

Full wwPDB X-ray Structure Validation Report (i)

Jun 17, 2024 – 08:11 AM EDT

PDB ID	:	5IFL
Title	:	Crystal structure of B. pseudomallei FabI in complex with NAD and triclosan
Authors	:	Hirschbeck, M.W.; Eltschkner, S.; Tonge, P.J.; Kisker, C.
Deposited on	:	2016-02-26
Resolution	:	2.60 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.37.1
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.37.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.60 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motric	Whole archive	Similar resolution		
IVIETIC	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$		
R_{free}	130704	3163 (2.60-2.60)		
Clashscore	141614	3518 (2.60-2.60)		
Ramachandran outliers	138981	3455 (2.60-2.60)		
Sidechain outliers	138945	3455 (2.60-2.60)		
RSRZ outliers	127900	3104 (2.60-2.60)		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	276	82%	11%	8%
			% *	11/0	
1	В	276	82%	11%	8%
1	С	276	82%	11%	8%
1	D	276	82%	11%	8%
1	Е	276	82%	10%	8%

Conti	nueu jion	i previous	ouye		
Mol	Chain	\mathbf{Length}	Quality of chain		
			3%		
1	F	276	80%	12%	8%
-	G		.% ■		
	G	276	81%	12%	8%
1	тт	076	3%		
1	П	270	80%	12%	8%
1	Т	276		1.20/	00/
1	1	210	5%	12%	8%
1	J	276	79%	13%	8%
			.%	13,0	0,0
1	Κ	276	80%	12%	8%
	-		.% •		
1	L	276	81%	12%	8%
1	м	070	24%		
1	M	276	78%	14%	8%
1	N	976	18%		20/
1	IN	270	76%	16%	8%
1	0	276	78%	14%	8%
-			17%	1470	0,0
1	Р	276	78%	14%	8%

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 32377 atoms, of which 432 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	D	955	Total	С	Ν	0	S	0	0	0
	D	200	1900	1211	323	361	5	0	0	0
1	Δ	255	Total	С	Ν	0	S	0	0	0
	Л	200	1900	1211	323	361	5	0	0	0
1	С	255	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
	0	200	1900	1211	323	361	5	0	0	0
1	О	255	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
		200	1900	1211	323	361	5	0	0	0
1	E	255	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
		200	1900	1211	323	361	5	0	0	0
1	F	255	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
-	1	200	1900	1211	323	361	5	0	Ŭ	
1	G	255	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
-	<u> </u>	200	1900	1211	323	361	5	0		
1	Н	255	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
			1900	1211	323	361	5		, , , , , , , , , , , , , , , , , , ,	
1	T	255	Total	С	Ν	Ο	S	0	0	0
	-		1900	1211	323	361	5	Ŭ		
1	J	255	Total	С	Ν	0	S	0	0	0
			1900	1211	323	361	5		-	
1	K	255	Total	С	N	0	S	0	0	0
			1900	1211	323	361	5		_	_
1	L	255	Total	C	N	0	S	0	0	0
			1900	1211	323	361	5			
1	М	255	Total	C	N	0	Ş	0	0	0
			1900	1211	323	361	<u>b</u>			
1	Ν	255	Total	C	N	0	Ş	0	0	0
			1900	1211	323	361	<u>b</u>			
1	Ο	255	1 Total	U	N	\mathbf{O}	S	0	0	0
			1900	1211	323	361	6			
1	Р	255	Total	C	N	\mathbf{O}	S	0	0	0
			1900	1211	323	361	\mathbf{b}			

• Molecule 1 is a protein called Enoyl-[acyl-carrier-protein] reductase [NADH].

$01\Gamma L$

				~	D 4
Chain	Residue	Modelled	Actual	Comment	Reference
B	264	LYS	-	expression tag	UNP A0A069B9A4
B	265	LEU	-	expression tag	UNP A0A069B9A4
В	266	ALA	-	expression tag	UNP A0A069B9A4
В	267	ALA	-	expression tag	UNP A0A069B9A4
В	268	ALA	-	expression tag	UNP A0A069B9A4
В	269	LEU	-	expression tag	UNP A0A069B9A4
В	270	GLU	-	expression tag	UNP A0A069B9A4
В	271	HIS	-	expression tag	UNP A0A069B9A4
В	272	HIS	-	expression tag	UNP A0A069B9A4
В	273	HIS	-	expression tag	UNP A0A069B9A4
В	274	HIS	-	expression tag	UNP A0A069B9A4
В	275	HIS	-	expression tag	UNP A0A069B9A4
В	276	HIS	-	expression tag	UNP A0A069B9A4
А	264	LYS	-	expression tag	UNP A0A069B9A4
А	265	LEU	-	expression tag	UNP A0A069B9A4
А	266	ALA	-	expression tag	UNP A0A069B9A4
А	267	ALA	-	expression tag	UNP A0A069B9A4
А	268	ALA	-	expression tag	UNP A0A069B9A4
А	269	LEU	-	expression tag	UNP A0A069B9A4
А	270	GLU	-	expression tag	UNP A0A069B9A4
А	271	HIS	-	expression tag	UNP A0A069B9A4
А	272	HIS	-	expression tag	UNP A0A069B9A4
А	273	HIS	-	expression tag	UNP A0A069B9A4
А	274	HIS	-	expression tag	UNP A0A069B9A4
A	275	HIS	-	expression tag	UNP A0A069B9A4
А	276	HIS	-	expression tag	UNP A0A069B9A4
С	264	LYS	-	expression tag	UNP A0A069B9A4
С	265	LEU	-	expression tag	UNP A0A069B9A4
С	266	ALA	-	expression tag	UNP A0A069B9A4
С	267	ALA	-	expression tag	UNP A0A069B9A4
С	268	ALA	-	expression tag	UNP A0A069B9A4
С	269	LEU	-	expression tag	UNP A0A069B9A4
С	270	GLU	-	expression tag	UNP A0A069B9A4
С	271	HIS	-	expression tag	UNP A0A069B9A4
С	272	HIS	-	expression tag	UNP A0A069B9A4
С	273	HIS	-	expression tag	UNP A0A069B9A4
С	274	HIS	-	expression tag	UNP A0A069B9A4
С	275	HIS	-	expression tag	UNP A0A069B9A4
С	276	HIS	-	expression tag	UNP A0A069B9A4
D	264	LYS	-	expression tag	UNP A0A069B9A4
D	265	LEU	-	expression tag	UNP A0A069B9A4
D	266	ALA	-	expression tag	UNP A0A069B9A4

There are 208 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
D	267	ALA	_	expression tag	UNP A0A069B9A4
D	268	ALA	_	expression tag	UNP A0A069B9A4
D	269	LEU	-	expression tag	UNP A0A069B9A4
D	270	GLU	_	expression tag	UNP A0A069B9A4
D	271	HIS	-	expression tag	UNP A0A069B9A4
D	272	HIS	-	expression tag	UNP A0A069B9A4
D	273	HIS	-	expression tag	UNP A0A069B9A4
D	274	HIS	-	expression tag	UNP A0A069B9A4
D	275	HIS	-	expression tag	UNP A0A069B9A4
D	276	HIS	-	expression tag	UNP A0A069B9A4
Е	264	LYS	-	expression tag	UNP A0A069B9A4
Е	265	LEU	-	expression tag	UNP A0A069B9A4
Е	266	ALA	-	expression tag	UNP A0A069B9A4
Е	267	ALA	-	expression tag	UNP A0A069B9A4
Е	268	ALA	-	expression tag	UNP A0A069B9A4
Е	269	LEU	-	expression tag	UNP A0A069B9A4
Е	270	GLU	-	expression tag	UNP A0A069B9A4
Е	271	HIS	-	expression tag	UNP A0A069B9A4
Е	272	HIS	-	expression tag	UNP A0A069B9A4
Е	273	HIS	-	expression tag	UNP A0A069B9A4
Е	274	HIS	-	expression tag	UNP A0A069B9A4
Е	275	HIS	-	expression tag	UNP A0A069B9A4
Е	276	HIS	-	expression tag	UNP A0A069B9A4
F	264	LYS	-	expression tag	UNP A0A069B9A4
F	265	LEU	-	expression tag	UNP A0A069B9A4
F	266	ALA	-	expression tag	UNP A0A069B9A4
F	267	ALA	-	expression tag	UNP A0A069B9A4
F	268	ALA	-	expression tag	UNP A0A069B9A4
F	269	LEU	-	expression tag	UNP A0A069B9A4
F	270	GLU	-	expression tag	UNP A0A069B9A4
F	271	HIS	-	expression tag	UNP A0A069B9A4
F	272	HIS	-	expression tag	UNP A0A069B9A4
F	273	HIS	-	expression tag	UNP A0A069B9A4
F	274	HIS	-	expression tag	UNP A0A069B9A4
F	275	HIS	-	expression tag	UNP A0A069B9A4
F	276	HIS	-	expression tag	UNP A0A069B9A4
G	264	LYS	-	expression tag	UNP A0A069B9A4
G	265	LEU	-	expression tag	UNP A0A069B9A4
G	266	ALA	-	expression tag	UNP A0A069B9A4
G	267	ALA	-	expression tag	UNP A0A069B9A4
G	268	ALA	-	expression tag	UNP A0A069B9A4
G	269	LEU	-	expression tag	UNP A0A069B9A4

Chain	Residue	Modelled	Actual	Comment	Reference
G	270	GLU	_	expression tag	UNP A0A069B9A4
G	271	HIS	_	expression tag	UNP A0A069B9A4
G	272	HIS	_	expression tag	UNP A0A069B9A4
G	273	HIS	-	expression tag	UNP A0A069B9A4
G	274	HIS	_	expression tag	UNP A0A069B9A4
G	275	HIS	_	expression tag	UNP A0A069B9A4
G	276	HIS	_	expression tag	UNP A0A069B9A4
Н	264	LYS	-	expression tag	UNP A0A069B9A4
Н	265	LEU	_	expression tag	UNP A0A069B9A4
Н	266	ALA	-	expression tag	UNP A0A069B9A4
Н	267	ALA	-	expression tag	UNP A0A069B9A4
Н	268	ALA	-	expression tag	UNP A0A069B9A4
Н	269	LEU	-	expression tag	UNP A0A069B9A4
Н	270	GLU	_	expression tag	UNP A0A069B9A4
Н	271	HIS	-	expression tag	UNP A0A069B9A4
Н	272	HIS	_	expression tag	UNP A0A069B9A4
Н	273	HIS	-	expression tag	UNP A0A069B9A4
Н	274	HIS	-	expression tag	UNP A0A069B9A4
Н	275	HIS	-	expression tag	UNP A0A069B9A4
Н	276	HIS	-	expression tag	UNP A0A069B9A4
Ι	264	LYS	-	expression tag	UNP A0A069B9A4
Ι	265	LEU	-	expression tag	UNP A0A069B9A4
Ι	266	ALA	-	expression tag	UNP A0A069B9A4
Ι	267	ALA	-	expression tag	UNP A0A069B9A4
Ι	268	ALA	-	expression tag	UNP A0A069B9A4
Ι	269	LEU	-	expression tag	UNP A0A069B9A4
Ι	270	GLU	-	expression tag	UNP A0A069B9A4
Ι	271	HIS	-	expression tag	UNP A0A069B9A4
Ι	272	HIS	-	expression tag	UNP A0A069B9A4
Ι	273	HIS	-	expression tag	UNP A0A069B9A4
Ι	274	HIS	-	expression tag	UNP A0A069B9A4
Ι	275	HIS	-	expression tag	UNP A0A069B9A4
Ι	276	HIS	-	expression tag	UNP A0A069B9A4
J	264	LYS	-	expression tag	UNP A0A069B9A4
J	265	LEU	-	expression tag	UNP A0A069B9A4
J	266	ALA	-	expression tag	UNP A0A069B9A4
J	267	ALA	-	expression tag	UNP A0A069B9A4
J	268	ALA	-	expression tag	UNP A0A069B9A4
J	269	LEU	-	expression tag	UNP A0A069B9A4
J	270	GLU	-	expression tag	UNP A0A069B9A4
J	271	HIS	-	expression tag	UNP A0A069B9A4
J	272	HIS	-	expression tag	UNP A0A069B9A4

Chain	Residue	Modelled	Actual	Comment	Reference
J	273	HIS	-	expression tag	UNP A0A069B9A4
J	274	HIS	_	expression tag	UNP A0A069B9A4
J	275	HIS	-	expression tag	UNP A0A069B9A4
J	276	HIS	_	expression tag	UNP A0A069B9A4
K	264	LYS	-	expression tag	UNP A0A069B9A4
K	265	LEU	-	expression tag	UNP A0A069B9A4
K	266	ALA	-	expression tag	UNP A0A069B9A4
K	267	ALA	-	expression tag	UNP A0A069B9A4
K	268	ALA	-	expression tag	UNP A0A069B9A4
K	269	LEU	-	expression tag	UNP A0A069B9A4
K	270	GLU	-	expression tag	UNP A0A069B9A4
K	271	HIS	-	expression tag	UNP A0A069B9A4
K	272	HIS	-	expression tag	UNP A0A069B9A4
K	273	HIS	-	expression tag	UNP A0A069B9A4
K	274	HIS	-	expression tag	UNP A0A069B9A4
K	275	HIS	-	expression tag	UNP A0A069B9A4
К	276	HIS	-	expression tag	UNP A0A069B9A4
L	264	LYS	-	expression tag	UNP A0A069B9A4
L	265	LEU	-	expression tag	UNP A0A069B9A4
L	266	ALA	-	expression tag	UNP A0A069B9A4
L	267	ALA	-	expression tag	UNP A0A069B9A4
L	268	ALA	-	expression tag	UNP A0A069B9A4
L	269	LEU	-	expression tag	UNP A0A069B9A4
L	270	GLU	-	expression tag	UNP A0A069B9A4
L	271	HIS	-	expression tag	UNP A0A069B9A4
L	272	HIS	-	expression tag	UNP A0A069B9A4
L	273	HIS	-	expression tag	UNP A0A069B9A4
L	274	HIS	-	expression tag	UNP A0A069B9A4
L	275	HIS	-	expression tag	UNP A0A069B9A4
L	276	HIS	-	expression tag	UNP A0A069B9A4
М	264	LYS	-	expression tag	UNP A0A069B9A4
М	265	LEU	-	expression tag	UNP A0A069B9A4
М	266	ALA	-	expression tag	UNP A0A069B9A4
М	267	ALA	-	expression tag	UNP A0A069B9A4
М	268	ALA	-	expression tag	UNP A0A069B9A4
M	269	LEU	-	expression tag	UNP A0A069B9A4
М	270	GLU	-	expression tag	UNP A0A069B9A4
M	271	HIS	-	expression tag	UNP A0A069B9A4
M	272	HIS	-	expression tag	UNP A0A069B9A4
M	273	HIS	-	expression tag	UNP A0A069B9A4
М	274	HIS	-	expression tag	UNP A0A069B9A4
М	275	HIS	-	expression tag	UNP A0A069B9A4

Chain	Residue	Modelled	Actual	Comment	Reference
М	276	HIS	-	expression tag	UNP A0A069B9A4
N	264	LYS	-	expression tag	UNP A0A069B9A4
N	265	LEU	-	expression tag	UNP A0A069B9A4
N	266	ALA	-	expression tag	UNP A0A069B9A4
N	267	ALA	-	expression tag	UNP A0A069B9A4
N	268	ALA	-	expression tag	UNP A0A069B9A4
N	269	LEU	-	expression tag	UNP A0A069B9A4
N	270	GLU	-	expression tag	UNP A0A069B9A4
N	271	HIS	-	expression tag	UNP A0A069B9A4
N	272	HIS	-	expression tag	UNP A0A069B9A4
N	273	HIS	-	expression tag	UNP A0A069B9A4
N	274	HIS	-	expression tag	UNP A0A069B9A4
N	275	HIS	-	expression tag	UNP A0A069B9A4
N	276	HIS	-	expression tag	UNP A0A069B9A4
0	264	LYS	-	expression tag	UNP A0A069B9A4
0	265	LEU	-	expression tag	UNP A0A069B9A4
0	266	ALA	-	expression tag	UNP A0A069B9A4
0	267	ALA	-	expression tag	UNP A0A069B9A4
0	268	ALA	-	expression tag	UNP A0A069B9A4
0	269	LEU	-	expression tag	UNP A0A069B9A4
0	270	GLU	-	expression tag	UNP A0A069B9A4
0	271	HIS	-	expression tag	UNP A0A069B9A4
0	272	HIS	-	expression tag	UNP A0A069B9A4
0	273	HIS	-	expression tag	UNP A0A069B9A4
0	274	HIS	-	expression tag	UNP A0A069B9A4
0	275	HIS	-	expression tag	UNP A0A069B9A4
0	276	HIS	-	expression tag	UNP A0A069B9A4
P	264	LYS	-	expression tag	UNP A0A069B9A4
P	265	LEU	-	expression tag	UNP A0A069B9A4
P	266	ALA	-	expression tag	UNP A0A069B9A4
Р	267	ALA	-	expression tag	UNP A0A069B9A4
P	268	ALA	-	expression tag	UNP A0A069B9A4
Р	269	LEU	-	expression tag	UNP A0A069B9A4
Р	270	GLU	-	expression tag	UNP A0A069B9A4
Р	271	HIS	-	expression tag	UNP A0A069B9A4
Р	272	HIS	-	expression tag	UNP A0A069B9A4
P	273	HIS	-	expression tag	UNP A0A069B9A4
Р	274	HIS	-	expression tag	UNP A0A069B9A4
P	275	HIS	-	expression tag	UNP A0A069B9A4
P	276	HIS	-	expression tag	UNP A0A069B9A4

• Molecule 2 is TRICLOSAN (three-letter code: TCL) (formula: $C_{12}H_7Cl_3O_2$).

