

wwPDB X-ray Structure Validation Summary Report (i)

Dec 9, 2023 – 09:50 pm GMT

PDB ID	:	2J1K
Title	:	CAV-2 fibre head in complex with CAR D1
Authors	:	Seiradake, E.; Lortat-Jacob, H.; Billet, O.; Kremer, E.J.; Cusack, S.
Deposited on	:	2006-08-14
Resolution	:	2.30 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Xtriage (Phenix)	:	1.13
EDS	:	2.36
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.30 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motrie	Whole archive	Similar resolution
	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
R_{free}	130704	5042(2.30-2.30)
Clashscore	141614	5643 (2.30-2.30)
Ramachandran outliers	138981	5575 (2.30-2.30)
Sidechain outliers	138945	5575(2.30-2.30)
RSRZ outliers	127900	4938 (2.30-2.30)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain							
1	А	128	28%		14%)	•	9%)	I
1	В	128	37% 63%	23%		•	12	2%		I
1	G	128	80%			14%		•	•	
1	J	128	5% 82%			13%	6	•	•	I
1	К	128	4% 82%			13%	6	•	•	I

Chain Length Quality of chain Mol 3% Ο 128 1 73% 18% • 8% 9% Р ••• 1 12884% 10% 9% 1 Т 128 76% 14% 7% • 23% V 1281 78% 16% • 5% 7% Х 1 12880% 16% • • 19% Y 1281 75% 16% • 7% 34% Ζ 1281 16% 9% 73% • 2С 19786% 6% • 8% 3% 2D 19785% 7% • 8% .% 2Е 19786% 7% 8% $\mathbf{2}$ F 197 86% 6% • 8% Η 219785% 7% • 8% 2Ι 19787% 8% 6% 2% 2L 19784% 8% • 8% 2% 2М 19785% 7% 8% 2Ν 19784% 8% 8% 6% $\mathbf{2}$ Q 19784% 8% • 8% R 197288% 5% 8% \mathbf{S} 219785% 7% 8%

2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 29978 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	Δ	117	Total	С	Ν	0	S	0	0	0
1	A	117	914	581	147	183	3	0	0	0
1	Р	112	Total	С	Ν	0	S	0	0	0
1	D	115	881	565	142	171	3	0	0	0
1	С	193	Total	С	Ν	0	S	0	0	0
1	G	120	959	611	156	189	3	0	0	0
1	T	193	Total	С	Ν	Ο	S	0	0	0
1	J	120	959	611	156	189	3	0	0	0
1	K	193	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	IX	120	963	615	156	189	3	0	0	0
1	0	118	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	0	110	917	587	145	182	3	0	0	0
1	р	193	Total	С	Ν	0	\mathbf{S}	0	0	0
1	T	120	959	611	156	189	3	0	0	0
1	Т	110	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
1	T	115	928	591	149	185	3	0	0	0
1	V	191	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
1	v	121	944	600	154	187	3	0	0	0
1	v	193	Total	С	Ν	0	\mathbf{S}	0	0	0
1	Δ	120	959	611	156	189	3	0	0	0
1	V	110	Total	С	Ν	0	S		0	0
	1	113	928	591	149	185	3	0	0	0
1	7	117	Total	С	Ν	Ο	S		0	0
		111	914	581	147	183	3			U

• Molecule 1 is a protein called COXSACKIEVIRUS AND ADENOVIRUS RECEPTOR.

• Molecule 2 is a protein called FIBER PROTEIN.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace	
9	C	189	Total	С	Ν	0	S	0	0	0	
	U	162	1406	892	239	266	9	0	0	0	
9	П	189	Total	С	Ν	0	S	0	0	0	
	D	102	1406	892	239	266	9		U	U	

