

Aug 12, 2024 – 10:48 AM JST

PDB ID	:	8J0T
EMDB ID	:	EMD-35911
Title	:	Cryo-EM structure of Mycobacterium tuberculosis ATP synthase in the apo-
		form
Authors	:	Zhang, Y.; Lai, Y.; Liu, F.; Rao, Z.; Gong, H.
Deposited on	:	2023-04-11
Resolution	:	2.80 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis Mogul		0.0.1.dev92 1.8.5 (274361), CSD as541be (2020)
MolProbity		
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.37.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.80 Å.

Sidechain outliers

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Percentile Ran	ks Value							
Ramachandran outliers		0							
Sidechain outliers									
Worse	Better								
Percentil	e relative to all structures								
Percentil	e relative to all EM structures								
	Whole archive	EM structures							
Metric	(# Entries)	(# Entries)							
Ramachandran outliers	154571	4023							

154315

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

3826

Mol	Chain	Length	Quality of chain
1	А	549	94% 6%
1	В	549	8%
1	С	549	8% 97% ·
2	D	486	97%
2	Е	486	97%
2	F	486	97% .
3	G	305	8% 94% 6%
4	Н	121	9 8% •
5	1	81	1 00%

Continued on next page...

Mol	Chain	Length	Quality of chain	
10101	Chan	Length		
5	2	81	• 100%	
5	3	81	• 100%	
5	4	81	100%	
5	5	81	• 100%	
5	6	81	• 100%	
5	7	81	100%	
5	8	81	100%	
5	9	81	100%	
6		250	15%	1.20/
0	a	200		12%
7	b	171	84%	16%
8	d	446	17%	

Continued from previous page...

2 Entry composition (i)

There are 11 unique types of molecules in this entry. The entry contains 37208 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms		AltConf	Trace	
1	А	517	Total	С	Ν	Ο	\mathbf{S}	0	0
1	11	511	3916	2449	684	772	11	0	0
1	В	491	Total	\mathbf{C}	Ν	0	\mathbf{S}	0	0
	D	491	3740	2341	654	734	11	0	0
1	C	534	Total	С	Ν	Ο	\mathbf{S}	0	0
	554	4061	2544	708	798	11	0	0	

• Molecule 1 is a protein called ATP synthase subunit alpha.

• Molecule 2 is a protein called ATP synthase subunit beta.

Mol	Chain	Residues		At		AltConf	Trace		
2	D	469	Total 3614	C 2279	N 622	0 701	S 12	0	0
2	Е	469	Total 3614	C 2279	N 622	0 701	S 12	0	0
2	F	469	Total 3614	C 2279	N 622	0 701	S 12	0	0

• Molecule 3 is a protein called ATP synthase gamma chain.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	C	287	Total	С	Ν	Ο	\mathbf{S}	0	0
5	G	201	2251	1415	398	430	8	0	0

• Molecule 4 is a protein called ATP synthase epsilon chain.

Mol	Chain	Residues		At	oms	AltConf	Trace		
4	Н	119	Total 906	C 562	N 162	O 181	S 1	0	0

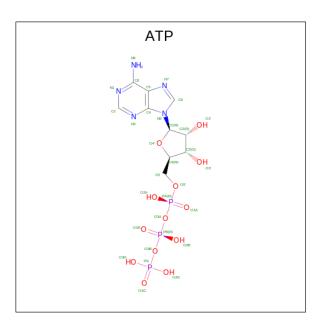
• Molecule 5 is a protein called ATP synthase subunit c.

Mol	Chain	Residues		Ato	ms			AltConf	Trace
5	1	81	Total	С	Ν	0	S	0	0
0	1	01	567	373	92	99	3	0	0
5	2	81	Total	С	Ν	Ο	S	0	0
0	Δ	01	567	373	92	99	3	0	0
5	3	81	Total	С	Ν	Ο	S	0	0
5	5	01	567	373	92	99	3	0	0
5	4	81	Total	С	Ν	Ο	S	0	0
5	4	01	567	373	92	99	3	0	0
5	5	81	Total	С	Ν	Ο	S	0	0
5	5	01	567	373	92	99	3	0	0
5	6	81	Total	С	Ν	Ο	S	0	0
5	0	01	567	373	92	99	3	0	0
5	7	81	Total	С	Ν	Ο	S	0	0
5	1	01	567	373	92	99	3	0	0
5	8	81	Total	С	Ν	Ο	S	0	0
5	0 0	81	567	373	92	99	3		U
5	9	81	Total	С	Ν	Ο	S	0	0
5	9	01	567	373	92	99	3		0

• Molecule 6 is a protein called ATP synthase subunit a.