Mol	Chain	Residues	A	Aton	ns		ZeroOcc	AltConf
0	р	1	Total	С	Cl	0	0	0
	Б	1	17	12	3	2	0	0
0	Δ	1	Total	С	Cl	0	0	0
	A	L	17	12	3	2	0	0
2	С	1	Total	С	Cl	0	0	0
	U	T	17	12	3	2	0	0
2	П	1	Total	С	Cl	0	0	0
2	D	I	17	12	3	2	0	0
2	E	1	Total	С	Cl	Ο	0	0
		T	17	12	3	2	0	0
2	F	1	Total	С	Cl	Ο	0	0
	1	1	17	12	3	2	0	0
2	G	1	Total	С	Cl	Ο	0	0
	<u> </u>	1	17	12	3	2	0	
2	Н	1	Total	С	Cl	0	0	0
		-	17	12	3	2	Ŭ,	
2	I	1	Total	С	Cl	0	0	0
		_	17	12	3	2		
2	J	1	Total	С	Cl	0	0	0
		_	17	12	3	2		
2	K	1	Total	С	Cl	0	0	0
			17	12	3	2		_
2	L	1	Total	C	CI	0	0	0
			17	12	3	2		_
2	М	1	Total	C	CI	U o	0	0
				12	3	2		
2	Ν	1	Total	C	CI	0	0	0
			17	12	- 3	2		

α \cdot 1	C		
Continued	from	previous	page
		1	1 0

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf
2	О	1	Total 17	C 12	Cl 3	O 2	0	0
2	Р	1	Total 17	C 12	Cl 3	O 2	0	0

• Molecule 3 is NICOTINAMIDE-ADENINE-DINUCLEOTIDE (three-letter code: NAD) (formula: $C_{21}H_{27}N_7O_{14}P_2$).

Mol	Chain	Residues	A	toms		ZeroOcc	AltConf
2	р	1	Total C	H N	0 P	0	0
0	5 D	1	71 21	27 7	14 2	0	0
3	Λ	1	Total C	H N	O P	0	0
0	Л	1	71 21	27 7	14 2	0	0
3	С	1	Total C	H N	O P	0	0
5	U	T	71 21	27 7	14 2	0	0
3	л	1	Total C	H N	O P	0	0
0	D	T	71 21	27 7	14 2		0
3	F 1	1	Total C	H N	O P	0	0
0	Ľ	1	71 21	27 7	14 2	0	0
ગ	F	1	Total C	H N	O P	0	0
0	Ľ	1	71 21	27 7	14 2	0	0
3	G	1	Total C	H N	O P	0	0
0	<u> </u>	Ĩ	71 21	27 7	14 2	0	0
3 H	н	1	Total C	H N	O P	0	0
	11	1	71 21	27 7	14 2	0	0
3	Т	T 1	Total C	H N	O P	0	0
3	1	1	71 21	27 7	$14 \ 2$	U	0

Mol	Chain	Residues		P	Aton	ıs			ZeroOcc	AltConf				
9	т	1	Total	С	Η	Ν	0	Р	0	0				
0 0	T	71	21	27	7	14	2	0	0					
2	K	1	Total	С	Η	Ν	Ο	Р	0	0				
5	Γ	1	71	21	27	7	14	2	0	0				
2	т	т	т	т	т	1	Total	С	Η	Ν	0	Р	0	0
5		1	71	21	27	7	14	2	0	0				
2	М	M 1	Total	С	Η	Ν	0	Р	0	0				
5	111		71	21	27	7	14	2		0				
3	N	N 1	Total	С	Η	Ν	Ο	Р	0	0				
5	IN	1	71	21	27	7	14	2	0					
3	0	1	Total	С	Η	Ν	Ο	Р	0	0				
5 0	T	71	21	27	7	14	2	0	0					
3 P	D	D 1	Total	С	Η	Ν	Ο	Р	0	0				
		71	21	27	7	14	2	0						

Continued from previous page...

• Molecule 4 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	В	60	Total O 60 60	0	0
4	А	44	Total O 44 44	0	0
4	С	35	Total O 35 35	0	0
4	D	45	Total O 45 45	0	0
4	Е	47	Total O 47 47	0	0
4	F	28	Total O 28 28	0	0
4	G	36	Total O 36 36	0	0
4	Н	23	TotalO2323	0	0
4	Ι	36	Total O 36 36	0	0
4	J	29	Total O 29 29	0	0
4	K	46	Total O 46 46	0	0
4	L	29	$\begin{array}{cc} \text{Total} & \text{O} \\ 29 & 29 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	М	21	Total O 21 21	0	0
4	Ν	26	Total O 26 26	0	0
4	О	39	Total O 39 39	0	0
4	Р	25	TotalO2525	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Enoyl-[acyl-carrier-protein] reductase [NADH]

MET ALA GLY LEU GLU CLU CLU CLU CLU ALA ALA ALA ALA ALA ALA ALA ALA HIS HIS HIS

• Molecule 1: Enoyl-[acyl-carrier-protein] reductase [NADH]

Chain	E:	82%			10%	8%	
MET G2 R18	T38 F61 F61 F61	F75 K79 K79 K79 F124 F124 F125 F125 F125 F125 F125	L141 L141 N155 L177 V182	L195 P215 N219 F231	V240 M245	S249 G256 GLY MET	ALA GLY GLU GLU
GLU LYS LEU ALA	ALA LEU GLU HIS HIS HIS HIS HIS						
• Mol	ecule 1: Enoy	-[acyl-carrier-prote	in] reductase [I	NADH]			
Chain	F:	80%			12%	8%	
MET G2 R8	L15 R18 E34 T38 D42	K 45 D 46 E 50 F 61 F 75 F 75 F 75 F 75 F 75 F 75 F 75 F 75	D83 188 188 1897 1897 1897 1897 1897 1903 1105 104	L108	P133	P154 N155 1192 K193	1194 1195 1200
1206	N218 V240 M245 S249 S249 C256	MET MET GLY GLY GLU GLU GLU MLA ALA ALA ALA ALA ALA ALA ALA ALA ALA	ALLE ALLE ALLE ALLE ALLE ALLE ALLE ALLE				
• Mole	ecule 1: Enoy	-[acyl-carrier-prote	in] reductase [I	NADH]			
Chain	G:	81%			12%	8%	I
MET G2 F3 c1 f	R17 R18 F51 F51	V65 F75 K79 W82 L88 R114 R114	P126 A131 L132 P138 D137 L141	P154 N155 L177 V182 K193	T194 L195 I200	P215 L216 V240	M245
G256 GLY MET	GLY LEU GLU GLU GLU CYS LYS LYS ALA ALA ALA	CULD HIS HIS HIS HIS HIS HIS HIS					
• Mole	ecule 1: Enoy	-[acyl-carrier-prote	in] reductase [I	NADH]			
Chain	H:	80%			12%	8%	
MET G2 L15	R18 V40 F51 E54 V65	F75 K79 K82 88 F124 F124 F125	L1122 L1133 L1134 L1141 L1	P154 N155 K163 L177	V182 1187	K193 T194 L195	1200 K201 S202
P215 V240	H246 H246 V247 D248 S249 G256 G1Y MET ALA	LEU CIU GIU GIU CIU CIU ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	SIH				
• Mole	ecule 1: Enoy	-[acyl-carrier-prote	in] reductase [I	NADH]			
Chain	^{3%} I:	81%			12%	8%	

GLY MET ALA GLV CLEU GLU GLU CLVS LLVS CLU ALA ALA ALA ALA ALA ALA HIS HIS HIS • Molecule 1: Enoyl-[acyl-carrier-protein] reductase [NADH] Chain J: 79% 13% 8% • Molecule 1: Enoyl-[acyl-carrier-protein] reductase [NADH] Chain K: 80% 8% 12% GLY GLY GLY ALA ALA ALA GLU CLU CLU HIS HIS HIS HIS HIS • Molecule 1: Enoyl-[acyl-carrier-protein] reductase [NADH] Chain L: 81% 12% 8% • Molecule 1: Enoyl-[acyl-carrier-protein] reductase [NADH] 24% Chain M: 78% 14% 8%

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1	Depositor
Cell constants	70.36Å 99.92Å 139.86Å	Depositor
a, b, c, α , β , γ	82.87° 89.20° 78.13°	Depositor
Bosolution(A)	48.58 - 2.60	Depositor
Resolution (A)	68.85 - 2.60	EDS
% Data completeness	98.5 (48.58-2.60)	Depositor
(in resolution range)	98.5(68.85-2.60)	EDS
R_{merge}	0.11	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$2.97 (at 2.62 \text{\AA})$	Xtriage
Refinement program	PHENIX 1.9_1692	Depositor
B B.	0.221 , 0.262	Depositor
II, II free	0.222 , 0.261	DCC
R_{free} test set	5631 reflections (5.02%)	wwPDB-VP
Wilson B-factor $(Å^2)$	43.5	Xtriage
Anisotropy	0.087	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.31 , 35.5	EDS
L-test for $twinning^2$	$ < L >=0.48, < L^2>=0.30$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.92	EDS
Total number of atoms	32377	wwPDB-VP
Average B, all atoms $(Å^2)$	59.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.50% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NAD, TCL

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.22	0/1933	0.40	0/2616	
1	В	0.22	0/1933	0.40	0/2616	
1	С	0.22	0/1933	0.40	0/2616	
1	D	0.22	0/1933	0.40	0/2616	
1	Е	0.22	0/1933	0.40	0/2616	
1	F	0.22	0/1933	0.40	0/2616	
1	G	0.22	0/1933	0.41	0/2616	
1	Н	0.22	0/1933	0.42	0/2616	
1	Ι	0.22	0/1933	0.40	0/2616	
1	J	0.24	0/1933	0.43	1/2616~(0.0%)	
1	Κ	0.22	0/1933	0.40	0/2616	
1	L	0.22	0/1933	0.40	0/2616	
1	М	0.22	0/1933	0.41	0/2616	
1	Ν	0.23	0/1933	0.41	0/2616	
1	0	0.22	0/1933	0.40	0/2616	
1	Р	0.22	0/1933	0.41	0/2616	
All	All	0.22	0/30928	0.41	1/41856~(0.0%)	

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	J	18	ARG	NE-CZ-NH2	5.91	123.26	120.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1900	0	1907	29	1
1	В	1900	0	1907	29	0
1	С	1900	0	1907	23	2
1	D	1900	0	1907	24	0
1	Е	1900	0	1907	22	0
1	F	1900	0	1907	34	0
1	G	1900	0	1907	29	0
1	Н	1900	0	1907	32	0
1	Ι	1900	0	1907	35	0
1	J	1900	0	1907	28	2
1	Κ	1900	0	1907	28	0
1	L	1900	0	1907	27	1
1	М	1900	0	1907	40	0
1	Ν	1900	0	1907	40	0
1	0	1900	0	1907	36	0
1	Р	1900	0	1907	37	0
2	А	17	0	7	2	0
2	В	17	0	7	3	0
2	С	17	0	7	0	0
2	D	17	0	7	2	0
2	Е	17	0	7	0	0
2	F	17	0	7	1	0
2	G	17	0	7	1	0
2	Н	17	0	7	0	0
2	Ι	17	0	7	0	0
2	J	17	0	7	2	0
2	Κ	17	0	7	1	0
2	L	17	0	7	1	0
2	М	17	0	7	3	0
2	Ν	17	0	7	2	0
2	0	17	0	7	2	0
2	Р	17	0	7	4	0
3	А	44	27	26	2	0
3	В	44	27	26	1	0
3	С	44	27	26	1	0
3	D	44	27	26	3	0
3	Е	44	27	26	2	0

	5IFL
hos	

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
3	F	44	27	26	1	0
3	G	44	27	26	1	0
3	Н	44	27	26	4	0
3	Ι	44	27	26	4	0
3	J	44	27	26	4	0
3	К	44	27	26	2	0
3	L	44	27	26	3	0
3	М	44	27	26	8	0
3	N	44	27	26	4	0
3	0	44	27	26	3	0
3	Р	44	27	26	6	0
4	А	44	0	0	1	0
4	В	60	0	0	1	0
4	С	35	0	0	1	0
4	D	45	0	0	2	0
4	Е	47	0	0	5	0
4	F	28	0	0	3	0
4	G	36	0	0	3	0
4	Н	23	0	0	1	0
4	Ι	36	0	0	3	0
4	J	29	0	0	2	0
4	Κ	46	0	0	2	0
4	L	29	0	0	2	0
4	М	21	0	0	6	0
4	Ν	26	0	0	3	0
4	0	39	0	0	3	0
4	Р	25	0	0	5	0
All	All	31945	432	31040	428	3

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 7.

