASP:O	1:A:866:VAL:HB	2.07	0.55
1:A:197:GLY:N	1:A:198:PRO:HD2	2.21	0.55
1:B:856:LEU:HB3	1:B:862:ILE:HG13	1.89	0.55
1:B:72:PRO:HG3	1:B:370:TYR:CE1	2.42	0.55
1:B:326:LYS:HE2	1:B:361:ARG:NH1	2.22	0.55
1:A:512:LYS:HG3	1:A:513:ASP:N	2.21	0.55
1:A:656:ILE:HD11	1:A:685:VAL:HG21	1.89	0.55
1:A:855:GLU:O	1:A:859:ARG:HG3	2.06	0.55
1:A:508:ASN:O	1:A:512:LYS:HB3	2.07	0.54
1:A:113:SER:HB3	1:A:258:ASN:ND2	2.22	0.54
1:B:177:TYR:HB3	1:B:178:PRO:CD	2.37	0.54
1:B:765:ALA:O	1:B:769:GLN:HG3	2.07	0.54
1:A:450:TYR:O	1:A:454:GLN:HG2	2.07	0.54
1:A:622:PHE:CE1	1:A:677:MET:HE1	2.43	0.54
1:A:821:ARG:HD2	1:A:855:GLU:HG2	1.89	0.54
1:B:477:SER:O	1:B:480:ASP:HB2	2.07	0.54
1:B:664:TYR:CG	1:B:701:MET:HB2	2.42	0.54
1:B:532:PHE:O	1:B:536:GLY:HA2	2.07	0.53
1:B:140:GLN:O	1:B:143:ILE:HG13	2.09	0.53
1:B:326:LYS:HG2	1:B:361:ARG:NH2	2.22	0.53
1:B:197:GLY:N	1:B:198:PRO:HD2	2.24	0.53
1:B:859:ARG:HG3	1:B:861:GLU:HB2	1.90	0.53
1:A:502:LEU:HA	1:A:505:MET:HE2	1.91	0.53
1:A:528:MET:O	1:A:531:LEU:HB2	2.10	0.52
1:B:533:ARG:NH1	1:B:533:ARG:HB3	2.24	0.52
1:B:400:ALA:HB2	1:B:409:VAL:HG21	1.92	0.52
1:B:533:ARG:NE	1:B:554:ALA:H	2.05	0.52
1:A:547:PRO:O	1:A:550:ARG:HB2	2.10	0.51
1:A:82:ARG:O	1:A:86:ARG:HG3	2.11	0.51
1:A:160:GLU:HG3	1:A:172:ASN:ND2	2.26	0.51
1:A:304:LYS:HE2	1:A:347:LEU:CD2	2.40	0.51

	A i a	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:A:334:ARG:NE	1:A:353:ASP:OD1	2.44	0.51	
1:A:539:SER:O	1:A:560:GLU:HA	2.11	0.50	
1:B:128:ARG:HG2	1:B:133:GLY:HA2	1.93	0.50	
1:A:420:ILE:HG13	1:A:421:ARG:N	2.26	0.50	
1:B:326:LYS:HE2	1:B:361:ARG:HH12	1.75	0.50	
1:A:713:ILE:HB	1:A:764:LEU:HD11	1.92	0.50	
5:A:893:HOH:O	1:B:192:VAL:HG22	2.10	0.50	
1:A:294:TRP:HB3	1:A:298:TRP:CD1	2.47	0.50	
1:B:264:LEU:C	1:B:264:LEU:HD12	2.32	0.50	
1:A:773:ARG:HD3	5:A:954:HOH:O	2.11	0.50	
1:B:287:TRP:HE3	1:B:385:VAL:HG22	1.76	0.50	
1:B:512:LYS:HG3	1:B:513:ASP:N	2.27	0.50	
1:B:549:ASP:HB2	1:B:552:GLN:HG2	1.94	0.50	
1:A:103:LEU:O	1:A:166:ARG:HD3	2.12	0.49	
1:A:524:ARG:HG3	1:B:265:ASP:OD1	2.11	0.49	
1:B:264:LEU:HD12	1:B:264:LEU:O	2.12	0.49	
1:A:585:TYR:O	1:A:589:ASN:HA	2.13	0.49	
1:A:502:LEU:HD12	1:A:505:MET:HE3	1.93	0.49	
1:A:177:TYR:HB3	1:A:178:PRO:CD	2.42	0.49	
1:B:546:THR:HG23	1:B:546:THR:O	2.12	0.49	
1:A:177:TYR:CG	1:A:192:VAL:HG11	2.48	0.49	
1:B:539:SER:O	1:B:560:GLU:HA	2.12	0.49	
1:B:811:VAL:O	1:B:815:VAL:HG23	2.13	0.49	
1:B:128:ARG:HH11	1:B:128:ARG:CG	2.26	0.49	
1:A:309:LYS:HD2	1:A:341:TYR:CD2	2.48	0.48	
1:A:547:PRO:HD2	1:A:550:ARG:HG2	1.95	0.48	
1:B:82:ARG:HG2	1:B:86:ARG:NH1	2.29	0.48	
1:B:458:LEU:O	1:B:459:HIS:HB2	2.13	0.48	
1:A:111:GLN:NE2	1:A:394:TYR:O	2.46	0.48	
1:A:126:ARG:HH22	1:A:132:ASP:CG	2.15	0.48	
1:B:508:ASN:O	1:B:512:LYS:HB3	2.13	0.48	
1:A:274:ILE:HG13	1:A:274:ILE:H	1.46	0.48	
1:A:857:ALA:HB1	1:A:864:LYS:HG2	1.95	0.48	
1:B:279:GLU:O	1:B:283:GLU:HB2	2.14	0.48	
1:B:553:VAL:O	1:B:554:ALA:HB3	2.14	0.48	
1:B:199:ILE:HG12	1:B:237:GLU:HB2	1.95	0.48	
1:B:547:PRO:O	1:B:550:ARG:HB2	2.14	0.47	
1:B:490:LYS:HD3	1:B:492:ILE:CG2	2.43	0.47	
1:B:550:ARG:HA	1:B:550:ARG:HD2	1.59	0.47	
4:A:887:TDK:OM1	4:A:887:TDK:H7'1	2.14	0.47	
1:A:304:LYS:NZ	1:A:347:LEU:O	2.44	0.47	