Mol	Chain	Residues		Ate		AltConf	Trace		
6	a	220	Total 1706	C 1145	N 269	0 286	S 6	0	0

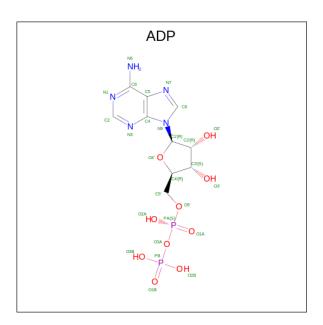
• Molecule 7 is a protein called ATP synthase subunit b.


Mol	Chain	Residues		At	oms		AltConf	Trace	
7	h	144	Total	С	Ν	0	\mathbf{S}	0	0
1	D	144	1107	691	201	212	3	0	0

• Molecule 8 is a protein called Multifunctional fusion protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
8	d	445	Total 3424	C 2131	N 637	0 649	S 7	0	0

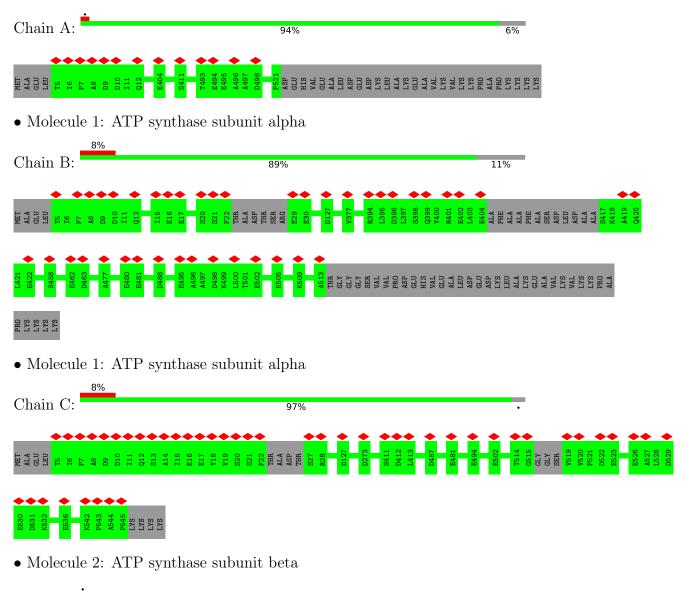
• Molecule 9 is ADENOSINE-5'-TRIPHOSPHATE (three-letter code: ATP) (formula: $C_{10}H_{16}N_5O_{13}P_3$) (labeled as "Ligand of Interest" by depositor).


Mol	Chain	Residues	Atoms					AltConf
0	Λ	1	Total	С	Ν	Ο	Р	0
9	A	1	31	10	5	13	3	0
0	В	1	Total	С	Ν	Ο	Р	0
9	D	1	31	10	5	13	3	0
0	С	1	Total	С	Ν	Ο	Р	0
9	U	1	31	10	5	13	3	U

• Molecule 10 is MAGNESIUM ION (three-letter code: MG) (formula: Mg) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
10	А	1	Total Mg 1 1	0
10	В	1	Total Mg 1 1	0
10	С	1	Total Mg 1 1	0
10	D	1	Total Mg 1 1	0
10	F	1	Total Mg 1 1	0

• Molecule 11 is ADENOSINE-5'-DIPHOSPHATE (three-letter code: ADP) (formula: $C_{10}H_{15}N_5O_{10}P_2$) (labeled as "Ligand of Interest" by depositor).

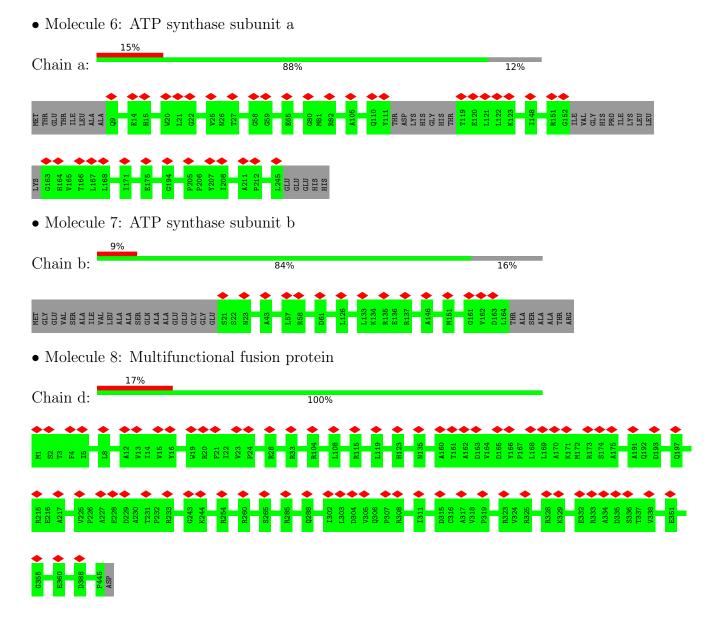

Mol	Chain	Residues	Atoms					AltConf
11	Л	1	Total	С	Ν	0	Р	0
	D	1	27	10	5	10	2	0
11	F	1	Total	С	Ν	0	Р	0
11	Г	1	27	10	5	10	2	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: ATP synthase subunit alpha