All (428) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:F:50:GLU:OE2	1:I:97:ARG:NH1	2.14	0.81
1:P:191:PRO:HA	3:P:302:NAD:O7N	1.80	0.80
1:M:15:LEU:HD23	1:M:195:LEU:HD22	1.63	0.80
1:P:18:ARG:NH1	1:P:193:LYS:O	2.15	0.79
1:B:200:ILE:HD11	2:B:301:TCL:H131	1.64	0.79
1:M:114:ARG:HG3	1:N:114:ARG:HG3	1.64	0.79

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:M:116:ALA:N	4:M:401:HOH:O	2.15	0.78
1:H:193:LYS:HZ1	1:P:69:ALA:HA	1.50	0.76
1:M:112:ASN:O	4:M:401:HOH:O	2.04	0.74
1:F:15:LEU:HD23	1:F:195:LEU:HD22	1.70	0.73
1:H:65:VAL:HG22	3:H:302:NAD:N1A	2.03	0.72
1:N:252:ASN:OD1	1:N:253:ALA:N	2.22	0.71
1:N:252:ASN:HA	4:N:415:HOH:O	1.91	0.71
1:P:95:ALA:N	2:P:301:TCL:CL15	2.61	0.70
1:L:205:LYS:NZ	4:L:401:HOH:O	2.19	0.70
1:F:103:ASP:OD2	4:F:401:HOH:O	2.10	0.70
1:E:240:VAL:HG21	1:H:245:MET:HE2	1.74	0.69
1:O:43:ARG:NH2	4:O:401:HOH:O	2.26	0.69
1:K:18:ARG:NH1	4:K:402:HOH:O	2.25	0.69
1:N:200:ILE:HD11	2:N:301:TCL:H131	1.75	0.68
1:L:88:LEU:HB3	1:L:141:LEU:HD22	1.75	0.68
1:P:189:ALA:HB3	3:P:302:NAD:C5N	2.24	0.68
1:F:88:LEU:HB3	1:F:141:LEU:HD22	1.77	0.67
1:B:97:ARG:NH1	1:F:218:ARG:HD2	2.09	0.67
1:B:88:LEU:HB3	1:B:141:LEU:HD22	1.77	0.67
1:G:18:ARG:NH1	1:G:194:THR:HA	2.08	0.67
1:D:88:LEU:HB3	1:D:141:LEU:HD22	1.77	0.66
1:P:251:PHE:O	1:P:254:VAL:HG22	1.96	0.66
1:J:88:LEU:HB3	1:J:141:LEU:HD22	1.77	0.65
1:P:65:VAL:N	4:P:401:HOH:O	2.29	0.65
1:H:75:PHE:CE1	1:H:131:ALA:HB2	2.32	0.65
1:I:75:PHE:CE1	1:I:131:ALA:HB2	2.32	0.65
1:K:88:LEU:HB3	1:K:141:LEU:HD22	1.79	0.64
1:K:200:ILE:HD11	2:K:301:TCL:H131	1.78	0.64
1:O:18:ARG:NH2	1:O:195:LEU:HD22	2.11	0.64
1:K:75:PHE:CE1	1:K:131:ALA:HB2	2.32	0.64
1:C:75:PHE:CE1	1:C:131:ALA:HB2	2.33	0.63
1:F:45:LYS:HZ3	1:I:115:ILE:HD12	1.61	0.63
1:I:132:LEU:HB3	1:I:133:PRO:HD3	1.80	0.63
1:B:97:ARG:HH11	1:F:218:ARG:HD2	1.63	0.63
1:J:75:PHE:CE1	1:J:131:ALA:HB2	2.34	0.63
1:D:18:ARG:HH22	1:D:195:LEU:HD13	1.63	0.63
1:K:132:LEU:HB3	1:K:133:PRO:HD3	1.81	0.63
1:P:194:THR:OG1	3:P:302:NAD:O1N	2.16	0.63
1:G:18:ARG:HH12	1:G:194:THR:HA	1.63	0.63
1:B:75:PHE:CE1	1:B:131:ALA:HB2	2.34	0.63
1:N:132:LEU:HB3	1:N:133:PRO:HD3	1.79	0.63

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:N:75:PHE:CE1	1:N:131:ALA:HB2	2.34	0.63
3:D:302:NAD:N7N	3:D:302:NAD:O1N	2.28	0.62
1:M:75:PHE:CE1	1:M:131:ALA:HB2	2.34	0.62
1:D:132:LEU:HB3	1:D:133:PRO:HD3	1.82	0.62
1:I:88:LEU:HB3	1:I:141:LEU:HD22	1.80	0.62
1:A:79:LYS:HA	1:A:82:TRP:O	2.00	0.61
1:G:75:PHE:CE1	1:G:131:ALA:HB2	2.34	0.61
1:J:132:LEU:HB3	1:J:133:PRO:HD3	1.82	0.61
1:E:132:LEU:HB3	1:E:133:PRO:HD3	1.81	0.61
1:F:8:ARG:NE	1:F:34:GLU:OE1	2.28	0.61
1:G:65:VAL:HG22	3:G:302:NAD:N1A	2.16	0.61
1:D:75:PHE:CE1	1:D:131:ALA:HB2	2.35	0.61
1:F:192:ILE:N	3:F:302:NAD:O7N	2.34	0.61
1:M:15:LEU:CD2	1:M:195:LEU:HD22	2.31	0.61
1:O:15:LEU:HB2	3:O:302:NAD:O3B	2.01	0.61
1:F:15:LEU:CD2	1:F:195:LEU:HD22	2.30	0.60
1:K:65:VAL:HG22	3:K:302:NAD:N1A	2.17	0.60
1:M:132:LEU:HB3	1:M:133:PRO:HD3	1.83	0.60
1:A:75:PHE:CE1	1:A:131:ALA:HB2	2.35	0.60
1:E:75:PHE:CE1	1:E:131:ALA:HB2	2.37	0.60
1:H:132:LEU:HB3	1:H:133:PRO:HD3	1.83	0.60
1:A:245:MET:HE2	1:D:240:VAL:HG21	1.83	0.60
1:C:132:LEU:HB3	1:C:133:PRO:HD3	1.83	0.60
1:L:132:LEU:HB3	1:L:133:PRO:HD3	1.83	0.60
1:G:30:ARG:NH1	4:G:403:HOH:O	2.23	0.60
1:N:246:HIS:CG	1:N:252:ASN:ND2	2.70	0.60
1:A:245:MET:CE	1:D:240:VAL:HG21	2.32	0.59
1:G:88:LEU:HB3	1:G:141:LEU:HD22	1.83	0.59
1:P:132:LEU:HB3	1:P:133:PRO:HD3	1.83	0.59
1:B:195:LEU:HD12	1:G:137:ASP:OD2	2.02	0.59
1:D:15:LEU:HB2	3:D:302:NAD:O3B	2.02	0.59
3:E:302:NAD:O1A	4:E:401:HOH:O	2.16	0.59
1:M:59:LEU:HG	4:M:411:HOH:O	2.02	0.59
1:M:115:ILE:O	1:M:118:ASP:HB3	2.02	0.59
1:P:88:LEU:HB3	1:P:141:LEU:HD22	1.84	0.59
1:O:75:PHE:CE1	1:O:131:ALA:HB2	2.37	0.59
1:P:94:PHE:HA	2:P:301:TCL:H101	1.83	0.59
1:L:75:PHE:CE1	1:L:131:ALA:HB2	2.37	0.59
1:M:15:LEU:HD22	3:M:302:NAD:H51A	1.85	0.59
1:F:75:PHE:CE1	1:F:131:ALA:HB2	2.38	0.58
1:M:92:ILE:HG23	3:M:302:NAD:N3A	2.18	0.58

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:E:88:LEU:HB3	1:E:141:LEU:HD22	1.84	0.58	
1:M:200:ILE:HD12	2:M:301:TCL:C3	2.34	0.58	
1:F:79:LYS:HA	1:F:82:TRP:O	2.03	0.58	
1:M:88:LEU:HB3	1:M:141:LEU:HD22	1.85	0.58	
1:B:245:MET:CE	1:C:240:VAL:HG21	2.33	0.57	
1:E:240:VAL:HG21	1:H:245:MET:CE	2.33	0.57	
1:O:65:VAL:HG22	3:O:302:NAD:N1A	2.18	0.57	
1:P:75:PHE:CE1	1:P:131:ALA:HB2	2.40	0.57	
1:I:192:ILE:N	3:I:302:NAD:O7N	2.30	0.57	
1:J:196:ALA:HB1	2:J:301:TCL:C9	2.35	0.57	
1:A:132:LEU:HB3	1:A:133:PRO:HD3	1.86	0.57	
1:A:200:ILE:HD11	2:A:301:TCL:H131	1.87	0.57	
1:D:65:VAL:HG22	3:D:302:NAD:N1A	2.20	0.57	
1:I:124:PHE:HB3	1:I:125:PRO:CD	2.35	0.56	
1:O:18:ARG:NH1	1:O:194:THR:HA	2.20	0.56	
1:L:205:LYS:NZ	4:L:402:HOH:O	2.32	0.56	
1:O:132:LEU:HB3	1:0:133:PRO:HD3	1.87	0.56	
1:G:18:ARG:HH12	1:G:194:THR:CA	2.17	0.56	
1:J:124:PHE:HB3	1:J:125:PRO:CD	2.35	0.56	
1:F:132:LEU:HB3	1:F:133:PRO:HD3	1.88	0.56	
1:K:124:PHE:HB3	1:K:125:PRO:CD	2.35	0.56	
1:M:92:ILE:HD13	3:M:302:NAD:H2A	1.86	0.56	
1:C:88:LEU:HB3	1:C:141:LEU:HD22	1.86	0.56	
1:B:132:LEU:HB3	1:B:133:PRO:HD3	1.87	0.56	
1:N:88:LEU:HB3	1:N:141:LEU:HD22	1.86	0.56	
1:A:240:VAL:HG21	1:D:245:MET:HE2	1.88	0.56	
1:M:108:LEU:HD22	1:N:125:PRO:HB2	1.87	0.56	
1:P:64:ASP:OD1	4:P:401:HOH:O	2.18	0.56	
1:G:132:LEU:HB3	1:G:133:PRO:HD3	1.87	0.55	
1:N:15:LEU:HD23	1:N:195:LEU:HD22	1.87	0.55	
1:A:83:ASP:CG	1:I:195:LEU:HD21	2.26	0.55	
1:A:124:PHE:HB3	1:A:125:PRO:CD	2.36	0.55	
1:L:124:PHE:HB3	1:L:125:PRO:CD	2.36	0.55	
1:N:13:GLY:HA2	3:N:302:NAD:O2B	2.06	0.55	
1:H:79:LYS:HA	1:H:82:TRP:O	2.06	0.55	
1:I:240:VAL:HG21	1:L:245:MET:HE2	1.87	0.55	
1:P:124:PHE:HB3	1:P:125:PRO:CD	2.37	0.55	
1:E:43:ARG:HG2	4:E:447:HOH:O	2.07	0.55	
1:J:79:LYS:HA	1:J:82:TRP:O	2.07	0.54	
1:P:246:HIS:CG	1:P:252:ASN:HD21	2.25	0.54	
1:A:83:ASP:OD2	1:I:195:LEU:HD21	2.07	0.54	

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:124:PHE:HB3	1:C:125:PRO:CD	2.37	0.54
1:N:124:PHE:HB3	1:N:125:PRO:CD	2.37	0.54
1:O:88:LEU:HB3	1:O:141:LEU:HD22	1.88	0.54
1:O:200:ILE:HD11	2:O:301:TCL:H131	1.88	0.54
1:F:240:VAL:HG21	1:G:245:MET:HE2	1.88	0.54
1:E:124:PHE:HB3	1:E:125:PRO:CD	2.38	0.54
1:O:124:PHE:HB3	1:0:125:PRO:CD	2.37	0.54
1:L:79:LYS:HA	1:L:82:TRP:O	2.06	0.54
1:G:79:LYS:HA	1:G:82:TRP:O	2.07	0.54
1:I:79:LYS:HA	1:I:82:TRP:O	2.08	0.54
1:K:124:PHE:HB3	1:K:125:PRO:HD3	1.90	0.54
1:K:79:LYS:HA	1:K:82:TRP:O	2.08	0.54
1:H:124:PHE:HB3	1:H:125:PRO:CD	2.37	0.54
1:N:79:LYS:HA	1:N:82:TRP:O	2.07	0.54
1:A:124:PHE:HB3	1:A:125:PRO:HD3	1.90	0.53
1:F:8:ARG:HG2	1:F:34:GLU:HB2	1.90	0.53
1:N:178:GLY:HA3	1:0:215:PRO:0	2.08	0.53
1:B:124:PHE:HB3	1:B:125:PRO:CD	2.38	0.53
1:C:124:PHE:HB3	1:C:125:PRO:HD3	1.91	0.53
1:I:124:PHE:HB3	1:I:125:PRO:HD3	1.89	0.53
1:N:75:PHE:CZ	1:N:131:ALA:HB2	2.43	0.53
1:N:218:ARG:NH2	1:0:238:SER:O	2.41	0.53
1:I:75:PHE:CZ	1:I:131:ALA:HB2	2.44	0.53
1:B:240:VAL:HG21	1:C:245:MET:HE2	1.90	0.53
1:G:124:PHE:HB3	1:G:125:PRO:CD	2.38	0.53
1:K:114:ARG:HG3	1:L:114:ARG:HG3	1.90	0.53
1:L:124:PHE:HB3	1:L:125:PRO:HD3	1.91	0.53
1:M:79:LYS:HA	1:M:82:TRP:O	2.08	0.52
1:J:124:PHE:HB3	1:J:125:PRO:HD3	1.92	0.52
1:P:70:GLN:O	4:P:402:HOH:O	2.19	0.52
1:D:124:PHE:HB3	1:D:125:PRO:CD	2.38	0.52
1:O:18:ARG:HH12	1:O:194:THR:HA	1.74	0.52
1:M:195:LEU:HB2	3:M:302:NAD:O1A	2.09	0.52
1:D:79:LYS:HA	1:D:82:TRP:O	2.10	0.52
1:C:79:LYS:HA	1:C:82:TRP:O	2.09	0.52
1:O:124:PHE:HB3	1:0:125:PRO:HD3	1.91	0.52
1:E:195:LEU:HD23	4:E:401:HOH:O	2.09	0.51
1:H:124:PHE:HB3	1:H:125:PRO:HD3	1.92	0.51
1:M:129:LYS:HB2	1:N:105:LEU:HD22	1.92	0.51
1:B:245:MET:HE2	1:C:240:VAL:HG21	1.91	0.51
1:A:51:PHE:O	1:A:54:GLU:HB3	2.10	0.51

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:D:3:PHE:O	4:D:401:HOH:O	2.18	0.51
1:E:124:PHE:HB3	1:E:125:PRO:HD3	1.92	0.51
1:N:47:ARG:HG3	4:N:410:HOH:O	2.10	0.51
1:N:124:PHE:HB3	1:N:125:PRO:HD3	1.92	0.51
1:C:75:PHE:CZ	1:C:131:ALA:HB2	2.46	0.51
1:P:124:PHE:HB3	1:P:125:PRO:HD3	1.91	0.51
1:F:124:PHE:HB3	1:F:125:PRO:CD	2.41	0.50
1:H:88:LEU:HB3	1:H:141:LEU:HD22	1.92	0.50
1:P:194:THR:HG21	3:P:302:NAD:O2N	2.11	0.50
1:M:108:LEU:CD2	1:N:125:PRO:HB2	2.42	0.50
1:N:64:ASP:HA	3:N:302:NAD:N1A	2.27	0.50
1:F:45:LYS:NZ	1:I:115:ILE:HD12	2.27	0.50
1:O:79:LYS:HA	1:0:82:TRP:0	2.10	0.50
1:B:79:LYS:HA	1:B:82:TRP:O	2.12	0.50
1:B:124:PHE:HB3	1:B:125:PRO:HD3	1.93	0.50
1:E:79:LYS:HA	1:E:82:TRP:O	2.10	0.50
1:M:124:PHE:HB3	1:M:125:PRO:CD	2.41	0.50
1:L:177:LEU:HB3	1:L:182:VAL:HB	1.94	0.50
1:J:75:PHE:CZ	1:J:131:ALA:HB2	2.47	0.50
1:N:246:HIS:CG	1:N:252:ASN:HD22	2.29	0.50
1:B:75:PHE:CZ	1:B:131:ALA:HB2	2.47	0.50
1:M:75:PHE:CZ	1:M:131:ALA:HB2	2.47	0.50
1:P:79:LYS:HA	1:P:82:TRP:O	2.11	0.50
1:B:65:VAL:HG22	3:B:302:NAD:N1A	2.28	0.49
1:M:92:ILE:HG12	3:M:302:NAD:HO2A	1.77	0.49
1:O:8:ARG:HB3	1:O:82:TRP:CZ3	2.47	0.49
1:H:75:PHE:CZ	1:H:131:ALA:HB2	2.47	0.49
1:K:75:PHE:CZ	1:K:131:ALA:HB2	2.48	0.49
1:L:51:PHE:O	1:L:54:GLU:HB3	2.12	0.49
1:C:65:VAL:HG22	3:C:302:NAD:N1A	2.27	0.49
1:H:177:LEU:HB3	1:H:182:VAL:HB	1.95	0.49
1:I:65:VAL:HG22	3:I:302:NAD:N1A	2.28	0.49
1:A:83:ASP:OD2	1:I:195:LEU:HD11	2.13	0.49
1:F:46:ASP:CG	1:I:97:ARG:H	2.15	0.49
1:N:241:THR:HG21	1:O:216:LEU:HG	1.95	0.49
1:E:75:PHE:CZ	1:E:131:ALA:HB2	2.48	0.49
1:I:240:VAL:HG21	1:L:245:MET:CE	2.42	0.49
1:H:154:PRO:O	1:H:155:ASN:HB2	2.13	0.49
1:G:124:PHE:HB3	1:G:125:PRO:HD3	1.93	0.49
1:D:124:PHE:HB3	1:D:125:PRO:HD3	1.94	0.48
1:I:154:PRO:O	1:I:155:ASN:HB2	2.13	0.48