	louo pugom	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:780:LEU:HD23	1:B:864:LYS:HB2	1.95	0.47
1:B:569:ILE:HD11	4:B:887:TDK:H62	1.97	0.47
1:B:274:ILE:HG13	1:B:319:ASP:OD2	2.15	0.47
1:B:164:ASN:HB3	1:B:173:GLY:HA2	1.97	0.47
1:A:421:ARG:CG	1:A:428:VAL:HG13	2.45	0.46
1:B:713:ILE:HB	1:B:764:LEU:HD11	1.96	0.46
1:A:206:LYS:HD2	1:A:248:GLU:HG3	1.96	0.46
1:A:312:GLN:O	1:A:316:GLU:HG2	2.15	0.46
1:A:654:ASN:O	1:A:685:VAL:HG22	2.15	0.46
1:B:428:VAL:CG1	1:B:439:ILE:HD11	2.40	0.46
1:B:547:PRO:HG2	1:B:550:ARG:HD3	1.96	0.46
1:B:842:GLU:HA	1:B:847:TYR:CE2	2.50	0.46
1:A:352:THR:HG23	1:A:355:GLN:OE1	2.16	0.46
1:B:533:ARG:HB3	1:B:533:ARG:CZ	2.46	0.46
1:A:328:LYS:HG2	1:A:332:TYR:CD2	2.50	0.46
1:A:493:SER:HB2	1:A:692:LEU:HD12	1.98	0.46
1:A:536:GLY:O	1:A:564:ILE:HG23	2.16	0.46
1:B:177:TYR:HB3	1:B:178:PRO:HD2	1.97	0.46
1:A:400:ALA:HB1	1:A:406:ALA:CA	2.45	0.46
1:B:178:PRO:HA	1:B:187:TRP:CG	2.51	0.46
1:A:531:LEU:HD12	1:A:531:LEU:HA	1.80	0.45
1:A:550:ARG:HD3	1:A:550:ARG:C	2.36	0.45
1:B:506:LEU:O	1:B:512:LYS:NZ	2.48	0.45
1:B:800:SER:OG	1:B:843:VAL:HG22	2.16	0.45
1:B:245:ALA:HA	1:B:250:LEU:HD12	1.97	0.45
1:B:834:ARG:HD2	3:B:890:PO4:O3	2.15	0.45
1:B:842:GLU:HA	1:B:847:TYR:CD2	2.50	0.45
1:B:90:ILE:HG22	1:B:94:LEU:HD22	1.98	0.45
1:A:466:GLN:O	1:A:466:GLN:CG	2.65	0.45
1:A:543:GLN:NE2	1:A:547:PRO:HG3	2.32	0.45
1:A:878:ALA:HA	1:B:777:LEU:HG	1.99	0.45
1:B:844:ASP:HB2	5:B:1085:HOH:O	2.15	0.45
1:A:143:ILE:O	1:A:143:ILE:HD12	2.17	0.45
1:A:458:LEU:O	1:A:459:HIS:HB2	2.17	0.45
1:A:466:GLN:HE22	1:A:589:ASN:HB2	1.80	0.45
1:A:857:ALA:HĀ	1:A:862:ILE:HG13	1.98	0.45
1:B:723:LYS:HD3	1:B:749:TYR:O	2.17	0.45
1:A:471:GLU:OE2	1:A:591:PRO:HD2	2.17	0.45
1:B:361:ARG:HG2	1:B:389:HIS:ND1	2.32	0.45
1:B:193:SER:HB3	1:B:196:LEU:HD12	1.99	0.44
1:A:314:MET:HA	1:A:322:TYR:OH	2.17	0.43