Mol	Chain	Residues		At	\mathbf{oms}			ZeroOcc	AltConf	Trace
9	F	189	Total	С	Ν	Ο	S	0	0	0
	Ľ	162	1406	892	239	266	9	0	0	0
2	F	189	Total	С	Ν	Ο	\mathbf{S}	0	0	0
2	Ľ	102	1406	892	239	266	9	0	0	0
2	н	189	Total	С	Ν	Ο	\mathbf{S}	0	0	0
2	11	102	1406	892	239	266	9	0	0	0
2	Т	182	Total	С	Ν	Ο	\mathbf{S}	0	0	0
2	I	102	1406	892	239	266	9	0	0	0
2	T.	182	Total	С	Ν	Ο	\mathbf{S}	0	0	0
	Ľ	102	1406	892	239	266	9	0	0	0
2	М	182	Total	С	Ν	Ο	\mathbf{S}	0	0	0
	111	182	1406	892	239	266	9	0	0	0
2	Ν	182	Total	С	Ν	Ο	\mathbf{S}	0	0	0
	11	102	1406	892	239	266	9	0	0	0
2	0	182	Total	С	Ν	Ο	\mathbf{S}	0	0	0
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	102	1406	892	239	266	9	0	0	0
2	B	182	Total	С	Ν	Ο	$\mathbf{S}$	0	0	0
	10	102	1406	892	239	266	9	0	0	0
2	S	182	Total	С	Ν	Ο	$\mathbf{S}$	0	0	0
	5	102	1406	892	239	266	9	0	0	0

Continued from previous page...

• Molecule 3 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	24	$\begin{array}{c c} Total & O \\ 24 & 24 \end{array}$	0	0
3	В	15	Total         O           15         15	0	0
3	С	140	Total O 140 140	0	0
3	D	127	Total         O           127         127	0	0
3	Е	121	Total         O           121         121	0	0
3	F	129	Total         O           129         129	0	0
3	G	53	Total         O           53         53	0	0
3	Н	135	Total O 135 135	0	0
3	Ι	148	Total         O           148         148	0	0



Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	J	45	Total O 45 45	0	0
3	К	45	TotalO4545	0	0
3	L	116	Total O 116 116	0	0
3	М	134	Total O 134 134	0	0
3	Ν	118	Total O 118 118	0	0
3	О	31	$\begin{array}{cc} \text{Total} & \text{O} \\ 31 & 31 \end{array}$	0	0
3	Р	54	$\begin{array}{cc} \text{Total} & \text{O} \\ 54 & 54 \end{array}$	0	0
3	Q	101	Total O 101 101	0	0
3	R	111	Total O 111 111	0	0
3	S	93	Total O 93 93	0	0
3	Т	32	$\begin{array}{cc} \text{Total} & \text{O} \\ 32 & 32 \end{array}$	0	0
3	V	23	TotalO2323	0	0
3	Х	50	$\begin{array}{cc} \text{Total} & \text{O} \\ 50 & 50 \end{array}$	0	0
3	Y	23	TotalO2323	0	0
3	Z	13	Total O 13 13	0	0



## 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.



• Molecule 1: COXSACKIEVIRUS AND ADENOVIRUS RECEPTOR

• Molecule 1: COXSACKIEVIRUS AND ADENOVIRUS RECEPTOR











Image: Second	
Molecule 2: FIBER PROTEIN Chain I:     87%     6%     8%	
Chain I: 87% 6% 8%	
MET MET ARG CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	
• Molecule 2: FIBER PROTEIN	
Chain L: 84% 8% 8%	•
MET ARG GLY SER HHIS HHIS HHIS HHIS HIS HIS SER SER SER SER SER SER NASI 1373 1373 1373 1373 1373 1373 1373 137	
• Molecule 2: FIBER PROTEIN	
Chain M: 85% 7% 8%	•
MET ARG GLY SER HHIS HHIS HHIS HHIS HHIS HIS ABA ALA ALA V366 1333 1373 1373 1373 1373 1383 1383 1383	
• Molecule 2: FIBER PROTEIN	
Chain N: 84% 8%	I
MET ARG GLY SER HIS HIS HIS HIS SER HIS SER PRO ALA ALA A361 P865 N372 P381 P381 P381 P381 P381 P381 P381 P381	
• Molecule 2: FIBER PROTEIN	
Chain Q: 84% 8% 8%	
MET ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	R521 D531 V532
• Molecule 2: FIBER PROTEIN	
Chain R: 88% 5% 8%	



