

Full wwPDB X-ray Structure Validation Report (i)

Oct 11, 2021 – 02:45 PM EDT

PDB ID : 2GC5

Title : G51S mutant of L. casei FPGS

Authors: Smith, C.A.; Cross, J.A.; Bognar, A.L.; Sun, X.

Deposited on : 2006-03-13

Resolution : 1.85 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
https://www.wwpdb.org/validation/2017/XrayValidationReportHelp
with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity : 4.02b-467

Mogul: 1.8.5 (274361), CSD as541be (2020)

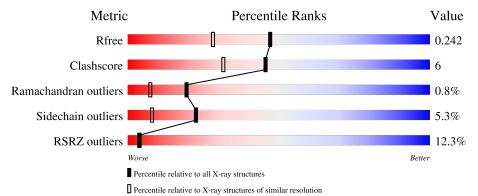
Xtriage (Phenix) : 1.13 EDS : 2.23.2

Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)

Refmac : 5.8.0158

CCP4 : 7.0.044 (Gargrove) Ideal geometry (proteins) : Engh & Huber (2001)

Ideal geometry (DNA, RNA) : Parkinson et al. (1996)


Validation Pipeline (wwPDB-VP) : 2.23.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X- $RAY\ DIFFRACTION$

The reported resolution of this entry is 1.85 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive $(\# \mathrm{Entries})$	$\begin{array}{c} {\rm Similar\ resolution} \\ (\#{\rm Entries},{\rm resolution\ range}(\mathring{\rm A})) \end{array}$
R_{free}	130704	2469 (1.86-1.86)
Clashscore	141614	2625 (1.86-1.86)
Ramachandran outliers	138981	2592 (1.86-1.86)
Sidechain outliers	138945	2592 (1.86-1.86)
RSRZ outliers	127900	2436 (1.86-1.86)

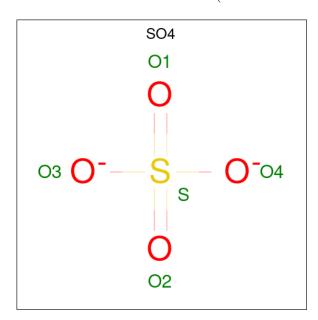
The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
			12%	
1	A	428	82%	11% • 5%

2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 3373 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.


• Molecule 1 is a protein called Folylpolyglutamate synthase.

Mol	Chain	Residues		Atoms			ZeroOcc	AltConf	Trace	
1	Λ	408	Total	С	N	О	S	0	2	0
1	Λ	400	3108	1980	547	576	5		9	

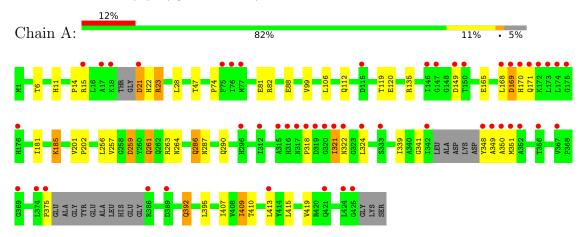
There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
A	51	SER	GLY	engineered mutation	UNP P15925

• Molecule 2 is SULFATE ION (three-letter code: SO4) (formula: O₄S).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	A	1	Total O S 5 4 1	0	0
2	A	1	Total O S 5 4 1	0	0

• Molecule 3 is water.


Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	A	255	Total O 255 255	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Folylpolyglutamate synthase

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	53.17Å 45.83Å 84.28Å	Depositor
a, b, c, α , β , γ	90.00° 107.66° 90.00°	Depositor
Resolution (Å)	20.00 - 1.85	Depositor
Resolution (A)	18.74 - 1.85	EDS
% Data completeness	96.0 (20.00-1.85)	Depositor
(in resolution range)	91.5 (18.74-1.85)	EDS
R_{merge}	0.07	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	2.22 (at 1.85Å)	Xtriage
Refinement program	REFMAC 5.2.0005	Depositor
D.D.	0.204 , 0.247	Depositor
R, R_{free}	0.201 , 0.242	DCC
R_{free} test set	1505 reflections (4.94%)	wwPDB-VP
Wilson B-factor (Å ²)	21.1	Xtriage
Anisotropy	0.022	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.41, 57.5	EDS
L-test for twinning ²	$< L >=0.50, < L^2>=0.33$	Xtriage
Estimated twinning fraction	0.024 for h,-k,-h-l	Xtriage
F_o, F_c correlation	0.94	EDS
Total number of atoms	3373	wwPDB-VP
Average B, all atoms (Å ²)	24.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 7.62% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of <|L|>, $<L^2>$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: KCX, SO4

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bo	nd angles
IVIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	A	0.33	0/3168	0.63	1/4325 (0.0%)

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^o)$	$\operatorname{Ideal}({}^{o})$
1	A	375	PRO	N-CA-CB	5.84	110.31	103.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	A	3108	0	3095	40	0
2	A	10	0	0	0	0
3	A	255	0	0	10	0
All	All	3373	0	3095	40	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 6.

