

Full wwPDB X-ray Structure Validation Report (i)

Mar 24, 2022 – 04:11 pm GMT

PDB ID	:	6HT7
Title	:	Crystal structure of the WT human mitochondrial chaperonin (ADP:BeF3)14
		complex
Authors	:	Jebara, F.; Patra, M.; Azem, A.; Hirsch, J.
Deposited on	:	2018-10-03
Resolution	:	3.70 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.4, CSD as 541 be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.27
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0267
CCP4	:	7.1.010 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.27

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\;DIFFRACTION$

The reported resolution of this entry is 3.70 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$			
R _{free}	130704	1049 (3.88-3.52)			
Clashscore	141614	1027 (3.86-3.54)			
Ramachandran outliers	138981	1069 (3.88-3.52)			
Sidechain outliers	138945	1065 (3.88-3.52)			

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain						
1	А	549	74%	22%	·				
1	В	549	70%	26%	•				
1	С	549	75%	21%	·				
1	D	549	73%	23%	• •				
1	Е	549	74%	21%	•••				
1	F	549	71%	25%	• •				
1	G	549	72%	24%	•				

Mol	Chain	Length	Quality of chain						
1	Н	549	71%	24%	••				
1	Ι	549	69%	27%	• •				
1	J	549	69%	27%	• •				
1	K	549	74%	22%	·				
1	L	549	71%	25%	• •				
1	М	549	72%	24%	• •				
1	Ν	549	75%	21%	·				
2	1	102	76%	22%	·				
2	2	102	76%	22%	·				
2	О	102	77%	21%	·				
2	Р	102	69%	29%	•				
2	Q	102	73%	25%	•				
2	R	102	74%	25%	·				
2	S	102	76%	22%	·				
2	Т	102	72%	26%	·				
2	U	102	70%	28%	·				
2	V	102	82%	16%	·				
2	W	102	75%	23%	·				
2	Х	102	77%	21%	·				
2	Y	102	72%	26%	·				
2	Z	102	75%	23%	·				

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
4	BEF	В	602	-	-	Х	-
4	BEF	С	602	-	-	Х	-

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
4	BEF	D	602	-	-	Х	-
4	BEF	Е	602	-	-	Х	-
4	BEF	F	602	-	-	Х	-
4	BEF	G	602	-	-	Х	-
4	BEF	Н	602	-	-	Х	-
4	BEF	Ι	602	-	-	Х	-
4	BEF	J	602	-	-	Х	-
4	BEF	L	602	-	-	Х	-
4	BEF	N	602	-	-	Х	-

$6\mathrm{HT7}$

2 Entry composition (i)

There are 6 unique types of molecules in this entry. The entry contains 134311 atoms, of which 68273 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mol	Chain	Residues			Atom	IS			ZeroOcc	AltConf	Trace
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	I	528	Total	С	Η	Ν	0	\mathbf{S}	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	020	8037	2465	4105	672	781	14	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	T	528	Total	\mathbf{C}	Η	Ν	Ο	\mathbf{S}	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	020	8030	2465	4098	672	781	14	Ŭ	0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	Н	528	Total	\mathbf{C}	Η	Ν	Ο	\mathbf{S}	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			020	8035	2465	4103	672	781	14	0	· · · · · ·	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	N	528	Total	\mathbf{C}	Η	Ν	Ο	\mathbf{S}	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		11	020	8035	2465	4103	672	781	14	0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	М	528	Total	\mathbf{C}	Η	Ν	Ο	\mathbf{S}	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		111	020	8037	2465	4105	672	781	14	0	0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	T.	528	Total	\mathbf{C}	Η	Ν	Ο	\mathbf{S}	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			020	8012	2465	4080	672	781	14	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	ĸ	528	Total	\mathbf{C}	Η	Ν	Ο	\mathbf{S}	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	11	520	8032	2465	4100	672	781	14		0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	G	528	Total	\mathbf{C}	Η	Ν	Ο	\mathbf{S}	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	u	520	8036	2465	4104	672	781	14	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	F	528	Total	\mathbf{C}	Η	Ν	Ο	\mathbf{S}	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ľ	526	8037	2465	4105	672	781	14	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	E	528	Total	\mathbf{C}	Η	Ν	Ο	\mathbf{S}	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			526	8037	2465	4105	672	781	14	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	л	528	Total	С	Η	Ν	Ο	\mathbf{S}	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		D	526	8034	2465	4102	672	781	14	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	528	Total	С	Η	Ν	Ο	\mathbf{S}	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	U	526	8035	2465	4103	672	781	14	0	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	528	Total	С	Η	Ν	0	S	0	0	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		I B	528	8037	2465	4105	672	781	14		U	
I I	1	1 Λ	509	Total	С	Н	Ν	0	S	0	0	0
		Л	526	8037	2465	4105	672	781	14	0	U	0

• Molecule 1 is a protein called 60 kDa heat shock protein, mitochondrial.

There are 28 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
J	1	GLY	-	expression tag	UNP P10809
				α r 1	1

Chain	Residue	Modelled	Actual	Comment	Reference
J	2	SER	-	expression tag	UNP P10809
Ι	1	GLY	-	expression tag	UNP P10809
Ι	2	SER	-	expression tag	UNP P10809
Н	1	GLY	-	expression tag	UNP P10809
Н	2	SER	-	expression tag	UNP P10809
N	1	GLY	-	expression tag	UNP P10809
N	2	SER	-	expression tag	UNP P10809
М	1	GLY	-	expression tag	UNP P10809
М	2	SER	-	expression tag	UNP P10809
L	1	GLY	-	expression tag	UNP P10809
L	2	SER	-	expression tag	UNP P10809
K	1	GLY	-	expression tag	UNP P10809
K	2	SER	-	expression tag	UNP P10809
G	1	GLY	-	expression tag	UNP P10809
G	2	SER	-	expression tag	UNP P10809
F	1	GLY	-	expression tag	UNP P10809
F	2	SER	-	expression tag	UNP P10809
Е	1	GLY	-	expression tag	UNP P10809
Е	2	SER	-	expression tag	UNP P10809
D	1	GLY	-	expression tag	UNP P10809
D	2	SER	-	expression tag	UNP P10809
С	1	GLY	-	expression tag	UNP P10809
С	2	SER	-	expression tag	UNP P10809
В	1	GLY	-	expression tag	UNP P10809
В	2	SER	-	expression tag	UNP P10809
A	1	GLY	-	expression tag	UNP P10809
А	2	SER	-	expression tag	UNP P10809

• Molecule 2 is a protein called 10 kDa heat shock protein, mitochondrial.

Mol	Chain	Residues			Aton	ns			ZeroOcc	AltConf	Trace
9	v	100	Total	С	Η	Ν	0	S	0	0	0
		100	1527	483	775	126	142	1	0	0	0
2	117	100	Total	С	Η	Ν	0	\mathbf{S}	0	0	0
2	vv	100	1527	483	775	126	142	1	0	0	0
2	\mathbf{a} V	100	Total	С	Η	Ν	0	\mathbf{S}	0	0	0
2	v		1527	483	775	126	142	1		0	0
2	2	100	Total	С	Η	Ν	Ο	\mathbf{S}	0	0	0
2	2	100	1527	483	775	126	142	1	0	0	
2	1	100	Total	С	Η	Ν	Ο	\mathbf{S}	0	0	0
2		100	1527	483	775	126	142	1	0	0	0
2	2 7	100	Total	C	H	N	Ō	S	0	0	0
2			1527	483	775	126	142	1		0	

Mol	Chain	Residues		Atoms					ZeroOcc	AltConf	Trace
0	V	100	Total	С	Η	Ν	0	S	0	0	0
	1	100	1527	483	775	126	142	1	0	0	0
9	9 II	100	Total	С	Η	Ν	0	\mathbf{S}	0	0	0
	100	1527	483	775	126	142	1	0	0	0	
2	т	100	Total	С	Η	Ν	0	\mathbf{S}	0	0	0
2	T	100	1527	483	775	126	142	1	0	0	0
2	q	100	Total	С	Η	Ν	0	\mathbf{S}	0	0	0
2	U U		1527	483	775	126	142	1	0	0	0
2	В	100	Total	С	Η	Ν	0	\mathbf{S}	0	0	0
2	н	100	1527	483	775	126	142	1	0	0	0
2	0	100	Total	С	Η	Ν	Ο	\mathbf{S}	0	0	0
2	Q	100	1527	483	775	126	142	1	0	0	0
9	р	100	Total	С	Η	Ν	0	S	0	0	0
	100	1527	483	775	126	142	1	0	U		
2 O	100	Total	С	Η	Ν	0	S	0	0	0	
		1527	483	775	126	142	1		U		

Continued from previous page...

• Molecule 3 is ADENOSINE-5'-DIPHOSPHATE (three-letter code: ADP) (formula: $C_{10}H_{15}N_5O_{10}P_2$).

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf
3	Т	1	Total	С	Ν	Ο	Р	0	0
0	J	1	27	10	5	10	2	0	0
2	Т	1	Total	С	Ν	Ο	Р	0	0
0	1	1	27	10	5	10	2	0	0
2	Ц	1	Total	С	Ν	Ο	Р	0	0
э п		1	27	10	5	10	2	0	0

6HT7

Mol	Chain	Residues		Ato	oms			ZeroOcc	AltConf	
9	N	1	Total	С	Ν	Ο	Р	0	0	
5 1		1	27	10	5	10	2	0	0	
3	М	1	Total	С	Ν	Ο	Р	0	0	
J	111	1	27	10	5	10	2	0	0	
3	T	1	Total	С	Ν	Ο	Р	0	0	
5	Ľ	1	27	10	5	10	2	0	0	
3	K	1	Total	\mathbf{C}	Ν	Ο	Р	0	0	
	11	I	27	10	5	10	2	0	0	
3	G	1	Total	\mathbf{C}	Ν	Ο	Р	0	0	
0	ŭ	Ĩ	27	10	5	10	2	0	0	
3	F	1	Total	\mathbf{C}	Ν	Ο	Р	0	0	
0	1	Ĩ	27	10	5	10	2	0	0	
3	E	1	Total	С	Ν	Ο	Р	0	0	
0		Ŧ	27	10	5	10	2	0	0	
3	Л	1	Total	С	Ν	Ο	Р	0	0	
	D	1	27	10	5	10	2	0		
3	С	1	Total	С	Ν	Ο	Р	0	0	
0	0	1	27	10	5	10	2	0	0	
3	В	1	Total	С	Ν	Ο	Р	0	0	
		1	27	10	5	10	2	0	0	
3	А	1	Total	С	Ν	Ο	Р	0	0	
			27	10	5	10	2	U		

• Molecule 4 is BERYLLIUM TRIFLUORIDE ION (three-letter code: BEF) (formula: BeF_3).

Mol	Chain	Residues	At	oms		ZeroOcc	AltConf
4	т	1	Total	Be	F	0	0
4	J	L	4	1	3	0	0
4	Т	1	Total	Be	F	0	0
4	1	T	4	1	3	0	0
4	н	1	Total	Be	\mathbf{F}	0	0
-1	11	T	4	1	3	0	0
4	Ν	1	Total	Be	\mathbf{F}	0	0
	11	T	4	1	3	0	0
4	М	1	Total	Be	\mathbf{F}	0	0
- T	101	I	4	1	3	0	0
4	T.	1	Total	Be	F	0	0
-1	Ľ	T	4	1	3	0	0
4	K	1	Total	Be	F	0	0
	IX	T	4	1	3	0	0
4	C	1	Total	Be	F	0	0
т	ŭ	I	4	1	3	0	0
4	F	1	Total	Be	F	0	0
т	Ľ	I	4	1	3	0	0
4	E	1	Total	Be	F	0	0
	Ц	T	4	1	3	0	0
	Л	1	Total	Be	F	0	0
	D	T	4	1	3	0	0
4	С	1	Total	Be	F	0	0
		L	4	1	3	0	0
	В	1	Total	Be	F	0	0
		1	4	1	3		0
4	А	1	Total	Be	\mathbf{F}	0	0
- T	11	1	4	1	3		U

• Molecule 5 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	J	1	Total Mg 1 1	0	0
5	Ι	1	Total Mg 1 1	0	0
5	Н	1	Total Mg 1 1	0	0
5	Ν	1	Total Mg 1 1	0	0
5	М	1	Total Mg 1 1	0	0
5	L	1	Total Mg 1 1	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	K	1	Total Mg 1 1	0	0
5	G	1	Total Mg 1 1	0	0
5	F	1	Total Mg 1 1	0	0
5	Ε	1	Total Mg 1 1	0	0
5	D	1	Total Mg 1 1	0	0
5	С	1	Total Mg 1 1	0	0
5	В	1	Total Mg 1 1	0	0
5	А	1	Total Mg 1 1	0	0

• Molecule 6 is POTASSIUM ION (three-letter code: K) (formula: K).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	J	1	Total K 1 1	0	0
6	Ι	1	Total K 1 1	0	0
6	Н	1	Total K 1 1	0	0
6	Ν	1	Total K 1 1	0	0
6	М	1	Total K 1 1	0	0
6	L	1	Total K 1 1	0	0
6	K	1	Total K 1 1	0	0
6	G	1	Total K 1 1	0	0
6	F	1	Total K 1 1	0	0
6	Е	1	Total K 1 1	0	0
6	D	1	Total K 1 1	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	С	1	Total K 1 1	0	0
6	В	1	Total K 1 1	0	0
6	А	1	Total K 1 1	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

 \bullet Molecule 1: 60 kDa heat shock protein, mitochondrial

GLY MET GLY GLY GLY GLY GLY MET MET GLY MET MET MET

 \bullet Molecule 1: 60 kDa heat shock protein, mitochondrial

• Molecule 1: 60 kDa heat shock protein, mitochondrial

V390 L289 V413 D291 C416 C297 C416 C297 C420 C301 L420 C301 L420 C301 L421 C301 L420 C301 L421 C301 L422 C301 L423 L306 L424 C301 L425 L306 L444 L306 L444 L306 L444 L308 L444 L308 L444 L308 L445 L308 L444 L318 L444 L318 L444 L318 L444 L318 L444 L318 L445 L327 L444 L318 L444 L318 L444 L318 L444 L318 L444 L318 L444 L318 L446</t

GLY GLY GLY GLY GLY GLY MET MET PHE

• Molecule 1: 60 kDa heat shock protein, mitochondrial

• Molecule 1: 60 kDa heat shock protein, mitochondrial

Chain E:	74%	21% •	·
G1 V6 R13 R13 R13 R13 R26 M31 N26 M31 N26 S59 S59 V66 V66	478 478 087 087 088 189 189 189 118 118 112 1122 1122 112	T130 T140 F141 E142 E142 E142 M166 M166 G170 G170 K171	6173 V174 T176 T176 E188
M133 M137 6197 6198 7199 7199 7199 7206 7206 7206 7206 7206 7206 7206 7211 7206 7211 7206 7211 7206 7211 7206 7211 7206 7211 7206 7216 7207 7206 7206 7206 7206 7206 7206 720	P.235 P.235 A.235 D.255 P.255 P.255 P.255 P.255 P.255 P.255 P.256	P279 P279 G280 R284 R285 R289 R289 A295 A295 A296	F301 F301 T307 L308
N309 L310 E311 E311 E311 D312 V313 (319 K320 D320 D320 D330 D330 D330 D330 L333 L333 L333 L33	1350 1351 1351 1351 1355 1355 1355 1355	0375 0375 0377 0377 0377 0377 0379 0379 0379 0379	L427 L427 L430
R446 1454 1454 1455 1455 1455 14467 14467 14467 14467 14489 14467 14489 144999 14499 14499 14499 14499 14499 14494	ES 28 ES 28 LLY LLY LLY RRD MET ALA ALA ALA ALA ALA ALA CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	GLY GLY MET PHE	
• Molecule 1: 60 kDa heat shoch	x protein, mitochondrial		
Chain D:	73%	23% •	•
G1 122 122 123 125 125 123 125 123 123 123 123 123 123 123 123 123 123	v120 v124 v124 v127 v127 v147 v147 v147 v147 v147 v147 v147 v14	M166 166 0170 0171 171 0173 0173 1176 1176 1183	1190

T385 N284 M133 T385 K280 K197 E410 D21 K290 K197 E410 D21 K290 K197 L420 A295 K290 K197 L421 A295 K290 K197 L420 A295 K290 K199 L421 T296 K201 K203 L421 T296 K201 K215 L421 T296 K215 K216 L430 L308 K215 K216 L446 K313 K215 K216 L446 K313 K215 K216 L446 K331 K215 K216 L446 K331 K215 K216 L446 K331 K216 K226 L448 K331 K245 K236 L449 K331 K245 K246 L449 K331 K245 K246 L449 K331

GLY GLY GLY GLY MET MET MET MET

 \bullet Molecule 1: 60 kDa heat shock protein, mitochondrial

• Molecule 1: 60 kDa heat shock protein, mitochondrial

 \bullet Molecule 1: 60 kDa heat shock protein, mitochondrial

Chain Z:	75%	23% •
MET ALA G3 F9 F9 F10	L17 L17 L17 127 128 133 133 133 133 133 133 133 133 133 13	
• Molecule	2: 10 kDa heat shock protein, mitochondrial	
Chain Y:	72%	26% •
MET ALA G3 F6 P11 P11	VII 5 117 117 117 117 127 128 128 128 128 128 128 128 128 128 128	F91 R92 D93 D102
• Molecule	2: 10 kDa heat shock protein, mitochondrial	
Chain U:	70%	28% •
MET ALA G3 F6 K7 K8 K7 F10	P11 P11 P11 P11 P11 P11 P12 P12 P12 P12	L97 D102
• Molecule	2: 10 kDa heat shock protein, mitochondrial	
Chain T:	72%	26% •
MET ALA G3 F6 F9 L10	F 11 F 12 F 14 F 15 F 14 F 17 F 28 F 28 F 28 F 28 F 28 F 28 F 28 F 28	Y100 V101 D102
• Molecule	2: 10 kDa heat shock protein, mitochondrial	
Chain S:	76%	22% ·
MET ALA G3 F6 R7 K8 K8 K8 K8 K8 K8 K8 K8 K8 K8 K8 K8 K8	P11 127 127 127 127 131 131 131 133 133 133 133 133 133 13	
• Molecule	2: 10 kDa heat shock protein, mitochondrial	
Chain R:	74%	25% •
MET ALA G3 F6 R7 L12	R15 L17 L17 R20 R20 R20 R31 R31 R31 R33 R33 R33 R33 R33 R33 R33	D93 L97 D102
• Molecule	2: 10 kDa heat shock protein, mitochondrial	
Chain Q:	73%	25% •
MET ALA G3 G3 F6 P11 L12	R15 117 117 117 127 121 131 131 133 133 133 133 133 133 133	038 D102
• Molecule	2: 10 kDa heat shock protein, mitochondrial	

 \bullet Molecule 2: 10 kDa heat shock protein, mitochondrial

Chain (D:									77	7%											2	21%	•	1
MET ALA G3 F6	F9	L17	R20	A23	T27	131	<mark>(138</mark>	V41	T45	A48	K70	L73	G78	671 671	V81	V82	ΓΩΩ	F89	L90 F01	L97	D102				

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 21 21 21	Depositor
Cell constants	141.59Å 295.78Å 326.53Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
$\mathbf{P}_{\text{oscolution}}(\hat{\mathbf{A}})$	48.95 - 3.70	Depositor
Resolution (A)	48.95 - 3.70	EDS
% Data completeness	98.7 (48.95 - 3.70)	Depositor
(in resolution range)	$86.8 \ (48.95 - 3.70)$	EDS
R_{merge}	(Not available)	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.34 (at 3.67 \text{\AA})$	Xtriage
Refinement program	PHENIX	Depositor
B B.	(Not available) , (Not available)	Depositor
10, 10 free	0.265 , 0.300	DCC
R_{free} test set	2000 reflections $(1.38%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	110.0	Xtriage
Anisotropy	0.504	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	(Not available), (Not available)	EDS
L-test for twinning ²	$< L > = 0.45, < L^2 > = 0.28$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.92	EDS
Total number of atoms	134311	wwPDB-VP
Average B, all atoms $(Å^2)$	161.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 25.75 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 2.9942e-03. The detected translational NCS is most likely also responsible for the elevated intensity ratio.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: BEF, ADP, MG, K

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bo	ond angles
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.35	0/3964	0.53	0/5347
1	В	0.35	0/3964	0.53	0/5347
1	С	0.36	0/3964	0.55	0/5347
1	D	0.34	0/3964	0.53	0/5347
1	Е	0.35	0/3964	0.53	0/5347
1	F	0.37	0/3964	0.54	0/5347
1	G	0.37	0/3964	0.55	0/5347
1	Н	0.34	0/3964	0.54	1/5347~(0.0%)
1	Ι	0.36	0/3964	0.55	0/5347
1	J	0.36	0/3964	0.53	0/5347
1	Κ	0.35	0/3964	0.54	0/5347
1	L	0.37	0/3964	0.56	0/5347
1	М	0.35	0/3964	0.54	0/5347
1	Ν	0.34	0/3964	0.53	0/5347
2	1	0.32	0/763	0.62	0/1026
2	2	0.32	0/763	0.57	0/1026
2	0	0.34	0/763	0.60	0/1026
2	Р	0.33	0/763	0.62	0/1026
2	Q	0.34	0/763	0.64	0/1026
2	R	0.35	0/763	0.61	0/1026
2	S	0.31	0/763	0.58	0/1026
2	Т	0.33	0/763	0.61	0/1026
2	U	0.35	0/763	0.60	0/1026
2	V	0.32	0/763	0.58	0/1026
2	W	0.32	0/763	0.61	0/1026
2	Х	0.35	0/763	0.60	0/1026
2	Y	0.35	0/763	0.59	0/1026
2	Ζ	0.32	0/763	0.57	0/1026
All	All	0.35	0/66178	0.55	1/89222~(0.0%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if

the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А	0	1
1	В	0	1
1	С	0	1
1	D	0	2
1	Е	0	2
1	F	0	1
1	G	0	1
1	Н	0	1
1	Ι	0	1
1	J	0	1
1	Κ	0	1
1	L	0	1
1	М	0	1
1	Ν	0	1
All	All	0	16

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	Н	373	LEU	CA-CB-CG	5.83	128.71	115.30

There are no chirality outliers.