Chain D:



MET THR THR ALA ALA ALA ASP PRO ASP PRO AC CVS E40 E40 E40 E40 E40 E40 E40 E40 E40 E40	
• Molecule 2: ATP synthase subunit beta	
Chain E: 97% ·	
MET TTHR TTHR TTHR ALA AND AND AND AND CLY AND CCH C C C C C C C C C C C C C C C C C	
• Molecule 2: ATP synthase subunit beta	
Chain F: 97%	I
MET THR THR ALA ASP ASP PRO PRO PRO PRO PRO PRO PRO PRO PRO PR	
• Molecule 3: ATP synthase gamma chain	
Chain G: 94% 6%	
MET A13 A3 A3 A3 A5 A62 A62 A62 A62 P72 P72 P73 P73 P73 P73 P73 P73 C11 A5P A113 A115 A113 A115 A113 A113 A113 A113	1214 • 2215 • P216 • R217 • A302 GLU ALA ARG
• Molecule 4: ATP synthase epsilon chain	
Chain H: 98%	
AET 102 ASP	
• Molecule 5: ATP synthase subunit c	
Chain 1: 100%	
K81 K81	
\bullet Molecule 5: ATP synthase subunit c	
Chain 2:	r
• Molecule 5: ATP synthase subunit c	

Chain 3:	100%	
◆ ◆ 11 18 20		
• Molecule 5: ATP synthase subunit c		
Chain 4:	100%	
◆ ◆ 1 W		
• Molecule 5: ATP synthase subunit c		
Chain 5:	100%	
HI K81 ◆		
• Molecule 5: ATP synthase subunit c		
Chain 6:	100%	
M1 K81		
• Molecule 5: ATP synthase subunit c		
Chain 7:	100%	
M1 244 ₩1 ₩1		
• Molecule 5: ATP synthase subunit c		
Chain 8:	100%	
M1 244 K81		
• Molecule 5: ATP synthase subunit c		
Chain 9:	100%	
K81 K81		

WORLDWIDE PROTEIN DATA BANK

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	66593	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE CORRECTION	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	50	Depositor
Minimum defocus (nm)	1200	Depositor
Maximum defocus (nm)	2400	Depositor
Magnification	Not provided	
Image detector	FEI FALCON IV (4k x 4k)	Depositor
Maximum map value	44.692	Depositor
Minimum map value	-25.990	Depositor
Average map value	0.009	Depositor
Map value standard deviation	1.095	Depositor
Recommended contour level	5.6	Depositor
Map size (Å)	373.76, 373.76, 373.76	wwPDB
Map dimensions	512, 512, 512	wwPDB
Map angles $(^{\circ})$	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.73, 0.73, 0.73	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ADP, ATP, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond	lengths	Bond	angles
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.32	0/3976	0.46	0/5387
1	В	0.32	0/3795	0.46	0/5137
1	С	0.33	0/4122	0.45	0/5580
2	D	0.32	0/3680	0.45	0/4990
2	Е	0.31	0/3680	0.45	0/4990
2	F	0.31	0/3680	0.45	0/4990
3	G	0.32	0/2286	0.46	0/3092
4	Н	0.35	0/915	0.51	0/1237
5	1	0.40	0/578	0.49	0/784
5	2	0.41	0/578	0.49	0/784
5	3	0.41	0/578	0.49	0/784
5	4	0.40	0/578	0.49	0/784
5	5	0.37	0/578	0.47	0/784
5	6	0.37	0/578	0.47	0/784
5	7	0.37	0/578	0.47	0/784
5	8	0.37	0/578	0.47	0/784
5	9	0.37	0/578	0.47	0/784
6	a	0.33	0/1748	0.52	0/2390
7	b	0.36	0/1118	0.62	0/1512
8	d	0.34	0/3462	0.58	0/4697
All	All	0.33	0/37664	0.48	0/51058