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:M:154:PRO:O	1:M:155:ASN:HB2	2.13	0.48
1:0:154:PRO:0	1:O:155:ASN:HB2	2.13	0.48
1:A:88:LEU:HB3	1:A:141:LEU:HD22	1.95	0.48
1:D:75:PHE:CZ	1:D:131:ALA:HB2	2.48	0.48
1:J:15:LEU:HB2	3:J:302:NAD:H3B	1.95	0.48
1:L:154:PRO:O	1:L:155:ASN:HB2	2.13	0.48
1:L:200:ILE:HD11	2:L:301:TCL:H131	1.96	0.48
1:E:154:PRO:O	1:E:155:ASN:HB2	2.12	0.48
1:J:192:ILE:N	3:J:302:NAD:O7N	2.39	0.48
1:K:154:PRO:O	1:K:155:ASN:HB2	2.14	0.48
1:D:200:ILE:HD11	2:D:301:TCL:H131	1.95	0.48
1:F:124:PHE:HB3	1:F:125:PRO:HD3	1.95	0.48
1:G:154:PRO:O	1:G:155:ASN:HB2	2.13	0.48
1:J:154:PRO:O	1:J:155:ASN:HB2	2.14	0.48
1:P:75:PHE:CZ	1:P:131:ALA:HB2	2.49	0.48
1:L:132:LEU:HA	1:L:135:LEU:HD12	1.96	0.48
1:J:200:ILE:HD11	2:J:301:TCL:H131	1.94	0.48
1:0:215:PRO:HD2	1:0:249:SER:O	2.13	0.48
1:P:154:PRO:O	1:P:155:ASN:HB2	2.13	0.48
1:E:245:MET:CE	1:H:240:VAL:HG21	2.44	0.48
1:O:92:ILE:HG23	3:O:302:NAD:C4A	2.43	0.48
1:O:177:LEU:HB3	1:O:182:VAL:HB	1.96	0.48
1:H:193:LYS:NZ	1:P:69:ALA:CB	2.77	0.48
2:N:301:TCL:CL16	3:N:302:NAD:H3D	2.51	0.48
1:O:163:LYS:NZ	4:O:404:HOH:O	2.27	0.48
1:C:7:LYS:NZ	1:C:138:ASP:OD2	2.47	0.47
1:B:154:PRO:O	1:B:155:ASN:HB2	2.14	0.47
1:D:154:PRO:O	1:D:155:ASN:HB2	2.14	0.47
1:J:245:MET:HE2	1:K:240:VAL:HG21	1.95	0.47
1:A:83:ASP:OD1	1:I:195:LEU:HD11	2.14	0.47
1:M:105:LEU:HD21	1:N:173:LEU:HD21	1.96	0.47
1:O:18:ARG:HH12	1:O:194:THR:CA	2.28	0.47
1:B:177:LEU:HB3	1:B:182:VAL:HB	1.97	0.47
1:A:240:VAL:HG21	1:D:245:MET:CE	2.44	0.47
1:C:154:PRO:O	1:C:155:ASN:HB2	2.15	0.47
1:M:124:PHE:HB3	1:M:125:PRO:HD3	1.95	0.47
1:N:246:HIS:CD2	1:N:252:ASN:HD22	2.32	0.47
1:B:203:PHE:CE1	2:B:301:TCL:H31	2.49	0.47
1:A:75:PHE:CZ	1:A:131:ALA:HB2	2.50	0.47
1:E:219:ASN:HB3	4:E:425:HOH:O	2.13	0.47
1:M:189:ALA:HB3	3:M:302:NAD:C5N	2.45	0.47

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:M:301:TCL:H131	2:M:301:TCL:C4	2.44	0.47
1:A:154:PRO:O	1:A:155:ASN:HB2	2.14	0.47
1:O:75:PHE:CZ	1:0:131:ALA:HB2	2.50	0.47
1:O:205:LYS:NZ	4:O:406:HOH:O	2.31	0.47
1:H:132:LEU:HA	1:H:135:LEU:HD12	1.96	0.47
1:A:8:ARG:CZ	1:I:18:ARG:HH11	2.28	0.46
1:C:216:LEU:HB2	1:C:249:SER:HB3	1.97	0.46
1:E:215:PRO:HD2	1:E:249:SER:O	2.15	0.46
1:F:154:PRO:O	1:F:155:ASN:HB2	2.15	0.46
1:G:75:PHE:CZ	1:G:131:ALA:HB2	2.50	0.46
1:H:193:LYS:HZ3	1:P:69:ALA:CB	2.29	0.46
1:I:40:VAL:HG21	3:I:302:NAD:N3A	2.30	0.46
1:M:63:CYS:O	4:M:402:HOH:O	2.21	0.46
1:C:114:ARG:HG3	1:D:114:ARG:HG3	1.97	0.46
1:D:177:LEU:HB3	1:D:182:VAL:HB	1.96	0.46
1:H:15:LEU:HB2	3:H:302:NAD:O3B	2.16	0.46
1:I:43:ARG:O	4:I:401:HOH:O	2.20	0.46
1:M:110:ARG:NH2	1:N:65:VAL:O	2.35	0.46
1:G:200:ILE:HD11	2:G:301:TCL:H131	1.96	0.46
1:P:20:ILE:HG13	3:P:302:NAD:O2N	2.16	0.46
1:H:18:ARG:O	1:H:194:THR:HG22	2.16	0.46
1:M:145:SER:O	3:M:302:NAD:H5N	2.16	0.46
1:N:154:PRO:O	1:N:155:ASN:HB2	2.14	0.46
1:D:196:ALA:HB1	2:D:301:TCL:C9	2.46	0.46
1:F:75:PHE:CZ	1:F:131:ALA:HB2	2.50	0.46
1:H:15:LEU:HD23	1:H:195:LEU:HD22	1.96	0.46
1:I:196:ALA:HB2	3:I:302:NAD:O2A	2.15	0.46
1:N:15:LEU:HB2	3:N:302:NAD:O3B	2.16	0.46
1:F:8:ARG:HB3	1:F:82:TRP:CZ3	2.51	0.45
1:F:245:MET:HE2	1:G:240:VAL:HG21	1.97	0.45
1:G:18:ARG:NH1	1:G:193:LYS:O	2.50	0.45
1:J:240:VAL:HG21	1:K:245:MET:CE	2.46	0.45
1:B:2:GLY:N	4:B:409:HOH:O	2.49	0.45
1:C:185:ASN:HB2	4:C:426:HOH:O	2.16	0.45
1:D:194:THR:HB	4:D:407:HOH:O	2.16	0.45
1:E:245:MET:HE2	1:H:240:VAL:HG21	1.99	0.45
1:K:125:PRO:HB2	1:L:108:LEU:HD22	1.97	0.45
3:P:302:NAD:PA	3:P:302:NAD:HO3A	2.39	0.45
1:K:15:LEU:HB2	3:K:302:NAD:O3B	2.17	0.45
1:K:177:LEU:HB3	1:K:182:VAL:HB	1.98	0.45
1:M:115:ILE:HB	4:M:401:HOH:O	2.15	0.45

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:N:188:SER:HB3	1:N:246:HIS:CD2	2.51	0.45
1:P:7:LYS:NZ	1:P:138:ASP:OD2	2.50	0.45
1:E:38:THR:HA	1:E:61:PHE:O	2.17	0.45
1:M:114:ARG:O	1:M:118:ASP:HB2	2.16	0.45
1:I:245:MET:HE2	1:L:240:VAL:HG21	1.97	0.45
1:P:100:ILE:HD13	2:P:301:TCL:H121	1.98	0.45
1:B:215:PRO:O	1:C:178:GLY:HA3	2.16	0.45
1:I:51:PHE:O	1:I:54:GLU:HB3	2.17	0.45
1:M:240:VAL:HG21	1:P:245:MET:HE2	1.98	0.45
1:M:92:ILE:HG12	3:M:302:NAD:O2B	2.17	0.44
1:N:251:PHE:O	1:N:254:VAL:HG22	2.16	0.44
1:H:146:TYR:HB2	3:H:302:NAD:H5N	1.98	0.44
1:M:5:ASP:HB2	4:M:418:HOH:O	2.17	0.44
1:G:18:ARG:HG3	4:G:401:HOH:O	2.16	0.44
1:K:38:THR:HA	1:K:61:PHE:O	2.18	0.44
1:K:51:PHE:O	1:K:54:GLU:HB3	2.17	0.44
1:K:215:PRO:HD2	1:K:249:SER:O	2.18	0.44
1:B:100:ILE:HD13	2:B:301:TCL:CL15	2.54	0.44
1:A:83:ASP:CG	1:I:195:LEU:HD11	2.38	0.44
1:I:215:PRO:HD2	1:I:249:SER:O	2.18	0.44
1:J:65:VAL:HG22	3:J:302:NAD:N1A	2.33	0.44
1:M:125:PRO:HB2	1:N:108:LEU:HD22	1.98	0.44
1:N:103:ASP:HA	4:N:412:HOH:O	2.17	0.44
1:0:125:PRO:HB2	1:P:108:LEU:CD2	2.48	0.44
1:P:132:LEU:HA	1:P:135:LEU:HD12	1.99	0.44
1:D:215:PRO:HD2	1:D:249:SER:O	2.18	0.44
1:F:102:GLY:HA2	4:F:425:HOH:O	2.18	0.44
1:J:19:SER:HB3	4:J:414:HOH:O	2.18	0.44
1:J:40:VAL:HG21	3:J:302:NAD:N3A	2.33	0.44
1:L:15:LEU:HB2	3:L:302:NAD:O3B	2.17	0.44
1:J:178:GLY:HA3	1:K:215:PRO:O	2.18	0.43
1:L:75:PHE:CZ	1:L:131:ALA:HB2	2.53	0.43
1:H:187:ILE:HG23	1:H:247:VAL:HG23	2.00	0.43
1:H:193:LYS:NZ	1:P:69:ALA:HA	2.28	0.43
1:I:20:ILE:N	4:I:406:HOH:O	2.50	0.43
1:O:216:LEU:HB2	1:O:249:SER:HB3	2.01	0.43
3:E:302:NAD:O1N	3:E:302:NAD:H2N	2.18	0.43
1:K:132:LEU:HA	1:K:135:LEU:HD12	2.00	0.43
1:A:237:ALA:HA	4:A:412:HOH:O	2.18	0.43
1:P:177:LEU:HB3	1:P:182:VAL:HB	2.00	0.43
1:P:246:HIS:CG	1:P:252:ASN:ND2	2.86	0.43

	A h o	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:F:240:VAL:HG21	1:G:245:MET:CE	2.48	0.43
1:G:177:LEU:HB3	1:G:182:VAL:HB	2.01	0.43
1:M:113:PHE:HE1	1:N:117:HIS:HB3	1.84	0.43
1:E:177:LEU:HB3	1:E:182:VAL:HB	2.01	0.43
1:F:245:MET:CE	1:G:240:VAL:HG21	2.49	0.43
1:G:51:PHE:O	1:G:54:GLU:HB3	2.19	0.43
1:H:215:PRO:HD2	1:H:249:SER:O	2.18	0.43
1:B:7:LYS:NZ	1:B:138:ASP:OD2	2.51	0.43
1:E:231:PHE:HE2	1:H:245:MET:HE3	1.84	0.43
1:C:51:PHE:O	1:C:54:GLU:HB3	2.19	0.43
1:C:215:PRO:HD2	1:C:249:SER:O	2.18	0.42
1:H:163:LYS:NZ	3:H:302:NAD:O2D	2.49	0.42
1:O:196:ALA:HB1	2:O:301:TCL:C9	2.48	0.42
1:P:63:CYS:HA	4:P:402:HOH:O	2.18	0.42
1:I:44:PHE:HA	4:I:422:HOH:O	2.19	0.42
1:I:177:LEU:HB3	1:I:182:VAL:HB	2.00	0.42
1:I:215:PRO:O	1:L:178:GLY:HA3	2.19	0.42
1:G:16:SER:HB3	1:G:195:LEU:HD21	2.00	0.42
1:J:177:LEU:HB3	1:J:182:VAL:HB	1.99	0.42
1:F:45:LYS:NZ	1:I:96:PRO:HG2	2.34	0.42
1:I:245:MET:CE	1:L:240:VAL:HG21	2.48	0.42
1:N:240:VAL:HG21	1:O:245:MET:HE2	2.02	0.42
1:C:177:LEU:HB3	1:C:182:VAL:HB	2.00	0.42
1:J:187:ILE:HG23	1:J:247:VAL:HG23	2.01	0.42
1:J:218:ARG:NH2	1:K:238:SER:O	2.50	0.42
1:M:51:PHE:O	1:M:54:GLU:HB3	2.19	0.42
1:A:65:VAL:HG22	3:A:302:NAD:N1A	2.35	0.42
1:H:51:PHE:O	1:H:54:GLU:HB3	2.20	0.42
1:M:38:THR:HA	1:M:61:PHE:O	2.20	0.42
1:M:177:LEU:HB3	1:M:182:VAL:HB	2.01	0.42
1:O:3:PHE:CZ	1:O:31:GLU:HG3	2.55	0.42
1:A:215:PRO:HD2	1:A:249:SER:O	2.20	0.42
2:M:301:TCL:C4	2:M:301:TCL:C13	2.95	0.42
1:B:114:ARG:HG3	1:A:114:ARG:HG3	2.01	0.42
1:O:8:ARG:HB3	1:O:82:TRP:CH2	2.55	0.42
1:G:216:LEU:HB2	1:G:249:SER:HB3	2.02	0.42
1:B:215:PRO:HD2	1:B:249:SER:O	2.20	0.41
1:G:17:ASN:OD1	4:G:401:HOH:O	2.21	0.41
1:H:54:GLU:HB2	4:H:411:HOH:O	2.18	0.41
1:N:51:PHE:O	1:N:54:GLU:HB3	2.20	0.41
2:A:301:TCL:CL16	3:A:302:NAD:H3D	2.57	0.41

