

Full wwPDB X-ray Structure Validation Report (i)

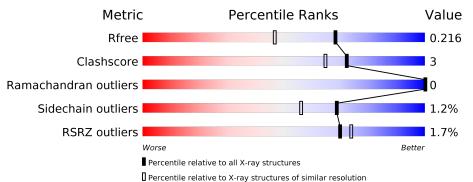
May 15, 2020 - 07:54 am BST

PDB ID	:	6G6G
Title	:	Crystal structure of a parallel six-helix coiled coil CC-Type2-FI
Authors	:	Rhys, G.G.; Brady, R.L.; Woolfson, D.N.
Deposited on		
Resolution	:	1.70 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:


MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.11
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.11

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 1.70 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries},{ m resolution\ range}({ m \AA}))$
R_{free}	130704	4298 (1.70-1.70)
Clashscore	141614	4695(1.70-1.70)
Ramachandran outliers	138981	4610 (1.70-1.70)
Sidechain outliers	138945	4610 (1.70-1.70)
RSRZ outliers	127900	4222 (1.70-1.70)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	A	32	3% 97%	· ·
1	В	32	97%	
1	С	32	100%	
1	D	32	3%	16%
1	Е	32	84%	9% 6%
1	F	32	81%	16% •

Conti	nued fron	n previous	page		
Mol	Chain	Length	Quality of chain		
1	G	32	3% 91%	6%	·
1	Н	32	94%	•	•
1	Ι	32	97%		•
1	J	32	3% 	19%	•
1	K	32	3% 84%	13%	•
1	L	32	91%	6%	·

6G6G

2 Entry composition (i)

There are 2 unique types of molecules in this entry. The entry contains 3185 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		Aton	ıs		ZeroOcc	AltConf	Trace
1	А	31	Total	С	Ν	0	8	0	0
	Л	51	240	161	38	41	8	0	0
1	В	32	Total	С	Ν	0	14	0	1
L	D	52	241	161	39	41	14	0	T
1	С	32	Total	С	Ν	Ο	5	0	1
L	U	52	241	161	39	41	0	0	T
1	D	32	Total	С	Ν	Ο	8	2	1
1	D	52	253	170	40	43	0	2	T
1	Е	30	Total	С	Ν	Ο	8	1	0
L	Ľ	50	242	164	38	40	0	T	0
1	F	31	Total	С	Ν	Ο	14	2	0
	Ľ	51	252	169	40	43		۷	
1	G	31	Total	С	Ν	Ο	6	0	0
	G	51	240	161	38	41	0	0	0
1	Η	31	Total	С	Ν	Ο	10	0	0
	11	51	240	161	38	41	10	0	0
1	Ι	32	Total	С	Ν	Ο	15	0	1
	L	52	241	161	39	41	10	0	T
1	J	31	Total	С	Ν	0	19	1	0
	1	51	246	165	38	43	12	L	0
1	K	31	Total	С	Ν	Ο	9	0	0
		51	240	161	38	41	9	U	U
1	L	31	Total	С	Ν	Ο	13	0	0
		51	240	161	38	41	10	U	U

• Molecule 1 is a protein called CC-Type2-FI.

• Molecule 2 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	29	Total O 29 29	0	0
2	В	28	Total O 28 28	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	С	26	Total O	0	0
	0	20	26 26	0	0
2	D	18	Total O	0	0
		10	18 18	0	0
2	Е	24	Total O	0	0
		21	24 24	0	0
2	F	26	Total O	0	0
	1	20	26 26	0	0
2	G	29	Total O	0	0
		20	29 29	0	0
2	Н	18	Total O	0	0
			18 18		<u> </u>
2	Ι	15	Total O	0	0
	-	10	15 15		
2	J	16	Total O	0	0
			16 16		
2	Κ	19	Total O	0	0
	**	10	19 19	, , , , , , , , , , , , , , , , , , ,	
2	L	21	Total O	0	0
	Ц		21 21		5

3 Residue-property plots (i)

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: CC-Type2-F	Ι	
Chain A:	97%	
20 100 100 100 100 100 100 100 100 100 1		
• Molecule 1: CC-Type2-F	I	
Chain B:	97%	
23 11 2 20 2		
• Molecule 1: CC-Type2-F	Ι	
Chain C:	100%	
There are no outlier residu	es recorded for this chain.	
• Molecule 1: CC-Type2-F	Ι	
Chain D:	84%	16%
70 81 10 10 10 10 10 10 10 10 10 10 10 10 10		
• Molecule 1: CC-Type2-F	Ι	
Chain E:	84%	9% 6%
ACE 13 13 13 13 13 13 13 13 13 13		
• Molecule 1: CC-Type2-F	Ι	
Chain F:	81%	16% •