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	515/549~(94%)	490 (95%)	25~(5%)	0	100	100
1	В	485/549~(88%)	463 (96%)	22~(4%)	0	100	100
1	С	528/549~(96%)	503~(95%)	25~(5%)	0	100	100
2	D	467/486~(96%)	446 (96%)	21 (4%)	0	100	100
2	Ε	467/486~(96%)	453 (97%)	14 (3%)	0	100	100
2	F	467/486~(96%)	446 (96%)	21 (4%)	0	100	100
3	G	283/305~(93%)	272 (96%)	11 (4%)	0	100	100
4	Н	117/121~(97%)	113 (97%)	4 (3%)	0	100	100
5	1	79/81~(98%)	75~(95%)	4 (5%)	0	100	100
5	2	79/81~(98%)	75~(95%)	4 (5%)	0	100	100
5	3	79/81~(98%)	73~(92%)	6 (8%)	0	100	100
5	4	79/81~(98%)	75~(95%)	4 (5%)	0	100	100
5	5	79/81~(98%)	76~(96%)	3 (4%)	0	100	100
5	6	79/81~(98%)	76~(96%)	3 (4%)	0	100	100
5	7	79/81~(98%)	76~(96%)	3 (4%)	0	100	100
5	8	79/81~(98%)	76 (96%)	3 (4%)	0	100	100
5	9	79/81~(98%)	76 (96%)	3 (4%)	0	100	100
6	a	214/250~(86%)	201 (94%)	13 (6%)	0	100	100
7	b	142/171~(83%)	127 (89%)	15 (11%)	0	100	100
8	d	443/446 (99%)	415 (94%)	28 (6%)	0	100	100
All	All	4839/5127~(94%)	4607 (95%)	232 (5%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	417/444~(94%)	417 (100%)	0	100 100
1	В	400/444~(90%)	400 (100%)	0	100 100
1	С	433/444 (98%)	433 (100%)	0	100 100
2	D	389/403~(96%)	389 (100%)	0	100 100
2	Ε	389/403~(96%)	389 (100%)	0	100 100
2	F	389/403~(96%)	389 (100%)	0	100 100
3	G	235/248~(95%)	235 (100%)	0	100 100
4	Н	94/96~(98%)	94 (100%)	0	100 100
5	1	52/52~(100%)	52 (100%)	0	100 100
5	2	52/52~(100%)	52 (100%)	0	100 100
5	3	52/52~(100%)	52 (100%)	0	100 100
5	4	52/52~(100%)	52 (100%)	0	100 100
5	5	52/52~(100%)	52 (100%)	0	100 100
5	6	52/52~(100%)	52 (100%)	0	100 100
5	7	52/52~(100%)	52 (100%)	0	100 100
5	8	52/52~(100%)	52 (100%)	0	100 100
5	9	52/52~(100%)	52 (100%)	0	100 100
6	a	178/204~(87%)	178 (100%)	0	100 100
7	b	117/133~(88%)	117 (100%)	0	100 100
8	d	356/357~(100%)	356 (100%)	0	100 100
All	All	3865/4047~(96%)	3865 (100%)	0	100 100

There are no protein residues with a non-rotameric sidechain to report.

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (40) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	12	GLN
1	А	43	HIS
1	А	191	GLN
1	A A A A	192	ASN
1	А	305	HIS
1	В	90	GLN
1	В	141	HIS
1	В	192	ASN
1	В	258	GLN
1	В	437	GLN
1	С	141	HIS
2	B B C D D D	141 71 111 128	HIS ASN
$ \begin{array}{r} 2 \\ $	D	111	ASN HIS
2	D	128	
2	D	132	HIS
2	D	191	ASN ASN GLN
2	D	209	ASN
2	D	388	GLN
2	E F	230	GLN HIS
2	F	376	HIS
2	F	388	GLN
3	G G	65	HIS
3		286	GLN
4	Н	38	HIS
5	2	67	ASN
5	3	67	ASN
5 5	4	67	ASN
5	5	42	GLN
5	5	67	ASN
5	6	67	ASN
5	7	67	ASN
5	8	67	ASN
5	9	67	ASN
6	a	15	HIS
6	a	16	HIS
6	a	227	GLN
8	d	112	GLN
8	d	123	HIS
8	d	197	GLN
8	d	356	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 10 ligands modelled in this entry, 5 are monoatomic - leaving 5 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Turne	Chain	Chain Res Link		Bo	Bond lengths			Bond angles			
1VIOI	Type	Chain	nes	nes	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
9	ATP	С	600	10	26,33,33	0.90	1 (3%)	$31,\!52,\!52$	1.52	5 (16%)		
9	ATP	А	600	10	26,33,33	0.91	1 (3%)	31,52,52	1.52	5 (16%)		
9	ATP	В	600	10	26,33,33	0.90	1 (3%)	31,52,52	1.53	5 (16%)		
11	ADP	D	600	10	24,29,29	0.93	1 (4%)	29,45,45	1.40	4 (13%)		
11	ADP	F	600	10	24,29,29	0.92	1 (4%)	29,45,45	1.41	4 (13%)		

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
9	ATP	С	600	10	-	2/18/38/38	0/3/3/3
9	ATP	А	600	10	-	2/18/38/38	0/3/3/3
9	ATP	В	600	10	-	2/18/38/38	0/3/3/3

Continued on next page...