	A i a	Interatomic	Clash		
Atom-1	Atom-2	distance (Å)	overlap (Å)		
1:L:65:VAL:HG22	3:L:302:NAD:N1A	2.35	0.41		
1:P:156:TYR:CE1	2:P:301:TCL:H11	2.55	0.41		
1:B:125:PRO:HB2	1:A:108:LEU:HD22	2.01	0.41		
1:B:240:VAL:HG21	1:C:245:MET:CE	2.50	0.41		
1:D:3:PHE:CZ	1:D:31:GLU:HG3	2.55	0.41		
1:F:105:LEU:N	4:F:401:HOH:O	2.52	0.41		
1:G:215:PRO:HD2	1:G:249:SER:O	2.20	0.41		
1:N:149:ALA:HB2	1:N:163:LYS:HB3	2.02	0.41		
1:A:79:LYS:HD2	1:A:83:ASP:HA	2.01	0.41		
1:E:18:ARG:NH2	1:E:195:LEU:HD22	2.35	0.41		
1:J:240:VAL:HG21	1:K:245:MET:HE2	2.03	0.41		
1:L:196:ALA:HB2	3:L:302:NAD:O2A	2.20	0.41		
1:F:200:ILE:HD11	2:F:301:TCL:H131	2.02	0.41		
1:J:7:LYS:NZ	1:J:138:ASP:OD2	2.54	0.41		
1:J:245:MET:CE	1:K:240:VAL:HG21	2.50	0.41		
1:N:215:PRO:HD2	1:N:249:SER:O	2.21	0.41		
1:O:39:TYR:CD1	1:O:48:ILE:HG21	2.55	0.41		
1:B:108:LEU:CD2	1:A:125:PRO:HB2	2.51	0.41		
1:D:51:PHE:O	1:D:54:GLU:HB3	2.21	0.41		
1:F:42:ASP:OD1	1:I:115:ILE:HD13	2.20	0.41		
1:K:44:PHE:HE1	1:K:47:ARG:NH1	2.17	0.41		
1:K:108:LEU:HD22	1:L:125:PRO:HB2	2.03	0.41		
1:L:215:PRO:HD2	1:L:249:SER:O	2.21	0.41		
1:A:177:LEU:HB3	1:A:182:VAL:HB	2.02	0.41		
1:J:51:PHE:O	1:J:54:GLU:HB3	2.21	0.41		
1:J:121:ALA:O	1:J:125:PRO:HD2	2.21	0.41		
1:N:132:LEU:HA	1:N:135:LEU:HD12	2.03	0.41		
1:O:173:LEU:CD2	1:P:105:LEU:HD21	2.51	0.41		
1:B:125:PRO:HB2	1:A:108:LEU:CD2	2.51	0.41		
1:H:149:ALA:HB2	1:H:163:LYS:HB3	2.02	0.41		
1:M:153:ILE:HA	1:M:154:PRO:HD3	1.98	0.41		
1:P:57:SER:HA	4:P:409:HOH:O	2.21	0.41		
1:B:132:LEU:HA	1:B:135:LEU:HD12	2.03	0.40		
1:E:2:GLY:N	4:E:413:HOH:O	2.54	0.40		
1:F:79:LYS:HD2	1:F:83:ASP:HA	2.03	0.40		
1:G:18:ARG:NH2	1:G:195:LEU:HD22	2.36	0.40		
1:H:193:LYS:HZ1	1:P:69:ALA:CA	2.27	0.40		
1:K:256:GLY:O	4:K:401:HOH:O	2.22	0.40		
1:N:183:ARG:HD2	1:N:240:VAL:O	2.21	0.40		
1:C:216:LEU:HD12	1:C:249:SER:HA	2.03	0.40		
1:F:38:THR:HA	1:F:61:PHE:O	2.21	0.40		

Atom-1	Atom-2	Interatomic distance $(Å)$	Clash overlap (Å)
1:J:67:ASP:HA	4:J:406:HOH:O	2.21	0.40
1:O:8:ARG:NH1	1:O:82:TRP:CD1	2.89	0.40
1:O:170:VAL:HG21	1:O:186:ALA:HB2	2.03	0.40
1:O:246:HIS:CG	1:O:252:ASN:ND2	2.89	0.40
1:E:51:PHE:O	1:E:54:GLU:HB3	2.21	0.40
1:F:8:ARG:NH1	1:F:82:TRP:CD1	2.88	0.40
1:F:215:PRO:HD2	1:F:249:SER:O	2.20	0.40
1:G:114:ARG:HG3	1:H:114:ARG:HG3	2.04	0.40
1:L:18:ARG:O	1:L:194:THR:HG22	2.22	0.40
1:N:216:LEU:HB2	1:N:249:SER:HB3	2.03	0.40
1:C:153:ILE:HA	1:C:154:PRO:HD3	1.98	0.40
1:J:183:ARG:HD2	1:J:240:VAL:O	2.22	0.40

All (3) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:A:22:TYR:OH	1:C:137:ASP:OD2[1_655]	1.92	0.28
1:C:106:ASP:O	1:J:97:ARG:NH1[1_545]	2.05	0.15
1:J:137:ASP:OD2	1:L:22:TYR:OH[1_455]	2.10	0.10

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	253/276~(92%)	244 (96%)	9 (4%)	0	100	100
1	В	253/276~(92%)	243 (96%)	10 (4%)	0	100	100
1	С	253/276~(92%)	244 (96%)	9 (4%)	0	100	100
1	D	253/276~(92%)	242 (96%)	11 (4%)	0	100	100
1	Е	253/276~(92%)	242 (96%)	11 (4%)	0	100	100

5	F .	L

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	F	253/276~(92%)	243~(96%)	10 (4%)	0	100	100
1	G	253/276~(92%)	242 (96%)	11 (4%)	0	100	100
1	Н	253/276~(92%)	244 (96%)	9 (4%)	0	100	100
1	Ι	253/276~(92%)	244 (96%)	9 (4%)	0	100	100
1	J	253/276~(92%)	243 (96%)	10 (4%)	0	100	100
1	Κ	253/276~(92%)	244 (96%)	9 (4%)	0	100	100
1	L	253/276~(92%)	244 (96%)	9 (4%)	0	100	100
1	М	253/276~(92%)	244 (96%)	9 (4%)	0	100	100
1	Ν	253/276~(92%)	243 (96%)	10 (4%)	0	100	100
1	Ο	253/276~(92%)	243 (96%)	10 (4%)	0	100	100
1	Р	253/276~(92%)	244 (96%)	9 (4%)	0	100	100
All	All	4048/4416 (92%)	3893 (96%)	155 (4%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	194/209~(93%)	193 (100%)	1 (0%)	88 96
1	В	194/209~(93%)	194 (100%)	0	100 100
1	С	194/209~(93%)	194 (100%)	0	100 100
1	D	194/209~(93%)	194 (100%)	0	100 100
1	Е	194/209~(93%)	194 (100%)	0	100 100
1	F	194/209~(93%)	194 (100%)	0	100 100
1	G	194/209~(93%)	194 (100%)	0	100 100
1	Н	194/209~(93%)	194 (100%)	0	100 100
1	Ι	$19\overline{4/209}~(93\%)$	194 (100%)	0	100 100
1	J	194/209~(93%)	194 (100%)	0	100 100

Mol	Chain	Analysed	Rotameric	Outliers	Percentile
1	Κ	194/209~(93%)	193 (100%)	1 (0%)	88 96
1	L	194/209~(93%)	194 (100%)	0	100 100
1	М	194/209~(93%)	194 (100%)	0	100 100
1	Ν	194/209~(93%)	194 (100%)	0	100 100
1	О	194/209~(93%)	194 (100%)	0	100 100
1	Р	194/209~(93%)	194 (100%)	0	100 100
All	All	3104/3344~(93%)	3102 (100%)	2(0%)	93 98

All (2) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	35	LEU
1	Κ	195	LEU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (3) such sidechains are listed below:

Mol	Chain	Res	Type
1	Ν	246	HIS
1	Р	246	HIS
1	Р	252	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

32 ligands are modelled in this entry.

5IFL

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Type	Chain	Pog Link	Bond lengths Bond angles		s Bond as				
10101	Type	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
2	TCL	L	301	-	18,18,18	0.44	0	25,25,25	0.78	1 (4%)
2	TCL	J	301	-	18,18,18	0.48	0	25,25,25	0.74	1 (4%)
2	TCL	Е	301	-	18,18,18	0.47	0	25,25,25	0.86	1 (4%)
3	NAD	D	302	-	42,48,48	0.85	2 (4%)	50,73,73	1.37	2 (4%)
3	NAD	Ι	302	-	42,48,48	0.92	2 (4%)	50,73,73	1.36	4 (8%)
2	TCL	Н	301	-	18,18,18	0.46	0	25,25,25	0.78	1 (4%)
2	TCL	А	301	-	18,18,18	0.42	0	25,25,25	0.83	1 (4%)
3	NAD	Е	302	-	42,48,48	0.89	1 (2%)	50,73,73	1.45	4 (8%)
3	NAD	J	302	-	42,48,48	0.98	1 (2%)	50,73,73	1.41	3 (6%)
2	TCL	С	301	-	18,18,18	0.50	0	25,25,25	0.77	1 (4%)
2	TCL	В	301	-	18,18,18	0.51	0	25,25,25	0.82	1 (4%)
3	NAD	А	302	-	42,48,48	0.89	2 (4%)	50,73,73	1.37	4 (8%)
2	TCL	N	301	-	18,18,18	0.48	0	25,25,25	0.86	0
3	NAD	F	302	-	42,48,48	0.97	2 (4%)	50,73,73	1.43	3 (6%)
2	TCL	Ι	301	-	18,18,18	0.48	0	25,25,25	0.72	0
3	NAD	Н	302	-	42,48,48	1.00	2 (4%)	50,73,73	1.51	2(4%)
2	TCL	G	301	-	18,18,18	0.45	0	25,25,25	0.78	1 (4%)
2	TCL	K	301	-	18,18,18	0.50	0	25,25,25	0.85	1 (4%)
2	TCL	Р	301	-	18,18,18	0.48	0	25,25,25	0.89	1 (4%)
3	NAD	В	302	-	42,48,48	0.85	2 (4%)	50,73,73	1.37	3 (6%)
2	TCL	М	301	-	18,18,18	0.39	0	25,25,25	0.75	1 (4%)
3	NAD	N	302	-	42,48,48	1.00	2 (4%)	50,73,73	1.25	3 (6%)
2	TCL	F	301	-	18,18,18	0.45	0	25,25,25	0.74	0
3	NAD	L	302	-	42,48,48	0.91	2 (4%)	50,73,73	1.35	3 (6%)
3	NAD	G	302	-	42,48,48	0.91	2 (4%)	50,73,73	1.26	3 (6%)
3	NAD	Р	302	-	42,48,48	1.10	2 (4%)	50,73,73	1.26	2 (4%)
3	NAD	K	302	-	42,48,48	0.93	2 (4%)	50,73,73	1.50	3 (6%)
3	NAD	М	302	-	42,48,48	0.87	2 (4%)	50,73,73	1.28	2 (4%)
2	TCL	0	301	-	18,18,18	0.47	0	25,25,25	0.81	1 (4%)

Mol Type Ch	Chain	Chain Res	Tink	Bo	Bond lengths			Bond angles		
WIOI	Moi Type Chain			Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2	
3	NAD	0	302	-	42,48,48	0.90	2 (4%)	50,73,73	1.34	4 (8%)
3	NAD	С	302	-	42,48,48	0.93	2 (4%)	50,73,73	1.52	3 (6%)
2	TCL	D	301	-	18,18,18	0.48	0	25,25,25	0.63	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	TCL	L	301	-	-	0/4/4/4	0/2/2/2
2	TCL	J	301	-	-	0/4/4/4	0/2/2/2
2	TCL	Е	301	-	-	0/4/4/4	0/2/2/2
3	NAD	D	302	-	-	5/26/62/62	0/5/5/5
3	NAD	Ι	302	-	-	7/26/62/62	0/5/5/5
2	TCL	Н	301	-	-	0/4/4/4	0/2/2/2
2	TCL	А	301	-	-	0/4/4/4	0/2/2/2
3	NAD	Е	302	-	-	2/26/62/62	0/5/5/5
3	NAD	J	302	-	-	7/26/62/62	0/5/5/5
2	TCL	С	301	-	-	0/4/4/4	0/2/2/2
2	TCL	В	301	-	-	0/4/4/4	0/2/2/2
3	NAD	А	302	-	-	8/26/62/62	0/5/5/5
2	TCL	Ν	301	-	-	0/4/4/4	0/2/2/2
3	NAD	F	302	-	-	9/26/62/62	0/5/5/5
2	TCL	Ι	301	-	-	0/4/4/4	0/2/2/2
3	NAD	Н	302	-	-	2/26/62/62	0/5/5/5
2	TCL	G	301	-	-	0/4/4/4	0/2/2/2
2	TCL	K	301	-	-	0/4/4/4	0/2/2/2
2	TCL	Р	301	-	-	0/4/4/4	0/2/2/2
3	NAD	В	302	-	-	5/26/62/62	0/5/5/5
2	TCL	М	301	-	-	1/4/4/4	0/2/2/2
3	NAD	Ν	302	-	-	9/26/62/62	0/5/5/5
2	TCL	F	301	-	-	0/4/4/4	0/2/2/2
3	NAD	L	302	-	-	6/26/62/62	0/5/5/5
3	NAD	G	302	-	-	6/26/62/62	0/5/5/5
3	NAD	Р	302	-	-	18/26/62/62	0/5/5/5
3	NAD	K	302	-	-	11/26/62/62	0/5/5/5
3	NAD	М	302	-	-	11/26/62/62	0/5/5/5
2	TCL	0	301	-	-	0/4/4/4	0/2/2/2

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	NAD	0	302	-	-	4/26/62/62	0/5/5/5
3	NAD	С	302	-	-	6/26/62/62	0/5/5/5
2	TCL	D	301	-	-	0/4/4/4	0/2/2/2

All (30) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
3	J	302	NAD	C2N-N1N	4.88	1.40	1.35
3	Н	302	NAD	C2N-N1N	4.70	1.40	1.35
3	F	302	NAD	C2N-N1N	4.65	1.40	1.35
3	Р	302	NAD	O4D-C1D	-4.33	1.35	1.41
3	Р	302	NAD	C2N-N1N	4.31	1.40	1.35
3	С	302	NAD	C2N-N1N	4.22	1.40	1.35
3	Ι	302	NAD	C2N-N1N	4.00	1.39	1.35
3	K	302	NAD	C2N-N1N	3.99	1.39	1.35
3	0	302	NAD	C2N-N1N	3.90	1.39	1.35
3	L	302	NAD	C2N-N1N	3.88	1.39	1.35
3	А	302	NAD	C2N-N1N	3.83	1.39	1.35
3	Е	302	NAD	C2N-N1N	3.83	1.39	1.35
3	N	302	NAD	O4D-C1D	-3.81	1.35	1.41
3	N	302	NAD	C2N-N1N	3.77	1.39	1.35
3	D	302	NAD	C2N-N1N	3.76	1.39	1.35
3	G	302	NAD	C2N-N1N	3.74	1.39	1.35
3	М	302	NAD	C2N-N1N	3.43	1.39	1.35
3	В	302	NAD	C2N-N1N	3.38	1.39	1.35
3	G	302	NAD	O4D-C1D	-2.96	1.36	1.41
3	L	302	NAD	O4D-C1D	-2.71	1.37	1.41
3	K	302	NAD	O4D-C1D	-2.63	1.37	1.41
3	Ι	302	NAD	O4D-C1D	-2.62	1.37	1.41
3	В	302	NAD	O4D-C1D	-2.62	1.37	1.41
3	0	302	NAD	O4D-C1D	-2.60	1.37	1.41
3	С	302	NAD	O4D-C1D	-2.53	1.37	1.41
3	Н	302	NAD	O4D-C1D	-2.50	1.37	1.41
3	F	302	NAD	O4D-C1D	-2.33	1.37	1.41
3	М	302	NAD	O4D-C1D	-2.30	1.37	1.41
3	A	302	NAD	O4D-C1D	-2.23	1.38	1.41
3	D	302	NAD	O4D-C1D	-2.16	1.38	1.41