All (40) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap(Å)
1:A:392:GLN:HE21	1:A:392:GLN:H	1.25	0.85
1:A:88:GLU:HG2	3:A:696:HOH:O	1.79	0.81
1:A:286:GLN:O	1:A:290:GLN:HG3	1.82	0.80
1:A:74:PRO:HD3	1:A:82:ARG:HG2	1.69	0.74
1:A:21:ASP:OD1	1:A:22:HIS:N	2.25	0.69
1:A:263:ARG:HH21	1:A:264:ASN:HD21	1.41	0.68
1:A:261:GLN:HE21	1:A:261:GLN:HA	1.58	0.67
1:A:11:HIS:HD2	1:A:120:GLU:OE2	1.87	0.58
1:A:6:THR:CG2	1:A:99:VAL:HG21	2.34	0.58
1:A:6:THR:HG23	1:A:99:VAL:HG21	1.87	0.55
1:A:11:HIS:HE1	3:A:673:HOH:O	1.91	0.53
1:A:261:GLN:HA	1:A:261:GLN:NE2	2.23	0.53
1:A:135:ARG:CZ	3:A:527:HOH:O	2.57	0.53
1:A:259:ASP:HB3	3:A:725:HOH:O	2.10	0.52
1:A:135:ARG:NE	3:A:527:HOH:O	2.42	0.51
1:A:47:THR:CG2	1:A:169:ASP:HB2	2.41	0.50
1:A:395:LEU:HD12	1:A:407:ILE:HD13	1.95	0.49
1:A:348:TYR:O	1:A:350:ALA:N	2.46	0.48
1:A:392:GLN:H	1:A:392:GLN:NE2	2.04	0.48
1:A:74:PRO:HB3	1:A:81:GLU:HB3	1.95	0.48
1:A:181:ILE:O	1:A:185:KCX:HG3	2.14	0.48
1:A:23:ARG:HG3	3:A:611:HOH:O	2.16	0.46
1:A:324:LEU:HD21	1:A:410:THR:HG21	1.97	0.46
1:A:263:ARG:HD2	3:A:687:HOH:O	2.15	0.46
1:A:339:ILE:HD12	1:A:409:ILE:HD13	1.98	0.46
1:A:318:PRO:O	1:A:322:ASN:ND2	2.49	0.46
1:A:348:TYR:N	1:A:351:MET:HG3	2.31	0.45
1:A:257:VAL:HG11	3:A:713:HOH:O	2.17	0.45
1:A:201:VAL:HB	1:A:202:PRO:HD2	1.99	0.44
1:A:409:ILE:HG21	1:A:419:VAL:HG21	2.00	0.44
1:A:341:GLY:HA3	1:A:415:LEU:HD22	2.01	0.43
1:A:287:ASN:HA	1:A:290:GLN:HE21	1.83	0.42
1:A:74:PRO:CB	1:A:81:GLU:HB3	2.49	0.42
1:A:321:ILE:HA	1:A:324:LEU:HB3	2.02	0.42
1:A:88:GLU:CG	3:A:696:HOH:O	2.54	0.42
1:A:6:THR:HG23	1:A:99:VAL:HG11	2.01	0.41
1:A:168:LEU:O	1:A:169:ASP:C	2.58	0.41
1:A:185:KCX:OQ1	3:A:598:HOH:O	2.22	0.41
1:A:261:GLN:HE21	1:A:261:GLN:CA	2.30	0.41
1:A:14:PRO:O	1:A:119:THR:HA	2.21	0.40

There are no symmetry-related clashes. $\,$

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mo	l Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	A	402/428 (94%)	392 (98%)	7 (2%)	3 (1%)	22 9

All (3) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	A	349	ALA
1	A	149	ASP
1	A	169	ASP

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles		
1	A	321/344 (93%)	304 (95%)	17 (5%)	22 8		

All (17) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	A	15	ARG
1	A	21	ASP
1	A	23	ARG
1	A	28	LEU
1	A	106	LEU
1	A	112	GLN
1	A	165	GLU
1	A	170	HIS

Continued on next page...

Continued from previous page...