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:A:564:ILE:HG13	1:A:565:LEU:N	2.32	0.43	
1:A:838:ARG:HB3	1:A:844:ASP:HB3	2.00	0.43	
1:B:723:LYS:HE3	1:B:862:ILE:HD13	1.99	0.43	
1:B:85:ILE:CG1	1:B:153:LEU:HD23	2.49	0.43	
1:B:106:HIS:HD2	5:B:1142:HOH:O	2.00	0.43	
1:B:719:ILE:HD13	1:B:742:ALA:HB1	2.01	0.43	
1:A:144:SER:N	1:A:145:PRO:CD	2.82	0.43	
1:A:323:GLN:HE22	1:A:392:LYS:H	1.65	0.43	
1:B:213:HIS:ND1	1:B:560:GLU:OE1	2.51	0.43	
1:A:195:GLY:O	1:A:198:PRO:HG2	2.19	0.43	
1:B:773:ARG:HD3	5:B:970:HOH:O	2.18	0.43	
1:B:856:LEU:HB3	1:B:861:GLU:HB3	2.00	0.43	
1:B:539:SER:HB2	1:B:558:GLU:HG2	2.01	0.43	
1:B:63:ILE:HG23	1:B:67:GLU:OE2	2.19	0.43	
1:B:851:ALA:O	1:B:855:GLU:HG3	2.19	0.43	
1:A:374:LYS:HA	1:A:374:LYS:HD3	1.73	0.42	
1:A:323:GLN:NE2	1:A:392:LYS:H	2.17	0.42	
1:A:453:ALA:O	1:A:457:LYS:HD3	2.19	0.42	
1:B:79:ARG:NH2	1:B:424:PHE:HA	2.34	0.42	
1:B:864:LYS:HD3	1:B:864:LYS:N	2.34	0.42	
4:B:887:TDK:OM1	4:B:887:TDK:N4'	2.45	0.42	
1:A:711:LYS:HD2	1:A:787:TYR:CD1	2.54	0.42	
1:A:725:LYS:NZ	1:A:754:ASP:OD2	2.51	0.42	
1:B:63:ILE:HG23	1:B:67:GLU:CD	2.39	0.42	
1:A:328:LYS:HD3	1:A:328:LYS:N	2.33	0.42	
1:A:638:LEU:C	1:A:638:LEU:HD12	2.39	0.42	
1:B:177:TYR:CD2	1:B:192:VAL:HG11	2.54	0.42	
1:B:549:ASP:O	1:B:552:GLN:HG2	2.19	0.42	
1:B:125:PHE:HB3	1:B:462:LEU:HD21	2.01	0.42	
1:B:144:SER:N	1:B:145:PRO:CD	2.83	0.42	
1:B:597:ILE:HA	1:B:624:ILE:O	2.20	0.42	
1:A:635:GLY:HA3	1:B:103:LEU:O	2.19	0.42	
1:B:522:GLU:OE2	4:B:887:TDK:H6'	2.20	0.42	
1:A:320:GLY:HA3	1:B:545:TYR:CD2	2.54	0.41	
1:A:323:GLN:HA	1:A:323:GLN:OE1	2.20	0.41	
1:A:512:LYS:HG3	1:A:513:ASP:H	1.85	0.41	
1:A:538:TYR:HB2	1:A:562:GLY:O	2.19	0.41	
1:B:81:ILE:HA	1:B:441:PHE:HZ	1.85	0.41	
1:B:856:LEU:O	1:B:859:ARG:HG2	2.20	0.41	
1:A:245:ALA:HA	1:A:250:LEU:HD12	2.01	0.41	
1:A:578:TRP:CD1	1:A:594:PRO:HB2	2.55	0.41	