All (16) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	А	268	LYS	Peptide
1	В	268	LYS	Peptide
1	С	268	LYS	Peptide
1	D	268	LYS	Peptide
1	D	373	LEU	Peptide
1	Е	268	LYS	Peptide
1	Ε	373	LEU	Peptide
1	F	268	LYS	Peptide
1	G	268	LYS	Peptide
1	Н	268	LYS	Peptide
1	Ι	268	LYS	Peptide
1	J	268	LYS	Peptide

Continuea from previous page						
Mol	Chain	Res	Type	Group		

1 0

1.101	0	-000	-JP°	on our
1	Κ	268	LYS	Peptide
1	L	268	LYS	Peptide
1	М	268	LYS	Peptide
1	Ν	268	LYS	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	3932	4105	4111	81	0
1	В	3932	4105	4110	101	0
1	С	3932	4103	4111	82	0
1	D	3932	4102	4111	86	0
1	Е	3932	4105	4111	76	0
1	F	3932	4105	4111	96	1
1	G	3932	4104	4110	103	0
1	Н	3932	4103	4111	98	0
1	Ι	3932	4098	4109	107	0
1	J	3932	4105	4111	105	2
1	K	3932	4100	4111	85	0
1	L	3932	4080	4111	111	0
1	М	3932	4105	4111	93	0
1	N	3932	4103	4111	73	0
2	1	752	775	775	25	0
2	2	752	775	775	19	0
2	0	752	775	775	18	0
2	Р	752	775	775	28	0
2	Q	752	775	775	25	0
2	R	752	775	775	23	0
2	S	752	775	775	17	0
2	Т	752	775	775	25	0
2	U	752	775	775	34	1
2	V	752	775	775	14	0
2	W	752	775	775	19	0
2	X	752	775	775	23	0
2	Y	752	775	775	23	0
2	Ζ	752	775	775	19	0
3	А	27	0	12	3	0

6HT7	
------	--

	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
2	B	27		10	2	
3	D C	21	0	12	8	0
3 3		27	0	12	4	0
3	E E	21	0	12	3	0
3 3	F	21	0	12	2	0
3	C I	27	0	12	6	0
3	- U Н	21	0	12	0	0
3	I	27	0	12	5	0
3	I	21	0	12	<u> </u>	0
3	5 K	27	0	12	2	0
3	L	27	0	12	3	0
3	M	27	0	12	3	0
3	N	27	0	12	5	0
	Δ	4	0	0	1	0
4	B	4	0	0	2	0
4	C	4	0	0	2	0
4	D	4	0	0	3	0
4	E	4	0	0	2	0
4	F	4	0	0	2	0
4	G	4	0	0	4	0
4	H	4	0	0	2	0
4	I	4	0	0	2	0
4	J	4	0	0	3	0
4	K	4	0	0	0	0
4	L	4	0	0	2	0
4	M	4	0	0	1	0
4	N	4	0	0	2	0
5	A	1	0	0	0	0
5	В	1	0	0	0	0
5	С	1	0	0	0	0
5	D	1	0	0	0	0
5	Е	1	0	0	0	0
5	F	1	0	0	0	0
5	G	1	0	0	0	0
5	Н	1	0	0	0	0
5	Ι	1	0	0	0	0
5	J	1	0	0	0	0
5	K	1	0	0	0	0
5	L	1	0	0	0	0
5	М	1	0	0	0	0
5	N	1	0	0	0	0
6	А	1	0	0	0	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
6	В	1	0	0	0	0
6	С	1	0	0	0	0
6	D	1	0	0	0	0
6	Е	1	0	0	0	0
6	F	1	0	0	0	0
6	G	1	0	0	0	0
6	Н	1	0	0	0	0
6	Ι	1	0	0	0	0
6	J	1	0	0	0	0
6	Κ	1	0	0	0	0
6	L	1	0	0	0	0
6	М	1	0	0	0	0
6	N	1	0	0	0	0
All	All	66038	68273	68568	1510	2

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 11.

All (1510) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:L:31:MET:O	1:L:455:ILE:CD1	1.69	1.40
1:L:95:LEU:HD21	1:L:451:PRO:CG	1.59	1.29
1:L:31:MET:C	1:L:455:ILE:HD13	1.60	1.22
1:L:95:LEU:CD2	1:L:451:PRO:HG3	1.69	1.21
1:L:31:MET:SD	1:L:454:THR:HG22	1.83	1.18
1:L:31:MET:O	1:L:455:ILE:HD13	0.98	1.15
1:I:203:TYR:OH	1:H:303:GLU:OE2	1.81	0.97
1:L:454:THR:O	1:L:455:ILE:HG22	1.66	0.95
1:L:31:MET:SD	1:L:454:THR:CG2	2.55	0.95
1:N:327:THR:OG1	1:N:330:ASP:OD1	1.85	0.94
3:D:601:ADP:O2A	4:D:602:BEF:F1	1.76	0.94
1:E:327:THR:OG1	1:E:330:ASP:OD1	1.85	0.92
1:A:327:THR:OG1	1:A:330:ASP:OD1	1.88	0.91
1:G:496:ASP:OD2	3:G:601:ADP:O2'	1.89	0.90
1:G:327:THR:OG1	1:G:330:ASP:OD1	1.89	0.90
1:G:209:LYS:O	1:F:345:LYS:NZ	2.05	0.90
3:G:601:ADP:O2A	4:G:602:BEF:F1	1.80	0.90
1:N:268:LYS:O	1:N:270:GLY:N	2.05	0.89
1:L:32:GLY:HA3	1:L:455:ILE:HG12	1.54	0.89
1:G:268:LYS:O	1:G:270:GLY:N	2.06	0.89

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:268:LYS:O	1:C:270:GLY:N	2.04	0.89
1:L:421:LEU:HD11	1:L:452:ALA:CB	2.03	0.89
1:M:268:LYS:O	1:M:270:GLY:N	2.07	0.88
1:A:268:LYS:O	1:A:270:GLY:N	2.07	0.87
3:J:601:ADP:O1A	4:J:602:BEF:F1	1.82	0.87
1:D:268:LYS:O	1:D:270:GLY:N	2.08	0.86
1:L:421:LEU:HD11	1:L:452:ALA:HB3	1.56	0.86
1:M:327:THR:OG1	1:M:330:ASP:OD1	1.93	0.85
1:E:268:LYS:O	1:E:270:GLY:N	2.08	0.85
3:I:601:ADP:O1A	4:I:602:BEF:F1	1.85	0.84
1:J:268:LYS:O	1:J:270:GLY:N	2.09	0.84
1:L:33:PRO:O	1:L:455:ILE:HD11	1.78	0.84
1:B:268:LYS:O	1:B:270:GLY:N	2.09	0.84
1:K:268:LYS:O	1:K:270:GLY:N	2.10	0.84
1:I:268:LYS:O	1:I:270:GLY:N	2.09	0.84
1:H:268:LYS:O	1:H:270:GLY:N	2.10	0.84
1:K:327:THR:OG1	1:K:330:ASP:OD1	1.93	0.83
1:F:268:LYS:O	1:F:270:GLY:N	2.12	0.83
1:F:140:THR:OG1	1:F:142:GLU:OE1	1.97	0.82
1:B:87:ASP:OD1	4:B:602:BEF:F3	1.88	0.82
1:F:327:THR:OG1	1:F:330:ASP:OD1	1.97	0.81
1:L:95:LEU:HD21	1:L:451:PRO:HG3	0.83	0.81
1:L:421:LEU:CD1	1:L:452:ALA:HB2	2.11	0.80
2:Y:35:GLU:OE1	2:Y:38:GLN:NE2	2.15	0.80
1:I:376:GLY:O	1:I:377:VAL:HG13	1.81	0.80
1:K:140:THR:OG1	1:K:142:GLU:OE1	2.01	0.79
1:L:268:LYS:O	1:L:270:GLY:N	2.15	0.79
1:H:87:ASP:OD1	4:H:602:BEF:F3	1.91	0.79
1:L:31:MET:CE	1:L:454:THR:HG21	2.12	0.79
1:A:140:THR:OG1	1:A:142:GLU:OE1	2.00	0.79
1:L:217:ASP:N	1:L:322:GLY:O	2.16	0.78
1:D:327:THR:OG1	1:D:330:ASP:OD1	2.00	0.78
1:L:421:LEU:CD1	1:L:452:ALA:CB	2.63	0.77
1:J:327:THR:OG1	1:J:330:ASP:OD1	2.04	0.75
1:M:90:THR:OG1	4:M:602:BEF:F2	1.92	0.75
1:F:13:ARG:NH2	1:F:519:GLU:OE1	2.20	0.73
3:C:601:ADP:O2A	4:C:602:BEF:F1	1.96	0.73
1:B:327:THR:OG1	1:B:330:ASP:OD1	2.07	0.73
1:L:421:LEU:HD13	1:L:452:ALA:HB2	1.69	0.72
1:D:197:ARG:HD3	1:D:277:LYS:HB2	1.71	0.72
3:C:601:ADP:O2B	3:C:601:ADP:H5'2	1.89	0.72

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:D:140:THR:OG1	1:D:142:GLU:OE1	2.07	0.72
1:F:291:ASP:OD1	1:F:346:ARG:NE	2.23	0.71
1:J:197:ARG:HD3	1:J:277:LYS:HB2	1.71	0.71
1:M:197:ARG:HD3	1:M:277:LYS:HB2	1.73	0.71
1:A:314:GLN:OE1	1:A:316:HIS:NE2	2.23	0.70
1:L:31:MET:CE	1:L:454:THR:CG2	2.69	0.70
1:C:13:ARG:NH2	1:C:519:GLU:OE1	2.24	0.70
1:B:140:THR:OG1	1:B:142:GLU:OE1	2.08	0.70
1:G:428:ASP:OD1	1:G:445:LYS:NZ	2.23	0.70
1:I:140:THR:OG1	1:I:142:GLU:OE1	2.10	0.70
1:I:327:THR:OG1	1:I:330:ASP:OD1	2.09	0.70
1:C:25:ASP:OD1	1:C:97:ARG:NH1	2.25	0.69
1:H:322:GLY:HA3	1:H:335:LYS:HE3	1.75	0.69
1:B:291:ASP:OD1	1:B:346:ARG:NE	2.24	0.69
1:G:234:VAL:HG23	2:U:31:ILE:HG21	1.75	0.69
1:C:327:THR:OG1	1:C:330:ASP:OD1	2.10	0.69
1:C:496:ASP:OD2	3:C:601:ADP:O2'	2.11	0.69
1:L:13:ARG:NH2	1:L:519:GLU:OE1	2.26	0.69
2:O:20:ARG:NH1	2:0:41:VAL:O	2.25	0.68
1:C:90:THR:OG1	4:C:602:BEF:F2	1.95	0.68
1:G:302:GLY:N	1:G:308:LEU:O	2.24	0.68
1:H:327:THR:OG1	1:H:330:ASP:OD1	2.11	0.68
1:E:197:ARG:HD3	1:E:277:LYS:HB2	1.76	0.68
1:M:496:ASP:OD2	3:M:601:ADP:O2'	2.12	0.67
1:I:25:ASP:OD1	1:I:97:ARG:NH1	2.27	0.67
1:N:13:ARG:NH2	1:N:519:GLU:OE1	2.28	0.67
1:L:32:GLY:HA3	1:L:455:ILE:CG1	2.25	0.67
1:L:140:THR:OG1	1:L:142:GLU:OE1	2.11	0.67
2:P:35:GLU:OE1	2:P:38:GLN:NE2	2.28	0.67
1:H:291:ASP:OD1	1:H:346:ARG:NE	2.24	0.67
1:K:209:LYS:HG3	1:K:210:GLY:H	1.60	0.67
1:L:31:MET:HE3	1:L:454:THR:HG21	1.76	0.66
1:J:25:ASP:OD1	1:J:97:ARG:NH1	2.27	0.66
1:I:496:ASP:OD2	3:I:601:ADP:O2'	2.09	0.65
1:N:314:GLN:OE1	1:N:316:HIS:NE2	2.25	0.65
1:L:197:ARG:HD3	1:L:277:LYS:HB2	1.78	0.65
1:C:291:ASP:OD1	1:C:346:ARG:NE	2.26	0.65
1:K:197:ARG:HD3	1:K:277:LYS:HB2	1.77	0.65
1:N:197:ARG:HD3	1:N:277:LYS:HB2	1.77	0.65
1:J:140:THR:OG1	1:J:142:GLU:OE1	2.15	0.64
1:I:90:THR:OG1	4:I:602:BEF:F2	2.03	0.64

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:E:25:ASP:OD1	1:E:97:ARG:NH1	2.31	0.64
1:I:13:ARG:NH2	1:I:519:GLU:OE1	2.30	0.64
1:M:263:VAL:HG21	1:L:305:GLY:HA3	1.80	0.64
1:C:140:THR:OG1	1:C:142:GLU:OE1	2.16	0.64
1:G:197:ARG:HD3	1:G:277:LYS:HB2	1.79	0.64
2:S:37:SER:O	2:S:38:GLN:HG2	1.98	0.64
1:M:25:ASP:OD1	1:M:97:ARG:NH1	2.31	0.63
1:B:215:PHE:HB2	1:B:324:VAL:HB	1.80	0.63
3:F:601:ADP:O2B	4:F:602:BEF:F1	2.07	0.63
1:J:255:ASP:OD1	1:J:256:GLY:N	2.32	0.63
1:N:140:THR:OG1	1:N:142:GLU:OE1	2.16	0.63
1:M:209:LYS:HG3	1:M:210:GLY:H	1.64	0.63
1:I:197:ARG:HD3	1:I:277:LYS:HB2	1.80	0.62
2:P:37:SER:O	2:P:38:GLN:HG2	2.00	0.62
1:F:174:VAL:O	1:F:377:VAL:HB	1.99	0.62
1:I:190:ILE:O	1:I:376:GLY:HA2	2.00	0.62
1:A:197:ARG:HD3	1:A:277:LYS:HB2	1.80	0.62
1:A:209:LYS:HG3	1:A:210:GLY:H	1.64	0.62
1:G:24:ALA:HB3	1:G:97:ARG:HD3	1.82	0.62
2:Q:37:SER:O	2:Q:38:GLN:HG2	2.00	0.62
1:J:230:ILE:HD12	2:X:34:PRO:HD2	1.80	0.61
1:G:25:ASP:OD1	1:G:97:ARG:NH1	2.30	0.61
2:X:23:ALA:O	2:X:38:GLN:NE2	2.31	0.61
1:G:117:ARG:NH1	1:G:513:SER:OG	2.34	0.61
2:W:37:SER:O	2:W:38:GLN:HG2	2.01	0.61
1:D:25:ASP:OD1	1:D:97:ARG:NH1	2.34	0.61
2:U:27:THR:CG2	2:U:31:ILE:HG22	2.31	0.61
1:D:496:ASP:OD2	3:D:601:ADP:O2'	2.14	0.61
1:L:420:LEU:HD22	1:L:451:PRO:HG2	1.82	0.61
3:N:601:ADP:O3B	4:N:602:BEF:F1	2.07	0.61
2:Q:35:GLU:OE1	2:Q:38:GLN:NE2	2.34	0.61
1:I:197:ARG:NE	1:I:278:ALA:O	2.34	0.61
1:G:209:LYS:HG3	1:G:210:GLY:H	1.66	0.60
3:J:601:ADP:O3B	4:J:602:BEF:F1	2.09	0.60
1:J:302:GLY:N	1:J:308:LEU:O	2.26	0.60
1:E:209:LYS:HG3	1:E:210:GLY:H	1.67	0.60
1:J:496:ASP:OD2	3:J:601:ADP:O2'	2.13	0.60
1:N:209:LYS:HG3	1:N:210:GLY:H	1.67	0.60
1:H:209:LYS:HG3	1:H:210:GLY:H	1.66	0.60
1:C:203:TYR:OH	1:B:303:GLU:OE2	2.19	0.60
2:R:34:PRO:CD	1:D:230:ILE:HD12	2.32	0.60

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:N:174:VAL:HG21	1:N:371:ALA:HB2	1.84	0.59
2:P:31:ILE:HG21	1:B:234:VAL:HG23	1.84	0.59
1:I:263:VAL:HG21	1:H:305:GLY:HA3	1.85	0.59
1:F:197:ARG:HD3	1:F:277:LYS:HB2	1.82	0.59
1:B:197:ARG:HD3	1:B:277:LYS:HB2	1.85	0.59
1:J:371:ALA:HB1	1:J:377:VAL:HG11	1.83	0.59
1:H:197:ARG:HD3	1:H:277:LYS:HB2	1.82	0.59
1:L:496:ASP:OD2	3:L:601:ADP:O2'	2.18	0.59
1:D:209:LYS:HG3	1:D:210:GLY:H	1.66	0.59
1:M:203:TYR:OH	1:L:303:GLU:OE2	2.13	0.59
2:U:37:SER:O	2:U:38:GLN:HG2	2.01	0.59
1:B:209:LYS:HG3	1:B:210:GLY:H	1.66	0.59
2:P:34:PRO:HD3	1:B:261:THR:HG22	1.83	0.59
1:E:169:VAL:HG12	1:E:173:GLY:HA3	1.85	0.59
1:I:174:VAL:HB	1:I:377:VAL:HG12	1.84	0.58
1:L:209:LYS:HG3	1:L:210:GLY:H	1.67	0.58
3:B:601:ADP:O2B	4:B:602:BEF:F1	2.11	0.58
1:E:489:MET:O	1:E:493:GLY:N	2.36	0.58
1:E:496:ASP:OD2	3:E:601:ADP:O2'	2.19	0.58
2:Y:20:ARG:NH1	2:Y:41:VAL:O	2.36	0.58
1:L:117:ARG:NH1	1:L:513:SER:OG	2.37	0.58
1:K:25:ASP:OD1	1:K:97:ARG:NH1	2.36	0.58
1:I:209:LYS:HG3	1:I:210:GLY:H	1.69	0.58
1:K:489:MET:O	1:K:493:GLY:N	2.37	0.58
1:B:255:ASP:OD1	1:B:256:GLY:N	2.37	0.58
1:G:234:VAL:CG2	2:U:31:ILE:HG21	2.34	0.58
1:J:209:LYS:HG3	1:J:210:GLY:H	1.68	0.58
1:K:188:GLU:OE1	1:K:381:LYS:NZ	2.37	0.58
1:G:197:ARG:NE	1:G:278:ALA:O	2.37	0.57
1:F:25:ASP:OD1	1:F:97:ARG:NH1	2.36	0.57
1:F:255:ASP:OD1	1:F:256:GLY:N	2.36	0.57
1:H:222:LEU:HD23	1:H:250:ILE:HB	1.87	0.57
1:L:255:ASP:OD1	1:L:256:GLY:N	2.35	0.57
1:N:253:ASP:OD1	1:N:254:VAL:N	2.37	0.57
1:J:234:VAL:HG23	2:X:31:ILE:HG21	1.87	0.57
3:L:601:ADP:O3B	4:L:602:BEF:F1	2.13	0.57
1:G:427:LEU:HA	1:G:430:LEU:HD23	1.87	0.57
2:1:6:PHE:HB2	2:1:48:ALA:HB2	1.86	0.57
1:L:447:THR:O	1:L:451:PRO:HD3	2.04	0.57
1:F:209:LYS:HG3	1:F:210:GLY:H	1.70	0.57
1:C:197:ARG:HD3	1:C:277:LYS:HB2	1.85	0.57

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:2:90:LEU:HD23	2:1:97:LEU:HD12	1.87	0.57
1:D:255:ASP:OD1	1:D:256:GLY:N	2.38	0.57
1:M:427:LEU:HA	1:M:430:LEU:HD23	1.87	0.57
1:C:209:LYS:HG3	1:C:210:GLY:H	1.70	0.57
1:H:102:GLU:OE1	1:H:446:ARG:NH1	2.38	0.57
1:N:169:VAL:HG12	1:N:173:GLY:HA3	1.86	0.57
2:P:31:ILE:HD11	1:B:237:LEU:HD22	1.87	0.57
1:D:117:ARG:NH1	1:D:513:SER:OG	2.38	0.57
1:B:13:ARG:NH2	1:B:519:GLU:OE1	2.38	0.57
2:Y:37:SER:O	2:Y:38:GLN:HG2	2.05	0.56
1:N:322:GLY:HA3	1:N:335:LYS:HE3	1.87	0.56
1:F:248:VAL:HG11	1:F:324:VAL:HG11	1.87	0.56
1:F:350:ILE:HG22	1:F:370:LEU:HD11	1.88	0.56
1:A:117:ARG:NH1	1:A:513:SER:OG	2.39	0.56
1:E:31:MET:SD	1:E:454:THR:OG1	2.59	0.56
1:D:314:GLN:OE1	1:D:316:HIS:NE2	2.38	0.56
1:I:288:GLN:OE1	1:I:372:LYS:NZ	2.21	0.56
3:H:601:ADP:O3B	4:H:602:BEF:F1	2.13	0.56
1:A:248:VAL:HG11	1:A:324:VAL:HG11	1.88	0.56
1:I:362:GLU:O	1:I:366:LEU:HB2	2.06	0.56
1:N:255:ASP:OD1	1:N:256:GLY:N	2.37	0.56
1:G:306:LEU:HG	1:G:308:LEU:HD23	1.88	0.56
1:B:427:LEU:HA	1:B:430:LEU:HD23	1.87	0.56
1:M:117:ARG:NH1	1:M:513:SER:OG	2.39	0.56
1:G:24:ALA:HA	1:G:27:VAL:HG12	1.87	0.56
1:B:117:ARG:NH1	1:B:513:SER:OG	2.39	0.56
2:Z:31:ILE:HG21	1:L:234:VAL:HG23	1.88	0.55
2:P:27:THR:CG2	2:P:31:ILE:HG22	2.37	0.55
2:Z:37:SER:O	2:Z:38:GLN:HG2	2.06	0.55
1:C:197:ARG:NE	1:C:278:ALA:O	2.39	0.55
1:A:255:ASP:OD1	1:A:256:GLY:N	2.38	0.55
1:N:340:LYS:HA	1:N:343:ILE:HG12	1.87	0.55
2:T:6:PHE:HB2	2:T:48:ALA:HB2	1.89	0.55
1:D:176:THR:O	1:D:379:VAL:HA	2.06	0.55
1:B:422:ARG:HE	1:B:475:SER:HA	1.72	0.55
2:X:6:PHE:HB2	2:X:48:ALA:HB2	1.87	0.55
2:1:33:LEU:HG	1:M:230:ILE:HD11	1.89	0.55
1:K:64:ASP:OD1	1:K:65:LYS:N	2.40	0.55
1:H:64:ASP:OD1	1:H:65:LYS:N	2.39	0.55
3:A:601:ADP:O2B	4:A:602:BEF:F1	2.15	0.55
1:J:351:ILE:HG22	1:J:370:LEU:HD21	1.88	0.55

		Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
1:M:13:ARG:NH2	1:M:519:GLU:OE1	2.40	0.55
1:G:291:ASP:OD1	1:G:346:ARG:NE	2.32	0.55
1:J:489:MET:O	1:J:493:GLY:N	2.35	0.55
1:B:222:LEU:HD23	1:B:250:ILE:HB	1.88	0.55
2:X:8:LYS:HA	2:W:101:VAL:O	2.06	0.54
1:E:193:MET:HG3	1:E:372:LYS:O	2.07	0.54
1:D:385:THR:HG21	1:C:506:LEU:HD21	1.88	0.54
1:K:169:VAL:HG12	1:K:173:GLY:HA3	1.90	0.54
1:D:203:TYR:HB3	1:D:267:LEU:HD11	1.89	0.54
1:C:248:VAL:HG11	1:C:324:VAL:HG11	1.88	0.54
2:V:31:ILE:HG21	1:H:234:VAL:HG23	1.90	0.54
1:A:25:ASP:OD1	1:A:97:ARG:NH1	2.41	0.54
2:1:20:ARG:NH1	2:1:41:VAL:O	2.38	0.54
1:I:346:ARG:O	1:I:350:ILE:HD12	2.08	0.54
1:M:24:ALA:HA	1:M:27:VAL:HG12	1.90	0.54
2:1:34:PRO:HD3	1:M:261:THR:HG22	1.89	0.54
1:G:215:PHE:HB2	1:G:324:VAL:HB	1.89	0.54
3:E:601:ADP:O2B	4:E:602:BEF:F2	2.16	0.54
1:B:224:GLU:OE1	1:B:303:GLU:HA	2.07	0.54
1:M:169:VAL:HG12	1:M:173:GLY:HA3	1.90	0.54
1:N:350:ILE:HG22	1:N:370:LEU:HD11	1.90	0.54
1:F:351:ILE:HG22	1:F:370:LEU:HD21	1.89	0.54
1:B:348:GLN:HA	1:B:351:ILE:HG12	1.90	0.54
1:F:314:GLN:OE1	1:F:316:HIS:NE2	2.41	0.54
2:2:20:ARG:NH1	2:2:41:VAL:O	2.39	0.53
1:D:169:VAL:HG12	1:D:173:GLY:HA3	1.90	0.53
1:A:489:MET:O	1:A:493:GLY:N	2.40	0.53
1:J:174:VAL:HB	1:J:377:VAL:HG12	1.89	0.53
1:E:13:ARG:NH2	1:E:519:GLU:OE1	2.40	0.53
2:Z:78:GLY:HA3	2:Z:91:PHE:CE1	2.44	0.53
1:K:248:VAL:HG11	1:K:324:VAL:HG11	1.90	0.53
1:K:420:LEU:HD11	1:K:501:VAL:HG13	1.90	0.53
1:C:306:LEU:HG	1:C:308:LEU:HD23	1.89	0.53
1:F:362:GLU:O	1:F:366:LEU:HB2	2.09	0.53
2:1:36:LYS:HE2	1:L:307:THR:HG21	1.91	0.53
1:N:346:ARG:O	1:N:350:ILE:HD12	2.08	0.53
1:M:174:VAL:HG21	1:M:371:ALA:HB2	1.90	0.53
1:G:169:VAL:HG12	1:G:173:GLY:HA3	1.90	0.53
1:M:193:MET:HG2	1:M:372:LYS:O	2.09	0.53
1:M:248:VAL:HG11	1:M:324:VAL:HG11	1.91	0.53
1:F:197:ARG:NE	1:F:278:ALA:O	2.41	0.53

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:169:VAL:HG12	1:C:173:GLY:HA3	1.89	0.53
1:I:193:MET:HG2	1:I:372:LYS:O	2.09	0.53
1:J:217:ASP:N	1:J:322:GLY:O	2.40	0.53
1:L:456:ALA:O	1:L:459:ALA:HB3	2.09	0.53
1:A:322:GLY:HA3	1:A:335:LYS:HE3	1.89	0.53
1:I:263:VAL:CG2	1:H:305:GLY:HA3	2.39	0.52
1:M:124:VAL:HA	1:M:127:VAL:HG12	1.92	0.52
1:M:306:LEU:HG	1:M:308:LEU:HD23	1.90	0.52
1:L:32:GLY:HA3	1:L:455:ILE:CD1	2.40	0.52
1:C:255:ASP:OD1	1:C:256:GLY:N	2.41	0.52
2:Y:27:THR:CG2	2:Y:31:ILE:HG22	2.39	0.52
1:K:182:THR:HG23	1:K:184:ASN:O	2.09	0.52
1:E:212:LYS:HG2	1:E:327:THR:HG22	1.92	0.52
1:D:248:VAL:HG11	1:D:324:VAL:HG11	1.90	0.52
2:Z:9:PHE:HB2	2:Z:83:LEU:HD21	1.91	0.52
1:K:340:LYS:HA	1:K:343:ILE:HG12	1.90	0.52
2:U:17:LEU:HB3	2:U:48:ALA:HB3	1.90	0.52
1:C:197:ARG:H	1:C:330:ASP:HA	1.73	0.52
1:B:346:ARG:O	1:B:350:ILE:HD12	2.08	0.52
1:G:350:ILE:HG22	1:G:370:LEU:HD11	1.91	0.52
2:T:27:THR:HG21	2:T:31:ILE:HG22	1.92	0.52
1:J:422:ARG:NH1	1:J:474:SER:O	2.43	0.52
1:A:253:ASP:OD1	1:A:254:VAL:N	2.42	0.52
1:J:24:ALA:HA	1:J:27:VAL:HG12	1.91	0.52
1:J:306:LEU:HG	1:J:308:LEU:HD23	1.91	0.52
1:H:212:LYS:HG2	1:H:327:THR:HG22	1.91	0.52
1:E:362:GLU:O	1:E:366:LEU:HB2	2.09	0.52
2:Y:31:ILE:HG12	2:Y:32:MET:H	1.75	0.52
2:T:37:SER:O	2:T:38:GLN:HB3	2.09	0.52
1:M:212:LYS:HG2	1:M:327:THR:HG22	1.91	0.52
1:L:351:ILE:HG22	1:L:370:LEU:HD21	1.91	0.52
1:C:193:MET:HG2	1:C:372:LYS:O	2.09	0.52
2:2:37:SER:O	2:2:38:GLN:HG2	2.10	0.52
1:H:203:TYR:HB3	1:H:267:LEU:HD11	1.92	0.52
1:G:257:GLU:OE2	2:U:37:SER:HB2	2.10	0.52
1:J:356:VAL:CG2	1:K:210:GLY:HA2	2.39	0.52
2:W:78:GLY:HA3	2:W:91:PHE:CE1	2.45	0.52
1:H:176:THR:O	1:H:379:VAL:HA	2.09	0.52
1:N:33:PRO:HD3	3:N:601:ADP:C5	2.45	0.52
1:L:179:ASP:OD1	1:L:394:LYS:NZ	2.33	0.52
1:F:193:MET:HG2	1:F:372:LYS:O	2.10	0.52

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:D:90:THR:OG1	4:D:602:BEF:F2	2.00	0.52
1:A:169:VAL:HG12	1:A:173:GLY:HA3	1.91	0.52
1:J:30:THR:HG22	1:J:36:ARG:O	2.10	0.51
1:J:510:GLY:C	1:K:389:GLU:OE2	2.48	0.51
2:S:27:THR:HG21	2:S:31:ILE:HG22	1.91	0.51
1:N:348:GLN:HA	1:N:351:ILE:HG12	1.93	0.51
1:M:362:GLU:O	1:M:366:LEU:HB2	2.09	0.51
1:K:174:VAL:HG21	1:K:371:ALA:HB2	1.91	0.51
2:P:17:LEU:HB3	2:P:48:ALA:HB3	1.91	0.51
1:F:340:LYS:HA	1:F:343:ILE:HG12	1.93	0.51
3:C:601:ADP:O2A	3:C:601:ADP:O1B	2.22	0.51
2:Z:27:THR:CG2	2:Z:31:ILE:HG22	2.39	0.51
1:C:219:TYR:HB3	1:C:318:LEU:HD23	1.93	0.51
3:B:601:ADP:O2B	3:B:601:ADP:O2A	2.27	0.51
1:J:21:ASP:OD1	1:J:97:ARG:HD2	2.10	0.51
1:H:350:ILE:HG22	1:H:370:LEU:HD11	1.92	0.51
1:D:193:MET:HG2	1:D:372:LYS:O	2.11	0.51
1:J:258:ALA:O	1:J:261:THR:OG1	2.24	0.51
1:H:351:ILE:HG22	1:H:370:LEU:HD21	1.92	0.51
2:1:27:THR:HG21	2:1:31:ILE:HG22	1.92	0.51
1:L:193:MET:HG2	1:L:372:LYS:O	2.10	0.51
1:K:199:TYR:OH	1:K:328:LYS:HG2	2.11	0.51
1:K:215:PHE:HB2	1:K:324:VAL:HB	1.93	0.51
2:Q:32:MET:SD	1:C:268:LYS:HE3	2.51	0.51
2:P:33:LEU:HG	1:B:230:ILE:HD11	1.92	0.51
1:A:13:ARG:NH2	1:A:519:GLU:OE1	2.42	0.51
2:2:31:ILE:HG21	1:N:234:VAL:HG23	1.93	0.51
1:B:31:MET:SD	1:B:454:THR:OG1	2.65	0.51
1:J:340:LYS:HA	1:J:343:ILE:HG12	1.93	0.51
1:K:346:ARG:O	1:K:350:ILE:HD12	2.10	0.51
1:D:120:VAL:HG13	1:D:444:ILE:HD11	1.92	0.51
1:J:230:ILE:CD1	2:X:34:PRO:HD2	2.40	0.51
1:I:169:VAL:HG12	1:I:173:GLY:HA3	1.92	0.51
3:N:601:ADP:O3B	3:N:601:ADP:O1A	2.29	0.51
1:F:306:LEU:HG	1:F:308:LEU:HD23	1.91	0.51
2:2:35:GLU:OE1	2:2:38:GLN:NE2	2.44	0.51
2:U:8:LYS:HA	2:T:101:VAL:O	2.11	0.51
2:S:6:PHE:HB2	2:S:48:ALA:HB2	1.93	0.51
2:O:17:LEU:HB3	2:O:48:ALA:HB3	1.93	0.51
1:F:176:THR:O	1:F:379:VAL:HA	2.11	0.51
1:J:124:VAL:HA	1:J:127:VAL:HG12	1.93	0.50

	o ao pagoini	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:1:78:GLY:HA3	2:1:91:PHE:CE1	2.46	0.50
1:L:64:ASP:OD1	1:L:65:LYS:N	2.44	0.50
1:F:420:LEU:HD11	1:F:501:VAL:HG13	1.93	0.50
1:J:230:ILE:HD11	2:X:33:LEU:HG	1.93	0.50
1:B:64:ASP:OD1	1:B:65:LYS:N	2.44	0.50
1:J:228:SER:HA	1:J:255:ASP:CB	2.41	0.50
1:D:281:PHE:O	1:D:285:ARG:NH2	2.44	0.50
1:D:291:ASP:OD1	1:D:346:ARG:NE	2.41	0.50
2:X:97:LEU:HD12	2:Y:90:LEU:HD23	1.93	0.50
1:I:219:TYR:HB3	1:I:318:LEU:HD23	1.93	0.50
1:I:489:MET:O	1:I:493:GLY:N	2.42	0.50
1:N:479:TYR:CE2	1:N:481:ALA:HA	2.47	0.50
1:L:224:GLU:O	1:L:252:GLU:HB2	2.11	0.50
2:U:27:THR:HG21	2:U:31:ILE:HG22	1.93	0.50
2:R:6:PHE:HB2	2:R:48:ALA:HB2	1.94	0.50
1:C:350:ILE:HG22	1:C:370:LEU:HD11	1.93	0.50
1:B:314:GLN:OE1	1:B:316:HIS:NE2	2.43	0.50
1:J:117:ARG:NH1	1:J:513:SER:OG	2.45	0.50
1:I:284:ASN:OD1	1:I:365:LYS:HE3	2.12	0.50
1:I:420:LEU:HD11	1:I:501:VAL:HG13	1.92	0.50
2:R:37:SER:O	2:R:38:GLN:HB3	2.12	0.50
2:Q:27:THR:CG2	2:Q:31:ILE:HG22	2.41	0.50
1:F:120:VAL:HG13	1:F:444:ILE:HD11	1.92	0.50
1:A:24:ALA:HA	1:A:27:VAL:HG12	1.93	0.50
1:H:237:LEU:HD21	1:H:262:LEU:HD23	1.92	0.50
1:D:24:ALA:HA	1:D:27:VAL:HG12	1.93	0.50
1:A:340:LYS:HA	1:A:343:ILE:HG12	1.92	0.50
2:1:27:THR:CG2	2:1:31:ILE:HG22	2.42	0.50
1:M:30:THR:HG22	1:M:36:ARG:O	2.12	0.50
1:K:350:ILE:HG22	1:K:370:LEU:HD11	1.94	0.50
1:G:261:THR:HG22	2:U:34:PRO:HD3	1.94	0.50
1:G:489:MET:O	1:G:493:GLY:N	2.42	0.50
2:U:78:GLY:HA3	2:U:91:PHE:CE1	2.46	0.50
1:E:350:ILE:HG22	1:E:370:LEU:HD11	1.93	0.50
1:B:287:ASN:HB3	1:B:369:ARG:NH1	2.27	0.50
1:H:427:LEU:HA	1:H:430:LEU:HD23	1.92	0.50
1:L:212:LYS:HG2	1:L:327:THR:HG22	1.93	0.50
1:F:222:LEU:HD23	1:F:250:ILE:HB	1.94	0.50
1:C:127:VAL:HG23	1:C:423:CYS:HB3	1.94	0.50
2:Z:31:ILE:HD11	1:L:237:LEU:HD22	1.93	0.50
1:I:488:ASN:OD1	1:I:489:MET:N	2.45	0.50

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:F:6:VAL:HG12	1:F:522:VAL:HG22	1.94	0.50
1:E:253:ASP:OD1	1:E:254:VAL:N	2.45	0.50
1:C:33:PRO:HD3	3:C:601:ADP:C5	2.47	0.50
1:J:420:LEU:HD11	1:J:501:VAL:HG13	1.94	0.49
2:Y:31:ILE:HD12	1:K:237:LEU:HB3	1.95	0.49
1:H:140:THR:OG1	1:H:142:GLU:OE1	2.28	0.49
1:M:340:LYS:HA	1:M:343:ILE:HG12	1.94	0.49
1:L:352:GLU:O	1:L:356:VAL:HG23	2.12	0.49
2:U:20:ARG:NH1	2:U:41:VAL:O	2.39	0.49
2:R:32:MET:SD	1:D:268:LYS:HE3	2.52	0.49
1:A:169:VAL:HG13	1:A:376:GLY:O	2.12	0.49
1:M:157:GLU:O	1:M:161:ILE:HG12	2.11	0.49
1:L:351:ILE:O	1:L:354:LEU:HG	2.12	0.49
1:D:427:LEU:HA	1:D:430:LEU:HD23	1.93	0.49
1:G:30:THR:HG22	1:G:36:ARG:O	2.12	0.49
2:T:37:SER:HB2	1:F:230:ILE:HG21	1.95	0.49
2:R:27:THR:HG21	2:R:31:ILE:HG22	1.94	0.49
1:B:352:GLU:O	1:B:356:VAL:HG23	2.12	0.49
1:J:64:ASP:OD1	1:J:65:LYS:N	2.45	0.49
1:N:24:ALA:HA	1:N:27:VAL:HG12	1.95	0.49
1:L:291:ASP:OD1	1:L:346:ARG:NE	2.35	0.49
2:R:27:THR:CG2	2:R:31:ILE:HG22	2.43	0.49
1:F:187:LEU:HD11	1:F:378:ALA:HB1	1.95	0.49
1:E:228:SER:HA	1:E:255:ASP:CB	2.42	0.49
2:Q:6:PHE:HB2	2:Q:48:ALA:HB2	1.93	0.49
1:F:190:ILE:O	1:F:376:GLY:HA3	2.13	0.49
1:F:228:SER:HA	1:F:255:ASP:CB	2.43	0.49
1:C:352:GLU:O	1:C:356:VAL:HG23	2.13	0.49
2:V:27:THR:CG2	2:V:31:ILE:HG22	2.43	0.49
2:1:17:LEU:HB3	2:1:48:ALA:HB3	1.95	0.49
1:H:464:SER:OG	1:A:464:SER:OG	2.29	0.49
2:R:12:LEU:HD13	2:Q:98:GLY:HA2	1.94	0.49
1:C:237:LEU:HD21	1:C:262:LEU:HD23	1.94	0.49
1:B:24:ALA:HA	1:B:27:VAL:HG12	1.94	0.49
1:J:294:ILE:HD11	1:J:346:ARG:HG2	1.93	0.49
1:L:25:ASP:OD1	1:L:97:ARG:NH1	2.42	0.49
2:O:6:PHE:HB2	2:O:48:ALA:HB2	1.95	0.49
1:F:302:GLY:N	1:F:308:LEU:O	2.31	0.49
2:Z:27:THR:HG21	2:Z:31:ILE:HG22	1.95	0.49
1:I:237:LEU:HD21	1:I:262:LEU:HD23	1.95	0.49
1:M:120:VAL:HG13	1:M:444:ILE:HD11	1.95	0.49

Continued from previous page...

	A L O	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:K:228:SER:HA	1:K:255:ASP:CB	2.43	0.49
2:Q:27:THR:HG21	2:Q:31:ILE:HG22	1.95	0.49
1:L:24:ALA:HA	1:L:27:VAL:HG12	1.95	0.49
2:U:6:PHE:HB2	2:U:48:ALA:HB2	1.94	0.49
2:R:78:GLY:HA3	2:R:91:PHE:CE1	2.48	0.49
1:D:306:LEU:HG	1:D:308:LEU:HD23	1.95	0.49
1:A:203:TYR:HB3	1:A:267:LEU:HD11	1.94	0.49
1:J:203:TYR:HB3	1:J:267:LEU:HD11	1.95	0.48
2:1:31:ILE:HG21	1:M:234:VAL:HG23	1.95	0.48
1:I:176:THR:O	1:I:379:VAL:HA	2.12	0.48
1:H:117:ARG:NH1	1:H:513:SER:OG	2.46	0.48
1:L:362:GLU:O	1:L:366:LEU:HB2	2.12	0.48
3:K:601:ADP:O2B	3:K:601:ADP:O2A	2.30	0.48
2:Q:78:GLY:HA3	2:Q:91:PHE:CE1	2.46	0.48
1:B:346:ARG:HG3	1:B:350:ILE:CD1	2.43	0.48
1:I:127:VAL:HG23	1:I:423:CYS:HB3	1.95	0.48
1:N:212:LYS:HG2	1:N:327:THR:HG22	1.93	0.48
1:L:127:VAL:HG23	1:L:423:CYS:HB3	1.94	0.48
1:F:207:THR:HG21	1:F:212:LYS:H	1.78	0.48
1:D:102:GLU:OE1	1:D:446:ARG:NH1	2.46	0.48
1:C:346:ARG:O	1:C:350:ILE:HD12	2.13	0.48
1:B:169:VAL:HG12	1:B:173:GLY:HA3	1.94	0.48
1:J:362:GLU:O	1:J:366:LEU:HB2	2.13	0.48
1:I:222:LEU:HD23	1:I:250:ILE:HB	1.94	0.48
1:N:222:LEU:HD23	1:N:250:ILE:HB	1.95	0.48
1:N:306:LEU:HG	1:N:308:LEU:HD23	1.95	0.48
1:N:346:ARG:HG3	1:N:350:ILE:CD1	2.43	0.48
1:N:420:LEU:HD11	1:N:501:VAL:HG13	1.94	0.48
1:L:31:MET:HG2	1:L:455:ILE:HB	1.94	0.48
1:F:174:VAL:HB	1:F:377:VAL:HG11	1.95	0.48
1:F:427:LEU:HA	1:F:430:LEU:HD23	1.95	0.48
1:E:87:ASP:OD1	4:E:602:BEF:F3	2.21	0.48
1:E:176:THR:O	1:E:379:VAL:HA	2.12	0.48
1:D:207:THR:HG21	1:D:212:LYS:H	1.77	0.48
1:J:13:ARG:NH2	1:J:519:GLU:OE1	2.44	0.48
2:V:6:PHE:HB2	2:V:48:ALA:HB2	1.95	0.48
1:I:258:ALA:O	1:I:261:THR:OG1	2.26	0.48
1:I:284:ASN:OD1	1:I:365:LYS:HB3	2.14	0.48
1:N:182:THR:HG23	1:N:184:ASN:O	2.13	0.48
1:L:32:GLY:CA	1:L:455:ILE:CD1	2.92	0.48
1:G:176:THR:O	1:G:379:VAL:HA	2.12	0.48