Mol	Chain	Res	Type
1	A	171	GLN
1	A	256	LEU
1	A	259	ASP
1	A	261	GLN
1	A	286	GLN
1	A	321	ILE
1	A	392	GLN
1	A	409	ILE
1	A	413	LEU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (11) such sidechains are listed below:

Mol	Chain	Res	Type
1	A	11	HIS
1	A	37	GLN
1	A	110	GLN
1	A	238	GLN
1	A	261	GLN
1	A	262	GLN
1	A	264	ASN
1	A	290	GLN
1	A	322	ASN
1	A	330	GLN
1	A	392	GLN

5.3.3 RNA $\stackrel{\bullet}{\mathbf{1}}$

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

1 non-standard protein/DNA/RNA residue is modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	ype Chain	n Pos	Link	Bond lengths			Bond angles		
IVIOI	Type		rtes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
1	KCX	A	185	1	7,11,12	0.77	0	4,12,14	1.57	1 (25%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	KCX	A	185	1	-	1/7/10/12	-

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$Observed(^o)$	$\operatorname{Ideal}({}^o)$
1	A	185	KCX	CD-CE-NZ	-2.67	104.32	111.49

There are no chirality outliers.

All (1) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
1	A	185	KCX	CE-CD-CG-CB

There are no ring outliers.

1 monomer is involved in 2 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
1	A	185	KCX	2	0

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

2 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The

Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type Chain		ain Res	Res Link	B	Bond lengths			Bond angles		
MIOI	Туре	Chain	nes	Lilik	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2	
2	SO4	A	901	-	4,4,4	0.14	0	6,6,6	0.23	0	
2	SO4	A	900	-	4,4,4	0.15	0	6,6,6	0.61	0	

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ>2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<rsrz></rsrz>	$\#\mathrm{RSRZ}{>}2$		$OWAB(A^2)$	Q < 0.9
1	A	407/428 (95%)	0.44	50 (12%)	4 4	10, 20, 52, 64	0

All (50) RSRZ outliers are listed below:

Mol	Chain	Res Type		RSRZ	
1	A	318	PRO	8.7	
1	A	320	GLY	8.2	
1	A	173	LEU	8.1	
1	A	77	MET	7.6	
1	A	75	PHE	6.8	
1	A	171	GLN	5.9	
1	A	413	LEU	5.7	
1	A	170	HIS	5.6	
1	A	317	ASN	5.1	
1	A	350	ALA	4.7	
1	A	15	ARG	4.7	
1	A	369	GLY	4.6	
1	A	316	HIS	4.6	
1	A	425	GLY	4.5	
1	A	319	ASP	4.3	
1	A	342	ILE	3.9	
1	A	321	ILE	3.9	
1	A	389	ASP	3.9	
1	A	172	LYS	3.9	
1	A	315	ALA	3.8	
1	A	174	LEU	3.8	
1	A	176	HIS	3.8	
1	A	76	ILE	3.7	
1	A	150	THR	3.6	
1	A	175	GLY	3.5	
1	A	169	ASP	3.1	
1	A	348	TYR	3.0	

Continued on next page...

Continued from previous page...

Mol	Chain	$\frac{1}{2}$ $\frac{1}$		RSRZ
1	A	115	ASP	3.0
1	A	147	GLY	2.9
1	A	21	ASP	2.9
1	A	421	GLN	2.8
1	A	375	PRO	2.8
1	A	146	ILE	2.8
1	A	349	ALA	2.8
1	A	351	MET	2.7
1	A	352	ALA	2.7
1	A	424	LEU	2.6
1	A	17	ALA	2.6
1	A	149	ASP	2.6
1	A	322	ASN	2.6
1	A	333	SER	2.5
1	A	367	VAL	2.4
1	A	324	LEU	2.3
1	A	374	LEU	2.3
1	A	386	ARG	2.3
1	A	356	THR	2.2
1	A	296	HIS	2.2
1	A	168	LEU	2.2
1	A	18	LYS	2.2
1	A	312	ILE	2.1

6.2 Non-standard residues in protein, DNA, RNA chains (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-}\mathbf{factors}(\mathbf{\mathring{A}}^2)$	Q<0.9
1	KCX	A	185	12/13	0.73	0.24	19,24,44,46	0

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-}\mathbf{factors}(\mathbf{\mathring{A}}^2)$	Q < 0.9
2	SO4	A	901	5/5	0.93	0.19	54,54,54,54	0
2	SO4	A	900	5/5	0.97	0.08	25,25,29,29	0

6.5 Other polymers (i)

There are no such residues in this entry.