	lous page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:821:ARG:HH12	1:A:854:GLY:HA3	1.85	0.41
1:B:471:GLU:OE2	1:B:591:PRO:HD2	2.20	0.41
1:B:519:ILE:O	1:B:519:ILE:HG12	2.20	0.41
1:B:585:TYR:O	1:B:589:ASN:HA	2.20	0.41
1:B:711:LYS:HA	1:B:711:LYS:HD2	1.72	0.41
1:B:845:ALA:O	1:B:849:VAL:HG23	2.18	0.41
1:A:502:LEU:HA	1:A:505:MET:HE3	2.01	0.41
1:B:436:LEU:N	1:B:437:PRO:CD	2.83	0.41
1:B:777:LEU:HD12	1:B:777:LEU:HA	1.88	0.41
1:A:273:LYS:HG2	5:A:1079:HOH:O	2.20	0.41
1:A:487:GLU:HG3	1:A:488:GLN:N	2.35	0.41
1:B:262:GLN:HA	1:B:267:PRO:HA	2.03	0.41
1:B:408:GLN:O	1:B:410:LYS:HE2	2.19	0.41
1:B:856:LEU:CB	1:B:862:ILE:HG13	2.51	0.41
1:A:569:ILE:HD12	1:B:231:GLY:C	2.40	0.41
1:A:884:ARG:NH2	1:B:770:ASP:OD2	2.54	0.41
1:B:511:ILE:HD12	1:B:515:LEU:HD21	2.02	0.41
1:A:471:GLU:HG2	5:A:1116:HOH:O	2.20	0.41
1:B:91:MET:O	1:B:95:ARG:HG3	2.20	0.41
1:B:317:THR:HB	1:B:322:TYR:CE2	2.55	0.41
1:B:664:TYR:CD1	1:B:701:MET:HB2	2.56	0.41
1:A:92:THR:HG22	1:A:438:TYR:HE1	1.85	0.41
1:A:711:LYS:HD3	5:A:1067:HOH:O	2.20	0.41
1:B:189:PHE:HA	1:B:190:PRO:HD3	1.78	0.41
1:B:196:LEU:HA	1:B:199:ILE:HD11	2.02	0.41
1:B:405:ILE:H	1:B:405:ILE:HG13	1.73	0.41
1:A:87:TRP:CD2	1:A:426:VAL:HG11	2.56	0.41
1:A:87:TRP:CE3	1:A:420:ILE:HD11	2.56	0.41
1:A:550:ARG:HD3	1:A:550:ARG:O	2.20	0.41
1:B:128:ARG:CG	1:B:128:ARG:NH1	2.83	0.41
1:B:177:TYR:CG	1:B:192:VAL:HG11	2.55	0.41
1:B:348:VAL:HA	1:B:351:TRP:CD1	2.56	0.41
1:B:567:GLU:HG3	1:B:574:ALA:HA	2.03	0.41
1:B:716:LEU:HD13	1:B:739:ARG:CZ	2.51	0.41
1:B:164:ASN:CB	1:B:173:GLY:HA2	2.50	0.41
1:A:410:LYS:HE3	1:A:410:LYS:HB3	1.84	0.40
1:A:716:LEU:HD13	1:A:739:ARG:CZ	2.52	0.40
1:A:768:GLY:HA2	1:A:786:PRO:HB3	2.02	0.40
1:B:81:ILE:HA	1:B:441:PHE:CZ	2.57	0.40
1:B:214:ARG:HD3	5:B:1098:HOH:O	2.20	0.40
1:A:158:THR:OG1	1:A:160:GLU:CD	2.59	0.40

2G25

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:A:627:THR:HB	1:A:633:LEU:HD13	2.03	0.40
1:A:726:VAL:O	1:A:753:SER:HA	2.22	0.40
1:A:177:TYR:HB2	1:A:192:VAL:HG21	2.04	0.40
1:A:263:ARG:HD2	1:B:521:ASP:CG	2.42	0.40
1:A:341:TYR:HB2	1:A:344:THR:OG1	2.21	0.40
1:A:385:VAL:HG13	1:A:385:VAL:O	2.22	0.40
1:B:90:ILE:HG23	1:B:94:LEU:HD22	2.02	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured Allowed		Outliers	Percentiles		
1	А	829/886~(94%)	785~(95%)	40 (5%)	4 (0%)	29	26	
1	В	829/886~(94%)	790 (95%)	38~(5%)	1 (0%)	51	54	
All	All	1658/1772~(94%)	1575~(95%)	78~(5%)	5 (0%)	41	41	

All (5) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	553	VAL
1	А	347	LEU
1	А	550	ARG
1	А	398	ASP
1	В	400	ALA

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	691/735~(94%)	624 (90%)	67 (10%)	8 5
1	В	691/735~(94%)	634 (92%)	57 (8%)	11 8
All	All	1382/1470~(94%)	1258 (91%)	124 (9%)	9 6

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

All (124) residues with a non-rotameric sidechain are listed below:

Mol	Chain Res		Type
1	А	65	VAL
1	А	66	GLU
1	А	97	SER
1	А	98	LYS
1	А	126	ARG
1	А	150	ARG
1	А	153	LEU
1	А	160	GLU
1	А	168	GLU
1	А	192	VAL
1	А	216	LEU
1	A	274	ILE
1	А	278	LEU
1	А	297	ARG
1	А	300	GLU
1	А	302	LEU
1	А	306	THR
1	А	323	GLN
1	А	328	LYS
1	А	335	GLU
1	А	340	LYS
1	А	343	GLU
1	А	350	ASP
1	A	354	GLU
1	A	367	LYS
1	А	375	LYS
1	А	382	LYS
1	А	410	LYS
1	А	418	ARG
1	А	420	ILE
1	А	428	VAL
1	А	443	GLU
1	А	446	GLU

Mol	Chain	Res	Type
1	А	457	LYS
1	А	464	SER
1	А	472	LYS
1	А	486	GLU
1	А	487	GLU
1	А	506	LEU
1	А	507	LYS
1	А	512	LYS
1	А	521	ASP
1	А	531	LEU
1	А	533	ARG
1	А	546	THR
1	А	550	ARG
1	А	551	GLU
1	А	553	VAL
1	А	555	TYR
1	А	560	GLU
1	А	561	LYS
1	А	564	ILE
1	А	638	LEU
1	А	680	GLU
1	А	681	LYS
1	А	685	VAL
1	А	692	LEU
1	А	703	GLU
1	А	818	ASP
1	А	819	ASP
1	А	826	ASP
1	А	835	GLU
1	А	863	ASP
1	A	864	LYS
1	А	865	LYS
1	А	873	LYS
1	A	880	LYS
1	В	60	ILE
1	В	65	VAL
1	В	67	GLU
1	В	68	GLN
1	В	94	LEU
1	В	98	LYS
1	В	128	ARG
1	В	153	LEU