70 A4 A4 C22 030 030 012 012 012 012 012 012 012 01		
• Molecule 1: CC-Type2-FI		
Chain G:	91%	6% ·
70 41 61 61 61 61 61 61 61 61 61 61 61 61 61		
• Molecule 1: CC-Type2-FI		
Chain H:	94%	
30 G30 MH2 MH2		
• Molecule 1: CC-Type2-FI		
Chain I:	97%	
23 1 1 1		
• Molecule 1: CC-Type2-FI		
Chain J:	78%	19% ·
20 K12 K12 K12 K12 K12 K12 K12 K12		
• Molecule 1: CC-Type2-FI		
Chain K:	84%	13% •
70 11 11 11 12 12 12 12 12 12 12 12 12 12		
• Molecule 1: CC-Type2-FI		
Chain L:	91%	6% •
70 13 012 012 012 012		

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	30.66\AA 85.00\AA 59.61\AA	Deperitor
a, b, c, α , β , γ	90.00° 92.49° 90.00°	Depositor
Resolution (Å)	48.77 - 1.70	Depositor
Resolution (A)	48.77 - 1.70	EDS
% Data completeness	$99.6 \ (48.77 - 1.70)$	Depositor
(in resolution range)	$99.7 \ (48.77 \text{-} 1.70)$	EDS
R _{merge}	0.14	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$2.11 \; ({\rm at} \; 1.70 {\rm \AA})$	Xtriage
Refinement program	PHENIX 1.10.1_2155	Depositor
R, R_{free}	0.176 , 0.222	Depositor
$\mathbf{n}, \mathbf{n}_{free}$	0.173 , 0.216	DCC
R_{free} test set	1671 reflections (5.00%)	wwPDB-VP
Wilson B-factor $(Å^2)$	18.6	Xtriage
Anisotropy	0.748	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.35 , 55.8	EDS
L-test for twinning ²	$< L >=0.49, < L^2>=0.31$	Xtriage
Estimated twinning fraction	0.055 for h,-k,-l	Xtriage
F_o, F_c correlation	0.97	EDS
Total number of atoms	3185	wwPDB-VP
Average B, all atoms $(Å^2)$	24.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 12.66% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ACE, $\rm NH2$

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bond angles	
		RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.37	0/243	0.36	0/323
1	В	0.36	0/243	0.40	0/323
1	С	0.41	0/243	0.41	0/323
1	D	0.35	0/261	0.43	0/346
1	Е	0.37	0/250	0.39	0/332
1	F	0.37	0/261	0.51	0/347
1	G	0.42	0/243	0.35	0/323
1	Н	0.40	0/243	0.38	0/323
1	Ι	0.34	0/243	0.36	0/323
1	J	0.38	0/252	0.40	0/335
1	Κ	0.38	0/243	0.41	0/323
1	L	0.39	0/243	0.41	0/323
All	All	0.38	0/2968	0.40	0/3944

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	A	240	0	244	0	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	В	241	0	244	1	0
1	С	241	0	244	0	0
1	D	253	0	263	3	0
1	Е	242	0	254	3	0
1	F	252	0	260	4	0
1	G	240	0	244	2	0
1	Η	240	0	244	1	0
1	Ι	241	0	244	1	0
1	J	246	0	250	4	0
1	Κ	240	0	244	3	0
1	L	240	0	244	2	0
2	А	29	0	0	0	0
2	В	28	0	0	1	0
2	С	26	0	0	0	0
2	D	18	0	0	2	0
2	Ε	24	0	0	0	0
2	F	26	0	0	1	0
2	G	29	0	0	2	0
2	Η	18	0	0	0	1
2	Ι	15	0	0	0	0
2	J	16	0	0	2	1
2	Κ	19	0	0	1	0
2	L	21	0	0	1	0
All	All	3185	0	2979	19	1

Continued from previous page...

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 3.

All (19) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:J:9[B]:GLU:OE2	2:J:101:HOH:O	2.05	0.73
1:G:29:LYS:O	2:G:101:HOH:O	2.10	0.69
1:K:1:GLY:HA3	2:K:109:HOH:O	1.96	0.66
1:D:23[B]:GLU:OE1	2:D:101:HOH:O	2.13	0.65
1:J:16:GLU:OE2	2:J:102:HOH:O	2.14	0.64
1:F:16:GLU:OE2	2:F:102:HOH:O	2.16	0.62
1:K:3:ILE:HD11	1:L:3:ILE:HG23	1.83	0.61
1:L:12:LYS:NZ	2:L:101:HOH:O	2.14	0.56
1:F:22:LYS:O	1:F:26[A]:GLN:HG3	2.07	0.54
1:G:26:GLN:OE1	2:G:103:HOH:O	2.19	0.53

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:E:19:TRP:HA	1:E:22:LYS:HE3	1.92	0.51
1:E:3[B]:ILE:HD11	1:F:3:ILE:HG23	1.96	0.46
1:H:6:ALA:HB2	1:I:8:LYS:HD3	2.00	0.44
1:E:3[B]:ILE:HG12	1:F:4:ALA:HA	2.00	0.44
1:D:5:GLN:NE2	1:D:9:GLU:OE2	2.47	0.43
1:J:8:LYS:O	1:J:12:LYS:HG3	2.17	0.43
1:J:28:PHE:HE1	1:K:28:PHE:CE1	2.36	0.43
1:B:23:GLU:OE1	2:B:102:HOH:O	2.22	0.41
1:D:26:GLN:HG3	2:D:108:HOH:O	2.21	0.41

Continued from previous page...