# 

• Molecule 2: FIBER PROTEIN





## 4 Data and refinement statistics (i)

Property	Value	Source
Space group	I 4 2 2	Depositor
Cell constants	219.94Å 219.94Å 387.53Å	Depositor
a, b, c, $\alpha$ , $\beta$ , $\gamma$	90.00° 90.00° 90.00°	Depositor
Bosolution (Å)	192.45 - 2.30	Depositor
Resolution (A)	47.67 - 2.30	EDS
% Data completeness	92.0 (192.45-2.30)	Depositor
(in resolution range)	92.0(47.67-2.30)	EDS
R _{merge}	0.01	Depositor
$R_{sym}$	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.39 (at 2.29 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.2.0019	Depositor
B B.	0.172 , $0.220$	Depositor
$\Lambda, \Lambda_{free}$	0.172 , $0.219$	DCC
$R_{free}$ test set	1890 reflections $(0.99\%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	31.8	Xtriage
Anisotropy	0.144	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.34 , $45.9$	EDS
L-test for twinning ²	$ < L >=0.49, < L^2>=0.32$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
$F_o, F_c$ correlation	0.95	EDS
Total number of atoms	29978	wwPDB-VP
Average B, all atoms $(Å^2)$	34.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 6.34% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of  $\langle |L| \rangle$ ,  $\langle L^2 \rangle$  for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.



¹Intensities estimated from amplitudes.

## 5 Model quality (i)

## 5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Mol Chain		nd lengths	Bond angles			
	Ullalli	RMSZ	# Z  > 5	RMSZ	# Z  > 5		
1	А	0.37	0/932	0.57	0/1264		
1	В	0.78	3/897~(0.3%)	0.63	1/1213~(0.1%)		
1	G	0.43	0/977	0.64	0/1326		
1	J	0.44	0/977	0.61	0/1326		
1	Κ	0.43	0/982	0.61	0/1332		
1	0	0.44	0/934	0.60	0/1268		
1	Р	0.40	0/977	0.61	0/1326		
1	Т	0.41	0/946	0.60	0/1284		
1	V	0.38	0/962	0.55	0/1305		
1	Х	0.42	0/977	0.59	0/1326		
1	Y	0.38	0/946	0.56	0/1284		
1	Ζ	0.36	0/932	0.52	0/1264		
2	С	0.50	0/1441	0.68	0/1964		
2	D	0.51	0/1441	0.68	0/1964		
2	Е	0.51	0/1441	0.66	0/1964		
2	F	0.52	0/1441	0.67	0/1964		
2	Н	0.53	0/1441	0.65	0/1964		
2	Ι	0.50	0/1441	0.65	0/1964		
2	L	0.48	0/1441	0.64	0/1964		
2	М	0.51	0/1441	0.63	0/1964		
2	Ν	0.47	0/1441	0.63	0/1964		
2	Q	0.46	0/1441	0.63	0/1964		
2	R	0.45	0/1441	0.65	0/1964		
2	S	0.46	0/1441	0.62	0/1964		
All	All	0.48	$3/2\overline{8731}\ (0.0\%)$	0.63	$1/3\overline{9086}\ (0.0\%)$		

	(-)			• •			
All (	3)	bond	length	outliers	are	listed	helow
1 J II (	$\mathbf{U}$	bond	TOTISOT	outiful	arc	moucu	00101.

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
1	В	62	ALA	C-O	16.91	1.55	1.23
1	В	114	ASP	CG-OD1	7.06	1.41	1.25
1	В	114	ASP	CG-OD2	6.25	1.39	1.25



All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	В	114	ASP	CB-CG-OD2	-6.11	112.81	118.30

There are no chirality outliers.

There are no planarity outliers.

