

wwPDB X-ray Structure Validation Summary Report (i)

Dec 10, 2023 - 01:48 am GMT

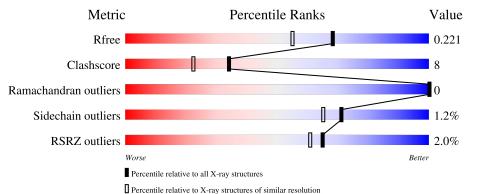
PDB ID	:	1GUS
Title	:	MopII from Clostridium pasteurianum (apo1)
Authors	:	Schuettelkopf, A.W.; Harrison, J.A.; Hunter, W.N.
Deposited on		
Resolution	:	1.80 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:


MolProbity	:	4.02b-467
Xtriage (Phenix)	:	1.13
EDS	:	2.36
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 1.80 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$\begin{array}{c} \textbf{Whole archive} \\ (\#\textbf{Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R_{free}	130704	5950(1.80-1.80)
Clashscore	141614	6793 (1.80-1.80)
Ramachandran outliers	138981	6697 (1.80-1.80)
Sidechain outliers	138945	6696 (1.80-1.80)
RSRZ outliers	127900	5850 (1.80-1.80)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	68	6% 76%	22% •
1	В	68	3% 84%	13% ••
1	С	68	% 90%	9% •
1	D	68	% 90%	9% •
1	Е	68	91%	7% •

Continued on next page...

Continued from previous page...

Mol	Chain	Length	Quality of chain	
1	F	68	87%	10% ••

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 3212 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
1	А	67	Total	С	Ν	Ο	S	0	1	0
	Л	07	483	304	80	98	1	0	1	0
1	В	67	Total	С	Ν	Ο	\mathbf{S}	0	1	0
	D	01	483	304	80	98	1	0	1	0
1	С	67	Total	С	Ν	Ο	\mathbf{S}	0	1	0
1	U		483	304	80	98	1	0	1	0
1	D	67	Total	С	Ν	Ο	\mathbf{S}	0	1	0
1	D	01	485	306	81	97	1	0	1	U
1	Е	67	Total	С	Ν	Ο	\mathbf{S}	0	0	0
		01	481	303	80	97	1	0	0	0
1	F	67	Total	С	Ν	Ο	\mathbf{S}	0	0	0
	T,	01	481	303	80	97	1		0	0

• Molecule 1 is a protein called MOLYBDATE BINDING PROTEIN II.

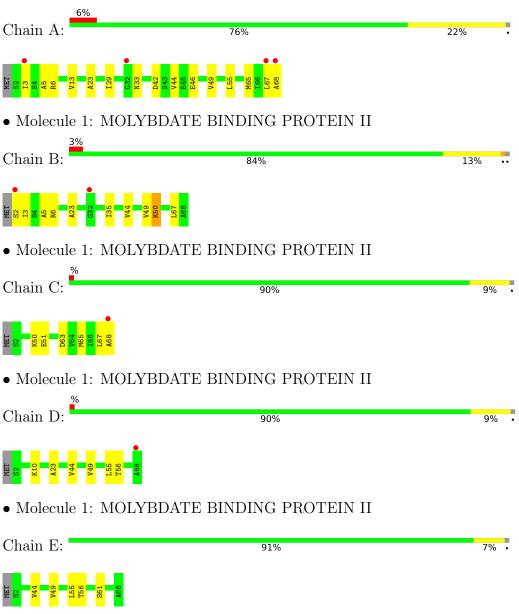
• Molecule 2 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	1	Total Mg 1 1	0	0
2	D	1	Total Mg 1 1	0	0

• Molecule 3 is CHLORIDE ION (three-letter code: CL) (formula: Cl).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	D	1	Total Cl 1 1	0	0
3	Е	1	Total Cl 1 1	0	0
3	F	1	Total Cl 1 1	0	0

• Molecule 4 is water.



Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	54	$\begin{array}{cc} \text{Total} & \text{O} \\ 54 & 54 \end{array}$	0	0
4	В	50	Total O 50 50	0	0
4	С	44	Total O 44 44	0	0
4	D	56	$\begin{array}{cc} {\rm Total} & {\rm O} \\ 56 & 56 \end{array}$	0	0
4	Е	58	Total O 58 58	0	0
4	F	49	Total O 49 49	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: MOLYBDATE BINDING PROTEIN II

• Molecule 1: MOLYBDATE BINDING PROTEIN II

87%

10% ••

Chain F:

4 Data and refinement statistics (i)

Property	Value	Source
Space group	C 1 2 1	Depositor
Cell constants	79.08Å 82.40Å 56.82Å	Deneiten
a, b, c, α , β , γ	90.00° 93.23° 90.00°	Depositor
Resolution (Å)	23.77 - 1.80	Depositor
Resolution (A)	23.76 - 1.79	EDS
% Data completeness	100.0 (23.77-1.80)	Depositor
(in resolution range)	96.5(23.76-1.79)	EDS
R _{merge}	0.04	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.96 (at 1.79 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.0	Depositor
P. P.	0.179 , 0.217	Depositor
R, R_{free}	0.181 , 0.221	DCC
R_{free} test set	1675 reflections (5.06%)	wwPDB-VP
Wilson B-factor $(Å^2)$	18.9	Xtriage
Anisotropy	0.215	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.35 , 41.4	EDS
L-test for twinning ²	$< L >=0.51, < L^2>=0.34$	Xtriage
	0.480 for -1/2 *h+1/2 *k-l, 1/2 *h-1/2 *k-l, -1/2	
Estimated twinning fraction	h-1/2*k	Xtriage
	0.479 for $-1/2$ *h $-1/2$ *k $-l,-1/2$ *h $-1/2$ *k $+l,-1/2$	
E.E. completion	$2^{+h+1/2^{+}k}$	EDC
F_o, F_c correlation	0.96	EDS
Total number of atoms	3212	wwPDB-VP
Average B, all atoms $(Å^2)$	21.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 53.03 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 4.4708e-05. The detected translational NCS is most likely also responsible for the elevated intensity ratio.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: CL, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Mol Chain		nd lengths	Bond angles	
IVIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.80	0/486	0.98	0/652
1	В	0.83	0/486	1.02	0/652
1	С	0.82	0/486	1.02	1/652~(0.2%)
1	D	0.78	0/489	1.01	0/655
1	Е	0.84	1/480~(0.2%)	1.04	0/644
1	F	0.79	0/480	1.04	1/644~(0.2%)
All	All	0.81	1/2907~(0.0%)	1.02	2/3899~(0.1%)

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
1	Ε	61	SER	CA-CB	5.41	1.61	1.52

All (2) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	F	63	ASP	CB-CG-OD2	6.59	124.23	118.30
1	С	63	ASP	CB-CG-OD2	5.78	123.50	118.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	483	0	528	31	0
1	В	483	0	528	17	0
1	С	483	0	528	14	0
1	D	485	0	536	5	0
1	Е	481	0	527	4	0
1	F	481	0	527	5	0
2	А	1	0	0	0	0
2	D	1	0	0	0	0
3	D	1	0	0	0	0
3	Е	1	0	0	0	0
3	F	1	0	0	0	0
4	А	54	0	0	4	0
4	В	50	0	0	2	0
4	С	44	0	0	0	0
4	D	56	0	0	1	0
4	Е	58	0	0	0	0
4	F	49	0	0	0	0
All	All	3212	0	3174	51	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 8.

The worst 5 of 51 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:A:65:MET:HE3	1:B:5:ALA:HB2	1.29	1.10
1:B:50:LYS:HB3	1:B:50:LYS:NZ	1.71	1.04
1:A:65:MET:CE	1:B:5:ALA:HB2	1.94	0.96
1:A:5:ALA:HB2	1:C:65:MET:CE	1.99	0.93
1:A:65:MET:SD	4:D:2050:HOH:O	2.31	0.88

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	66/68~(97%)	66 (100%)	0	0	100	100
1	В	66/68~(97%)	65~(98%)	1 (2%)	0	100	100
1	С	66/68~(97%)	65~(98%)	1 (2%)	0	100	100
1	D	66/68~(97%)	65~(98%)	1 (2%)	0	100	100
1	Ε	65/68~(96%)	64 (98%)	1 (2%)	0	100	100
1	F	65/68~(96%)	64 (98%)	1 (2%)	0	100	100
All	All	394/408~(97%)	389~(99%)	5 (1%)	0	100	100

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	55/55~(100%)	55~(100%)	0	100 100
1	В	55/55~(100%)	53~(96%)	2(4%)	35 20
1	С	55/55~(100%)	54 (98%)	1 (2%)	59 48
1	D	55/55~(100%)	55 (100%)	0	100 100
1	Е	54/55~(98%)	54 (100%)	0	100 100
1	F	54/55~(98%)	53~(98%)	1 (2%)	57 46
All	All	328/330~(99%)	324 (99%)	4 (1%)	71 65

All (4) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	В	2	SER
1	В	50	LYS
1	С	51	GLU
1	F	12	LYS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 5 ligands modelled in this entry, 5 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	$\# RSRZ {>}2$	$\mathbf{OWAB}(\mathrm{\AA}^2)$	Q<0.9
1	А	67/68~(98%)	-0.35	4 (5%) 21 17	10, 19, 31, 37	0
1	В	67/68~(98%)	-0.37	2 (2%) 50 44	10, 19, 32, 37	0
1	С	67/68~(98%)	-0.42	1 (1%) 73 70	10, 19, 32, 36	0
1	D	67/68~(98%)	-0.56	1 (1%) 73 70	10, 19, 31, 35	0
1	Е	67/68~(98%)	-0.60	0 100 100	10, 19, 31, 35	0
1	F	67/68~(98%)	-0.56	0 100 100	11, 19, 31, 34	0
All	All	402/408~(98%)	-0.48	8 (1%) 65 61	10, 19, 32, 37	0

The worst 5 of 8 RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	С	68	ALA	3.8
1	А	3	ILE	2.7
1	В	32	GLY	2.4
1	В	2	SER	2.4
1	А	67	LEU	2.2

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathrm{\AA}^2)$	Q<0.9
2	MG	D	1070	1/1	0.98	0.12	24,24,24,24	0
3	CL	F	1069	1/1	0.98	0.05	22,22,22,22	0
3	CL	D	1069	1/1	0.99	0.05	22,22,22,22	0
3	CL	Е	1069	1/1	0.99	0.04	22,22,22,22	0
2	MG	А	1069	1/1	0.99	0.20	25,25,25,25	0

6.5 Other polymers (i)

There are no such residues in this entry.