Continued from previous page...

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
11	ADP	D	600	10	-	0/12/32/32	0/3/3/3
11	ADP	F	600	10	-	0/12/32/32	0/3/3/3

All (5) bond length outliers are listed below:

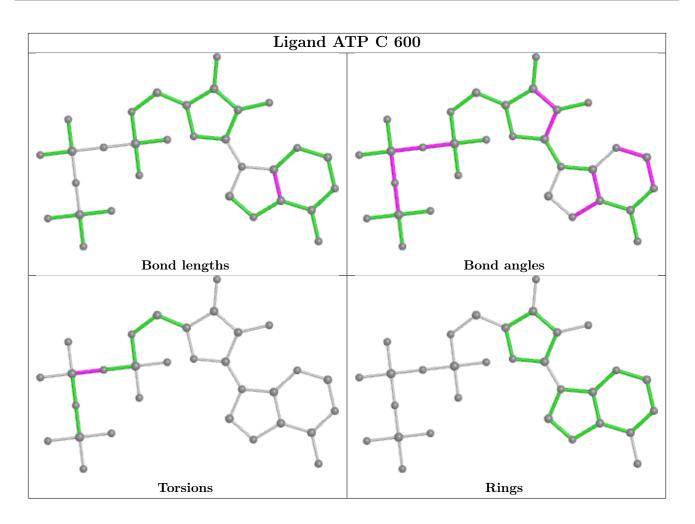
Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	$\mathrm{Ideal}(\mathrm{\AA})$
9	В	600	ATP	C5-C4	2.23	1.46	1.40
9	А	600	ATP	C5-C4	2.21	1.46	1.40
11	D	600	ADP	C5-C4	2.20	1.46	1.40
9	С	600	ATP	C5-C4	2.19	1.46	1.40
11	F	600	ADP	C5-C4	2.19	1.46	1.40

All (23) bond angle outliers are listed below:

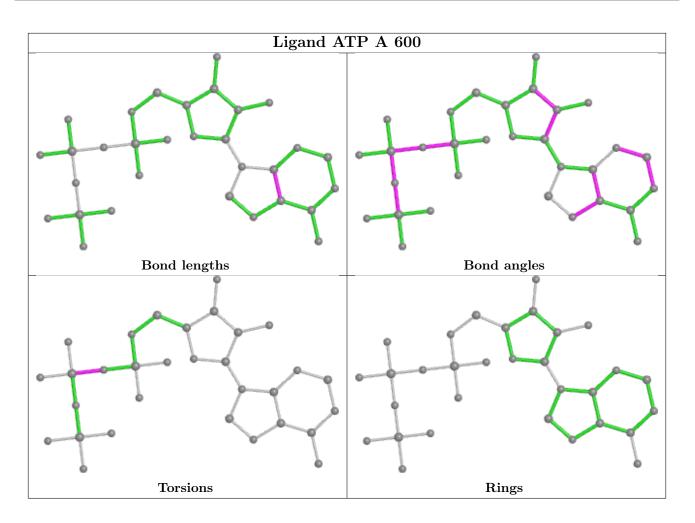
Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
11	D	600	ADP	C3'-C2'-C1'	3.42	106.13	100.98
11	F	600	ADP	C3'-C2'-C1'	3.41	106.12	100.98
9	А	600	ATP	PB-O3B-PG	-3.38	121.21	132.83
9	С	600	ATP	PB-O3B-PG	-3.38	121.23	132.83
9	В	600	ATP	PB-O3B-PG	-3.37	121.25	132.83
11	F	600	ADP	N3-C2-N1	-3.30	123.53	128.68
11	D	600	ADP	N3-C2-N1	-3.26	123.58	128.68
9	В	600	ATP	N3-C2-N1	-3.16	123.74	128.68
9	С	600	ATP	N3-C2-N1	-3.16	123.74	128.68
9	А	600	ATP	N3-C2-N1	-3.16	123.74	128.68
9	В	600	ATP	PA-O3A-PB	-3.14	122.06	132.83
9	С	600	ATP	PA-O3A-PB	-3.13	122.08	132.83
9	А	600	ATP	PA-O3A-PB	-3.12	122.11	132.83
9	В	600	ATP	C3'-C2'-C1'	2.78	105.16	100.98
9	С	600	ATP	C3'-C2'-C1'	2.76	105.13	100.98
9	А	600	ATP	C3'-C2'-C1'	2.74	105.10	100.98
11	D	600	ADP	PA-O3A-PB	-2.68	123.63	132.83
11	F	600	ADP	PA-O3A-PB	-2.67	123.66	132.83
9	В	600	ATP	C4-C5-N7	-2.63	106.66	109.40
9	А	600	ATP	C4-C5-N7	-2.59	106.69	109.40
9	С	600	ATP	C4-C5-N7	-2.59	106.70	109.40
11	D	600	ADP	C4-C5-N7	-2.57	106.72	109.40
11	F	600	ADP	C4-C5-N7	-2.55	106.74	109.40

There are no chirality outliers.