1 B 168 GLU 1 B 192 VAL 1 B 199 ILE 1 B 244 ILE 1 B 264 LEU 1 B 278 LEU 1 B 278 LEU 1 B 297 ARG 1 B 303 ARG 1 B 306 THR 1 B 306 LYS 1 B 326 LYS 1 B 328 LYS 1 B 334 ARG 1 B 385 VAL 1 B 401 GLU 1 B 403 LYS 1 B 403 LYS 1 B 428 VAL 1 B 479 GLN 1 B 479 </th <th>Mol</th> <th>Chain</th> <th>Res</th> <th>Type</th>	Mol	Chain	Res	Type
1 B 192 VAL 1 B 199 ILE 1 B 244 ILE 1 B 264 LEU 1 B 274 ILE 1 B 278 LEU 1 B 297 ARG 1 B 303 ARG 1 B 306 THR 1 B 306 INR 1 B 306 INR 1 B 306 INR 1 B 328 LYS 1 B 328 LYS 1 B 334 ARG 1 B 401 GLU 1 B 403 LYS 1 B 411 LYS 1 B 428 VAL 1 B 479 GLN 1 B 479 </th <th>1</th> <th>В</th> <th>168</th> <th>GLU</th>	1	В	168	GLU
1 B 199 ILE 1 B 244 ILE 1 B 264 LEU 1 B 274 ILE 1 B 278 LEU 1 B 297 ARG 1 B 303 ARG 1 B 306 THR 1 B 306 THR 1 B 306 LYS 1 B 326 LYS 1 B 328 LYS 1 B 328 LYS 1 B 385 VAL 1 B 398 ASP 1 B 401 GLU 1 B 403 LYS 1 B 411 LYS 1 B 428 VAL 1 B 479 GLN 1 B 479 GLN 1 B 512 LYS 1	1	В	192	VAL
1 B 244 ILE 1 B 264 LEU 1 B 274 ILE 1 B 278 LEU 1 B 297 ARG 1 B 303 ARG 1 B 306 THR 1 B 306 THR 1 B 306 THR 1 B 306 THR 1 B 309 LYS 1 B 328 LYS 1 B 334 ARG 1 B 3385 VAL 1 B 401 GLU 1 B 403 LYS 1 B 403 LYS 1 B 430 ASP 1 B 479 GLN 1 B 479 GLN 1 B 510	1	В	199	ILE
1 B 264 LEU 1 B 274 ILE 1 B 278 LEU 1 B 297 ARG 1 B 303 ARG 1 B 303 ARG 1 B 306 THR 1 B 309 LYS 1 B 326 LYS 1 B 328 LYS 1 B 334 ARG 1 B 385 VAL 1 B 398 ASP 1 B 401 GLU 1 B 403 LYS 1 B 428 VAL 1 B 430 ASP 1 B 479 GLN 1 B 479 GLN 1 B 512 LYS 1 B 519<	1	В	244	ILE
1 B 274 ILE 1 B 278 LEU 1 B 297 ARG 1 B 303 ARG 1 B 303 ARG 1 B 306 THR 1 B 326 LYS 1 B 328 LYS 1 B 328 LYS 1 B 328 LYS 1 B 328 LYS 1 B 334 ARG 1 B 398 ASP 1 B 401 GLU 1 B 401 GLU 1 B 428 VAL 1 B 430 ASP 1 B 479 GLN 1 B 479 GLN 1 B 512 LYS 1<	1	В	264	LEU
1 B 278 LEU 1 B 297 ARG 1 B 303 ARG 1 B 306 THR 1 B 309 LYS 1 B 326 LYS 1 B 328 LYS 1 B 334 ARG 1 B 398 ASP 1 B 403 LYS 1 B 403 LYS 1 B 428 VAL 1 B 428 VAL 1 B 479 GLN 1 B 479 GLN 1 B 519 ILE 1<	1	В	274	ILE
1 B 297 ARG 1 B 303 ARG 1 B 306 THR 1 B 309 LYS 1 B 326 LYS 1 B 328 LYS 1 B 334 ARG 1 B 398 ASP 1 B 401 GLU 1 B 403 LYS 1 B 403 ASP 1 B 428 VAL 1 B 430 ASP 1 B 479 GLN 1 B 479 GLN 1 B 519 ILE 1 B 519 ILE 1 B 577 SER 1	1	В	278	LEU
1 B 303 ARG 1 B 306 THR 1 B 309 LYS 1 B 326 LYS 1 B 328 LYS 1 B 334 ARG 1 B 398 ASP 1 B 403 LYS 1 B 403 LYS 1 B 403 ASP 1 B 430 ASP 1 B 430 ASP 1 B 475 LEU 1 B 479 GLN 1 B 512 LYS 1 B 519 ILE 1 B 560 </th <th>1</th> <th>В</th> <th>297</th> <th>ARG</th>	1	В	297	ARG
1 B 306 THR 1 B 309 LYS 1 B 326 LYS 1 B 328 LYS 1 B 328 LYS 1 B 334 ARG 1 B 398 ASP 1 B 401 GLU 1 B 403 LYS 1 B 403 LYS 1 B 403 LYS 1 B 403 LYS 1 B 403 ASP 1 B 403 ASP 1 B 428 VAL 1 B 430 ASP 1 B 475 LEU 1 B 479 GLN 1 B 506 LEU 1 B 519 ILE 1 B 560 </th <th>1</th> <th>В</th> <th>303</th> <th>ARG</th>	1	В	303	ARG
1 B 309 LYS 1 B 326 LYS 1 B 328 LYS 1 B 334 ARG 1 B 385 VAL 1 B 398 ASP 1 B 401 GLU 1 B 401 GLU 1 B 403 LYS 1 B 403 LYS 1 B 403 LYS 1 B 411 LYS 1 B 428 VAL 1 B 428 VAL 1 B 475 LEU 1 B 479 GLN 1 B 479 GLN 1 B 510 LEU 1 B 519 ILE 1 B 519 ILE 1 B 638 LEU 1 B 638 LEU <th>1</th> <th>В</th> <th>306</th> <th>THR</th>	1	В	306	THR
1B 326 LYS1B 328 LYS1B 334 ARG1B 385 VAL1B 398 ASP1B 401 GLU1B 401 GLU1B 403 LYS1B 411 LYS1B 411 LYS1B 428 VAL1B 428 VAL1B 456 GLN1B 475 LEU1B 475 LEU1B 479 GLN1B 479 GLN1B 506 LEU1B 512 LYS1B 512 LYS1B 519 ILE1B 550 ARG1B 560 GLU1B 610 LEU1B 610 LEU1B 638 LEU1B 711 LYS1B 711 LYS1B 720 GLU1B 784 ARG1B 818 ASP	1	В	309	LYS
1 B 328 LYS 1 B 334 ARG 1 B 385 VAL 1 B 398 ASP 1 B 401 GLU 1 B 403 LYS 1 B 403 LYS 1 B 403 LYS 1 B 403 LYS 1 B 403 ASP 1 B 428 VAL 1 B 428 VAL 1 B 430 ASP 1 B 475 LEU 1 B 479 GLN 1 B 506 LEU 1 B 519 ILE 1 B 550 ARG 1 B 623 LEU 1 B 638 LEU 1 B 777 </th <th>1</th> <th>В</th> <th>326</th> <th>LYS</th>	1	В	326	LYS