All (60) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	Н	302	NAD	PN-O3-PA	8.89	163.34	132.83

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	Κ	302	NAD	PN-O3-PA	8.65	162.51	132.83
3	С	302	NAD	PN-O3-PA	8.60	162.32	132.83
3	D	302	NAD	PN-O3-PA	7.93	160.05	132.83
3	J	302	NAD	PN-O3-PA	7.93	160.04	132.83
3	L	302	NAD	PN-O3-PA	7.72	159.33	132.83
3	В	302	NAD	PN-O3-PA	7.66	159.13	132.83
3	F	302	NAD	PN-O3-PA	7.58	158.83	132.83
3	Ι	302	NAD	PN-O3-PA	7.51	158.59	132.83
3	Е	302	NAD	PN-O3-PA	7.46	158.42	132.83
3	А	302	NAD	PN-O3-PA	7.46	158.42	132.83
3	М	302	NAD	PN-O3-PA	7.19	157.50	132.83
3	0	302	NAD	PN-O3-PA	7.01	156.87	132.83
3	Ν	302	NAD	PN-O3-PA	6.80	156.18	132.83
3	G	302	NAD	PN-O3-PA	6.80	156.15	132.83
3	Р	302	NAD	PN-O3-PA	6.69	155.79	132.83
3	Е	302	NAD	C3D-C2D-C1D	-3.80	95.26	100.98
3	F	302	NAD	O4D-C1D-C2D	-3.38	101.99	106.93
3	С	302	NAD	O4D-C1D-C2D	-3.17	102.29	106.93
3	0	302	NAD	O4D-C1D-C2D	-2.91	102.68	106.93
3	J	302	NAD	O4D-C1D-C2D	-2.83	102.78	106.93
2	Р	301	TCL	O7-C5-C6	2.76	121.38	116.22
3	Κ	302	NAD	O4D-C1D-C2D	-2.72	102.95	106.93
3	А	302	NAD	O4D-C1D-C2D	-2.71	102.97	106.93
3	G	302	NAD	O4D-C1D-C2D	-2.50	103.27	106.93
2	Κ	301	TCL	O7-C5-C6	2.44	120.79	116.22
2	Ε	301	TCL	O7-C5-C6	2.36	120.63	116.22
2	0	301	TCL	O7-C5-C6	2.34	120.60	116.22
3	Ι	302	NAD	C5A-C6A-N6A	2.33	123.90	120.35
3	Κ	302	NAD	C5A-C6A-N6A	2.33	123.90	120.35
3	Ι	302	NAD	O4D-C1D-C2D	-2.32	103.53	106.93
3	С	302	NAD	C5A-C6A-N6A	2.30	123.84	120.35
3	L	302	NAD	O4D-C1D-C2D	-2.28	103.59	106.93
3	В	302	NAD	C5A-C6A-N6A	2.28	123.81	120.35
2	С	301	TCL	O7-C5-C6	2.27	120.47	116.22
3	Н	302	NAD	C5A-C6A-N6A	2.27	123.80	120.35
3	J	302	NAD	C5A-C6A-N6A	2.26	123.79	120.35
3	G	302	NAD	C5A-C6A-N6A	2.26	123.79	120.35
3	В	302	NAD	O4D-C1D-C2D	-2.26	103.63	106.93
3	D	302	NAD	C5A-C6A-N6A	2.25	123.78	120.35
3	0	302	NAD	C5A-C6A-N6A	2.25	123.77	120.35
2	L	301	TCL	O7-C5-C6	2.23	120.39	116.22
3	А	302	NAD	C5A-C6A-N6A	2.23	123.74	120.35

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	Ν	302	NAD	C5A-C6A-N6A	2.23	123.73	120.35
3	F	302	NAD	C5A-C6A-N6A	2.22	123.72	120.35
3	Ε	302	NAD	C5A-C6A-N6A	2.22	123.72	120.35
3	М	302	NAD	C5A-C6A-N6A	2.21	123.72	120.35
3	L	302	NAD	C5A-C6A-N6A	2.19	123.69	120.35
2	М	301	TCL	C8-C9-CL16	2.18	121.99	119.43
3	Е	302	NAD	O4D-C1D-C2D	-2.17	103.75	106.93
2	G	301	TCL	O7-C5-C6	2.17	120.27	116.22
3	Ν	302	NAD	O2D-C2D-C1D	-2.15	102.93	110.85
2	А	301	TCL	O7-C5-C6	2.13	120.20	116.22
3	А	302	NAD	C3D-C2D-C1D	-2.12	97.78	100.98
2	Н	301	TCL	O7-C5-C6	2.10	120.15	116.22
2	В	301	TCL	O7-C5-C6	2.10	120.14	116.22
2	J	301	TCL	O7-C5-C6	2.07	120.09	116.22
3	Р	302	NAD	C5A-C6A-N6A	2.06	123.49	120.35
3	Ι	302	NAD	O4B-C1B-C2B	-2.03	103.96	106.93
3	0	302	NAD	O4B-C1B-C2B	-2.02	103.98	106.93

There are no chirality outliers.

All (117) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
3	В	302	NAD	C5D-O5D-PN-O1N
3	В	302	NAD	C5D-O5D-PN-O2N
3	В	302	NAD	O4D-C1D-N1N-C2N
3	А	302	NAD	C5D-O5D-PN-O1N
3	А	302	NAD	C5D-O5D-PN-O2N
3	А	302	NAD	O4D-C1D-N1N-C2N
3	С	302	NAD	C5D-O5D-PN-O2N
3	D	302	NAD	O4D-C1D-N1N-C2N
3	F	302	NAD	С5В-О5В-РА-О1А
3	F	302	NAD	C5B-O5B-PA-O3
3	F	302	NAD	PN-O3-PA-O5B
3	F	302	NAD	C5D-O5D-PN-O1N
3	F	302	NAD	C5D-O5D-PN-O2N
3	G	302	NAD	C5D-O5D-PN-O1N
3	G	302	NAD	C5D-O5D-PN-O2N
3	G	302	NAD	O4D-C1D-N1N-C2N
3	Ι	302	NAD	C5D-O5D-PN-O1N
3	Ι	302	NAD	C5D-O5D-PN-O2N
3	Ι	302	NAD	O4D-C1D-N1N-C2N
3	J	302	NAD	C3B-C4B-C5B-O5B

Mol	Chain	Res	Type	Atoms
3	J	302	NAD	PA-O3-PN-O5D
3	J	302	NAD	C5D-O5D-PN-O2N
3	K	302	NAD	C5B-O5B-PA-O1A
3	Κ	302	NAD	O4B-C4B-C5B-O5B
3	K	302	NAD	C5D-O5D-PN-O1N
3	K	302	NAD	C5D-O5D-PN-O2N
3	K	302	NAD	O4D-C1D-N1N-C2N
3	L	302	NAD	C5D-O5D-PN-O1N
3	L	302	NAD	C5D-O5D-PN-O2N
3	L	302	NAD	O4D-C1D-N1N-C2N
3	М	302	NAD	C5B-O5B-PA-O1A
3	М	302	NAD	C5D-O5D-PN-O1N
3	М	302	NAD	C5D-O5D-PN-O2N
3	М	302	NAD	O4D-C1D-N1N-C2N
3	М	302	NAD	O4D-C1D-N1N-C6N
3	М	302	NAD	C2D-C1D-N1N-C2N
3	М	302	NAD	C2D-C1D-N1N-C6N
3	Ν	302	NAD	C3B-C4B-C5B-O5B
3	Ν	302	NAD	C5D-O5D-PN-O2N
3	0	302	NAD	C5D-O5D-PN-O1N
3	0	302	NAD	C5D-O5D-PN-O2N
3	Р	302	NAD	C5B-O5B-PA-O1A
3	Р	302	NAD	C5B-O5B-PA-O2A
3	Р	302	NAD	PN-O3-PA-O5B
3	Р	302	NAD	O4D-C1D-N1N-C2N
3	Р	302	NAD	O4D-C1D-N1N-C6N
3	Р	302	NAD	C2D-C1D-N1N-C2N
3	Р	302	NAD	C2D-C1D-N1N-C6N
3	F	302	NAD	O4B-C4B-C5B-O5B
3	F	302	NAD	C3B-C4B-C5B-O5B
3	J	302	NAD	O4B-C4B-C5B-O5B
3	K	302	NAD	C3B-C4B-C5B-O5B
3	N	302	NAD	O4B-C4B-C5B-O5B
3	Ι	302	NAD	PA-O3-PN-O1N
3	J	302	NAD	C4B-C5B-O5B-PA
3	М	302	NAD	C4B-C5B-O5B-PA
3	Р	302	NAD	C4B-C5B-O5B-PA
3	N	302	NAD	C4B-C5B-O5B-PA
3	F	302	NAD	PA-O3-PN-O5D
3	L	302	NAD	PN-O3-PA-O5B
3	N	302	NAD	PN-O3-PA-O5B
3	N	302	NAD	PA-O3-PN-O5D

Continued from previous page...

Mol	Chain	Res	Type	Atoms
3	Р	302	NAD	PA-O3-PN-O5D
3	С	302	NAD	C5D-O5D-PN-O3
3	J	302	NAD	C5D-O5D-PN-O3
3	М	302	NAD	C5B-O5B-PA-O3
3	М	302	NAD	C5D-O5D-PN-O3
3	N	302	NAD	C5D-O5D-PN-O3
3	0	302	NAD	C5D-O5D-PN-O3
3	Р	302	NAD	C5D-O5D-PN-O3
3	А	302	NAD	PA-O3-PN-O1N
3	D	302	NAD	PA-O3-PN-O2N
3	С	302	NAD	C5D-O5D-PN-O1N
3	K	302	NAD	C5B-O5B-PA-O2A
3	N	302	NAD	C5D-O5D-PN-O1N
3	Р	302	NAD	C5D-O5D-PN-O2N
3	Р	302	NAD	O4D-C4D-C5D-O5D
3	А	302	NAD	PA-O3-PN-O2N
3	С	302	NAD	PA-O3-PN-O2N
3	Ι	302	NAD	PA-O3-PN-O2N
3	Н	302	NAD	C3D-C4D-C5D-O5D
2	М	301	TCL	C6-C5-O7-C8
3	Ι	302	NAD	O4B-C4B-C5B-O5B
3	K	302	NAD	PA-O3-PN-O1N
3	Р	302	NAD	O4B-C4B-C5B-O5B
3	М	302	NAD	O4B-C4B-C5B-O5B
3	Е	302	NAD	O4B-C4B-C5B-O5B
3	L	302	NAD	O4B-C4B-C5B-O5B
3	Р	302	NAD	C3D-C4D-C5D-O5D
3	В	302	NAD	C5D-O5D-PN-O3
3	A	302	NAD	C5D-O5D-PN-O3
3	А	302	NAD	C2D-C1D-N1N-C6N
3	D	302	NAD	C2D-C1D-N1N-C6N
3	F	302	NAD	C5D-O5D-PN-O3
3	G	302	NAD	C5D-O5D-PN-O3
3	G	302	NAD	C2D-C1D-N1N-C6N
3	Ι	302	NAD	C5D-O5D-PN-O3
3	K	302	NAD	C5D-O5D-PN-O3
3	K	302	NAD	C2D-C1D-N1N-C6N
3	L	302	NAD	C5D-O5D-PN-O3
3	P	302	NAD	C5B-O5B-PA-O3
3	В	302	NAD	O4B-C4B-C5B-O5B
3	G	302	NAD	O4B-C4B-C5B-O5B
3	0	302	NAD	O4B-C4B-C5B-O5B

Continued from previous page...

Mol	Chain	Res	Type	Atoms
3	С	302	NAD	PA-O3-PN-O1N
3	D	302	NAD	PA-O3-PN-O1N
3	Κ	302	NAD	PA-O3-PN-O2N
3	Ν	302	NAD	PA-O3-PN-O1N
3	Р	302	NAD	PN-O3-PA-O1A
3	Р	302	NAD	PA-O3-PN-O1N
3	Ε	302	NAD	C5B-O5B-PA-O1A
3	J	302	NAD	C5D-O5D-PN-O1N
3	Р	302	NAD	C5D-O5D-PN-O1N
3	А	302	NAD	O4B-C4B-C5B-O5B
3	С	302	NAD	O4B-C4B-C5B-O5B
3	D	302	NAD	O4B-C4B-C5B-O5B
3	Н	302	NAD	O4B-C4B-C5B-O5B

 $Continued \ from \ previous \ page...$

There are no ring outliers.

28 monomers are involved in 71 short contacts:

Mol	Chain	\mathbf{Res}	Type	Clashes	Symm-Clashes
2	L	301	TCL	1	0
2	J	301	TCL	2	0
3	D	302	NAD	3	0
3	Ι	302	NAD	4	0
2	А	301	TCL	2	0
3	Е	302	NAD	2	0
3	J	302	NAD	4	0
2	В	301	TCL	3	0
3	А	302	NAD	2	0
2	Ν	301	TCL	2	0
3	F	302	NAD	1	0
3	Н	302	NAD	4	0
2	G	301	TCL	1	0
2	Κ	301	TCL	1	0
2	Р	301	TCL	4	0
3	В	302	NAD	1	0
2	М	301	TCL	3	0
3	Ν	302	NAD	4	0
2	F	301	TCL	1	0
3	L	302	NAD	3	0
3	G	302	NAD	1	0
3	Р	302	NAD	6	0
3	К	302	NAD	2	0
3	М	302	NAD	8	0

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	0	301	TCL	2	0
3	0	302	NAD	3	0
3	С	302	NAD	1	0
2	D	301	TCL	2	0

Continued from previous page...