All (1) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)	
2:H:118:HOH:O	2:J:113:HOH:O[1_455]	1.93	0.27	

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percer	ntiles
1	А	29/32~(91%)	29~(100%)	0	0	100	100
1	В	30/32~(94%)	30~(100%)	0	0	100	100
1	С	30/32~(94%)	30~(100%)	0	0	100	100
1	D	32/32~(100%)	32~(100%)	0	0	100	100
1	Е	29/32~(91%)	29~(100%)	0	0	100	100
1	F	31/32~(97%)	31~(100%)	0	0	100	100
1	G	29/32~(91%)	29~(100%)	0	0	100	100
1	Н	29/32~(91%)	29~(100%)	0	0	100	100
1	Ι	30/32~(94%)	30~(100%)	0	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	\mathbf{ntiles}
1	J	30/32~(94%)	30~(100%)	0	0	100	100
1	K	29/32~(91%)	28~(97%)	1 (3%)	0	100	100
1	L	29/32~(91%)	29 (100%)	0	0	100	100
All	All	357/384~(93%)	356~(100%)	1 (0%)	0	100	100

Continued from previous page...

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	$\operatorname{Rotameric}$	Outliers	Percen	ntiles
1	А	20/20~(100%)	20~(100%)	0	100	100
1	В	20/20~(100%)	20~(100%)	0	100	100
1	С	20/20~(100%)	20~(100%)	0	100	100
1	D	22/20~(110%)	21 (96%)	1 (4%)	27	10
1	Е	21/20~(105%)	21~(100%)	0	100	100
1	F	22/20~(110%)	22~(100%)	0	100	100
1	G	20/20~(100%)	20~(100%)	0	100	100
1	Η	20/20~(100%)	20~(100%)	0	100	100
1	Ι	20/20~(100%)	20~(100%)	0	100	100
1	J	21/20~(105%)	20~(95%)	1 (5%)	25	9
1	K	20/20~(100%)	$19 \ (95\%)$	1 (5%)	24	8
1	L	20/20~(100%)	20~(100%)	0	100	100
All	All	246/240~(102%)	243~(99%)	3 (1%)	69	59

All (3) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	D	21	PHE
1	J	29	LYS

Continued from previous page...

Mol	Chain	\mathbf{Res}	Type
1	Κ	29	LYS

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (1) such sidechains are listed below:

Mol	Chain	Res	Type
1	G	26	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no carbohydrates in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95th percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$<$ $RSRZ>$	$\# RSRZ {>}2$	$OWAB(Å^2)$	Q<0.9
1	А	30/32~(93%)	-0.16	1 (3%) 46 51	14, 23, 33, 35	3 (10%)
1	В	30/32~(93%)	-0.27	0 100 100	15, 21, 27, 33	5(16%)
1	С	30/32~(93%)	-0.25	0 100 100	17, 20, 30, 31	3 (10%)
1	D	30/32~(93%)	0.16	1 (3%) 46 51	16, 23, 33, 37	3 (10%)
1	Ε	30/32~(93%)	-0.10	0 100 100	14, 20, 35, 40	4 (13%)
1	F	30/32~(93%)	-0.00	1 (3%) 46 51	15, 22, 34, 49	5 (16%)
1	G	30/32~(93%)	-0.06	1 (3%) 46 51	15, 23, 34, 42	3~(10%)
1	Η	30/32~(93%)	-0.20	0 100 100	13, 21, 33, 38	5~(16%)
1	Ι	30/32~(93%)	-0.21	0 100 100	16, 22, 33, 40	6 (20%)
1	J	30/32~(93%)	0.06	1 (3%) 46 51	16, 22, 37, 41	4(13%)
1	K	30/32~(93%)	-0.00	1 (3%) 46 51	15, 22, 41, 46	4 (13%)
1	L	30/32~(93%)	-0.16	0 100 100	15, 22, 36, 43	5 (16%)
All	All	360/384~(93%)	-0.10	6 (1%) 70 74	13, 22, 37, 49	50 (13%)

All (6) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	G	19	TRP	3.1
1	D	19	TRP	3.0
1	Κ	30	GLY	2.8
1	А	19	TRP	2.4
1	J	30	GLY	2.3
1	F	30	GLY	2.1

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no carbohydrates in this entry.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