1 B 334 ARG 1 B 385 VAL 1 B 398 ASP 1 B 401 GLU 1 B 403 LYS 1 B 411 LYS 1 B 428 VAL 1 B 428 VAL 1 B 430 ASP 1 B 430 ASP 1 B 428 VAL 1 B 428 VAL 1 B 428 VAL 1 B 475 LEU 1 B 479 GLN 1 B 479 GLN 1 B 506 LEU 1 B 512 LYS 1 B 550 ARG 1 B 577 SER 1 B 610 LEU 1 B 638 LEU 1	1	В	328	LYS
1 B 385 VAL 1 B 398 ASP 1 B 401 GLU 1 B 403 LYS 1 B 411 LYS 1 B 428 VAL 1 B 428 VAL 1 B 430 ASP 1 B 430 ASP 1 B 430 ASP 1 B 475 LEU 1 B 475 LEU 1 B 479 GLN 1 B 484 LEU 1 B 490 LYS 1 B 506 LEU 1 B 519 ILE 1 B 560 GLU 1 B 638 LEU 1 B 638 LEU 1 B 711 LYS 1 B 718 THR 1	1	В	334	ARG
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	385	VAL
1B401GLU1B403LYS1B411LYS1B428VAL1B430ASP1B456GLN1B475LEU1B479GLN1B484LEU1B490LYS1B506LEU1B512LYS1B519ILE1B550ARG1B560GLU1B610LEU1B638LEU1B711LYS1B718THR1B720GLU1B784ARG1B818ASP	1	В	398	ASP
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	401	GLU
1 B 411 LYS 1 B 428 VAL 1 B 430 ASP 1 B 456 GLN 1 B 475 LEU 1 B 479 GLN 1 B 479 GLN 1 B 479 GLN 1 B 490 LYS 1 B 506 LEU 1 B 512 LYS 1 B 519 ILE 1 B 550 ARG 1 B 560 GLU 1 B 560 GLU 1 B 610 LEU 1 B 623 LEU 1 B 711 LYS 1 B 718 THR 1 B 720 GLU 1 B 784 ARG 1 B 814 TYR 1	1	В	403	LYS
1 B 428 VAL 1 B 430 ASP 1 B 456 GLN 1 B 475 LEU 1 B 479 GLN 1 B 479 GLN 1 B 479 GLN 1 B 490 LYS 1 B 506 LEU 1 B 512 LYS 1 B 519 ILE 1 B 550 ARG 1 B 560 GLU 1 B 560 GLU 1 B 610 LEU 1 B 623 LEU 1 B 711 LYS 1 B 718 THR 1 B 720 GLU 1 B 784 ARG 1 B 784 ARG 1 B 818 ASP	1	В	411	LYS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	428	VAL
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	430	ASP
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	456	GLN
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	475	LEU
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	479	GLN
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	484	LEU
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	490	LYS
1 B 512 LYS 1 B 519 ILE 1 B 550 ARG 1 B 560 GLU 1 B 577 SER 1 B 610 LEU 1 B 623 LEU 1 B 638 LEU 1 B 711 LYS 1 B 718 THR 1 B 720 GLU 1 B 777 LEU 1 B 784 ARG 1 B 814 TYR 1 B 818 ASP	1	В	506	LEU
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	512	LYS
1 B 550 ARG 1 B 560 GLU 1 B 577 SER 1 B 610 LEU 1 B 623 LEU 1 B 638 LEU 1 B 711 LYS 1 B 718 THR 1 B 720 GLU 1 B 777 LEU 1 B 784 ARG 1 B 814 TYR 1 B 818 ASP	1	В	519	ILE
1 B 560 GLU 1 B 577 SER 1 B 610 LEU 1 B 623 LEU 1 B 638 LEU 1 B 638 LEU 1 B 711 LYS 1 B 718 THR 1 B 720 GLU 1 B 777 LEU 1 B 784 ARG 1 B 814 TYR 1 B 818 ASP	1	В	550	ARG
1 B 577 SER 1 B 610 LEU 1 B 623 LEU 1 B 638 LEU 1 B 711 LYS 1 B 718 THR 1 B 720 GLU 1 B 777 LEU 1 B 784 ARG 1 B 814 TYR 1 B 818 ASP	1	В	560	GLU
1 B 610 LEU 1 B 623 LEU 1 B 638 LEU 1 B 711 LYS 1 B 718 THR 1 B 720 GLU 1 B 777 LEU 1 B 784 ARG 1 B 814 TYR 1 B 818 ASP	1	В	577	SER
1 B 623 LEU 1 B 638 LEU 1 B 711 LYS 1 B 718 THR 1 B 720 GLU 1 B 777 LEU 1 B 784 ARG 1 B 814 TYR 1 B 818 ASP	1	В	610	LEU
1 B 638 LEU 1 B 711 LYS 1 B 718 THR 1 B 720 GLU 1 B 777 LEU 1 B 784 ARG 1 B 814 TYR 1 B 818 ASP	1	В	623	LEU
1 B 711 LYS 1 B 718 THR 1 B 720 GLU 1 B 777 LEU 1 B 784 ARG 1 B 814 TYR 1 B 818 ASP	1	В	638	LEU
1 B 718 THR 1 B 720 GLU 1 B 777 LEU 1 B 784 ARG 1 B 814 TYR 1 B 818 ASP	1	В	711	LYS
1 B 720 GLU 1 B 777 LEU 1 B 784 ARG 1 B 814 TYR 1 B 818 ASP	1	В	718	THR
1 B 777 LEU 1 B 784 ARG 1 B 814 TYR 1 B 818 ASP	1	В	720	GLU
1 B 784 ARG 1 B 814 TYR 1 B 818 ASP	1	В	777	LEU
1 B 814 TYR 1 B 818 ASP	1	В	784	ARG
1 B 818 ASP	1	В	814	TYR
	1	В	818	ASP