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:G:238:GLU:OE2	2:U:27:THR:HG21	2.13	0.48
2:T:34:PRO:CG	1:F:230:ILE:HD12	2.44	0.48
1:D:350:ILE:HG22	1:D:370:LEU:HD11	1.94	0.48
1:B:340:LYS:HA	1:B:343:ILE:HG12	1.95	0.48
1:A:346:ARG:O	1:A:350:ILE:HD12	2.12	0.48
1:J:169:VAL:HG12	1:J:173:GLY:HA3	1.94	0.48
1:J:261:THR:HG22	2:X:34:PRO:HD3	1.95	0.48
1:L:87:ASP:OD1	1:L:88:GLY:N	2.45	0.48
3:G:601:ADP:O2B	4:G:602:BEF:F1	2.21	0.48
2:Q:73:LEU:HB3	2:Q:91:PHE:HE2	1.78	0.48
1:B:222:LEU:CD1	1:B:293:ALA:HA	2.43	0.48
1:J:140:THR:HG23	1:J:143:GLU:H	1.77	0.48
1:L:321:VAL:HG11	1:L:333:LEU:HD22	1.96	0.48
2:P:6:PHE:HB2	2:P:48:ALA:HB2	1.94	0.48
1:D:33:PRO:HD3	3:D:601:ADP:N7	2.28	0.48
3:C:601:ADP:O2A	3:C:601:ADP:O2B	2.29	0.48
1:J:350:ILE:HG22	1:J:370:LEU:HD11	1.96	0.48
2:1:37:SER:HB2	1:M:257:GLU:OE2	2.13	0.48
1:I:207:THR:HG21	1:I:212:LYS:H	1.79	0.48
1:G:22:LEU:HD23	1:G:62:LEU:HD21	1.95	0.48
1:G:90:THR:N	4:G:602:BEF:F2	2.32	0.48
1:E:199:TYR:OH	1:E:328:LYS:HG2	2.14	0.48
1:D:479:TYR:CE2	1:D:481:ALA:HA	2.48	0.48
1:J:352:GLU:O	1:J:356:VAL:HG23	2.14	0.48
2:X:27:THR:HG21	2:X:31:ILE:HG22	1.96	0.48
2:1:23:ALA:O	2:1:38:GLN:NE2	2.44	0.48
1:I:497:PRO:O	1:I:500:VAL:HG12	2.13	0.48
1:F:22:LEU:HD11	1:E:6:VAL:HG21	1.95	0.48
1:F:287:ASN:HB3	1:F:369:ARG:NH1	2.28	0.48
1:F:348:GLN:HA	1:F:351:ILE:HG12	1.96	0.48
1:A:427:LEU:HA	1:A:430:LEU:HD23	1.96	0.48
1:J:197:ARG:NE	1:J:278:ALA:O	2.46	0.48
2:X:9:PHE:HB2	2:X:83:LEU:HD21	1.96	0.48
1:I:351:ILE:HG22	1:I:370:LEU:HD21	1.96	0.48
1:N:352:GLU:O	1:N:356:VAL:HG23	2.13	0.48
1:L:182:THR:HG23	1:L:184:ASN:O	2.14	0.48
1:G:340:LYS:HA	1:G:343:ILE:HG12	1.96	0.48
2:U:27:THR:HG23	2:U:28:LYS:N	2.29	0.48
1:I:197:ARG:H	1:I:330:ASP:HA	1.78	0.48
1:H:375:ASP:O	1:H:376:GLY:O	2.32	0.48
1:M:350:ILE:HG22	1:M:370:LEU:HD11	1.96	0.48

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:U:73:LEU:HB3	2:U:91:PHE:HE2	1.79	0.48
2:P:78:GLY:HA3	2:P:91:PHE:CE1	2.48	0.48
1:F:13:ARG:HD3	1:F:104:PHE:HD1	1.79	0.48
2:W:73:LEU:HB3	2:W:91:PHE:HE2	1.78	0.47
1:H:346:ARG:O	1:H:350:ILE:HD12	2.14	0.47
1:N:215:PHE:HB2	1:N:324:VAL:HB	1.96	0.47
1:M:182:THR:HG23	1:M:184:ASN:O	2.13	0.47
1:L:348:GLN:HA	1:L:351:ILE:HG12	1.96	0.47
2:U:31:ILE:HG12	2:U:32:MET:H	1.79	0.47
1:F:64:ASP:OD1	1:F:65:LYS:N	2.47	0.47
1:B:237:LEU:HD21	1:B:262:LEU:HD23	1.96	0.47
1:H:182:THR:HG23	1:H:184:ASN:O	2.13	0.47
2:2:34:PRO:HD3	1:N:261:THR:HG22	1.95	0.47
1:I:212:LYS:HG2	1:I:327:THR:HG22	1.96	0.47
1:H:348:GLN:HA	1:H:351:ILE:HG12	1.95	0.47
1:G:416:GLY:HA2	3:G:601:ADP:H1'	1.95	0.47
1:C:24:ALA:HA	1:C:27:VAL:HG12	1.96	0.47
1:J:190:ILE:O	1:J:376:GLY:HA3	2.14	0.47
1:J:199:TYR:CE2	1:J:202:PRO:HA	2.50	0.47
1:H:222:LEU:CD1	1:H:293:ALA:HA	2.44	0.47
1:H:224:GLU:OE1	1:H:303:GLU:HA	2.14	0.47
1:E:174:VAL:HB	1:E:377:VAL:HG12	1.96	0.47
1:A:420:LEU:HD11	1:A:501:VAL:HG13	1.96	0.47
2:V:34:PRO:HD3	1:H:261:THR:HG22	1.96	0.47
1:H:346:ARG:HG3	1:H:350:ILE:CD1	2.45	0.47
1:N:140:THR:HG23	1:N:143:GLU:H	1.79	0.47
2:O:23:ALA:O	2:O:38:GLN:NE2	2.44	0.47
1:I:278:ALA:HB1	1:I:289:LEU:HD11	1.97	0.47
1:N:30:THR:HG22	1:N:36:ARG:O	2.15	0.47
1:L:314:GLN:OE1	1:L:316:HIS:NE2	2.44	0.47
1:E:233:ILE:HG13	1:E:237:LEU:HD13	1.95	0.47
1:E:255:ASP:OD1	1:E:256:GLY:N	2.45	0.47
1:D:215:PHE:CD2	1:D:246:PRO:HB2	2.50	0.47
1:B:350:ILE:HG22	1:B:370:LEU:HD11	1.95	0.47
1:A:424:ILE:HG12	1:A:448:LEU:HD12	1.96	0.47
2:Y:63:VAL:HG13	2:Y:93:ASP:OD1	2.15	0.47
1:I:348:GLN:HA	1:I:351:ILE:HG12	1.95	0.47
1:H:180:GLY:HA3	1:H:382:VAL:O	2.13	0.47
1:H:228:SER:HA	1:H:255:ASP:CB	2.45	0.47
1:H:306:LEU:HG	1:H:308:LEU:HD23	1.96	0.47
1:H:314:GLN:OE1	1:H:316:HIS:NE2	2.43	0.47

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:L:46:SER:HB3	1:K:76:ASP:OD2	2.15	0.47
1:L:350:ILE:HG22	1:L:370:LEU:HD11	1.97	0.47
1:L:383:GLY:O	1:L:390:VAL:HG22	2.15	0.47
1:G:6:VAL:HG21	1:A:22:LEU:HD11	1.96	0.47
1:E:64:ASP:OD1	1:E:65:LYS:N	2.47	0.47
1:E:347:ILE:HG12	1:E:373:LEU:HD23	1.96	0.47
1:D:24:ALA:HB3	1:D:97:ARG:HD3	1.97	0.47
1:D:362:GLU:O	1:D:366:LEU:HB2	2.13	0.47
1:C:207:THR:HG21	1:C:212:LYS:H	1.80	0.47
2:W:6:PHE:HB2	2:W:48:ALA:HB2	1.97	0.47
2:Y:17:LEU:HB3	2:Y:48:ALA:HB3	1.97	0.47
1:H:278:ALA:HB1	1:H:289:LEU:HD11	1.96	0.47
1:M:87:ASP:OD1	1:M:88:GLY:N	2.43	0.47
1:M:297:GLY:O	1:M:319:GLY:HA2	2.14	0.47
1:L:414:LEU:HD22	1:L:489:MET:HB2	1.96	0.47
1:G:174:VAL:HG21	1:G:371:ALA:HB2	1.95	0.47
2:U:72:LEU:HD21	2:O:81:VAL:HG12	1.96	0.47
1:B:182:THR:HG23	1:B:184:ASN:O	2.14	0.47
1:J:138:VAL:CG1	1:J:408:VAL:HA	2.45	0.47
2:2:73:LEU:HB3	2:2:91:PHE:HE2	1.79	0.47
2:Z:45:THR:HG22	2:Z:70:LYS:HG2	1.97	0.47
1:H:120:VAL:HG13	1:H:444:ILE:HD11	1.97	0.47
1:N:64:ASP:OD1	1:N:65:LYS:N	2.48	0.47
1:G:209:LYS:O	1:F:345:LYS:CE	2.63	0.47
1:C:420:LEU:HD11	1:C:501:VAL:HG13	1.97	0.47
1:B:188:GLU:HB3	1:B:379:VAL:CG2	2.44	0.47
1:A:350:ILE:HG22	1:A:370:LEU:HD11	1.96	0.47
1:J:120:VAL:HG13	1:J:444:ILE:HD11	1.97	0.47
2:Y:27:THR:HG21	2:Y:31:ILE:HG22	1.97	0.47
1:M:124:VAL:HG21	1:M:509:ALA:CB	2.45	0.47
1:K:253:ASP:OD1	1:K:254:VAL:N	2.48	0.47
1:G:90:THR:OG1	4:G:602:BEF:F2	2.23	0.47
1:F:280:GLY:HA2	1:F:285:ARG:HE	1.80	0.47
1:D:124:VAL:HA	1:D:127:VAL:HG12	1.97	0.47
1:C:199:TYR:HD1	1:C:326:VAL:HG12	1.79	0.47
1:C:351:ILE:HG22	1:C:370:LEU:HD21	1.95	0.47
1:B:301:PHE:CZ	1:B:313:VAL:HG12	2.49	0.47
1:J:197:ARG:H	1:J:330:ASP:HA	1.80	0.46
2:X:27:THR:CG2	2:X:31:ILE:HG22	2.45	0.46
2:V:90:LEU:HD23	2:2:97:LEU:HD12	1.97	0.46
2:Y:45:THR:HG22	2:Y:70:LYS:HG2	1.97	0.46

A 4 1	A + 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:I:117:ARG:NH1	1:I:513:SER:OG	2.47	0.46
1:I:259:LEU:O	1:I:263:VAL:HG22	2.15	0.46
1:N:248:VAL:HG11	1:N:324:VAL:HG11	1.97	0.46
1:M:478:GLY:C	1:M:489:MET:HE2	2.36	0.46
1:L:146:GLN:O	1:L:150:ILE:HG12	2.16	0.46
1:L:222:LEU:HD23	1:L:250:ILE:HB	1.97	0.46
2:R:34:PRO:HD2	1:D:230:ILE:HD12	1.97	0.46
2:Q:32:MET:SD	1:C:268:LYS:CE	3.03	0.46
1:D:489:MET:O	1:D:493:GLY:N	2.43	0.46
1:J:351:ILE:O	1:J:354:LEU:HG	2.15	0.46
1:I:24:ALA:HA	1:I:27:VAL:HG12	1.97	0.46
1:H:383:GLY:O	1:H:390:VAL:HG22	2.15	0.46
1:N:351:ILE:HG22	1:N:370:LEU:HD21	1.98	0.46
1:L:22:LEU:HD11	1:K:6:VAL:HG21	1.96	0.46
1:K:166:MET:CG	1:K:171:ARG:HA	2.45	0.46
1:K:212:LYS:HG2	1:K:327:THR:HG22	1.97	0.46
1:F:169:VAL:HG12	1:F:173:GLY:HA3	1.97	0.46
1:F:222:LEU:CD1	1:F:293:ALA:HA	2.45	0.46
1:F:385:THR:HG21	1:E:506:LEU:HD21	1.97	0.46
1:D:140:THR:HG23	1:D:143:GLU:H	1.79	0.46
1:C:87:ASP:OD1	1:C:88:GLY:N	2.43	0.46
1:C:176:THR:O	1:C:379:VAL:HA	2.15	0.46
1:J:248:VAL:HG11	1:J:324:VAL:HG11	1.96	0.46
2:2:78:GLY:HA3	2:2:91:PHE:CE1	2.51	0.46
1:N:362:GLU:O	1:N:366:LEU:HB2	2.15	0.46
1:M:255:ASP:OD1	1:M:256:GLY:N	2.47	0.46
1:G:219:TYR:HB3	1:G:318:LEU:HD23	1.96	0.46
1:G:222:LEU:HD23	1:G:250:ILE:HB	1.97	0.46
2:U:81:VAL:HG12	2:T:72:LEU:HD21	1.97	0.46
1:F:352:GLU:O	1:F:356:VAL:HG23	2.16	0.46
1:E:351:ILE:HG22	1:E:370:LEU:HD21	1.98	0.46
1:D:22:LEU:HD11	1:C:6:VAL:HG21	1.97	0.46
1:D:351:ILE:HG22	1:D:370:LEU:HD21	1.98	0.46
3:D:601:ADP:O2B	4:D:602:BEF:F1	2.23	0.46
2:Z:6:PHE:HB2	2:Z:48:ALA:HB2	1.97	0.46
1:M:348:GLN:HA	1:M:351:ILE:HG12	1.98	0.46
1:F:127:VAL:HG23	1:F:423:CYS:HB3	1.97	0.46
1:E:310:LEU:O	1:E:313:VAL:HG13	2.16	0.46
1:B:217:ASP:N	1:B:322:GLY:O	2.47	0.46
1:B:354:LEU:HB3	1:B:366:LEU:CD1	2.46	0.46
2:2:17:LEU:HB3	2:2:48:ALA:HB3	1.98	0.46

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:Z:17:LEU:HB3	2:Z:48:ALA:HB3	1.98	0.46
1:H:169:VAL:HG12	1:H:173:GLY:HA3	1.97	0.46
2:P:32:MET:SD	1:B:268:LYS:HE3	2.56	0.46
1:B:33:PRO:HD3	3:B:601:ADP:C5	2.51	0.46
2:V:73:LEU:HB3	2:V:91:PHE:HE2	1.81	0.46
1:I:118:ARG:O	1:I:122:LEU:HD13	2.16	0.46
3:I:601:ADP:O2A	3:I:601:ADP:O2B	2.33	0.46
1:F:199:TYR:OH	1:F:328:LYS:HG2	2.15	0.46
1:E:59:SER:O	1:D:4:LYS:HD2	2.16	0.46
1:A:219:TYR:HB3	1:A:318:LEU:HD23	1.97	0.46
1:J:180:GLY:HA3	1:J:382:VAL:O	2.15	0.46
1:J:228:SER:HA	1:J:255:ASP:HB2	1.96	0.46
2:V:70:LYS:HB2	2:V:100:TYR:HB2	1.98	0.46
1:I:30:THR:HG22	1:I:36:ARG:O	2.15	0.46
1:I:416:GLY:HA2	3:I:601:ADP:H1'	1.97	0.46
1:K:228:SER:HA	1:K:255:ASP:HB3	1.96	0.46
1:G:212:LYS:HG2	1:G:327:THR:HG22	1.98	0.46
1:D:219:TYR:CE2	1:D:245:LYS:HD2	2.51	0.46
1:C:183:LEU:CD1	1:C:385:THR:HG22	2.46	0.46
1:C:427:LEU:HA	1:C:430:LEU:HD23	1.97	0.46
1:B:291:ASP:OD2	1:B:369:ARG:HD2	2.16	0.46
2:2:27:THR:CG2	2:2:31:ILE:HG22	2.46	0.46
2:Y:73:LEU:HB3	2:Y:91:PHE:HE2	1.81	0.46
1:H:199:TYR:OH	1:H:328:LYS:HG2	2.15	0.46
1:H:255:ASP:OD1	1:H:256:GLY:N	2.45	0.46
1:H:489:MET:O	1:H:493:GLY:N	2.46	0.46
1:N:224:GLU:OE1	1:N:303:GLU:HA	2.16	0.46
1:M:222:LEU:HD23	1:M:250:ILE:HB	1.98	0.46
1:M:314:GLN:OE1	1:M:316:HIS:NE2	2.45	0.46
1:M:414:LEU:HD22	1:M:489:MET:HB2	1.97	0.46
1:L:169:VAL:HG12	1:L:173:GLY:HA3	1.98	0.46
1:F:291:ASP:OD2	1:F:369:ARG:HD2	2.15	0.46
1:A:30:THR:HG22	1:A:36:ARG:O	2.16	0.46
1:A:348:GLN:HA	1:A:351:ILE:HG12	1.96	0.46
1:J:427:LEU:HA	1:J:430:LEU:HD23	1.96	0.46
2:W:11:PRO:HG2	2:W:50:GLY:N	2.31	0.46
2:V:17:LEU:HB3	2:V:48:ALA:HB3	1.97	0.46
1:K:352:GLU:O	1:K:356:VAL:HG23	2.16	0.46
1:K:424:ILE:HG12	1:K:448:LEU:HD12	1.98	0.46
1:G:340:LYS:O	1:G:343:ILE:HG12	2.15	0.46
2:R:63:VAL:HG13	2:R:93:ASP:OD1	2.16	0.46

	A L O	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:F:24:ALA:HA	1:F:27:VAL:HG12	1.98	0.46
1:D:237:LEU:HD21	1:D:262:LEU:HD23	1.97	0.46
1:B:174:VAL:HG21	1:B:371:ALA:HB2	1.97	0.46
1:A:199:TYR:OH	1:A:205:ILE:HD11	2.16	0.46
2:X:81:VAL:HG12	2:W:72:LEU:HD21	1.98	0.46
1:L:95:LEU:CD2	1:L:451:PRO:CG	2.53	0.46
1:K:24:ALA:HA	1:K:27:VAL:HG12	1.98	0.46
1:K:348:GLN:HA	1:K:351:ILE:HG12	1.98	0.46
2:U:73:LEU:HD13	2:U:91:PHE:CE2	2.51	0.46
1:E:30:THR:HG22	1:E:36:ARG:O	2.16	0.46
1:C:193:MET:O	1:C:332:MET:HG3	2.15	0.46
1:A:64:ASP:OD1	1:A:65:LYS:N	2.48	0.46
1:J:346:ARG:O	1:J:350:ILE:HD12	2.15	0.45
1:N:30:THR:O	3:N:601:ADP:O1B	2.34	0.45
1:L:346:ARG:O	1:L:350:ILE:HD12	2.16	0.45
2:U:6:PHE:CE1	2:U:47:VAL:HB	2.51	0.45
2:O:45:THR:HG22	2:O:70:LYS:HG2	1.98	0.45
1:E:347:ILE:HG12	1:E:373:LEU:CD2	2.46	0.45
1:B:212:LYS:HG2	1:B:327:THR:HG22	1.97	0.45
1:A:124:VAL:HA	1:A:127:VAL:HG12	1.98	0.45
1:A:496:ASP:OD2	3:A:601:ADP:O2'	2.29	0.45
1:J:182:THR:HG23	1:J:184:ASN:O	2.16	0.45
1:H:207:THR:HG21	1:H:212:LYS:H	1.81	0.45
1:H:228:SER:HA	1:H:255:ASP:HB3	1.98	0.45
1:N:203:TYR:HB3	1:N:267:LEU:HD11	1.96	0.45
1:G:362:GLU:O	1:G:366:LEU:HB2	2.16	0.45
1:F:228:SER:HA	1:F:255:ASP:HB3	1.98	0.45
1:E:352:GLU:O	1:E:356:VAL:HG23	2.15	0.45
1:B:252:GLU:HG3	1:B:285:ARG:NH1	2.31	0.45
1:B:294:ILE:CD1	1:B:346:ARG:HB2	2.46	0.45
1:A:479:TYR:CE2	1:A:481:ALA:HA	2.51	0.45
2:V:31:ILE:HD11	1:H:237:LEU:HD22	1.97	0.45
1:H:127:VAL:HG23	1:H:423:CYS:HB3	1.99	0.45
1:K:64:ASP:O	1:K:68:ASN:HB2	2.16	0.45
1:K:124:VAL:HA	1:K:127:VAL:HG12	1.99	0.45
1:K:219:TYR:HB3	1:K:318:LEU:HD23	1.98	0.45
2:R:45:THR:HG22	2:R:70:LYS:HG2	1.99	0.45
1:F:219:TYR:HB3	1:F:318:LEU:HD23	1.97	0.45
1:E:346:ARG:O	1:E:350:ILE:HD12	2.16	0.45
1:D:264:LEU:HD11	1:D:268:LYS:HE2	1.98	0.45
1:A:182:THR:HG23	1:A:184:ASN:O	2.16	0.45