#### 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	914	0	910	13	0
1	В	881	0	889	22	0
1	G	959	0	966	15	0
1	J	959	0	966	10	0
1	K	963	0	966	13	0
1	0	917	0	920	21	0
1	Р	959	0	966	14	0
1	Т	928	0	928	16	0
1	V	944	0	946	14	0
1	Х	959	0	966	13	0
1	Y	928	0	928	17	0
1	Ζ	914	0	910	13	0
2	С	1406	0	1382	9	0
2	D	1406	0	1382	10	0
2	Е	1406	0	1382	9	0
2	F	1406	0	1382	8	0
2	Н	1406	0	1382	8	0
2	Ι	1406	0	1382	6	0
2	L	1406	0	1382	10	0
2	М	1406	0	1382	6	0
2	N	1406	0	1382	10	0
2	Q	1406	0	1382	10	0
2	R	1406	0	1382	6	0
2	S	1406	0	1382	10	0
3	А	24	0	0	0	0
3	В	15	0	0	0	0
3	С	140	0	0	2	0



2J1K
------

				$\mathbf{TT}(-11-1)$		
WIOI	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
3	D	127	0	0	2	0
3	Ε	121	0	0	0	0
3	F	129	0	0	1	0
3	G	53	0	0	0	0
3	Н	135	0	0	2	0
3	Ι	148	0	0	1	0
3	J	45	0	0	0	0
3	Κ	45	0	0	1	0
3	L	116	0	0	0	0
3	М	134	0	0	0	0
3	Ν	118	0	0	1	0
3	0	31	0	0	1	0
3	Р	54	0	0	2	0
3	Q	101	0	0	1	0
3	R	111	0	0	0	0
3	S	93	0	0	2	0
3	Т	32	0	0	0	0
3	V	23	0	0	0	0
3	Х	50	0	0	0	0
3	Y	23	0	0	0	0
3	Ζ	13	0	0	0	0
All	All	29978	0	27845	251	0

Continued from previous page...

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 4.

The worst 5 of 251 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
2:L:373:ILE:HD11	1:V:70:VAL:HG21	1.30	1.07
2:C:374:ASN:HB3	2:C:440:THR:HG21	1.45	0.98
2:D:440:THR:HG23	3:D:2056:HOH:O	1.64	0.95
1:B:70:VAL:HG21	2:D:373:ILE:HD11	1.46	0.95
2:F:462:LEU:HD21	2:F:542:GLN:HG2	1.47	0.94

There are no symmetry-related clashes.



## 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	115/128~(90%)	107 (93%)	7~(6%)	1 (1%)	17	20
1	В	107/128~(84%)	96 (90%)	11 (10%)	0	100	100
1	G	121/128~(94%)	115~(95%)	6~(5%)	0	100	100
1	J	121/128 (94%)	119 (98%)	2 (2%)	0	100	100
1	K	121/128 (94%)	116 (96%)	5 (4%)	0	100	100
1	Ο	114/128 (89%)	107 (94%)	7 (6%)	0	100	100
1	Р	121/128 (94%)	115 (95%)	6 (5%)	0	100	100
1	Т	117/128 (91%)	109 (93%)	8 (7%)	0	100	100
1	V	119/128~(93%)	114 (96%)	5 (4%)	0	100	100
1	Х	121/128 (94%)	117 (97%)	4 (3%)	0	100	100
1	Y	117/128 (91%)	109 (93%)	8 (7%)	0	100	100
1	Z	115/128 (90%)	106 (92%)	8 (7%)	1 (1%)	17	20
2	С	180/197~(91%)	174 (97%)	6 (3%)	0	100	100
2	D	180/197~(91%)	172 (96%)	8 (4%)	0	100	100
2	Е	180/197~(91%)	172 (96%)	8 (4%)	0	100	100
2	F	180/197~(91%)	174 (97%)	6 (3%)	0	100	100
2	Н	180/197~(91%)	174 (97%)	6 (3%)	0	100	100
2	Ι	180/197~(91%)	174 (97%)	6 (3%)	0	100	100
2	L	180/197~(91%)	174 (97%)	6 (3%)	0	100	100
2	М	180/197~(91%)	173 (96%)	7 (4%)	0	100	100
2	Ν	180/197~(91%)	173 (96%)	7 (4%)	0	100	100
2	Q	180/197~(91%)	174 (97%)	6 (3%)	0	100	100
2	R	180/197~(91%)	173 (96%)	7 (4%)	0	100	100
2	S	180/197~(91%)	171 (95%)	9(5%)	0	100	100
All	All	3569/3900~(92%)	3408 (96%)	159 (4%)	2(0%)	51	64



2J1K

All (2) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	Ζ	101	GLY
1	А	24	THR