Continued from previous page...

Mol	Chain	Res	Type
1	В	843	VAL
1	В	858	LYS
1	В	859	ARG
1	В	861	GLU
1	В	862	ILE
1	В	864	LYS
1	В	873	LYS

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (10) such side chains are listed below:

Mol	Chain	Res	Type
1	А	106	HIS
1	А	131	GLN
1	А	159	GLN
1	А	419	HIS
1	А	466	GLN
1	А	552	GLN
1	А	737	HIS
1	В	106	HIS
1	В	448	HIS
1	В	737	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 9 ligands modelled in this entry, 2 are monoatomic - leaving 7 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Bond lengths			Bond angles			
WIOI	туре	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
3	PO4	A	890	-	4,4,4	0.88	0	6,6,6	0.83	0
3	PO4	А	889	-	4,4,4	0.85	0	6,6,6	0.86	0
4	TDK	А	887	2	29,35,35	1.74	4 (13%)	$36,\!55,\!55$	1.72	8 (22%)
3	PO4	В	890	-	4,4,4	1.14	0	6,6,6	0.77	0
4	TDK	В	887	2	29,35,35	1.67	5 (17%)	36,55,55	1.77	8 (22%)
3	PO4	В	891	-	4,4,4	1.01	0	6,6,6	0.84	0
3	PO4	В	889	-	4,4,4	1.10	0	6,6,6	0.67	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	TDK	А	887	2	-	4/26/35/35	0/2/2/2
4	TDK	В	887	2	-	4/26/35/35	0/2/2/2