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:294:ILE:HD11	1:A:346:ARG:HG2	1.98	0.45
1:J:90:THR:OG1	4:J:602:BEF:F2	2.10	0.45
2:W:17:LEU:HB3	2:W:48:ALA:HB3	1.99	0.45
1:I:350:ILE:HG22	1:I:370:LEU:HD11	1.98	0.45
1:H:183:LEU:CD1	1:H:385:THR:HG22	2.47	0.45
1:N:207:THR:HG21	1:N:212:LYS:H	1.82	0.45
1:M:228:SER:HA	1:M:255:ASP:HB3	1.98	0.45
1:M:302:GLY:N	1:M:308:LEU:O	2.39	0.45
1:K:255:ASP:OD1	1:K:256:GLY:N	2.47	0.45
1:K:362:GLU:O	1:K:366:LEU:HB2	2.17	0.45
2:T:27:THR:CG2	2:T:31:ILE:HG22	2.47	0.45
1:F:264:LEU:HD11	1:F:268:LYS:HE2	1.98	0.45
1:B:199:TYR:OH	1:B:328:LYS:HG2	2.17	0.45
1:B:278:ALA:HB1	1:B:289:LEU:HD11	1.98	0.45
2:2:7:ARG:HD3	2:2:84:ASP:OD2	2.17	0.45
1:H:6:VAL:HG12	1:H:522:VAL:HG22	1.97	0.45
1:M:420:LEU:HD11	1:M:501:VAL:HG13	1.99	0.45
1:G:230:ILE:CD1	2:U:34:PRO:HD2	2.45	0.45
1:E:203:TYR:HB3	1:E:267:LEU:HD11	1.98	0.45
1:D:352:GLU:O	1:D:356:VAL:HG23	2.15	0.45
1:C:209:LYS:O	1:C:211:GLN:N	2.43	0.45
1:B:176:THR:O	1:B:379:VAL:HA	2.16	0.45
2:W:32:MET:SD	1:I:268:LYS:HE3	2.56	0.45
1:I:6:VAL:HG12	1:I:522:VAL:HG22	1.98	0.45
1:I:24:ALA:HB3	1:I:97:ARG:HD3	1.98	0.45
1:I:199:TYR:OH	1:I:328:LYS:HG2	2.16	0.45
1:N:102:GLU:OE1	1:N:446:ARG:NH1	2.50	0.45
1:N:103:GLY:O	1:N:107:ILE:HG13	2.17	0.45
1:K:294:ILE:HD11	1:K:346:ARG:HG2	1.97	0.45
1:G:209:LYS:O	1:G:211:GLN:N	2.43	0.45
2:R:15:ARG:NH2	2:Q:97:LEU:HA	2.32	0.45
2:Q:34:PRO:CD	1:C:230:ILE:HD12	2.47	0.45
2:P:90:LEU:HD23	2:O:97:LEU:HD12	1.98	0.45
1:F:346:ARG:O	1:F:350:ILE:HD12	2.16	0.45
1:D:295:ALA:HA	1:D:343:ILE:HG21	1.98	0.45
1:B:193:MET:HG2	1:B:372:LYS:O	2.16	0.45
1:A:237:LEU:HD21	1:A:262:LEU:HD23	1.99	0.45
1:J:301:PHE:CZ	1:J:313:VAL:HG12	2.51	0.45
1:J:348:GLN:HA	1:J:351:ILE:HG12	1.97	0.45
2:1:73:LEU:HB3	2:1:91:PHE:HE2	1.82	0.45
1:M:224:GLU:O	1:M:252:GLU:HB2	2.17	0.45

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:K:217:ASP:N	1:K:322:GLY:O	2.39	0.45
1:K:306:LEU:HG	1:K:308:LEU:HD23	1.98	0.45
1:G:62:LEU:HD13	1:G:67:LYS:HB3	1.98	0.45
1:G:307:THR:HG22	1:G:307:THR:O	2.17	0.45
1:G:420:LEU:HD11	1:G:501:VAL:HG13	1.98	0.45
2:T:80:LYS:HG3	2:T:89:PHE:HE1	1.82	0.45
1:C:33:PRO:HD3	3:C:601:ADP:N7	2.32	0.45
1:C:228:SER:HA	1:C:255:ASP:CB	2.46	0.45
2:2:73:LEU:HD13	2:2:91:PHE:CE2	2.52	0.45
1:I:13:ARG:HD3	1:I:104:PHE:HD1	1.82	0.45
1:I:64:ASP:OD1	1:I:65:LYS:N	2.50	0.45
1:I:385:THR:HG21	1:H:506:LEU:CD2	2.46	0.45
1:N:197:ARG:H	1:N:330:ASP:HA	1.82	0.45
1:M:197:ARG:H	1:M:330:ASP:HA	1.82	0.45
1:L:219:TYR:HB3	1:L:318:LEU:HD23	1.99	0.45
1:K:278:ALA:HB1	1:K:289:LEU:HD11	1.99	0.45
1:G:197:ARG:H	1:G:330:ASP:HA	1.82	0.45
1:G:230:ILE:HD11	2:U:33:LEU:HG	1.98	0.45
1:G:301:PHE:CZ	1:G:313:VAL:HG12	2.52	0.45
2:R:17:LEU:HB3	2:R:48:ALA:HB3	1.99	0.45
1:F:87:ASP:OD1	1:F:88:GLY:N	2.47	0.45
1:D:222:LEU:HD23	1:D:250:ILE:HB	1.99	0.45
1:C:127:VAL:HG23	1:C:423:CYS:CB	2.47	0.45
1:H:215:PHE:CD2	1:H:246:PRO:HB2	2.51	0.45
1:H:253:ASP:OD1	1:H:254:VAL:N	2.49	0.45
1:N:199:TYR:OH	1:N:205:ILE:HD11	2.17	0.45
2:U:9:PHE:HB2	2:U:83:LEU:HD21	1.99	0.45
2:T:15:ARG:NH2	2:S:97:LEU:HA	2.32	0.45
1:E:54:VAL:HG12	1:E:78:ALA:HB1	1.99	0.45
1:E:321:VAL:HG11	1:E:333:LEU:HD22	1.98	0.45
1:C:497:PRO:O	1:C:500:VAL:HG12	2.16	0.45
1:B:180:GLY:HA3	1:B:382:VAL:O	2.16	0.45
1:A:140:THR:HG23	1:A:143:GLU:H	1.81	0.45
1:J:43:SER:HG	1:J:44:TRP:HE3	1.63	0.45
2:X:37:SER:O	2:X:38:GLN:HB3	2.17	0.45
1:I:7:LYS:HD3	1:I:66:TYR:CZ	2.52	0.45
1:I:352:GLU:O	1:I:356:VAL:HG23	2.17	0.45
1:I:428:ASP:OD1	1:I:445:LYS:NZ	2.36	0.45
1:G:199:TYR:HA	1:G:276:VAL:HG12	1.99	0.45
2:O:31:ILE:HD12	1:A:237:LEU:HB3	1.99	0.45
1:C:30:THR:HG22	1:C:36:ARG:O	2.17	0.45

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:143:GLU:O	1:C:147:VAL:HG23	2.17	0.45
1:B:263:VAL:HG21	1:A:305:GLY:HA3	1.99	0.45
1:B:281:PHE:O	1:B:285:ARG:NH2	2.50	0.45
1:A:228:SER:HA	1:A:255:ASP:CB	2.47	0.45
2:Y:73:LEU:HD22	2:Y:91:PHE:CE2	2.53	0.44
1:I:383:GLY:O	1:I:390:VAL:HG22	2.17	0.44
1:M:479:TYR:CE2	1:M:481:ALA:HA	2.52	0.44
1:K:6:VAL:HG12	1:K:522:VAL:HG22	1.99	0.44
2:T:80:LYS:HA	2:T:89:PHE:CD1	2.52	0.44
2:S:90:LEU:HD23	2:R:97:LEU:HD12	1.98	0.44
2:R:7:ARG:HD3	2:R:84:ASP:OD2	2.17	0.44
2:Q:27:THR:HG23	2:Q:28:LYS:N	2.32	0.44
2:Q:63:VAL:HG13	2:Q:93:ASP:OD1	2.17	0.44
1:E:24:ALA:HB3	1:E:97:ARG:HD3	1.98	0.44
1:N:190:ILE:O	1:N:376:GLY:HA3	2.16	0.44
1:M:18:GLN:OE1	1:M:67:LYS:HE2	2.17	0.44
1:M:54:VAL:HG12	1:M:78:ALA:HB1	2.00	0.44
1:M:207:THR:HG21	1:M:212:LYS:H	1.81	0.44
1:G:157:GLU:O	1:G:161:ILE:HG12	2.18	0.44
2:T:34:PRO:HG3	1:F:261:THR:HG22	1.97	0.44
2:Q:15:ARG:NH2	2:P:97:LEU:HA	2.32	0.44
1:F:414:LEU:HD22	1:F:489:MET:HB2	1.99	0.44
1:E:353:GLN:O	1:E:357:THR:HG22	2.17	0.44
1:J:4:LYS:HD2	1:K:59:SER:O	2.18	0.44
1:J:261:THR:HG22	2:X:34:PRO:HG3	1.99	0.44
2:V:37:SER:O	2:V:38:GLN:HB3	2.18	0.44
2:1:11:PRO:HG2	2:1:50:GLY:N	2.33	0.44
2:1:37:SER:O	2:1:38:GLN:HB3	2.17	0.44
2:Z:73:LEU:HB3	2:Z:91:PHE:HE2	1.83	0.44
2:Y:27:THR:HG22	2:Y:31:ILE:H	1.81	0.44
1:N:193:MET:HG2	1:N:372:LYS:O	2.17	0.44
1:N:199:TYR:OH	1:N:328:LYS:HG2	2.17	0.44
1:N:279:PRO:HD2	1:N:289:LEU:HD11	1.99	0.44
1:M:199:TYR:OH	1:M:328:LYS:HG2	2.17	0.44
2:T:73:LEU:HB3	2:T:91:PHE:HE2	1.83	0.44
2:S:81:VAL:HG12	2:R:72:LEU:HD21	1.98	0.44
1:C:218:ALA:HB2	1:C:246:PRO:HG2	2.00	0.44
1:C:271:LEU:HG	1:C:273:VAL:HG13	2.00	0.44
1:C:469:LYS:HG2	1:C:486:PHE:HE2	1.82	0.44
1:B:59:SER:O	1:A:4:LYS:HD2	2.17	0.44
1:A:199:TYR:OH	1:A:328:LYS:HG2	2.17	0.44

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:J:253:ASP:OD1	1:J:254:VAL:N	2.49	0.44
1:J:497:PRO:O	1:J:500:VAL:HG12	2.18	0.44
2:1:31:ILE:HD11	1:M:237:LEU:HD22	1.99	0.44
1:N:239:ILE:HG23	1:N:243:HIS:CE1	2.53	0.44
1:M:4:LYS:HD3	1:M:522:VAL:HG12	1.99	0.44
1:M:416:GLY:HA2	3:M:601:ADP:H1'	1.99	0.44
1:G:280:GLY:HA2	1:G:285:ARG:HE	1.83	0.44
2:Q:17:LEU:HB3	2:Q:48:ALA:HB3	1.98	0.44
2:O:73:LEU:HB3	2:O:91:PHE:HE2	1.83	0.44
1:F:346:ARG:HG3	1:F:350:ILE:CD1	2.47	0.44
1:E:188:GLU:HB3	1:E:379:VAL:CG2	2.47	0.44
1:D:253:ASP:OD1	1:D:254:VAL:N	2.49	0.44
1:D:346:ARG:O	1:D:350:ILE:HD12	2.16	0.44
1:A:215:PHE:HB2	1:A:324:VAL:HB	2.00	0.44
1:A:351:ILE:HG22	1:A:370:LEU:HD21	2.00	0.44
1:A:416:GLY:HA2	3:A:601:ADP:H1'	2.00	0.44
1:J:252:GLU:HG3	1:J:285:ARG:NH1	2.33	0.44
1:J:479:TYR:CE2	1:J:481:ALA:HA	2.53	0.44
2:2:27:THR:HG21	2:2:31:ILE:HG22	1.99	0.44
1:H:347:ILE:O	1:H:351:ILE:HG23	2.18	0.44
1:L:424:ILE:HG12	1:L:448:LEU:HD12	2.00	0.44
1:G:237:LEU:CB	2:U:31:ILE:HD12	2.48	0.44
1:G:478:GLY:CA	1:G:489:MET:HE2	2.48	0.44
2:S:11:PRO:HG2	2:S:50:GLY:N	2.32	0.44
1:F:182:THR:HG23	1:F:184:ASN:O	2.18	0.44
1:E:307:THR:HG22	1:E:307:THR:O	2.18	0.44
1:B:219:TYR:HA	1:B:319:GLY:O	2.18	0.44
2:Z:9:PHE:CB	2:Z:83:LEU:HD21	2.47	0.44
1:I:306:LEU:HG	1:I:308:LEU:HD23	1.99	0.44
1:H:13:ARG:NH2	1:H:519:GLU:OE1	2.47	0.44
1:H:166:MET:HG3	1:H:171:ARG:HA	2.00	0.44
1:H:224:GLU:O	1:H:252:GLU:HB2	2.17	0.44
1:M:291:ASP:OD1	1:M:346:ARG:NE	2.36	0.44
1:G:237:LEU:HD21	1:G:262:LEU:HD23	2.00	0.44
2:S:7:ARG:HD3	2:S:84:ASP:OD2	2.17	0.44
1:F:124:VAL:HA	1:F:127:VAL:HG12	2.00	0.44
1:F:220:VAL:HG22	1:F:248:VAL:CG2	2.48	0.44
1:F:489:MET:O	1:F:493:GLY:N	2.49	0.44
1:E:127:VAL:HG23	1:E:423:CYS:HB3	2.00	0.44
2:X:8:LYS:HG2	2:W:102:ASP:HB3	1.99	0.44
1:H:30:THR:HG22	1:H:36:ARG:O	2.18	0.44

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:H:188:GLU:OE1	1:H:381:LYS:NZ	2.47	0.44
1:L:197:ARG:H	1:L:330:ASP:HA	1.83	0.44
1:L:346:ARG:HG3	1:L:350:ILE:CD1	2.47	0.44
1:L:469:LYS:HG2	1:L:486:PHE:HE2	1.83	0.44
1:K:488:ASN:OD1	1:K:489:MET:N	2.51	0.44
2:R:27:THR:HG22	2:R:31:ILE:H	1.83	0.44
2:Q:11:PRO:HB2	2:Q:15:ARG:HB2	2.00	0.44
2:O:80:LYS:HG3	2:O:89:PHE:HE1	1.83	0.44
1:E:279:PRO:HD2	1:E:289:LEU:HD11	2.00	0.44
1:E:413:VAL:HB	1:E:498:THR:HG22	1.99	0.44
1:C:174:VAL:HB	1:C:377:VAL:HG12	2.00	0.44
1:J:155:ASP:OD1	1:J:157:GLU:OE1	2.35	0.44
2:X:7:ARG:HD3	2:X:84:ASP:OD2	2.17	0.44
2:W:11:PRO:HB2	2:W:15:ARG:HB2	2.00	0.44
1:I:124:VAL:HG21	1:I:509:ALA:CB	2.47	0.44
1:H:21:ASP:OD1	1:H:97:ARG:HD2	2.18	0.44
1:H:351:ILE:O	1:H:354:LEU:HG	2.18	0.44
1:M:263:VAL:O	1:M:267:LEU:HD13	2.18	0.44
1:K:222:LEU:HD23	1:K:250:ILE:HB	2.00	0.44
1:G:207:THR:HG21	1:G:212:LYS:H	1.82	0.44
1:B:215:PHE:CD2	1:B:246:PRO:HB2	2.53	0.44
1:B:301:PHE:CD1	1:B:308:LEU:HB3	2.52	0.44
1:B:414:LEU:HD22	1:B:489:MET:HB2	2.00	0.44
1:J:24:ALA:HB3	1:J:97:ARG:HD3	2.00	0.44
1:M:183:LEU:CD1	1:M:385:THR:HG22	2.47	0.44
1:M:470:ILE:HD11	1:M:479:TYR:HB2	2.00	0.44
1:L:354:LEU:HD12	1:L:355:ASP:N	2.33	0.44
2:P:73:LEU:HB3	2:P:91:PHE:HE2	1.83	0.44
1:F:420:LEU:HD12	1:F:420:LEU:N	2.33	0.44
1:E:297:GLY:O	1:E:319:GLY:HA2	2.18	0.44
1:D:166:MET:CG	1:D:171:ARG:HA	2.48	0.44
1:D:233:ILE:HG13	1:D:237:LEU:HD13	2.00	0.44
1:C:209:LYS:CG	1:C:210:GLY:H	2.31	0.44
1:B:120:VAL:HG13	1:B:444:ILE:HD11	1.99	0.44
1:B:199:TYR:OH	1:B:205:ILE:HD11	2.18	0.44
1:B:307:THR:HG22	1:B:307:THR:O	2.17	0.44
1:B:367:ASN:HA	1:B:370:LEU:HD13	2.00	0.44
1:A:127:VAL:HG23	1:A:423:CYS:HB3	1.99	0.44
1:J:87:ASP:OD1	1:J:88:GLY:N	2.47	0.43
2:W:32:MET:SD	1:I:268:LYS:CE	3.06	0.43
1:H:279:PRO:HD2	1:H:289:LEU:HD11	1.99	0.43

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:H:340:LYS:O	1:H:343:ILE:HG12	2.18	0.43
1:N:124:VAL:HA	1:N:127:VAL:HG12	2.00	0.43
1:K:287:ASN:HB3	1:K:369:ARG:HH11	1.83	0.43
1:G:54:VAL:HG12	1:G:78:ALA:HB1	2.00	0.43
1:G:510:GLY:C	1:A:389:GLU:OE2	2.56	0.43
2:T:17:LEU:HB3	2:T:48:ALA:HB3	2.00	0.43
2:S:78:GLY:HA3	2:S:91:PHE:CE1	2.53	0.43
1:D:219:TYR:O	1:D:248:VAL:HG22	2.17	0.43
1:D:348:GLN:HA	1:D:351:ILE:HG12	1.99	0.43
1:B:478:GLY:HA3	1:B:489:MET:HE3	2.00	0.43
1:A:279:PRO:HD2	1:A:289:LEU:HD11	1.99	0.43
1:A:301:PHE:CZ	1:A:313:VAL:HG12	2.53	0.43
1:J:33:PRO:HD3	3:J:601:ADP:C5	2.53	0.43
1:J:113:PRO:HB2	1:J:517:THR:HA	2.00	0.43
1:J:216:GLN:HA	1:J:323:GLU:HA	2.00	0.43
1:J:284:ASN:OD1	1:J:365:LYS:HB3	2.17	0.43
2:Y:37:SER:OG	2:Y:38:GLN:N	2.51	0.43
1:H:219:TYR:HB3	1:H:318:LEU:HD23	1.99	0.43
1:H:340:LYS:HA	1:H:343:ILE:HG12	2.01	0.43
1:M:197:ARG:NE	1:M:278:ALA:O	2.51	0.43
3:M:601:ADP:O3B	3:M:601:ADP:O1A	2.34	0.43
1:K:199:TYR:HA	1:K:276:VAL:HG12	1.98	0.43
1:K:207:THR:HG23	1:K:209:LYS:N	2.33	0.43
1:K:209:LYS:O	1:K:211:GLN:N	2.44	0.43
1:G:127:VAL:HG23	1:G:423:CYS:HB3	2.00	0.43
2:U:7:ARG:HD3	2:U:84:ASP:OD2	2.18	0.43
2:O:27:THR:HG21	2:O:31:ILE:HG22	2.00	0.43
1:D:199:TYR:OH	1:D:328:LYS:HG2	2.18	0.43
1:D:219:TYR:HB3	1:D:318:LEU:HD23	2.00	0.43
1:C:416:GLY:HA2	3:C:601:ADP:H1'	2.00	0.43
1:B:224:GLU:O	1:B:252:GLU:HB2	2.18	0.43
1:B:424:ILE:HG12	1:B:448:LEU:HD12	2.00	0.43
1:A:18:GLN:OE1	1:A:67:LYS:HE2	2.18	0.43
2:V:27:THR:HG21	2:V:31:ILE:HG22	2.01	0.43
1:I:51:LYS:NZ	3:I:601:ADP:O1B	2.50	0.43
1:I:166:MET:CG	1:I:171:ARG:HA	2.48	0.43
1:H:22:LEU:HD11	1:N:6:VAL:HG21	2.01	0.43
1:H:297:GLY:O	1:H:319:GLY:HA2	2.17	0.43
1:H:422:ARG:HE	1:H:475:SER:HA	1.81	0.43
1:N:291:ASP:OD1	1:N:346:ARG:NE	2.49	0.43
1:L:427:LEU:HA	1:L:430:LEU:HD23	2.00	0.43

	• • • • •	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:G:4:LYS:HD2	1:A:59:SER:O	2.17	0.43
1:G:30:THR:O	3:G:601:ADP:O3B	2.37	0.43
2:U:15:ARG:NH2	2:T:97:LEU:HA	2.33	0.43
2:O:27:THR:CG2	2:O:31:ILE:HG22	2.48	0.43
1:F:175:ILE:CG2	1:F:401:LEU:HD11	2.48	0.43
1:E:138:VAL:CG1	1:E:408:VAL:HA	2.49	0.43
1:E:280:GLY:HA2	1:E:285:ARG:NE	2.33	0.43
1:E:420:LEU:HD11	1:E:501:VAL:HG13	1.99	0.43
1:D:127:VAL:HG23	1:D:423:CYS:HB3	2.01	0.43
1:C:367:ASN:HA	1:C:370:LEU:HD13	2.00	0.43
1:C:389:GLU:OE2	1:B:510:GLY:C	2.56	0.43
1:B:22:LEU:HD11	1:A:6:VAL:HG21	2.00	0.43
2:X:9:PHE:CB	2:X:83:LEU:HD21	2.48	0.43
2:W:34:PRO:CD	1:I:230:ILE:HD12	2.49	0.43
2:V:78:GLY:HA3	2:V:91:PHE:CE1	2.53	0.43
2:Y:46:VAL:HG13	2:Y:67:VAL:HA	2.01	0.43
1:L:294:ILE:HD11	1:L:346:ARG:HG2	2.00	0.43
1:K:183:LEU:CD1	1:K:385:THR:HG22	2.48	0.43
1:F:118:ARG:O	1:F:122:LEU:HD13	2.18	0.43
1:E:295:ALA:HA	1:E:343:ILE:HG21	2.00	0.43
1:C:161:ILE:CG2	1:C:380:LEU:HD22	2.48	0.43
1:B:346:ARG:NE	1:B:350:ILE:HD11	2.33	0.43
1:A:54:VAL:HG11	1:A:82:ASN:HB2	2.00	0.43
1:A:197:ARG:H	1:A:330:ASP:HA	1.83	0.43
1:I:43:SER:HG	1:I:44:TRP:HE3	1.65	0.43
1:H:285:ARG:O	1:H:289:LEU:HD13	2.19	0.43
1:M:479:TYR:HD1	1:M:486:PHE:CD1	2.36	0.43
1:K:30:THR:HG22	1:K:36:ARG:O	2.19	0.43
2:R:34:PRO:HD2	1:D:230:ILE:CD1	2.49	0.43
1:B:118:ARG:O	1:B:122:LEU:HD13	2.19	0.43
1:B:422:ARG:NH1	1:B:474:SER:O	2.52	0.43
1:I:297:GLY:O	1:I:319:GLY:HA2	2.19	0.43
1:M:193:MET:O	1:M:332:MET:HG3	2.19	0.43
1:M:280:GLY:HA2	1:M:285:ARG:HE	1.83	0.43
1:L:237:LEU:HD21	1:L:262:LEU:HD23	2.00	0.43
1:L:307:THR:HG22	1:L:307:THR:O	2.18	0.43
2:U:82:VAL:O	2:U:82:VAL:HG13	2.18	0.43
2:S:27:THR:CG2	2:S:31:ILE:HG22	2.48	0.43
1:E:140:THR:HG23	1:E:143:GLU:H	1.83	0.43
1:D:193:MET:O	1:D:332:MET:HG3	2.18	0.43
1:C:307:THR:HG22	1:C:307:THR:O	2.19	0.43