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	255/276~(92%)	-0.18	1 (0%) 92 91	28, 43, 76, 111	0
1	В	255/276~(92%)	-0.19	2 (0%) 86 84	30, 40, 59, 93	0
1	С	255/276~(92%)	0.08	6 (2%) 59 53	32, 49, 90, 132	0
1	D	255/276~(92%)	-0.16	1 (0%) 92 91	29, 47, 88, 128	0
1	Е	255/276~(92%)	-0.12	0 100 100	37, 48, 74, 122	0
1	F	255/276~(92%)	0.08	7 (2%) 54 48	36, 52, 96, 123	0
1	G	255/276~(92%)	-0.14	2 (0%) 86 84	36, 49, 75, 133	0
1	Н	255/276~(92%)	0.08	7 (2%) 54 48	39, 54, 94, 139	0
1	Ι	255/276~(92%)	0.24	9 (3%) 44 36	29, 55, 103, 148	0
1	J	255/276~(92%)	0.32	15 (5%) 22 17	31, 55, 103, 154	0
1	К	255/276~(92%)	-0.11	2 (0%) 86 84	29, 44, 73, 134	0
1	L	255/276~(92%)	-0.03	3 (1%) 79 76	31, 50, 87, 111	0
1	М	255/276~(92%)	1.32	66 (25%) 0 0	47, 82, 135, 165	0
1	N	255/276~(92%)	1.06	50 (19%) 1 0	48, 70, 114, 152	0
1	Ο	255/276~(92%)	0.33	12 (4%) 31 25	39, 57, 90, 121	0
1	Р	255/276~(92%)	1.15	46 (18%) 1 0	46, 80, 128, 193	0
All	All	4080/4416 (92%)	0.23	229 (5%) 24 19	28, 53, 103, 193	0

All (229) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	М	5	ASP	9.0
1	М	88	LEU	7.2
1	Р	200	ILE	6.9
1	М	181	GLY	6.9
1	J	97	ARG	6.8

Mol	Chain	Res	Type	RSRZ
1	М	45	LYS	6.7
1	М	42	ASP	6.7
1	Ν	102	GLY	6.3
1	J	41	GLY	5.5
1	J	200	ILE	5.5
1	М	6	GLY	5.4
1	0	240	VAL	5.4
1	М	2	GLY	5.4
1	М	139	ALA	5.4
1	N	40	VAL	5.4
1	Р	145	SER	5.3
1	М	4	LEU	5.3
1	М	199	GLY	5.1
1	Р	198	SER	5.0
1	М	44	PHE	4.9
1	М	37	PHE	4.8
1	Р	43	ARG	4.7
1	Ι	59	LEU	4.7
1	Р	195	LEU	4.5
1	Р	203	PHE	4.5
1	М	182	VAL	4.4
1	Р	15	LEU	4.4
1	М	80	THR	4.3
1	Р	206	ILE	4.3
1	М	62	PRO	4.2
1	Ν	95	ALA	4.2
1	Ν	36	ALA	4.1
1	М	40	VAL	4.1
1	Ν	105	LEU	4.1
1	N	73	ALA	4.0
1	Р	156	TYR	4.0
1	N	20	ILE	4.0
1	N	201	LYS	4.0
1	N	117	HIS	4.0
1	Н	193	LYS	3.9
1	М	33	ALA	3.9
1	М	141	LEU	3.8
1	Ν	24	ILE	3.8
1	C	46	ASP	3.8
1	Р	219	ASN	3.8
1	М	82	TRP	3.8
1	Р	153	ILE	3.8

1

.6		
.6		
.6]	
.5]	
.5		
.5		
.5]	
5	7	

Continued from previous page					
\mathbf{Mol}	Chain	\mathbf{Res}	Type	RSRZ	

104

PHE

3.8

Ν

1 N 223 GLU 3.7 1 N 10 LEU 3.7 1 P 41 GLY 3.6 1 J 199 GLY 3.6 1 J 78 LEU 3.5 1 P 207 LEU 3.5 1 J 42 ASP 3.5 1 J 42 ASP 3.5 1 M 172 TYR 3.5 1 M 127 LEU 3.5 1 N 214 SER 3.5 1 N 220 VAL 3.5 1 N 220 VAL 3.5 1 M 126 ALA 3.4 1 M 126 ALA 3.4 1 M 126 ALA 3.4 1 N 42 ASP 3.3	1	Ν	43	ARG	3.7
1 N 10 LEU 3.7 1 P 41 GLY 3.6 1 J 78 LEU 3.6 1 M 78 LEU 3.5 1 P 207 LEU 3.5 1 J 42 ASP 3.5 1 J 42 ASP 3.5 1 M 172 TYR 3.5 1 N 214 SER 3.5 1 N 220 VAL 3.5 1 N 220 VAL 3.5 1 M 134 MET 3.4 1 M 134 MET 3.4 1 M 126 ALA 3.4 1 M 126 ALA 3.4 1 N 42 ASP 3.3 1 N 200 ILE <	1	Ν	223	GLU	3.7
1 P 41 GLY 3.6 1 J 199 GLY 3.6 1 M 78 LEU 3.5 1 P 207 LEU 3.5 1 J 42 ASP 3.5 1 J 42 ASP 3.5 1 M 172 TYR 3.5 1 M 127 LEU 3.5 1 N 220 VAL 3.5 1 N 220 VAL 3.4 1 M 134 MET 3.4 1 M 126 ALA 3.4 1 M 126 ALA 3.4 1 M 138 SER 3.4 1 N 41 GLY 3.4 1 N 198 SER 3.4 1 N 198 SER 3.3 1 N 230 ALA 3.3 1 </td <td>1</td> <td>Ν</td> <td>10</td> <td>LEU</td> <td>3.7</td>	1	Ν	10	LEU	3.7
1 J 199 GLY 3.6 1 M 78 LEU 3.5 1 P 207 LEU 3.5 1 J 42 ASP 3.5 1 J 42 ASP 3.5 1 M 172 TYR 3.5 1 M 127 LEU 3.4 1 M 134 MET 3.4 1 M 134 MET 3.4 1 M 126 ALA 3.4 1 M 126 ALA 3.4 1 N 41 GLY 3.4 1 N 198 SER 3.4 1 N 200 ILE 3.3 1 N 200 ILE 3.3 <t< td=""><td>1</td><td>Р</td><td>41</td><td>GLY</td><td>3.6</td></t<>	1	Р	41	GLY	3.6
1 J 78 LEU 3.6 1 P 207 LEU 3.5 1 J 42 ASP 3.5 1 J 42 ASP 3.5 1 M 172 TYR 3.5 1 M 127 LEU 3.5 1 M 126 ALA 3.4 1 M 134 MET 3.4 1 M 126 ALA 3.4 1 M 138 SER 3.4 1 N 41 GLY 3.4 1 N 198 SER 3.4 1 N 200 ILE 3.3 1 N 200 ILE 3.3	1	J	199	GLY	3.6
1 M 78 LEU 3.5 1 J 42 ASP 3.5 1 M 172 TYR 3.5 1 M 172 TYR 3.5 1 N 214 SER 3.5 1 M 127 LEU 3.5 1 M 124 SER 3.5 1 M 124 SER 3.5 1 M 127 LEU 3.5 1 M 126 ALA 3.4 1 M 126 ALA 3.4 1 M 126 ALA 3.4 1 N 41 GLY 3.4 1 N 198 SER 3.4 1 N 198 SER 3.4 1 M 130 ALA 3.3 1 N 200 ILE 3.3 <tr< td=""><td>1</td><td>J</td><td>78</td><td>LEU</td><td>3.6</td></tr<>	1	J	78	LEU	3.6
1 P 207 LEU 3.5 1 J 42 ASP 3.5 1 M 172 TYR 3.5 1 N 214 SER 3.5 1 M 127 LEU 3.5 1 M 127 LEU 3.5 1 N 200 VAL 3.5 1 I 15 LEU 3.4 1 M 134 MET 3.4 1 M 126 ALA 3.4 1 M 126 ALA 3.4 1 N 41 GLY 3.4 1 N 198 SER 3.4 1 N 198 SER 3.4 1 M 118 ASP 3.3 1 N 200 ILE 3.3 1 N 230 ALA 3.3 <tr< td=""><td>1</td><td>М</td><td>78</td><td>LEU</td><td>3.5</td></tr<>	1	М	78	LEU	3.5
1 J 42 ASP 3.5 1 M 172 TYR 3.5 1 N 214 SER 3.5 1 M 127 LEU 3.5 1 N 220 VAL 3.5 1 I 15 LEU 3.4 1 M 134 MET 3.4 1 M 126 ALA 3.4 1 M 126 ALA 3.4 1 M 134 MET 3.4 1 M 126 ALA 3.4 1 N 41 GLY 3.4 1 N 198 SER 3.4 1 N 198 SER 3.3 1 M 18 ASP 3.3 1 N 200 ILE 3.3 1 M 230 ALA 3.3 1 J 201 LYS 3.3 1<	1	Р	207	LEU	3.5
1 M 172 TYR 3.5 1 N 214 SER 3.5 1 M 127 LEU 3.5 1 N 220 VAL 3.5 1 I 15 LEU 3.4 1 M 134 MET 3.4 1 M 126 ALA 3.4 1 M 126 ALA 3.4 1 M 126 ALA 3.4 1 N 41 GLY 3.4 1 N 198 SER 3.4 1 N 198 SER 3.4 1 M 118 ASP 3.3 1 N 42 ASP 3.3 1 N 200 ILE 3.3 1 J 47 ARG 3.3 1 J 201 LYS 3.3	1	J	42	ASP	3.5
1 N 214 SER 3.5 1 M 127 LEU 3.5 1 N 220 VAL 3.5 1 I 15 LEU 3.4 1 M 134 MET 3.4 1 M 126 ALA 3.4 1 H 201 LYS 3.4 1 H 201 LYS 3.4 1 N 41 GLY 3.4 1 N 198 SER 3.4 1 N 198 SER 3.4 1 N 198 SER 3.4 1 M 118 ASP 3.3 1 N 200 ILE 3.3 1 N 200 ILE 3.3 1 J 201 LYS 3.3 1 P 249 SER	1	М	172	TYR	3.5
1 M 127 LEU 3.5 1 I 15 LEU 3.4 1 M 134 MET 3.4 1 M 126 ALA 3.4 1 M 126 ALA 3.4 1 H 201 LYS 3.4 1 N 41 GLY 3.4 1 N 41 GLY 3.4 1 N 41 GLY 3.4 1 N 198 SER 3.4 1 N 198 SER 3.4 1 N 198 SER 3.4 1 N 108 LEU 3.4 1 M 118 ASP 3.3 1 N 200 ILE 3.3 1 N 200 ILE 3.3 1 P 202 SER 3.3 1 P 201 LYS 3.3 1<	1	Ν	214	SER	3.5
1 N 220 VAL 3.5 1 I 15 LEU 3.4 1 M 134 MET 3.4 1 M 126 ALA 3.4 1 M 126 ALA 3.4 1 M 126 ALA 3.4 1 N 41 GLY 3.4 1 N 41 GLY 3.4 1 N 198 SER 3.4 1 N 198 SER 3.4 1 N 198 SER 3.4 1 M 118 ASP 3.3 1 N 200 ILE 3.3 1 N 200 ILE 3.3 1 J 47 ARG 3.3 1 P 202 SER 3.3 1 P 201 LYS 3.3	1	М	127	LEU	3.5
1 I 15 LEU 3.4 1 M 134 MET 3.4 1 M 126 ALA 3.4 1 H 201 LYS 3.4 1 N 41 GLY 3.4 1 N 41 GLY 3.4 1 N 41 GLY 3.4 1 N 198 SER 3.4 1 F 108 LEU 3.4 1 M 118 ASP 3.3 1 N 42 ASP 3.3 1 N 200 ILE 3.3 1 M 230 ALA 3.3 1 J 47 ARG 3.3 1 J 47 ARG 3.3 1 J 47 ARG 3.3 1 P 202 SER 3.3 1 P 202 SER 3.3 1 J 201	1	Ν	220	VAL	3.5
1 M 134 MET 3.4 1 M 126 ALA 3.4 1 H 201 LYS 3.4 1 N 41 GLY 3.4 1 N 41 GLY 3.4 1 N 198 SER 3.4 1 F 108 LEU 3.4 1 M 118 ASP 3.3 1 M 200 ILE 3.3 1 N 200 ILE 3.3 1 M 230 ALA 3.3 1 J 47 ARG 3.3 1 J 47 ARG 3.3 1 J 47 ARG 3.3 1 J 201 ILYS 3.3 1 P 202 SER 3.3 1 J 201 LYS 3.3 1 J 201 LYS 3.3 1 P 249 </td <td>1</td> <td>Ι</td> <td>15</td> <td>LEU</td> <td>3.4</td>	1	Ι	15	LEU	3.4
1 M 126 ALA 3.4 1 H 201 LYS 3.4 1 N 41 GLY 3.4 1 N 198 SER 3.4 1 F 108 LEU 3.4 1 F 108 LEU 3.4 1 M 118 ASP 3.3 1 N 42 ASP 3.3 1 N 200 ILE 3.3 1 N 200 ILE 3.3 1 M 230 ALA 3.3 1 J 47 ARG 3.3 1 J 47 ARG 3.3 1 J 200 ILE 3.3 1 P 202 SER 3.3 1 P 201 LYS 3.3 1 J 201 LYS 3.3 1 P 249 SER 3.2 1 P 59 <td>1</td> <td>М</td> <td>134</td> <td>MET</td> <td>3.4</td>	1	М	134	MET	3.4
1 H 201 LYS 3.4 1 N 41 GLY 3.4 1 N 198 SER 3.4 1 F 108 LEU 3.4 1 F 108 LEU 3.4 1 M 118 ASP 3.3 1 N 42 ASP 3.3 1 N 200 ILE 3.3 1 M 230 ALA 3.3 1 J 47 ARG 3.3 1 J 47 ARG 3.3 1 D 232 LEU 3.3 1 P 202 SER 3.3 1 P 202 SER 3.3 1 J 201 LYS 3.3 1 P 146 TYR 3.3 1 J 200 ILE 3.2 1 P 59 LEU 3.2 1 P 147 <td>1</td> <td>М</td> <td>126</td> <td>ALA</td> <td>3.4</td>	1	М	126	ALA	3.4
1 N 41 GLY 3.4 1 N 198 SER 3.4 1 F 108 LEU 3.4 1 M 118 ASP 3.3 1 N 42 ASP 3.3 1 N 200 ILE 3.3 1 N 200 ILE 3.3 1 M 230 ALA 3.3 1 J 47 ARG 3.3 1 J 47 ARG 3.3 1 N 232 LEU 3.3 1 P 202 SER 3.3 1 P 202 SER 3.3 1 P 146 TYR 3.3 1 J 201 LYS 3.3 1 P 249 SER 3.2 1 P 59 LEU 3.2 1 P 147 LEU 3.2 1 P 217 <td>1</td> <td>Н</td> <td>201</td> <td>LYS</td> <td>3.4</td>	1	Н	201	LYS	3.4
1 N 198 SER 3.4 1 F 108 LEU 3.4 1 M 118 ASP 3.3 1 N 42 ASP 3.3 1 N 200 ILE 3.3 1 N 200 ILE 3.3 1 M 230 ALA 3.3 1 J 47 ARG 3.3 1 J 47 ARG 3.3 1 N 232 LEU 3.3 1 P 202 SER 3.3 1 P 202 SER 3.3 1 J 201 LYS 3.3 1 J 201 LYS 3.3 1 P 249 SER 3.2 1 P 59 LEU 3.2 1 P 147 LEU 3.2	1	Ν	41	GLY	3.4
1 F 108 LEU 3.4 1 M 118 ASP 3.3 1 N 42 ASP 3.3 1 N 200 ILE 3.3 1 N 200 ILE 3.3 1 M 230 ALA 3.3 1 J 47 ARG 3.3 1 J 47 ARG 3.3 1 C 42 ASP 3.3 1 P 202 SER 3.3 1 P 202 SER 3.3 1 P 202 SER 3.3 1 J 201 LYS 3.3 1 J 201 LYS 3.3 1 P 249 SER 3.2 1 P 59 LEU 3.2 1 P 147 LEU 3.2 1 P 217 LYS 3.2 1 P 217 <td>1</td> <td>Ν</td> <td>198</td> <td>SER</td> <td>3.4</td>	1	Ν	198	SER	3.4
1 M 118 ASP 3.3 1 N 42 ASP 3.3 1 N 200 ILE 3.3 1 M 230 ALA 3.3 1 J 47 ARG 3.3 1 J 47 ARG 3.3 1 C 42 ASP 3.3 1 N 232 LEU 3.3 1 P 202 SER 3.3 1 P 202 SER 3.3 1 P 202 SER 3.3 1 P 201 LYS 3.3 1 J 201 LYS 3.3 1 P 249 SER 3.2 1 P 59 LEU 3.2 1 P 147 LEU 3.2 1 P 217 LYS 3.2 1 P 217 LYS 3.2 1 I 39 <td>1</td> <td>F</td> <td>108</td> <td>LEU</td> <td>3.4</td>	1	F	108	LEU	3.4
1 N 42 ASP 3.3 1 N 200 ILE 3.3 1 M 230 ALA 3.3 1 J 47 ARG 3.3 1 J 47 ARG 3.3 1 C 42 ASP 3.3 1 N 232 LEU 3.3 1 P 202 SER 3.3 1 P 202 SER 3.3 1 P 202 SER 3.3 1 J 201 LYS 3.3 1 J 201 LYS 3.3 1 L 200 ILE 3.2 1 P 249 SER 3.2 1 P 59 LEU 3.2 1 P 147 LEU 3.2 1 P 217 LYS 3.2 1 P 217 LYS 3.2 1 I 39 <td>1</td> <td>М</td> <td>118</td> <td>ASP</td> <td>3.3</td>	1	М	118	ASP	3.3
1 N 200 ILE 3.3 1 M 230 ALA 3.3 1 J 47 ARG 3.3 1 C 42 ASP 3.3 1 C 42 ASP 3.3 1 P 202 SER 3.3 1 J 201 LYS 3.3 1 J 201 LYS 3.3 1 L 200 ILE 3.2 1 P 249 SER 3.2 1 P 59 LEU 3.2 1 P 147 LEU 3.2 1 P 217 LYS 3.2 1 P 217 LYS 3.2 1 I 39 TYR 3.1 1 N 12 <td>1</td> <td>Ν</td> <td>42</td> <td>ASP</td> <td>3.3</td>	1	Ν	42	ASP	3.3
1 M 230 ALA 3.3 1 J 47 ARG 3.3 1 C 42 ASP 3.3 1 M 232 LEU 3.3 1 P 202 SER 3.3 1 J 201 LYS 3.3 1 J 201 LYS 3.3 1 P 249 SER 3.2 1 P 59 LEU 3.2 1 P 147 LEU 3.2 1 P 217 LYS 3.2 1 P 217 LYS 3.2 1 I 39 TYR 3.1 1 M 73 ALA 3.1 1 N 12 <td>1</td> <td>Ν</td> <td>200</td> <td>ILE</td> <td>3.3</td>	1	Ν	200	ILE	3.3
1 J 47 ARG 3.3 1 C 42 ASP 3.3 1 M 232 LEU 3.3 1 P 202 SER 3.3 1 P 202 SER 3.3 1 P 202 SER 3.3 1 P 146 TYR 3.3 1 J 201 LYS 3.3 1 L 200 ILE 3.2 1 P 249 SER 3.2 1 P 59 LEU 3.2 1 P 147 LEU 3.2 1 P 147 LEU 3.2 1 P 217 LYS 3.2 1 P 217 LYS 3.2 1 I 39 TYR 3.1 1 M 73 ALA 3.1 1 N 12 THR 3.1 1 M 56	1	М	230	ALA	3.3
1 C 42 ASP 3.3 1 M 232 LEU 3.3 1 P 202 SER 3.3 1 P 146 TYR 3.3 1 P 146 TYR 3.3 1 J 201 LYS 3.3 1 J 201 LYS 3.3 1 L 200 ILE 3.2 1 P 249 SER 3.2 1 P 249 SER 3.2 1 P 59 LEU 3.2 1 P 147 LEU 3.2 1 P 147 LEU 3.2 1 P 217 LYS 3.2 1 P 217 LYS 3.2 1 I 39 TYR 3.1 1 N 12 THR 3.1 1 N 12 THR 3.1 1 M 56 <td>1</td> <td>J</td> <td>47</td> <td>ARG</td> <td>3.3</td>	1	J	47	ARG	3.3
1 M 232 LEU 3.3 1 P 202 SER 3.3 1 P 146 TYR 3.3 1 J 201 LYS 3.3 1 J 201 LYS 3.3 1 L 200 ILE 3.2 1 P 249 SER 3.2 1 P 249 SER 3.2 1 P 59 LEU 3.2 1 P 147 LEU 3.2 1 P 147 LEU 3.2 1 P 217 LYS 3.2 1 P 217 LYS 3.2 1 I 39 TYR 3.1 1 M 73 ALA 3.1 1 N 12 THR 3.1 1 M 56 GLY 3.1	1	С	42	ASP	3.3
1 P 202 SER 3.3 1 P 146 TYR 3.3 1 J 201 LYS 3.3 1 J 201 LYS 3.3 1 L 200 ILE 3.2 1 P 249 SER 3.2 1 P 249 SER 3.2 1 P 59 LEU 3.2 1 P 147 LEU 3.2 1 P 147 LEU 3.2 1 P 217 LYS 3.2 1 P 217 LYS 3.2 1 I 39 TYR 3.1 1 M 73 ALA 3.1 1 N 12 THR 3.1 1 M 56 GLY 3.1	1	М	232	LEU	3.3
1 P 146 TYR 3.3 1 J 201 LYS 3.3 1 L 200 ILE 3.2 1 P 249 SER 3.2 1 P 249 SER 3.2 1 P 59 LEU 3.2 1 P 59 LEU 3.2 1 P 147 LEU 3.2 1 P 147 LEU 3.2 1 P 217 LYS 3.2 1 P 217 LYS 3.2 1 I 39 TYR 3.1 1 M 73 ALA 3.1 1 N 12 THR 3.1 1 M 56 GLY 3.1	1	Р	202	SER	3.3
1 J 201 LYS 3.3 1 L 200 ILE 3.2 1 P 249 SER 3.2 1 P 249 SER 3.2 1 K 43 ARG 3.2 1 P 59 LEU 3.2 1 P 147 LEU 3.2 1 P 147 LEU 3.2 1 P 217 LYS 3.2 1 P 217 LYS 3.2 1 I 39 TYR 3.1 1 M 73 ALA 3.1 1 N 12 THR 3.1 1 M 56 GLY 3.1	1	Р	146	TYR	3.3
1 L 200 ILE 3.2 1 P 249 SER 3.2 1 K 43 ARG 3.2 1 P 59 LEU 3.2 1 P 147 LEU 3.2 1 P 147 LEU 3.2 1 P 217 LYS 3.2 1 P 217 LYS 3.2 1 I 39 TYR 3.1 1 M 73 ALA 3.1 1 N 12 THR 3.1 1 M 56 GLY 3.1	1	J	201	LYS	3.3
1 P 249 SER 3.2 1 K 43 ARG 3.2 1 P 59 LEU 3.2 1 P 147 LEU 3.2 1 P 147 LEU 3.2 1 M 11 LEU 3.2 1 P 217 LYS 3.2 1 P 217 LYS 3.2 1 I 39 TYR 3.1 1 M 73 ALA 3.1 1 N 12 THR 3.1 1 M 56 GLY 3.1	1	L	200	ILE	3.2
1 K 43 ARG 3.2 1 P 59 LEU 3.2 1 P 147 LEU 3.2 1 P 147 LEU 3.2 1 M 11 LEU 3.2 1 P 217 LYS 3.2 1 I 39 TYR 3.1 1 M 73 ALA 3.1 1 N 12 THR 3.1 1 M 56 GLY 3.1	1	Р	249	SER	3.2
1 P 59 LEU 3.2 1 P 147 LEU 3.2 1 M 11 LEU 3.2 1 M 11 LEU 3.2 1 P 217 LYS 3.2 1 I 39 TYR 3.1 1 M 73 ALA 3.1 1 N 12 THR 3.1 1 M 56 GLY 3.1	1	Κ	43	ARG	3.2
1 P 147 LEU 3.2 1 M 11 LEU 3.2 1 P 217 LYS 3.2 1 I 39 TYR 3.1 1 M 73 ALA 3.1 1 N 12 THR 3.1 1 M 56 GLY 3.1	1	Р	59	LEU	3.2
1 M 11 LEU 3.2 1 P 217 LYS 3.2 1 I 39 TYR 3.1 1 M 73 ALA 3.1 1 N 12 THR 3.1 1 M 56 GLY 3.1	1	Р	147	LEU	3.2
1 P 217 LYS 3.2 1 I 39 TYR 3.1 1 M 73 ALA 3.1 1 N 12 THR 3.1 1 M 56 GLY 3.1	1	М	11	LEU	3.2
1 I 39 TYR 3.1 1 M 73 ALA 3.1 1 N 12 THR 3.1 1 M 56 GLY 3.1	1	Р	217	LYS	3.2
1 M 73 ALA 3.1 1 N 12 THR 3.1 1 M 56 GLY 3.1	1	Ι	39	TYR	3.1
1 N 12 THR 3.1 1 M 56 GLY 3.1	1	М	73	ALA	3.1
1 M 56 GLY 3.1	1	N	12	THR	3.1
	1	М	56	GLY	3.1