All (9) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
4	А	887	TDK	C6-C5	-4.70	1.48	1.50
4	В	887	TDK	PC-OM3	-4.48	1.47	1.56
4	А	887	TDK	PC-OM3	-4.42	1.47	1.56
4	В	887	TDK	C6-C5	-3.58	1.49	1.50
4	В	887	TDK	PB-O1B	3.15	1.60	1.50
4	А	887	TDK	PB-O1B	3.12	1.60	1.50
4	А	887	TDK	C6'-C5'	-2.77	1.32	1.37
4	В	887	TDK	C6'-C5'	-2.55	1.32	1.37
4	В	887	TDK	PC-OM4	-2.10	1.47	1.51

All (16) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
4	В	887	TDK	OM4-PC-CMA	-4.85	108.59	113.53
4	А	887	TDK	OM4-PC-CMA	-4.48	108.97	113.53
4	А	887	TDK	C6-C5-C4	4.36	130.94	127.43
4	В	887	TDK	C6-C5-C4	4.34	130.92	127.43
4	В	887	TDK	PA-O3A-PB	-3.07	122.28	132.83
4	В	887	TDK	O3B-PB-O2B	2.90	118.70	107.64
4	А	887	TDK	O3B-PB-O2B	2.87	118.60	107.64
4	А	887	TDK	C6'-N1'-C2'	2.68	120.52	115.96
4	В	887	TDK	C6'-N1'-C2'	2.53	120.28	115.96
4	А	887	TDK	PA-O3A-PB	-2.51	124.22	132.83
4	В	887	TDK	C5-C4-N3	2.51	112.90	107.66
4	А	887	TDK	C5-C4-N3	2.43	112.73	107.66
4	В	887	TDK	OM2-PC-OM4	-2.42	109.34	114.58
4	А	887	TDK	OM2-PC-OM4	-2.42	109.35	114.58
4	В	887	TDK	OM3-PC-OM4	2.35	117.01	111.34
4	А	887	TDK	OM3-PC-OM4	2.25	116.78	111.34

There are no chirality outliers.

All (8) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
4	А	887	TDK	PA-O3A-PB-O2B
4	А	887	TDK	C4-C5-C6-C7
4	В	887	TDK	PA-O3A-PB-O2B
4	В	887	TDK	C4-C5-C6-C7
4	А	887	TDK	CMC-OM2-PC-OM4
4	В	887	TDK	CMC-OM2-PC-OM4
4	А	887	TDK	CMC-OM2-PC-CMA
4	В	887	TDK	CMC-OM2-PC-CMA

There are no ring outliers.

4 monomers are involved in 8 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
4	А	887	TDK	2	0
3	В	890	PO4	1	0
4	В	887	TDK	4	0
3	В	889	PO4	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will

also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	< RSRZ >	#RSRZ>2		$\mathbf{OWAB}(\mathrm{\AA}^2)$	Q<0.9
1	А	831/886~(93%)	-0.20	16 (1%) 66	71	2, 8, 29, 43	0
1	В	831/886~(93%)	-0.25	6 (0%) 87 8	89	2,6,24,37	0
All	All	1662/1772~(93%)	-0.23	22 (1%) 77	80	2, 7, 28, 43	0

All (22) RSRZ outliers are listed below:

Mol	Chain	Chain Res		RSRZ	
1	А	541	ASN	3.4	
1	А	351	TRP	3.2	
1	А	552	GLN	3.1	
1	А	352	THR	2.9	
1	А	341	TYR	2.9	
1	В	551	GLU	2.8	
1	В	862	ILE	2.8	
1	А	550	ARG	2.8	
1	А	555	TYR	2.8	
1	А	354	GLU	2.7	
1	А	349	ALA	2.6	
1	В	818	ASP	2.4	
1	А	342	PRO	2.4	
1	А	549	ASP	2.4	
1	А	350	ASP	2.3	
1	В	430	ASP	2.2	
1	А	551	GLU	2.2	
1	А	304	LYS	2.2	
1	А	875	ASN	2.1	
1	В	414	MET	2.1	
1	А	301	LEU	2.1	
1	В	546	THR	2.0	

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q < 0.9
2	MG	В	888	1/1	0.95	0.15	$13,\!13,\!13,\!13$	0
3	PO4	А	890	5/5	0.96	0.10	23,24,25,28	0
3	PO4	В	889	5/5	0.96	0.11	$15,\!18,\!20,\!20$	0
3	PO4	В	890	5/5	0.96	0.14	$23,\!24,\!25,\!27$	0
3	PO4	А	889	5/5	0.97	0.10	12,13,14,16	0
2	MG	А	888	1/1	0.97	0.16	10,10,10,10	0
3	PO4	В	891	5/5	0.97	0.12	24,24,27,28	0
4	TDK	А	887	34/34	0.97	0.11	2,3,13,14	0
4	TDK	В	887	34/34	0.97	0.10	4,7,15,16	0

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