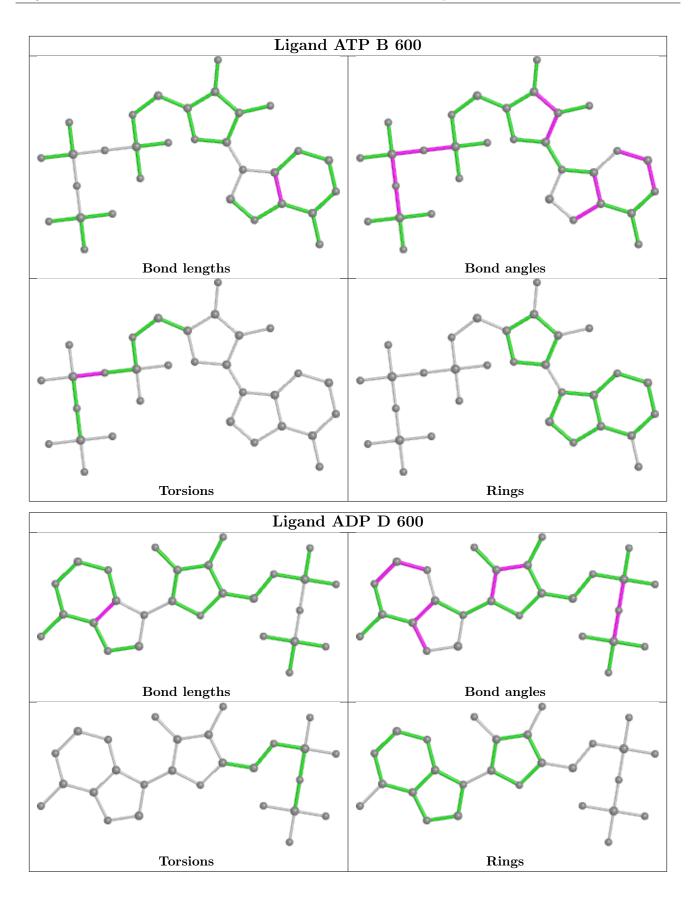
All (6) torsion outliers are listed below:

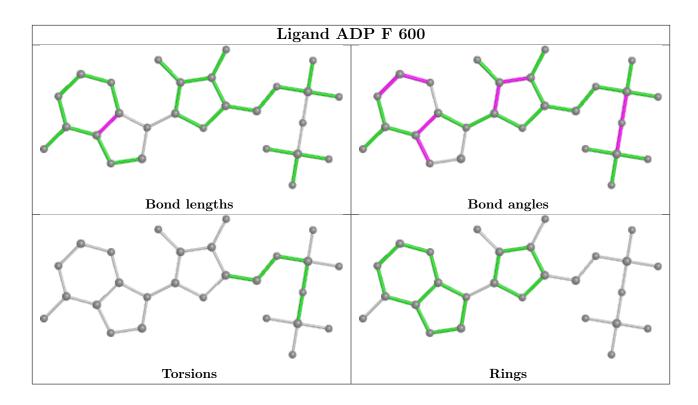

Mol	Chain	Res	Type	Atoms
9	А	600	ATP	PA-O3A-PB-O1B
9	В	600	ATP	PA-O3A-PB-O1B
9	С	600	ATP	PA-O3A-PB-O1B
9	А	600	ATP	PA-O3A-PB-O2B
9	В	600	ATP	PA-O3A-PB-O2B
9	С	600	ATP	PA-O3A-PB-O2B

There are no ring outliers.


No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient the outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.