Mol	Chain	Res	Type	RSRZ
1	J	40	VAL	3.1
1	М	86	ASP	3.1
1	Ν	210	VAL	3.1
1	0	172	TYR	3.0
1	С	41	GLY	3.0
1	Ν	251	PHE	3.0
1	Ν	88	LEU	3.0
1	Н	199	GLY	3.0
1	F	193	LYS	3.0
1	0	43	ARG	3.0
1	М	101	ALA	3.0
1	М	92	ILE	3.0
1	L	97	ARG	3.0
1	Ν	22	TYR	3.0
1	М	122	TYR	2.9
1	М	133	PRO	2.9
1	0	61	PHE	2.9
1	М	242	ALA	2.9
1	М	74	LEU	2.9
1	М	189	ALA	2.9
1	В	43	ARG	2.9
1	Р	225	VAL	2.8
1	Ν	65	VAL	2.8
1	Р	191	PRO	2.8
1	Ν	159	MET	2.8
1	Р	190	GLY	2.8
1	М	179	ALA	2.7
1	Ν	68	ASP	2.7
1	М	238	SER	2.7
1	Ν	132	LEU	2.7
1	N	141	LEU	2.7
1	Ν	152	ALA	2.7
1	0	242	ALA	2.7
1	М	184	VAL	2.7
1	М	85	LEU	2.7
1	N	254	VAL	2.7
1	М	22	TYR	2.7
1	N	97	ARG	2.7
1	Н	200	ILE	2.6
1	J	94	PHE	2.6
1	0	42	ASP	2.6
1	Ι	48	ILE	2.6

Mol	Chain	Res	Type	RSRZ
1	Р	51	PHE	2.6
1	N	9	ILE	2.6
1	М	138	ASP	2.6
1	K	97	ARG	2.6
1	Р	40	VAL	2.5
1	F	18	ARG	2.5
1	Ι	60	VAL	2.5
1	0	236	LEU	2.5
1	Р	78	LEU	2.5
1	А	83	ASP	2.5
1	G	43	ARG	2.5
1	Р	63	CYS	2.5
1	J	46	ASP	2.5
1	М	180	LYS	2.5
1	H	18	ARG	2.5
1	Ν	215	PRO	2.5
1	0	20	ILE	2.5
1	Ν	150	GLU	2.5
1	Р	221	THR	2.5
1	Р	187	ILE	2.5
1	Ν	28	CYS	2.5
1	Ν	205	LYS	2.4
1	С	83	ASP	2.4
1	F	97	ARG	2.4
1	0	237	ALA	2.4
1	N	145	SER	2.4
1	Р	70	GLN	2.4
1	М	236	LEU	2.4
1	F	200	ILE	2.4
1	Р	24	ILE	2.4
1	J	44	PHE	2.4
1	М	97	ARG	2.4
1	М	35	LEU	2.4
1	М	142	LEU	2.4
1	N	195	LEU	2.4
1	Р	205	LYS	2.4
1	Р	55	PHE	2.4
1	М	119	ILE	2.3
1	N	119	ILE	2.3
1	N	146	TYR	2.3
1	Р	87	GLY	2.3
1	М	137	ASP	2.3

Mol	Chain	Res	Type	RSRZ
1	Р	141	LEU	2.3
1	М	58	GLU	2.3
1	Р	210	VAL	2.3
1	D	97	ARG	2.3
1	Р	22	TYR	2.3
1	Н	40	VAL	2.3
1	М	145	SER	2.3
1	J	92	ILE	2.3
1	М	136	SER	2.2
1	В	97	ARG	2.2
1	М	237	ALA	2.2
1	Ι	43	ARG	2.2
1	Р	218	ARG	2.2
1	F	206	ILE	2.2
1	L	100	ILE	2.2
1	Р	220	VAL	2.2
1	N	196	ALA	2.2
1	N	38	THR	2.2
1	N	113	PHE	2.2
1	Р	213	ASN	2.2
1	Ι	51	PHE	2.2
1	N	55	PHE	2.2
1	М	240	VAL	2.2
1	Р	212	SER	2.2
1	Р	211	GLU	2.2
1	С	137	ASP	2.2
1	М	135	LEU	2.1
1	0	127	LEU	2.1
1	Ν	207	LEU	2.1
1	Р	144	LEU	2.1
1	Р	201	LYS	2.1
1	М	84	SER	2.1
1	N	115	ILE	2.1
1	J	128	ALA	2.1
1	G	3	PHE	2.1
1	0	77	SER	2.1
1	М	129	LYS	2.1
1	М	3	PHE	2.1
1	Ι	42	ASP	2.1
1	Ο	128	ALA	2.1
1	М	8	ARG	2.1
1	М	65	VAL	2.1

Mol	Chain	Res	Type	RSRZ
1	Р	11	LEU	2.1
1	Ν	90	HIS	2.0
1	М	43	ARG	2.0
1	F	58	GLU	2.0
1	М	63	CYS	2.0
1	Ν	92	ILE	2.0
1	Н	202	SER	2.0
1	М	140	SER	2.0
1	Р	20	ILE	2.0
1	Р	112	ASN	2.0
1	Ι	49	THR	2.0
1	С	44	PHE	2.0
1	J	43	ARG	2.0
1	М	34	GLU	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathrm{\AA}^2)$	Q < 0.9
2	TCL	М	301	17/17	0.65	0.26	77,134,158,181	0
2	TCL	J	301	17/17	0.85	0.25	80,86,104,133	0
3	NAD	М	302	44/44	0.85	0.24	83,110,137,144	0
2	TCL	Р	301	17/17	0.86	0.22	64,85,116,170	0
2	TCL	F	301	17/17	0.90	0.18	67,73,87,88	0
2	TCL	K	301	17/17	0.91	0.24	36,52,94,107	0
3	NAD	Ν	302	44/44	0.91	0.19	55,78,102,120	0
3	NAD	Р	302	44/44	0.91	0.16	47,69,94,112	0
2	TCL	L	301	17/17	0.92	0.18	41,55,72,84	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B-factors(Å ²)	Q<0.9
2	TCL	D	301	17/17	0.92	0.17	30,60,91,106	0
3	NAD	F	302	44/44	0.93	0.14	31,59,76,92	0
2	TCL	Ι	301	17/17	0.94	0.23	42,53,80,90	0
3	NAD	Н	302	44/44	0.94	0.16	42,66,90,103	0
3	NAD	J	302	44/44	0.94	0.19	33,53,70,97	0
2	TCL	G	301	17/17	0.94	0.16	38,48,67,78	0
2	TCL	N	301	17/17	0.94	0.19	56,68,74,127	0
2	TCL	Н	301	17/17	0.94	0.17	44,57,67,221	0
3	NAD	L	302	44/44	0.95	0.16	34,48,64,77	0
2	TCL	В	301	17/17	0.95	0.17	31,46,68,117	0
3	NAD	Ι	302	44/44	0.95	0.17	$38,\!51,\!66,\!79$	0
3	NAD	0	302	44/44	0.95	0.17	39,51,72,80	0
2	TCL	0	301	17/17	0.95	0.15	39,46,88,98	0
3	NAD	А	302	44/44	0.96	0.15	29,40,62,74	0
3	NAD	С	302	44/44	0.96	0.13	33,47,70,90	0
3	NAD	D	302	44/44	0.96	0.13	27,39,66,90	0
2	TCL	Е	301	17/17	0.96	0.17	38,49,79,82	0
2	TCL	С	301	17/17	0.96	0.15	$33,\!55,\!74,\!95$	0
2	TCL	А	301	17/17	0.96	0.15	30,38,82,122	0
3	NAD	В	302	44/44	0.97	0.14	31,38,51,61	0
3	NAD	G	302	44/44	0.97	0.14	37,48,60,68	0
3	NAD	K	302	44/44	0.97	0.14	30,38,60,67	0
3	NAD	Е	302	44/44	0.97	0.16	38,46,62,74	0

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