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:489:MET:O	1:C:493:GLY:N	2.48	0.43
1:B:488:ASN:OD1	1:B:489:MET:N	2.52	0.43
1:J:207:THR:HG23	1:J:209:LYS:H	1.83	0.43
1:J:385:THR:HG21	1:I:506:LEU:HD21	2.00	0.43
2:1:31:ILE:CD1	1:M:237:LEU:HD22	2.48	0.43
2:Z:34:PRO:HD3	1:L:261:THR:HG22	2.01	0.43
1:I:255:ASP:OD1	1:I:256:GLY:N	2.48	0.43
1:H:166:MET:CG	1:H:171:ARG:HA	2.49	0.43
1:L:422:ARG:NH1	1:L:474:SER:O	2.51	0.43
1:K:24:ALA:HB3	1:K:97:ARG:HD3	2.01	0.43
1:K:117:ARG:NH1	1:K:513:SER:OG	2.51	0.43
1:G:4:LYS:HD3	1:G:522:VAL:HG12	2.01	0.43
1:G:199:TYR:OH	1:G:205:ILE:HD11	2.19	0.43
1:G:199:TYR:OH	1:G:328:LYS:HG2	2.19	0.43
2:T:9:PHE:CB	2:T:83:LEU:HD21	2.48	0.43
2:T:11:PRO:HG2	2:T:50:GLY:N	2.34	0.43
2:T:81:VAL:HG12	2:S:72:LEU:HD21	2.00	0.43
2:Q:90:LEU:HD23	2:P:97:LEU:HD12	2.00	0.43
1:F:497:PRO:O	1:F:500:VAL:HG12	2.19	0.43
1:D:389:GLU:OE2	1:C:510:GLY:C	2.57	0.43
1:C:207:THR:HG23	1:C:209:LYS:N	2.34	0.43
1:C:233:ILE:HG13	1:C:237:LEU:HD13	2.01	0.43
1:A:54:VAL:HG12	1:A:78:ALA:HB1	2.01	0.43
1:A:176:THR:O	1:A:379:VAL:HA	2.19	0.43
1:M:346:ARG:O	1:M:350:ILE:HD12	2.17	0.43
1:G:211:GLN:HG2	1:F:345:LYS:HD3	2.00	0.43
1:G:255:ASP:OD1	1:G:256:GLY:N	2.50	0.43
2:U:11:PRO:HB2	2:U:15:ARG:HB2	1.99	0.43
2:P:5:ALA:HB2	2:P:10:LEU:HD13	2.01	0.43
2:P:27:THR:HG22	2:P:31:ILE:H	1.84	0.43
1:F:294:ILE:HD11	1:F:346:ARG:HG2	2.00	0.43
3:E:601:ADP:O1A	3:E:601:ADP:O1B	2.37	0.43
1:D:346:ARG:HG3	1:D:350:ILE:CD1	2.48	0.43
1:B:197:ARG:NE	1:B:278:ALA:O	2.52	0.43
1:A:21:ASP:OD1	1:A:97:ARG:HD2	2.19	0.43
1:J:199:TYR:OH	1:J:328:LYS:HG2	2.19	0.43
1:J:389:GLU:OE2	1:I:510:GLY:C	2.58	0.43
2:W:27:THR:HG21	2:W:31:ILE:HG22	2.00	0.43
2:1:31:ILE:HG12	2:1:32:MET:H	1.84	0.43
1:I:124:VAL:HA	1:I:127:VAL:HG12	1.99	0.43
1:I:199:TYR:HD1	1:I:326:VAL:HG12	1.84	0.43

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:I:335:LYS:O	1:I:337:LYS:HD2	2.19	0.43
1:H:362:GLU:O	1:H:366:LEU:HB2	2.19	0.43
1:L:11:ASP:O	1:L:15:LEU:HD13	2.18	0.43
1:K:427:LEU:HA	1:K:430:LEU:HD23	1.99	0.43
1:F:24:ALA:HB3	1:F:97:ARG:HD3	2.00	0.43
1:F:271:LEU:HG	1:F:273:VAL:HG13	2.00	0.43
1:F:469:LYS:HG2	1:F:486:PHE:HE2	1.83	0.43
1:E:375:ASP:O	1:E:376:GLY:O	2.37	0.43
1:D:182:THR:HG23	1:D:184:ASN:O	2.19	0.43
1:D:526:PRO:O	1:D:527:LYS:C	2.58	0.43
1:A:30:THR:HB	1:A:51:LYS:HG3	2.00	0.43
1:A:212:LYS:HG2	1:A:327:THR:HG22	2.00	0.43
2:1:11:PRO:HB2	2:1:15:ARG:HB2	2.01	0.43
1:I:219:TYR:CE2	1:I:245:LYS:HD2	2.54	0.43
1:H:24:ALA:HA	1:H:27:VAL:HG12	2.01	0.43
1:H:127:VAL:HG23	1:H:423:CYS:CB	2.48	0.43
1:H:174:VAL:HG21	1:H:371:ALA:CB	2.48	0.43
1:N:389:GLU:OE2	1:M:510:GLY:C	2.58	0.43
1:G:182:THR:HG23	1:G:184:ASN:O	2.19	0.43
2:S:6:PHE:CE1	2:S:47:VAL:HB	2.54	0.43
2:S:17:LEU:HB3	2:S:48:ALA:HB3	2.00	0.43
1:F:278:ALA:HB1	1:F:289:LEU:HD11	2.00	0.43
1:F:351:ILE:O	1:F:354:LEU:HG	2.19	0.43
1:D:301:PHE:CZ	1:D:313:VAL:HG12	2.54	0.43
1:B:469:LYS:HG2	1:B:486:PHE:HE2	1.83	0.43
1:J:59:SER:O	1:I:4:LYS:HD2	2.19	0.42
1:J:234:VAL:CG2	2:X:31:ILE:HG21	2.48	0.42
1:J:257:GLU:O	1:J:261:THR:HG23	2.19	0.42
1:I:280:GLY:HA2	1:I:285:ARG:HE	1.84	0.42
1:H:33:PRO:HD3	3:H:601:ADP:C5	2.54	0.42
1:N:11:ASP:O	1:N:15:LEU:HD13	2.19	0.42
1:M:24:ALA:HB3	1:M:97:ARG:HD3	2.00	0.42
1:L:340:LYS:HA	1:L:343:ILE:HG12	2.01	0.42
1:G:161:ILE:CG2	1:G:380:LEU:HD22	2.49	0.42
2:Q:20:ARG:NH1	2:Q:41:VAL:O	2.50	0.42
1:E:140:THR:OG1	1:E:142:GLU:OE1	2.35	0.42
1:E:207:THR:HG21	1:E:212:LYS:H	1.84	0.42
1:E:351:ILE:O	1:E:354:LEU:HG	2.19	0.42
1:C:120:VAL:HG13	1:C:444:ILE:HD11	2.00	0.42
1:C:340:LYS:HA	1:C:343:ILE:HG12	2.01	0.42
1:A:469:LYS:HG2	1:A:486:PHE:HE2	1.84	0.42

	• • • • • •	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:J:193:MET:HG2	1:J:372:LYS:O	2.20	0.42
1:J:207:THR:HG21	1:J:212:LYS:H	1.84	0.42
1:J:353:GLN:O	1:J:357:THR:HG22	2.18	0.42
2:2:73:LEU:HD22	2:2:91:PHE:CE2	2.54	0.42
1:I:120:VAL:HG13	1:I:444:ILE:HD11	1.99	0.42
1:I:199:TYR:HA	1:I:276:VAL:HG12	2.00	0.42
1:I:424:ILE:N	1:I:425:PRO:CD	2.82	0.42
1:N:278:ALA:HB1	1:N:289:LEU:HD11	2.01	0.42
1:L:525:ILE:CG1	1:L:526:PRO:HD2	2.50	0.42
1:K:178:LYS:HE2	1:K:379:VAL:HB	2.00	0.42
2:S:81:VAL:HG22	2:S:88:TYR:O	2.19	0.42
1:C:64:ASP:OD1	1:C:65:LYS:N	2.52	0.42
1:C:362:GLU:O	1:C:366:LEU:HB2	2.19	0.42
1:B:21:ASP:OD1	1:B:97:ARG:HD2	2.19	0.42
1:J:6:VAL:HG21	1:K:22:LEU:HD11	2.01	0.42
1:J:190:ILE:O	1:J:376:GLY:CA	2.67	0.42
2:W:45:THR:HG22	2:W:70:LYS:HG2	2.00	0.42
2:1:73:LEU:HD22	2:1:91:PHE:CE2	2.55	0.42
1:I:87:ASP:OD1	1:I:88:GLY:N	2.46	0.42
1:N:120:VAL:HG13	1:N:444:ILE:HD11	2.00	0.42
1:N:219:TYR:HB3	1:N:318:LEU:HD23	2.01	0.42
1:M:219:TYR:HB3	1:M:318:LEU:HD23	2.00	0.42
1:L:4:LYS:HD3	1:L:522:VAL:HG12	2.00	0.42
1:D:207:THR:HG23	1:D:209:LYS:H	1.84	0.42
1:D:422:ARG:HE	1:D:475:SER:HA	1.83	0.42
1:B:216:GLN:HA	1:B:323:GLU:HA	2.00	0.42
1:B:233:ILE:HD11	1:B:249:ILE:HD13	2.01	0.42
1:A:352:GLU:O	1:A:356:VAL:HG23	2.18	0.42
2:W:25:THR:O	2:W:33:LEU:HB2	2.19	0.42
1:I:199:TYR:CE2	1:I:202:PRO:HA	2.54	0.42
1:H:279:PRO:HD2	1:H:289:LEU:CD1	2.49	0.42
1:N:176:THR:O	1:N:379:VAL:HA	2.19	0.42
1:N:488:ASN:OD1	1:N:489:MET:N	2.51	0.42
2:U:11:PRO:HG2	2:U:50:GLY:N	2.35	0.42
2:R:12:LEU:HD13	2:Q:98:GLY:CA	2.50	0.42
1:F:383:GLY:O	1:F:390:VAL:HG22	2.18	0.42
1:E:18:GLN:OE1	1:E:67:LYS:HE2	2.20	0.42
1:E:102:GLU:OE1	1:E:446:ARG:NH1	2.48	0.42
1:E:311:GLU:OE1	1:E:311:GLU:N	2.50	0.42
1:D:282:GLY:O	1:D:285:ARG:HG2	2.19	0.42
1:D:297:GLY:O	1:D:319:GLY:HA2	2.18	0.42

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:102:GLU:OE1	1:B:446:ARG:NH1	2.51	0.42
1:J:193:MET:O	1:J:332:MET:HG3	2.20	0.42
1:H:24:ALA:HB3	1:H:97:ARG:HD3	2.01	0.42
1:N:279:PRO:HD2	1:N:289:LEU:CD1	2.48	0.42
1:N:526:PRO:O	1:N:527:LYS:C	2.58	0.42
1:M:22:LEU:HD11	1:L:6:VAL:HG21	2.02	0.42
1:L:278:ALA:HB1	1:L:289:LEU:HD11	2.00	0.42
1:K:287:ASN:HB3	1:K:369:ARG:NH1	2.34	0.42
1:K:469:LYS:HG2	1:K:486:PHE:HE2	1.84	0.42
1:G:413:VAL:HB	1:G:498:THR:HG22	2.01	0.42
2:T:70:LYS:HB2	2:T:100:TYR:HB2	2.02	0.42
2:Q:27:THR:HG23	2:Q:29:GLY:N	2.34	0.42
1:F:31:MET:SD	1:F:454:THR:OG1	2.70	0.42
1:D:157:GLU:O	1:D:161:ILE:HG12	2.20	0.42
1:C:24:ALA:HB3	1:C:97:ARG:HD3	2.01	0.42
1:A:306:LEU:HG	1:A:308:LEU:HD23	2.01	0.42
1:J:410:GLU:HG2	1:J:498:THR:OG1	2.19	0.42
2:Y:34:PRO:HD3	1:K:261:THR:HG22	2.02	0.42
1:I:14:ALA:O	1:I:18:GLN:HG3	2.20	0.42
1:I:161:ILE:CG2	1:I:380:LEU:HD22	2.50	0.42
1:H:179:ASP:OD1	1:H:394:LYS:NZ	2.37	0.42
1:H:413:VAL:HB	1:H:498:THR:HG22	2.02	0.42
1:N:166:MET:CG	1:N:171:ARG:HA	2.49	0.42
1:N:233:ILE:HG13	1:N:237:LEU:HD13	2.01	0.42
1:K:410:GLU:HG2	1:K:498:THR:OG1	2.19	0.42
1:G:301:PHE:CD1	1:G:308:LEU:HB3	2.55	0.42
2:P:46:VAL:HG13	2:P:67:VAL:HA	2.01	0.42
2:O:78:GLY:HA3	2:O:91:PHE:CE1	2.54	0.42
1:E:166:MET:CG	1:E:171:ARG:HA	2.50	0.42
1:I:182:THR:HG23	1:I:184:ASN:O	2.20	0.42
1:I:340:LYS:HA	1:I:343:ILE:HG12	2.01	0.42
1:I:427:LEU:HA	1:I:430:LEU:HD23	2.02	0.42
1:H:497:PRO:O	1:H:500:VAL:HG12	2.19	0.42
1:M:371:ALA:HB1	1:M:377:VAL:CG1	2.49	0.42
1:L:124:VAL:HG21	1:L:509:ALA:CB	2.50	0.42
1:K:176:THR:O	1:K:379:VAL:HA	2.20	0.42
1:K:209:LYS:CG	1:K:210:GLY:H	2.30	0.42
1:G:230:ILE:HD12	2:U:34:PRO:HD2	2.02	0.42
1:G:233:ILE:HG13	1:G:237:LEU:HD13	2.01	0.42
2:R:17:LEU:HD11	2:R:81:VAL:CG2	2.50	0.42
1:E:199:TYR:OH	1:E:205:ILE:HD11	2.19	0.42

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:212:LYS:HG2	1:C:327:THR:HG22	2.01	0.42
1:C:385:THR:HG21	1:B:506:LEU:HD21	2.01	0.42
1:B:146:GLN:O	1:B:150:ILE:HG12	2.20	0.42
1:A:207:THR:HG21	1:A:212:LYS:H	1.84	0.42
1:A:297:GLY:O	1:A:319:GLY:HA2	2.20	0.42
1:A:346:ARG:HG3	1:A:350:ILE:CD1	2.50	0.42
1:I:382:VAL:HG23	1:I:390:VAL:HG13	2.01	0.42
1:H:420:LEU:HD11	1:H:501:VAL:HG13	2.02	0.42
1:M:233:ILE:HG13	1:M:237:LEU:HD13	2.01	0.42
1:L:327:THR:OG1	1:L:330:ASP:OD1	2.38	0.42
1:K:13:ARG:NH2	1:K:519:GLU:OE1	2.47	0.42
1:G:6:VAL:HG12	1:G:522:VAL:HG22	2.01	0.42
1:G:33:PRO:O	1:G:34:LYS:HB2	2.20	0.42
1:G:207:THR:HG23	1:G:209:LYS:H	1.85	0.42
2:S:9:PHE:CB	2:S:83:LEU:HD21	2.49	0.42
1:B:199:TYR:CZ	1:B:328:LYS:HG2	2.54	0.42
1:B:288:GLN:O	1:B:292:MET:HG3	2.20	0.42
1:A:150:ILE:HD11	1:A:493:GLY:O	2.19	0.42
1:A:422:ARG:NH1	1:A:474:SER:O	2.52	0.42
1:H:199:TYR:OH	1:H:328:LYS:CG	2.67	0.42
1:H:200:ILE:HD12	1:H:276:VAL:HA	2.02	0.42
1:M:253:ASP:OD1	1:M:254:VAL:N	2.53	0.42
1:K:21:ASP:OD1	1:K:97:ARG:HD2	2.20	0.42
1:K:140:THR:HG23	1:K:143:GLU:H	1.84	0.42
1:G:22:LEU:HD11	1:F:6:VAL:HG21	2.02	0.42
1:G:497:PRO:O	1:G:500:VAL:HG12	2.20	0.42
2:R:27:THR:HG23	2:R:28:LYS:N	2.34	0.42
2:O:9:PHE:HB2	2:O:83:LEU:HD21	2.02	0.42
1:F:30:THR:HG22	1:F:36:ARG:O	2.20	0.42
1:F:161:ILE:CG2	1:F:380:LEU:HD22	2.50	0.42
1:F:234:VAL:N	1:F:235:PRO:HD2	2.35	0.42
1:D:188:GLU:HB3	1:D:379:VAL:CG2	2.50	0.42
1:D:340:LYS:HA	1:D:343:ILE:HG12	2.00	0.42
1:C:6:VAL:HG12	1:C:522:VAL:HG22	2.02	0.42
1:C:222:LEU:HD23	1:C:250:ILE:HB	2.01	0.42
1:A:310:LEU:O	1:A:313:VAL:HG13	2.19	0.42
1:J:224:GLU:OE2	1:J:286:LYS:HG3	2.19	0.42
2:X:17:LEU:HB3	2:X:48:ALA:HB3	2.00	0.42
2:Y:6:PHE:HB2	2:Y:48:ALA:HB2	2.01	0.42
1:I:140:THR:HG23	1:I:143:GLU:H	1.85	0.42
1:I:224:GLU:OE2	1:I:286:LYS:HG3	2.19	0.42

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:I:351:ILE:O	1:I:354:LEU:HG	2.20	0.42
1:H:22:LEU:HD11	1:N:6:VAL:CG2	2.49	0.42
1:N:194:LYS:HD2	1:N:332:MET:HE2	2.01	0.42
1:M:237:LEU:HD21	1:M:262:LEU:HD23	2.01	0.42
1:M:389:GLU:OE2	1:L:510:GLY:O	2.37	0.42
1:L:31:MET:O	1:L:455:ILE:HD11	1.96	0.42
1:L:376:GLY:O	1:L:377:VAL:HG13	2.18	0.42
1:G:314:GLN:OE1	1:G:316:HIS:NE2	2.51	0.42
2:R:20:ARG:NH1	2:R:41:VAL:O	2.50	0.42
2:P:82:VAL:HG13	2:P:82:VAL:O	2.20	0.42
1:D:30:THR:HG22	1:D:36:ARG:O	2.20	0.42
1:D:197:ARG:H	1:D:330:ASP:HA	1.83	0.42
1:A:359:SER:C	1:A:361:TYR:H	2.24	0.42
1:J:219:TYR:HB3	1:J:318:LEU:HD23	2.01	0.41
2:V:27:THR:HG22	2:V:31:ILE:H	1.85	0.41
2:1:73:LEU:HD13	2:1:91:PHE:CE2	2.55	0.41
1:I:207:THR:HG23	1:I:209:LYS:H	1.85	0.41
1:N:296:THR:OG1	1:N:320:LYS:N	2.52	0.41
3:N:601:ADP:O1A	4:N:602:BEF:F1	2.27	0.41
1:K:87:ASP:OD1	1:K:88:GLY:N	2.47	0.41
1:K:302:GLY:N	1:K:308:LEU:O	2.35	0.41
1:G:127:VAL:HG23	1:G:423:CYS:CB	2.50	0.41
2:T:9:PHE:HB2	2:T:83:LEU:HD21	2.01	0.41
2:T:90:LEU:HD23	2:S:97:LEU:HD12	2.01	0.41
1:F:288:GLN:O	1:F:292:MET:HG3	2.20	0.41
1:E:54:VAL:HG13	1:E:89:THR:HG21	2.02	0.41
1:D:199:TYR:HA	1:D:275:ALA:O	2.19	0.41
1:D:199:TYR:HA	1:D:276:VAL:HG12	2.02	0.41
1:D:488:ASN:OD1	1:D:489:MET:N	2.52	0.41
1:A:279:PRO:HD2	1:A:289:LEU:CD1	2.49	0.41
1:J:212:LYS:HG2	1:J:327:THR:HG22	2.00	0.41
1:J:354:LEU:HD12	1:J:355:ASP:N	2.35	0.41
1:J:370:LEU:O	1:J:374:SER:N	2.52	0.41
2:1:6:PHE:CE1	2:1:47:VAL:HB	2.55	0.41
2:Y:66:LYS:HG2	2:Y:69:ASP:OD2	2.20	0.41
1:N:150:ILE:HD11	1:N:493:GLY:O	2.20	0.41
1:L:367:ASN:HA	1:L:370:LEU:HD13	2.02	0.41
1:L:417:GLY:HA3	1:L:452:ALA:HA	2.01	0.41
1:K:307:THR:O	1:K:307:THR:HG22	2.19	0.41
1:K:346:ARG:HG3	1:K:350:ILE:CD1	2.49	0.41
1:G:183:LEU:CD1	1:G:385:THR:HG22	2.50	0.41