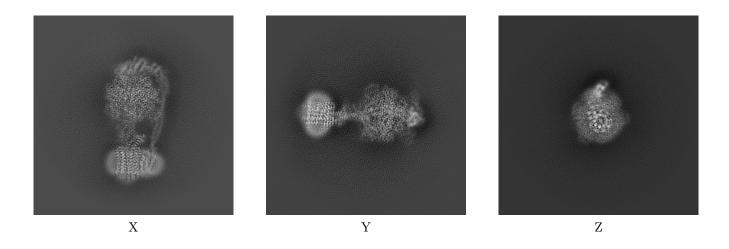


5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

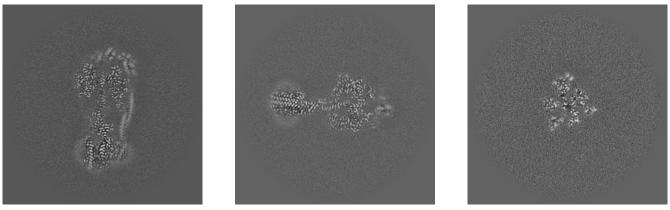
There are no chain breaks in this entry.


6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-35911. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)


6.1.1 Primary map

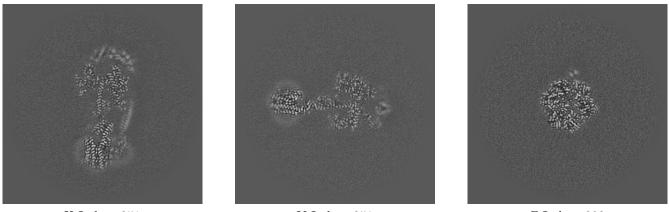
The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 256

Y Index: 256



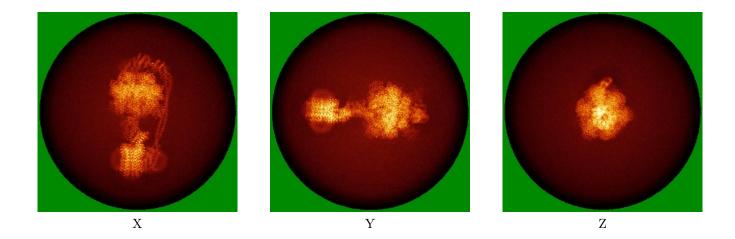
Z Index: 256

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 251


Y Index: 251

Z Index: 309

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map



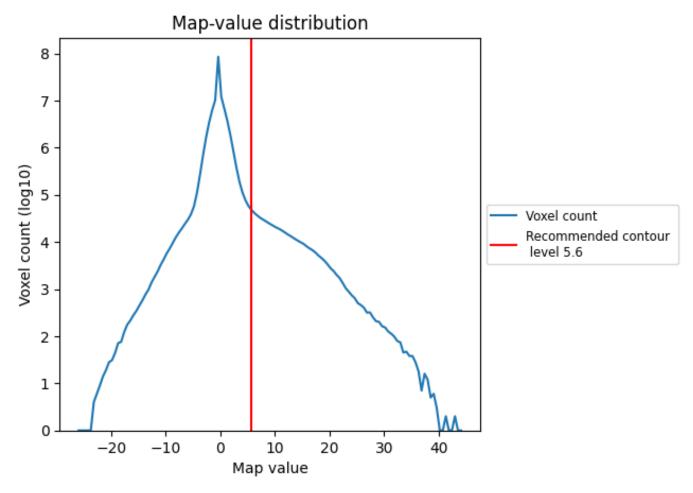
The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

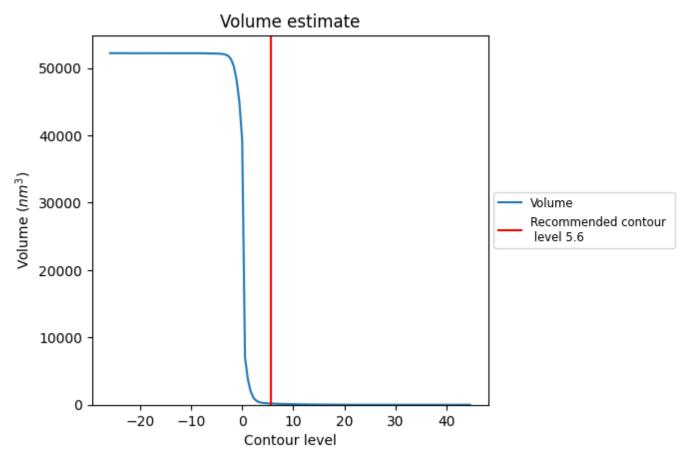
The images above show the 3D surface view of the map at the recommended contour level 5.6. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)


This section was not generated. No masks/segmentation were deposited.