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:U:17:LEU:HD11	2:U:81:VAL:HG21	2.01	0.41
2:T:6:PHE:CE1	2:T:47:VAL:HB	2.55	0.41
2:T:78:GLY:HA3	2:T:91:PHE:CE1	2.54	0.41
1:F:127:VAL:HG23	1:F:423:CYS:CB	2.51	0.41
1:F:393:LYS:O	1:F:397:VAL:HG23	2.20	0.41
1:E:354:LEU:HD12	1:E:355:ASP:N	2.35	0.41
1:D:278:ALA:HB1	1:D:289:LEU:HD11	2.02	0.41
1:C:237:LEU:HD23	1:C:271:LEU:CD2	2.50	0.41
1:B:127:VAL:HG23	1:B:423:CYS:HB3	2.03	0.41
1:B:214:GLU:HA	1:B:324:VAL:O	2.20	0.41
2:2:6:PHE:HB2	2:2:48:ALA:HB2	2.02	0.41
1:H:346:ARG:NE	1:H:350:ILE:HD11	2.35	0.41
1:M:279:PRO:HD2	1:M:289:LEU:HD11	2.01	0.41
1:M:301:PHE:CD1	1:M:308:LEU:HB3	2.55	0.41
1:M:489:MET:O	1:M:493:GLY:N	2.45	0.41
1:L:13:ARG:HD3	1:L:104:PHE:HD1	1.85	0.41
1:L:183:LEU:CD1	1:L:385:THR:HG22	2.50	0.41
3:L:601:ADP:O1A	4:L:602:BEF:F1	2.28	0.41
1:G:193:MET:O	1:G:332:MET:HG3	2.21	0.41
1:G:200:ILE:HD12	1:G:275:ALA:O	2.20	0.41
2:U:73:LEU:HD22	2:U:91:PHE:CE2	2.55	0.41
2:T:27:THR:HG23	2:T:28:LYS:N	2.35	0.41
2:T:73:LEU:HD22	2:T:91:PHE:CE2	2.54	0.41
1:F:478:GLY:O	1:F:486:PHE:HA	2.20	0.41
1:E:278:ALA:HB1	1:E:289:LEU:HD11	2.01	0.41
1:E:280:GLY:HA2	1:E:285:ARG:HE	1.86	0.41
1:D:497:PRO:O	1:D:500:VAL:HG12	2.20	0.41
1:B:228:SER:HA	1:B:255:ASP:CB	2.51	0.41
1:J:183:LEU:CD1	1:J:385:THR:HG22	2.51	0.41
1:J:284:ASN:OD1	1:J:365:LYS:CE	2.68	0.41
2:X:27:THR:HG23	2:X:29:GLY:N	2.36	0.41
2:Y:73:LEU:HD13	2:Y:91:PHE:CE2	2.56	0.41
1:I:281:PHE:HA	1:I:285:ARG:HH21	1.84	0.41
1:I:464:SER:OG	1:G:464:SER:OG	2.37	0.41
1:H:389:GLU:OE2	1:N:510:GLY:C	2.59	0.41
1:N:307:THR:O	1:N:307:THR:HG22	2.21	0.41
1:M:354:LEU:HB3	1:M:366:LEU:CD1	2.50	0.41
1:M:393:LYS:O	1:M:397:VAL:HG23	2.20	0.41
1:L:32:GLY:CA	1:L:455:ILE:HD13	2.50	0.41
1:L:216:GLN:HA	1:L:322:GLY:O	2.20	0.41
1:L:350:ILE:HG22	1:L:370:LEU:CD1	2.50	0.41

	o ao pagom	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:K:237:LEU:HD21	1:K:262:LEU:HD23	2.03	0.41
1:K:314:GLN:OE1	1:K:316:HIS:NE2	2.43	0.41
1:G:248:VAL:HG11	1:G:324:VAL:HG11	2.01	0.41
3:G:601:ADP:O2A	3:G:601:ADP:O2B	2.39	0.41
1:F:90:THR:HB	3:F:601:ADP:O2B	2.20	0.41
1:F:102:GLU:OE1	1:F:446:ARG:NH1	2.44	0.41
1:D:190:ILE:O	1:D:376:GLY:HA2	2.20	0.41
1:D:207:THR:HG23	1:D:209:LYS:N	2.35	0.41
1:C:163:SER:O	1:C:167:LYS:HG3	2.20	0.41
1:C:422:ARG:NH1	1:C:474:SER:O	2.52	0.41
1:B:220:VAL:N	1:B:319:GLY:O	2.53	0.41
1:A:307:THR:O	1:A:307:THR:HG22	2.21	0.41
1:A:526:PRO:O	1:A:527:LYS:C	2.58	0.41
1:J:278:ALA:HB1	1:J:289:LEU:HD11	2.02	0.41
1:J:450:ILE:N	1:J:451:PRO:CD	2.84	0.41
2:X:6:PHE:CE1	2:X:47:VAL:HB	2.55	0.41
1:I:43:SER:HB3	1:H:524:GLU:OE2	2.21	0.41
1:N:87:ASP:O	1:N:500:VAL:HG23	2.20	0.41
1:M:264:LEU:HD11	1:M:268:LYS:HE2	2.02	0.41
1:M:280:GLY:HA2	1:M:285:ARG:NE	2.35	0.41
1:L:95:LEU:HD21	1:L:451:PRO:HG2	1.79	0.41
1:K:288:GLN:O	1:K:292:MET:HG3	2.20	0.41
1:F:288:GLN:HE21	1:F:369:ARG:HG2	1.85	0.41
1:E:217:ASP:N	1:E:322:GLY:O	2.46	0.41
1:E:375:ASP:O	1:E:376:GLY:C	2.59	0.41
1:E:427:LEU:HA	1:E:430:LEU:HD23	2.02	0.41
1:D:147:VAL:HG23	1:D:495:ILE:HD11	2.03	0.41
1:D:234:VAL:N	1:D:235:PRO:HD2	2.35	0.41
1:C:478:GLY:C	1:C:489:MET:HE2	2.40	0.41
2:1:15:ARG:NH2	2:Z:97:LEU:HA	2.35	0.41
2:Y:27:THR:HG23	2:Y:28:LYS:N	2.36	0.41
2:Y:78:GLY:HA3	2:Y:91:PHE:CE1	2.55	0.41
1:H:207:THR:HG23	1:H:209:LYS:H	1.85	0.41
1:G:142:GLU:O	1:G:146:GLN:HG3	2.20	0.41
1:G:382:VAL:HG23	1:G:390:VAL:HG13	2.03	0.41
1:G:478:GLY:C	1:G:489:MET:HE2	2.41	0.41
1:E:237:LEU:HD21	1:E:262:LEU:HD23	2.02	0.41
1:D:228:SER:HA	1:D:255:ASP:CB	2.50	0.41
1:C:7:LYS:HD3	1:C:66:TYR:CZ	2.56	0.41
1:C:174:VAL:HG11	1:C:371:ALA:HB2	2.02	0.41
1:C:488:ASN:OD1	1:C:489:MET:N	2.53	0.41

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (\AA)
2:2:9:PHE:CB	2:2:83:LEU:HD21	2.50	0.41
2:2:11:PRO:HG2	2:2:50:GLY:N	2.35	0.41
2:Z:31:ILE:HG12	2:Z:32:MET:H	1.84	0.41
1:I:233:ILE:HG13	1:I:237:LEU:HD13	2.03	0.41
1:L:263:VAL:O	1:L:267:LEU:HD13	2.21	0.41
1:K:351:ILE:O	1:K:354:LEU:HG	2.21	0.41
1:G:135:SER:HB2	1:G:498:THR:HG21	2.03	0.41
1:G:237:LEU:HB2	2:U:31:ILE:HD12	2.02	0.41
2:O:31:ILE:HG21	1:A:234:VAL:HG23	2.03	0.41
1:F:279:PRO:HD2	1:F:289:LEU:HD11	2.02	0.41
1:E:292:MET:O	1:E:296:THR:HG22	2.20	0.41
1:C:199:TYR:HA	1:C:276:VAL:HG12	2.03	0.41
1:B:87:ASP:OD1	1:B:88:GLY:N	2.49	0.41
1:B:104:PHE:HA	1:B:107:ILE:HD12	2.03	0.41
1:B:264:LEU:HD11	1:B:268:LYS:HE2	2.01	0.41
2:Z:66:LYS:HG2	2:Z:69:ASP:OD2	2.21	0.41
1:N:347:ILE:O	1:N:351:ILE:HG23	2.20	0.41
1:M:166:MET:CG	1:M:171:ARG:HA	2.51	0.41
1:M:207:THR:HG23	1:M:209:LYS:H	1.86	0.41
1:M:258:ALA:O	1:M:261:THR:OG1	2.32	0.41
1:L:209:LYS:O	1:L:211:GLN:N	2.50	0.41
1:L:253:ASP:OD1	1:L:254:VAL:N	2.52	0.41
1:L:497:PRO:O	1:L:500:VAL:HG12	2.21	0.41
1:K:13:ARG:HD3	1:K:104:PHE:HD1	1.86	0.41
1:K:207:THR:HG21	1:K:212:LYS:H	1.85	0.41
1:G:228:SER:HA	1:G:255:ASP:HB3	2.02	0.41
2:P:31:ILE:HG12	2:P:32:MET:H	1.85	0.41
1:B:456:ALA:HB1	1:B:461:VAL:HG23	2.02	0.41
1:A:469:LYS:HD3	1:A:486:PHE:CE2	2.56	0.41
1:J:150:ILE:HD11	1:J:493:GLY:O	2.21	0.41
1:J:291:ASP:OD2	1:J:369:ARG:HD2	2.21	0.41
2:W:73:LEU:HD22	2:W:91:PHE:CE2	2.56	0.41
2:Z:11:PRO:HG2	2:Z:50:GLY:N	2.36	0.41
2:Y:11:PRO:HB2	2:Y:15:ARG:HB2	2.02	0.41
1:I:124:VAL:O	1:I:128:ILE:HG12	2.20	0.41
1:I:301:PHE:CZ	1:I:313:VAL:HG12	2.55	0.41
1:I:414:LEU:HD22	1:I:489:MET:HB2	2.02	0.41
1:M:176:THR:O	1:M:379:VAL:HA	2.21	0.41
1:M:207:THR:HG23	1:M:209:LYS:N	2.36	0.41
1:M:228:SER:HA	1:M:255:ASP:CB	2.50	0.41
1:L:30:THR:HG22	1:L:36:ARG:O	2.21	0.41

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:L:219:TYR:CE2	1:L:245:LYS:HD2	2.56	0.41
1:L:287:ASN:HB3	1:L:369:ARG:NH1	2.36	0.41
1:L:354:LEU:HB3	1:L:366:LEU:CD1	2.50	0.41
1:K:224:GLU:OE1	1:K:303:GLU:HA	2.21	0.41
1:K:456:ALA:HB1	1:K:461:VAL:HG23	2.03	0.41
1:K:469:LYS:CG	1:K:486:PHE:HE2	2.34	0.41
1:G:199:TYR:CE2	1:G:202:PRO:HA	2.56	0.41
1:G:352:GLU:O	1:G:356:VAL:HG23	2.20	0.41
2:P:34:PRO:CD	1:B:230:ILE:HD12	2.50	0.41
1:F:90:THR:N	4:F:602:BEF:F2	2.34	0.41
1:F:253:ASP:OD1	1:F:254:VAL:N	2.51	0.41
1:F:280:GLY:HA2	1:F:285:ARG:NE	2.36	0.41
1:E:118:ARG:O	1:E:122:LEU:HD13	2.21	0.41
1:E:166:MET:HG3	1:E:171:ARG:HA	2.03	0.41
1:E:199:TYR:OH	1:E:328:LYS:CG	2.69	0.41
1:E:348:GLN:HA	1:E:351:ILE:HG12	2.03	0.41
1:D:410:GLU:HG2	1:D:498:THR:OG1	2.21	0.41
1:C:200:ILE:HD12	1:C:275:ALA:O	2.21	0.41
1:B:26:ALA:O	1:B:29:VAL:HG22	2.21	0.41
1:B:279:PRO:HD2	1:B:289:LEU:HD11	2.02	0.41
1:B:420:LEU:HD11	1:B:501:VAL:HG13	2.02	0.41
1:A:102:GLU:OE1	1:A:446:ARG:NH1	2.51	0.41
1:A:228:SER:HA	1:A:255:ASP:HB3	2.03	0.41
1:J:176:THR:CG2	1:J:379:VAL:HG12	2.51	0.41
2:Z:27:THR:HG23	2:Z:28:LYS:N	2.36	0.41
2:Z:35:GLU:OE1	2:Z:38:GLN:NE2	2.54	0.41
1:I:207:THR:HG23	1:I:209:LYS:N	2.35	0.41
1:I:284:ASN:OD1	1:I:365:LYS:CE	2.69	0.41
1:I:296:THR:OG1	1:I:320:LYS:O	2.35	0.41
1:M:118:ARG:O	1:M:122:LEU:HD13	2.21	0.41
1:M:278:ALA:HB1	1:M:289:LEU:HD11	2.03	0.41
1:G:346:ARG:O	1:G:350:ILE:HD12	2.20	0.41
2:U:97:LEU:HD12	2:O:90:LEU:HD23	2.02	0.41
2:Q:32:MET:HE1	1:C:268:LYS:HG3	2.03	0.41
2:P:7:ARG:HD3	2:P:84:ASP:OD2	2.21	0.41
2:P:9:PHE:CB	2:P:83:LEU:HD21	2.51	0.41
1:E:301:PHE:CZ	1:E:313:VAL:HG12	2.56	0.41
1:D:421:LEU:HD21	1:D:467:VAL:HG13	2.03	0.41
1:C:118:ARG:O	1:C:122:LEU:HD13	2.20	0.41
1:B:294:ILE:HD11	1:B:346:ARG:HG2	2.01	0.41
1:B:478:GLY:C	1:B:489:MET:HE2	2.41	0.41

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:347:ILE:O	1:A:351:ILE:HG23	2.22	0.41
1:J:199:TYR:OH	1:J:205:ILE:HD11	2.20	0.40
1:J:287:ASN:HB3	1:J:369:ARG:NH1	2.36	0.40
1:J:420:LEU:N	1:J:420:LEU:HD12	2.36	0.40
2:X:45:THR:HG22	2:X:70:LYS:HG2	2.03	0.40
2:W:37:SER:OG	2:W:38:GLN:N	2.54	0.40
2:1:27:THR:HG22	2:1:31:ILE:N	2.37	0.40
1:I:280:GLY:HA2	1:I:285:ARG:NE	2.35	0.40
1:I:288:GLN:O	1:I:292:MET:HG3	2.22	0.40
1:I:307:THR:HG22	1:I:307:THR:O	2.21	0.40
1:H:103:GLY:O	1:H:107:ILE:HG13	2.21	0.40
1:N:224:GLU:O	1:N:252:GLU:HB2	2.21	0.40
1:N:297:GLY:O	1:N:319:GLY:HA2	2.20	0.40
1:L:94:VAL:HG11	1:L:454:THR:HG21	2.03	0.40
1:L:382:VAL:HG23	1:L:390:VAL:HG13	2.01	0.40
1:K:251:ALA:O	1:K:277:LYS:HA	2.22	0.40
1:K:456:ALA:HB1	1:K:461:VAL:CG2	2.50	0.40
1:G:87:ASP:OD1	1:G:88:GLY:N	2.47	0.40
1:G:280:GLY:HA2	1:G:285:ARG:NE	2.36	0.40
1:G:366:LEU:HD13	1:G:370:LEU:CD1	2.51	0.40
1:G:421:LEU:HD21	1:G:467:VAL:HG13	2.03	0.40
2:Q:12:LEU:HD13	2:P:98:GLY:HA2	2.04	0.40
2:O:73:LEU:HD13	2:O:91:PHE:CE2	2.56	0.40
1:E:228:SER:HA	1:E:255:ASP:HB3	2.03	0.40
1:E:421:LEU:HD21	1:E:467:VAL:HG13	2.04	0.40
1:B:209:LYS:O	1:B:211:GLN:N	2.49	0.40
1:J:200:ILE:HD12	1:J:275:ALA:O	2.21	0.40
1:J:488:ASN:OD1	1:J:489:MET:N	2.54	0.40
2:W:27:THR:HG23	2:W:29:GLY:N	2.37	0.40
2:2:37:SER:OG	2:2:38:GLN:N	2.53	0.40
1:I:180:GLY:HA3	1:I:382:VAL:O	2.21	0.40
1:H:199:TYR:HA	1:H:276:VAL:HG12	2.03	0.40
1:N:257:GLU:O	1:N:261:THR:HG23	2.20	0.40
1:M:150:ILE:HD11	1:M:493:GLY:O	2.20	0.40
1:G:120:VAL:HG13	1:G:444:ILE:HD11	2.03	0.40
1:G:297:GLY:O	1:G:319:GLY:HA2	2.22	0.40
2:R:32:MET:CE	1:D:268:LYS:HE3	2.51	0.40
2:P:27:THR:HB	2:P:31:ILE:HG22	2.04	0.40
1:E:234:VAL:N	1:E:235:PRO:HD2	2.37	0.40
1:C:228:SER:HA	1:C:255:ASP:HB3	2.02	0.40
1:B:285:ARG:O	1:B:289:LEU:HD13	2.21	0.40

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:I:247:LEU:O	1:I:273:VAL:HA	2.21	0.40
1:I:280:GLY:HA3	1:I:281:PHE:HA	1.96	0.40
1:H:207:THR:HG23	1:H:209:LYS:N	2.36	0.40
1:H:354:LEU:HB3	1:H:366:LEU:CD1	2.51	0.40
1:H:488:ASN:OD1	1:H:489:MET:N	2.54	0.40
1:M:140:THR:HG23	1:M:143:GLU:H	1.86	0.40
1:K:33:PRO:HD3	3:K:601:ADP:C5	2.56	0.40
1:K:203:TYR:HB3	1:K:267:LEU:HD11	2.02	0.40
2:S:73:LEU:HB3	2:S:91:PHE:HE2	1.86	0.40
2:P:14:ASP:OD1	2:P:93:ASP:HB3	2.21	0.40
2:P:51:SER:OG	2:P:52:GLY:N	2.55	0.40
1:F:54:VAL:HG13	1:F:89:THR:HG21	2.04	0.40
1:F:199:TYR:CE2	1:F:202:PRO:HA	2.56	0.40
1:F:212:LYS:HG2	1:F:327:THR:HG22	2.04	0.40
1:F:335:LYS:O	1:F:337:LYS:HD2	2.22	0.40
1:D:479:TYR:HD1	1:D:486:PHE:CE1	2.40	0.40
1:A:188:GLU:HB3	1:A:379:VAL:HG22	2.03	0.40
1:J:127:VAL:HG23	1:J:423:CYS:HB3	2.02	0.40
1:J:135:SER:OG	1:J:498:THR:HG21	2.21	0.40
2:V:63:VAL:HG13	2:V:93:ASP:OD1	2.22	0.40
1:I:41:GLU:OE1	1:H:65:LYS:HD2	2.22	0.40
1:H:199:TYR:OH	1:H:205:ILE:HD11	2.22	0.40
1:H:199:TYR:HD1	1:H:326:VAL:HG12	1.87	0.40
1:H:226:LYS:HG2	1:H:253:ASP:HB3	2.04	0.40
1:H:352:GLU:O	1:H:356:VAL:HG23	2.21	0.40
1:M:140:THR:OG1	1:M:142:GLU:OE1	2.36	0.40
1:M:366:LEU:HD13	1:M:370:LEU:CD1	2.51	0.40
1:L:478:GLY:C	1:L:489:MET:HE1	2.42	0.40
1:K:127:VAL:HG23	1:K:423:CYS:HB3	2.02	0.40
1:K:197:ARG:H	1:K:330:ASP:HA	1.87	0.40
1:G:278:ALA:HB1	1:G:289:LEU:HD11	2.03	0.40
1:G:422:ARG:NH1	1:G:474:SER:O	2.50	0.40
2:Q:73:LEU:HD22	2:Q:91:PHE:CE2	2.57	0.40
2:P:34:PRO:HD2	1:B:230:ILE:HD12	2.04	0.40
2:O:73:LEU:HD22	2:O:91:PHE:CE2	2.56	0.40
1:F:382:VAL:HG23	1:F:390:VAL:HG13	2.03	0.40
1:F:413:VAL:HB	1:F:498:THR:HG22	2.03	0.40
1:B:207:THR:HG21	1:B:212:LYS:H	1.85	0.40
1:A:335:LYS:O	1:A:337:LYS:HD2	2.22	0.40
1:J:314:GLN:CB	1:J:316:HIS:NE2	2.85	0.40
1:I:22:LEU:HD23	1:I:62:LEU:HD21	2.04	0.40

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:H:525:ILE:CG1	1:H:526:PRO:HD2	2.51	0.40
1:M:367:ASN:HA	1:M:370:LEU:HD13	2.03	0.40
1:M:428:ASP:OD1	1:M:445:LYS:NZ	2.49	0.40
1:L:190:ILE:HB	1:L:377:VAL:HG23	2.03	0.40
1:G:207:THR:HG23	1:G:209:LYS:N	2.37	0.40
1:G:348:GLN:HA	1:G:351:ILE:HG12	2.03	0.40
1:G:424:ILE:N	1:G:425:PRO:CD	2.85	0.40
2:Q:82:VAL:HG13	2:Q:82:VAL:O	2.22	0.40
1:F:2:SER:O	1:F:4:LYS:HG3	2.22	0.40
1:E:456:ALA:HB1	1:E:461:VAL:HG23	2.03	0.40
1:D:420:LEU:HD11	1:D:501:VAL:HG13	2.03	0.40
1:B:25:ASP:OD1	1:B:97:ARG:NH1	2.52	0.40
1:B:279:PRO:HD2	1:B:289:LEU:CD1	2.51	0.40
1:A:98:SER:HB3	1:A:447:THR:HG23	2.03	0.40

All (2) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:J:352:GLU:OE2	2:U:8:LYS:HZ2[2_555]	1.48	0.12
1:J:316:HIS:NE2	1:F:269:VAL:O[2_555]	2.17	0.03

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	А	526/549~(96%)	491 (93%)	34 (6%)	1 (0%)	47 78
1	В	526/549~(96%)	490 (93%)	35 (7%)	1 (0%)	47 78
1	С	526/549~(96%)	490 (93%)	35 (7%)	1 (0%)	47 78
1	D	526/549~(96%)	491 (93%)	33 (6%)	2(0%)	34 69

6HT7

α \cdot \cdot \cdot	C		
Continued	trom	previous	page
• • • • • • • • • • • • •	J	<i>P</i> · · · · · · · · · · · · · · · · · · ·	r - g - · · ·

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	Е	526/549~(96%)	488 (93%)	36~(7%)	2~(0%)	34	69
1	F	526/549~(96%)	490 (93%)	35~(7%)	1 (0%)	47	78
1	G	526/549~(96%)	489 (93%)	35 (7%)	2~(0%)	34	69
1	Н	526/549~(96%)	488 (93%)	36 (7%)	2(0%)	34	69
1	Ι	526/549~(96%)	485 (92%)	40 (8%)	1 (0%)	47	78
1	J	526/549~(96%)	489 (93%)	36 (7%)	1 (0%)	47	78
1	K	526/549~(96%)	492 (94%)	33~(6%)	1 (0%)	47	78
1	L	526/549~(96%)	495 (94%)	29 (6%)	2(0%)	34	69
1	М	526/549~(96%)	489 (93%)	34 (6%)	3 (1%)	25	62
1	Ν	526/549~(96%)	488 (93%)	37 (7%)	1 (0%)	47	78
2	1	98/102~(96%)	82 (84%)	16 (16%)	0	100	100
2	2	98/102~(96%)	80 (82%)	18 (18%)	0	100	100
2	Ο	98/102~(96%)	82 (84%)	16 (16%)	0	100	100
2	Р	98/102~(96%)	79 (81%)	19 (19%)	0	100	100
2	Q	98/102~(96%)	80 (82%)	18 (18%)	0	100	100
2	R	98/102~(96%)	80 (82%)	18 (18%)	0	100	100
2	S	98/102~(96%)	80 (82%)	18 (18%)	0	100	100
2	Т	98/102~(96%)	80 (82%)	18 (18%)	0	100	100
2	U	98/102~(96%)	82 (84%)	16 (16%)	0	100	100
2	V	98/102~(96%)	81 (83%)	17 (17%)	0	100	100
2	W	98/102~(96%)	80 (82%)	18 (18%)	0	100	100
2	Х	98/102~(96%)	82 (84%)	16 (16%)	0	100	100
2	Y	98/102 (96%)	80 (82%)	18 (18%)	0	100	100
2	Z	98/102~(96%)	81 (83%)	17 (17%)	0	100	100
All	All	8736/9114 (96%)	7984 (91%)	731 (8%)	21 (0%)	47	78

All (21) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	J	269	VAL
1	Ι	269	VAL
1	Н	269	VAL
1	N	269	VAL
1	М	269	VAL

Mol	Chain	Res	Type
1	L	269	VAL
1	L	455	ILE
1	Κ	269	VAL
1	G	269	VAL
1	F	269	VAL
1	Ε	269	VAL
1	D	269	VAL
1	С	269	VAL
1	В	269	VAL
1	А	269	VAL
1	Н	376	GLY
1	М	376	GLY
1	Ε	376	GLY
1	М	372	LYS
1	G	376	GLY
1	D	376	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	426/437~(98%)	423 (99%)	3~(1%)	84 91
1	В	426/437~(98%)	424 (100%)	2~(0%)	88 94
1	С	426/437~(98%)	424 (100%)	2(0%)	88 94
1	D	426/437~(98%)	424 (100%)	2 (0%)	88 94
1	Ε	426/437~(98%)	423 (99%)	3 (1%)	84 91
1	F	426/437~(98%)	422 (99%)	4 (1%)	78 88
1	G	426/437~(98%)	424 (100%)	2 (0%)	88 94
1	Η	426/437~(98%)	424 (100%)	2(0%)	88 94
1	Ι	426/437~(98%)	424 (100%)	2~(0%)	88 94
1	J	426/437~(98%)	423 (99%)	3(1%)	84 91
1	K	426/437~(98%)	423 (99%)	3 (1%)	84 91

Mol	Chain	Analysed	Rotameric	Outliers	Perce	\mathbf{ntiles}
1	L	426/437~(98%)	423~(99%)	3~(1%)	84	91
1	М	426/437~(98%)	424 (100%)	2~(0%)	88	94
1	Ν	426/437~(98%)	424 (100%)	2~(0%)	88	94
2	1	80/82~(98%)	80 (100%)	0	100	100
2	2	80/82~(98%)	80 (100%)	0	100	100
2	Ο	80/82~(98%)	80 (100%)	0	100	100
2	Р	80/82~(98%)	80 (100%)	0	100	100
2	Q	80/82~(98%)	80 (100%)	0	100	100
2	R	80/82~(98%)	80 (100%)	0	100	100
2	S	80/82~(98%)	80 (100%)	0	100	100
2	Т	80/82~(98%)	80 (100%)	0	100	100
2	U	80/82~(98%)	80 (100%)	0	100	100
2	V	80/82~(98%)	80 (100%)	0	100	100
2	W	80/82~(98%)	80 (100%)	0	100	100
2	Х	80/82~(98%)	80 (100%)	0	100	100
2	Y	80/82~(98%)	80 (100%)	0	100	100
2	Ζ	80/82~(98%)	80 (100%)	0	100	100
All	All	$708\overline{4/7266}~(98\%)$	7049 (100%)	35(0%)	88	94

All (35) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	J	284	ASN
1	J	308	LEU
1	J	321	VAL
1	Ι	284	ASN
1	Ι	308	LEU
1	Н	284	ASN
1	Н	308	LEU
1	N	284	ASN
1	N	308	LEU
1	М	284	ASN
1	М	308	LEU
1	L	284	ASN
1	L	308	LEU
1	L	321	VAL

Mol	Chain	Res	Type
1	Κ	284	ASN
1	Κ	308	LEU
1	Κ	321	VAL
1	G	284	ASN
1	G	308	LEU
1	F	284	ASN
1	F	288	GLN
1	F	308	LEU
1	F	321	VAL
1	Е	284	ASN
1	Е	308	LEU
1	Е	321	VAL
1	D	284	ASN
1	D	308	LEU
1	С	284	ASN
1	С	308	LEU
1	В	284	ASN
1	В	321	VAL
1	А	284	ASN
1	А	308	LEU
1	А	321	VAL

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (6) such sidechains are listed below:

Mol	Chain	Res	Type
1	Η	353	GLN
1	М	288	GLN
1	L	288	GLN
1	Κ	288	GLN
1	G	288	GLN
1	С	288	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 56 ligands modelled in this entry, 28 are monoatomic - leaving 28 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Trune	Chain	Dec	Tinle	Bo	Bond lengths		Bond angles		
	Type	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	$\mid RMSZ \mid \#$	Z > 2
4	BEF	D	602	-	0,3,3	-	-	-		
4	BEF	В	602	3	0,3,3	-	-	-		
3	ADP	L	601	6	24,29,29	0.98	2 (8%)	$29,\!45,\!45$	1.95 <mark>6</mark>	(20%)
3	ADP	Е	601	6,5	24,29,29	0.95	1 (4%)	$29,\!45,\!45$	1.50 6	(20%)
3	ADP	J	601	6,5	24,29,29	0.99	1 (4%)	29,45,45	1.61 4	(13%)
3	ADP	Ν	601	6,5,4	24,29,29	0.95	1 (4%)	29,45,45	1.70 4	(13%)
4	BEF	K	602	-	0,3,3	-	-	-		
4	BEF	G	602	3	0,3,3	-	-	-		
3	ADP	G	601	6,5,4	24,29,29	1.00	2 (8%)	$29,\!45,\!45$	1.91 4	(13%)
3	ADP	С	601	6	24,29,29	0.95	1 (4%)	29,45,45	2.49 9	(31%)
4	BEF	Н	602	3	0,3,3	-	-	-		
4	BEF	F	602	3	0,3,3	-	-	-		
4	BEF	Ι	602	-	0,3,3	-	-	-		
4	BEF	А	602	3	0,3,3	-	-	-		
3	ADP	А	601	$6,\!5,\!4$	$24,\!29,\!29$	0.91	1 (4%)	$29,\!45,\!45$	1.79 7	(24%)
4	BEF	J	602	-	0,3,3	-	-	-		
3	ADP	В	601	$6,\!5,\!4$	24,29,29	0.90	1 (4%)	$29,\!45,\!45$	1.74 <mark>3</mark>	(10%)
3	ADP	F	601	6,4	24,29,29	1.00	1 (4%)	$29,\!45,\!45$	1.94 6	(20%)
4	BEF	L	602	-	0,3,3	-	-	-		
4	BEF	С	602	-	0,3,3	-	-	-		
3	ADP	Ι	601	6	$2\overline{4,29,29}$	1.07	2 (8%)	$29,\!45,\!45$	1.72 <mark>5</mark>	(17%)
3	ADP	М	601	6,5	24,29,29	0.98	1 (4%)	29,45,45	1.96 <mark>3</mark>	(10%)
3	ADP	D	601	6,5	24,29,29	0.93	1 (4%)	29,45,45	1.69 6	(20%)
4	BEF	М	602	-	0,3,3	-	-	-		

Mal	Turne	Chain	Dec	Tink	Bo	ond leng	$_{\rm ths}$	B	ond ang	les
IVIOI	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
4	BEF	Ν	602	3	0,3,3	-	-	-		
3	ADP	K	601	6,5	24,29,29	1.00	1 (4%)	29,45,45	1.45	5 (17%)
4	BEF	Е	602	-	0,3,3	-	-	-		
3	ADP	Н	601	6,5,4	24,29,29	0.93	1 (4%)	29,45,45	1.74	4 (13%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	ADP	В	601	6,5,4	-	0/12/32/32	0/3/3/3
3	ADP	F	601	6,4	-	2/12/32/32	0/3/3/3
3	ADP	L	601	6	-	0/12/32/32	0/3/3/3
3	ADP	Ι	601	6	-	2/12/32/32	0/3/3/3
3	ADP	G	601	6,5,4	-	2/12/32/32	0/3/3/3
3	ADP	С	601	6	-	6/12/32/32	0/3/3/3
3	ADP	К	601	6,5	-	9/12/32/32	0/3/3/3
3	ADP	М	601	6,5	-	3/12/32/32	0/3/3/3
3	ADP	Е	601	6,5	-	8/12/32/32	0/3/3/3
3	ADP	J	601	6,5	-	4/12/32/32	0/3/3/3
3	ADP	D	601	6,5	-	4/12/32/32	0/3/3/3
3	ADP	N	601	6,5,4	-	0/12/32/32	0/3/3/3
3	ADP	Н	601	6,5,4	-	0/12/32/32	0/3/3/3
3	ADP	А	601	6,5,4	-	3/12/32/32	0/3/3/3

All (17) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
3	Κ	601	ADP	C5-C4	2.70	1.48	1.40
3	Ι	601	ADP	C5-C4	2.68	1.48	1.40
3	Е	601	ADP	C5-C4	2.58	1.47	1.40
3	J	601	ADP	C5-C4	2.56	1.47	1.40
3	F	601	ADP	C5-C4	2.55	1.47	1.40
3	С	601	ADP	C5-C4	2.54	1.47	1.40
3	G	601	ADP	C5-C4	2.53	1.47	1.40
3	М	601	ADP	C5-C4	2.52	1.47	1.40
3	D	601	ADP	C5-C4	2.48	1.47	1.40
3	L	601	ADP	C5-C4	2.45	1.47	1.40

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
3	Н	601	ADP	C5-C4	2.43	1.47	1.40
3	Ν	601	ADP	C5-C4	2.43	1.47	1.40
3	В	601	ADP	C5-C4	2.34	1.47	1.40
3	А	601	ADP	C5-C4	2.31	1.47	1.40
3	Ι	601	ADP	C2-N3	2.25	1.35	1.32
3	L	601	ADP	C2-N3	2.17	1.35	1.32
3	G	601	ADP	C2-N3	2.10	1.35	1.32

All (72) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	С	601	ADP	PA-O3A-PB	-8.66	103.11	132.83
3	М	601	ADP	PA-O3A-PB	-7.68	106.47	132.83
3	G	601	ADP	PA-O3A-PB	-6.98	108.88	132.83
3	F	601	ADP	PA-O3A-PB	-6.84	109.37	132.83
3	L	601	ADP	PA-O3A-PB	-6.78	109.55	132.83
3	В	601	ADP	PA-O3A-PB	-5.98	112.29	132.83
3	Ν	601	ADP	PA-O3A-PB	-5.84	112.78	132.83
3	Ι	601	ADP	PA-O3A-PB	-5.46	114.11	132.83
3	Н	601	ADP	PA-O3A-PB	-5.41	114.26	132.83
3	D	601	ADP	PA-O3A-PB	-5.23	114.89	132.83
3	J	601	ADP	PA-O3A-PB	-5.18	115.06	132.83
3	А	601	ADP	PA-O3A-PB	-4.51	117.37	132.83
3	Н	601	ADP	N3-C2-N1	-3.81	122.73	128.68
3	М	601	ADP	N3-C2-N1	-3.73	122.84	128.68
3	А	601	ADP	N3-C2-N1	-3.64	122.99	128.68
3	Е	601	ADP	N3-C2-N1	-3.58	123.08	128.68
3	С	601	ADP	C5'-C4'-C3'	-3.50	102.08	115.18
3	В	601	ADP	N3-C2-N1	-3.47	123.25	128.68
3	G	601	ADP	N3-C2-N1	-3.47	123.26	128.68
3	Ι	601	ADP	N3-C2-N1	-3.44	123.30	128.68
3	Κ	601	ADP	N3-C2-N1	-3.44	123.30	128.68
3	J	601	ADP	N3-C2-N1	-3.44	123.31	128.68
3	D	601	ADP	N3-C2-N1	-3.42	123.33	128.68
3	С	601	ADP	N3-C2-N1	-3.42	123.33	128.68
3	С	601	ADP	O3A-PB-O1B	-3.40	92.34	111.19
3	G	601	ADP	C3'-C2'-C1'	3.36	106.04	100.98
3	K	601	ADP	PA-O3A-PB	-3.36	121.31	132.83
3	С	601	ADP	O5'-PA-O1A	3.29	121.92	109.07
3	С	601	ADP	C3'-C2'-C1'	3.27	105.89	100.98
3	С	601	ADP	C4-C5-N7	-3.04	106.23	109.40
3	L	601	ADP	N3-C2-N1	-3.03	123.94	128.68

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	L	601	ADP	C4-C5-N7	-3.02	106.25	109.40
3	F	601	ADP	N3-C2-N1	-2.99	124.00	128.68
3	А	601	ADP	O3B-PB-O2B	2.98	119.02	107.64
3	L	601	ADP	O4'-C1'-C2'	-2.96	102.60	106.93
3	D	601	ADP	C4-C5-N7	-2.83	106.45	109.40
3	Ν	601	ADP	N3-C2-N1	-2.83	124.26	128.68
3	Е	601	ADP	C4-C5-N7	-2.75	106.53	109.40
3	F	601	ADP	O4'-C1'-C2'	-2.75	102.91	106.93
3	F	601	ADP	C4-C5-N7	-2.73	106.55	109.40
3	Ι	601	ADP	C4-C5-N7	-2.69	106.60	109.40
3	G	601	ADP	C4-C5-N7	-2.69	106.60	109.40
3	Ν	601	ADP	N6-C6-N1	2.57	123.91	118.57
3	Е	601	ADP	PA-O3A-PB	-2.56	124.04	132.83
3	М	601	ADP	C4-C5-N7	-2.54	106.75	109.40
3	F	601	ADP	O3A-PB-O1B	-2.54	97.13	111.19
3	А	601	ADP	C4-C5-N7	-2.53	106.76	109.40
3	F	601	ADP	O3B-PB-O2B	2.49	117.14	107.64
3	Е	601	ADP	O3B-PB-O2B	2.47	117.09	107.64
3	D	601	ADP	C3'-C2'-C1'	2.45	104.67	100.98
3	L	601	ADP	C3'-C2'-C1'	2.44	104.66	100.98
3	С	601	ADP	O3B-PB-O2B	2.42	116.88	107.64
3	D	601	ADP	O3B-PB-O2B	2.38	116.73	107.64
3	С	601	ADP	O4'-C1'-C2'	-2.37	103.46	106.93
3	В	601	ADP	C4-C5-N7	-2.37	106.93	109.40
3	Ι	601	ADP	O3B-PB-O2B	2.35	116.64	107.64
3	Ι	601	ADP	C3'-C2'-C1'	2.35	104.52	100.98
3	Е	601	ADP	C2-N1-C6	2.28	122.66	118.75
3	Н	601	ADP	C2-N1-C6	2.28	122.65	118.75
3	А	601	ADP	C2-N1-C6	2.26	122.61	118.75
3	Н	601	ADP	C4-C5-N7	-2.19	107.12	109.40
3	J	601	ADP	C4-C5-N7	-2.17	107.13	109.40
3	K	601	ADP	C2-N1-C6	2.16	122.45	118.75
3	K	601	ADP	O3B-PB-O2B	2.15	115.87	107.64
3	L	601	ADP	O3B-PB-O2B	2.14	115.81	107.64
3	D	601	ADP	O2A-PA-O1A	2.14	122.82	112.24
3	K	601	ADP	C4-C5-N7	-2.10	107.21	109.40
3	А	601	ADP	O2A-PA-O1A	2.07	122.50	112.24
3	Е	601	ADP	O2B-PB-O3A	-2.06	97.72	104.64
3	Ν	601	ADP	O2B-PB-O3A	-2.04	97.79	104.64
3	J	601	ADP	O3B-PB-O2B	2.03	115.39	107.64
3	А	601	ADP	O3B-PB-O3A	-2.00	97.92	104.64

There are no chirality outliers.

6]	Ηſ	$\Gamma7$
~ -		

Mol	Chain	Res	Type	Atoms
3	K	601	ADP	PA-O3A-PB-O2B
3	K	601	ADP	C5'-O5'-PA-O3A
3	Е	601	ADP	C5'-O5'-PA-O1A
3	Е	601	ADP	C5'-O5'-PA-O2A
3	Е	601	ADP	C5'-O5'-PA-O3A
3	Е	601	ADP	O4'-C4'-C5'-O5'
3	D	601	ADP	C5'-O5'-PA-O3A
3	D	601	ADP	O4'-C4'-C5'-O5'
3	С	601	ADP	C5'-O5'-PA-O1A
3	С	601	ADP	O4'-C4'-C5'-O5'
3	K	601	ADP	C3'-C4'-C5'-O5'
3	Е	601	ADP	C3'-C4'-C5'-O5'
3	J	601	ADP	O4'-C4'-C5'-O5'
3	J	601	ADP	C3'-C4'-C5'-O5'
3	М	601	ADP	O4'-C4'-C5'-O5'
3	М	601	ADP	C3'-C4'-C5'-O5'
3	K	601	ADP	O4'-C4'-C5'-O5'
3	D	601	ADP	C3'-C4'-C5'-O5'
3	С	601	ADP	C3'-C4'-C5'-O5'
3	G	601	ADP	C3'-C4'-C5'-O5'
3	G	601	ADP	O4'-C4'-C5'-O5'
3	А	601	ADP	O4'-C4'-C5'-O5'
3	А	601	ADP	C3'-C4'-C5'-O5'
3	Е	601	ADP	PA-O3A-PB-O1B
3	K	601	ADP	PA-O3A-PB-O3B
3	С	601	ADP	C5'-O5'-PA-O3A
3	K	601	ADP	C5'-O5'-PA-O1A
3	K	601	ADP	C5'-O5'-PA-O2A
3	D	601	ADP	C5'-O5'-PA-O1A
3	I	601	ADP	C3'-C4'-C5'-O5'
3	Ι	601	ADP	O4'-C4'-C5'-O5'
3	K	601	ADP	PA-O3A-PB-O1B
3	F	601	ADP	O4'-C4'-C5'-O5'
3	F	601	ADP	C3'-C4'-C5'-O5'
3	Е	601	ADP	PA-O3A-PB-O2B
3	Е	601	ADP	PA-O3A-PB-O3B
3	А	601	ADP	PA-O3A-PB-O3B
3	J	601	ADP	C5'-O5'-PA-O3A
3	K	601	ADP	PB-O3A-PA-O2A
3	С	601	ADP	PB-O3A-PA-O1A
3	С	601	ADP	PB-O3A-PA-O2A
3	J	601	ADP	C5'-O5'-PA-O1A

All (43) torsion outliers are listed below:

Continued from previous page...

Mol	Chain	Res	Type	Atoms
3	М	601	ADP	C5'-O5'-PA-O1A

There are no ring outliers.

27 monomers are involved in 64 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
4	D	602	BEF	3	0
4	В	602	BEF	2	0
3	L	601	ADP	3	0
3	Е	601	ADP	3	0
3	J	601	ADP	4	0
3	N	601	ADP	5	0
4	G	602	BEF	4	0
3	G	601	ADP	6	0
3	С	601	ADP	8	0
4	Н	602	BEF	2	0
4	F	602	BEF	2	0
4	Ι	602	BEF	2	0
4	А	602	BEF	1	0
3	А	601	ADP	3	0
4	J	602	BEF	3	0
3	В	601	ADP	3	0
3	F	601	ADP	2	0
4	L	602	BEF	2	0
4	С	602	BEF	2	0
3	Ι	601	ADP	5	0
3	М	601	ADP	3	0
3	D	601	ADP	4	0
4	М	602	BEF	1	0
4	Ν	602	BEF	2	0
3	К	601	ADP	2	0
4	Е	602	BEF	2	0
3	Н	601	ADP	2	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the

average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.2 Non-standard residues in protein, DNA, RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.3 Carbohydrates (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.4 Ligands (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