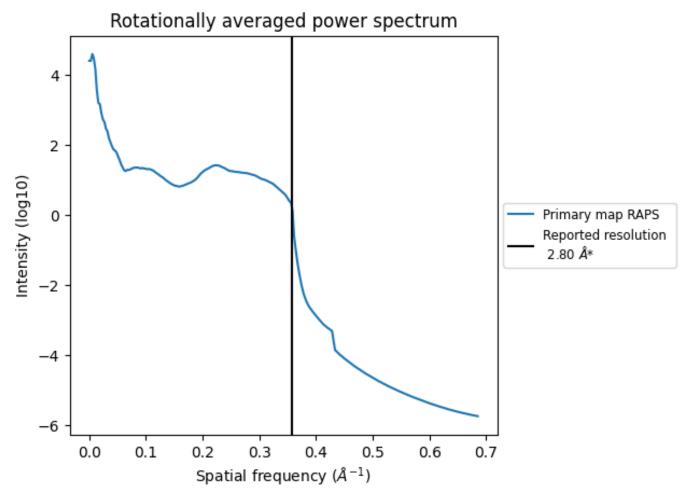
7 Map analysis (i)

This section contains the results of statistical analysis of the map.


7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)



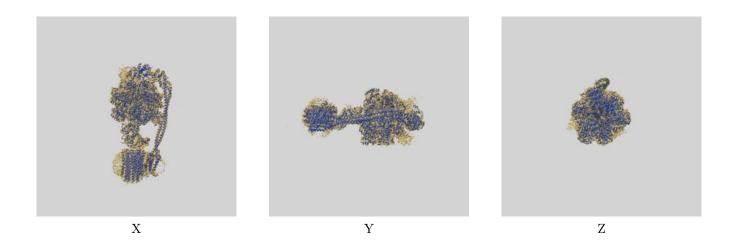
The volume at the recommended contour level is 185 nm^3 ; this corresponds to an approximate mass of 167 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

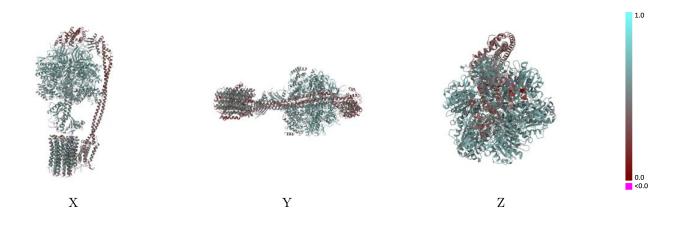
*Reported resolution corresponds to spatial frequency of 0.357 ${\rm \AA}^{-1}$

8 Fourier-Shell correlation (i)

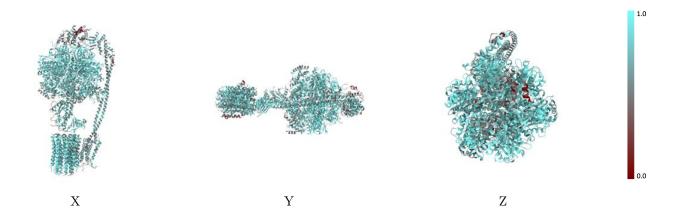

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-35911 and PDB model 8J0T. Per-residue inclusion information can be found in section 3 on page 8.

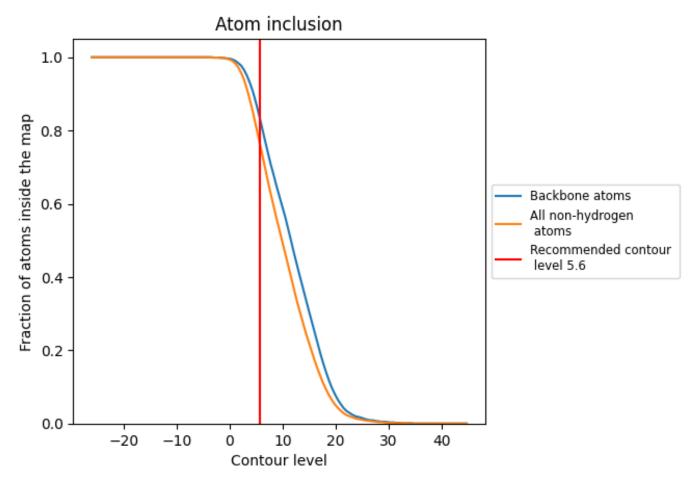

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 5.6 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.



9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.


9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (5.6).

9.4 Atom inclusion (i)

At the recommended contour level, 84% of all backbone atoms, 77% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (5.6) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.7700	0.5430
1	0.8130	0.4980
2	0.8200	0.4910
3	0.8100	0.4950
4	0.8040	0.5040
5	0.8150	0.4910
6	0.8100	0.5080
7	0.8130	0.5000
8	0.8310	0.4990
9	0.8290	0.4980
А	0.8300	0.5970
В	0.7760	0.5820
С	0.7710	0.5830
D	0.8390	0.6110
Ε	0.8040	0.6010
F	0.8400	0.6130
G	0.6970	0.5500
Н	0.8100	0.5340
a	0.6250	0.4170
b	0.6380	0.3620
d	0.5960	0.3620