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	А	104/113~(92%)	98~(94%)	6 (6%)	20	27
1	В	99/113~(88%)	94 (95%)	5 (5%)	24	33
1	G	109/113~(96%)	104 (95%)	5 (5%)	27	38
1	J	109/113~(96%)	105 (96%)	4 (4%)	34	48
1	Κ	109/113~(96%)	106 (97%)	3(3%)	43	60
1	Ο	105/113~(93%)	100 (95%)	5 (5%)	25	36
1	Р	109/113~(96%)	106 (97%)	3(3%)	43	60
1	Т	106/113~(94%)	102 (96%)	4 (4%)	33	47
1	V	107/113~(95%)	103 (96%)	4 (4%)	34	48
1	Х	109/113~(96%)	104 (95%)	5 (5%)	27	38
1	Y	106/113 (94%)	100 (94%)	6 (6%)	20	28
1	Ζ	104/113~(92%)	99~(95%)	5 (5%)	25	36
2	С	159/171~(93%)	153 (96%)	6 (4%)	33	47
2	D	159/171~(93%)	156 (98%)	3 (2%)	57	73
2	Е	159/171~(93%)	156 (98%)	3 (2%)	57	73
2	F	159/171~(93%)	154 (97%)	5 (3%)	40	55
2	Н	159/171~(93%)	156 (98%)	3(2%)	57	73
2	Ι	159/171~(93%)	155 (98%)	4 (2%)	47	65
2	L	159/171~(93%)	156 (98%)	3 (2%)	57	73
2	М	159/171~(93%)	154 (97%)	5 (3%)	40	55
2	N	159/171~(93%)	154 (97%)	5 (3%)	40	55



Mol	Chain	Analysed	lysed Rotameric Outliers		Percentiles		
2	Q	159/171~(93%)	155~(98%)	4 (2%)	47	65	
2	R	159/171~(93%)	156 (98%)	3(2%)	57	73	
2	S	159/171~(93%)	155~(98%)	4 (2%)	47	65	
All	All	3184/3408~(93%)	3081 (97%)	103 (3%)	39	54	

Continued from previous page...

5 of 103 residues with a non-rotameric sidechain are listed below:

Mol	Chain	$\mathbf{Res}$	Type
2	Ν	372	SER
2	Q	521	ARG
1	Ζ	70	VAL
2	Ν	529	LYS
1	Р	70	VAL

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 17 such sidechains are listed below:

Mol	Chain	$\mathbf{Res}$	Type
1	Y	109	ASN
1	Ζ	130	ASN
2	S	378	ASN
2	S	458	HIS
2	S	542	GLN

#### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

## 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.



### 5.6 Ligand geometry (i)

There are no ligands in this entry.

### 5.7 Other polymers (i)

There are no such residues in this entry.

### 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



## 6 Fit of model and data (i)

## 6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median,  $95^{th}$  percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	117/128~(91%)	1.39	36 (30%) 0 0	34, 44, 54, 57	0
1	В	113/128~(88%)	1.95	47 (41%) 0 0	32, 46, 58, 60	0
1	G	123/128~(96%)	0.08	6 (4%) 29 36	33, 44, 55, 58	0
1	J	123/128~(96%)	0.18	7 (5%) 23 30	33, 44, 55, 57	0
1	К	123/128~(96%)	0.27	5 (4%) 37 44	33, 45, 56, 57	0
1	Ο	118/128~(92%)	0.21	4 (3%) 45 52	33, 44, 54, 58	0
1	Р	123/128~(96%)	0.47	12 (9%) 7 10	33, 44, 55, 57	0
1	Т	119/128~(92%)	0.64	11 (9%) 9 12	33,  45,  55,  57	0
1	V	121/128~(94%)	1.16	29 (23%) 0 0	34,  44,  55,  57	0
1	Х	123/128~(96%)	0.25	9 (7%) 15 20	33, 45, 55, 58	0
1	Y	119/128~(92%)	0.99	24 (20%) 1 1	34, 44, 54, 57	0
1	Z	117/128~(91%)	1.59	43 (36%) 0 0	34,  45,  55,  57	0
2	С	182/197~(92%)	-0.05	0 100 100	19, 24, 30, 36	0
2	D	182/197~(92%)	0.26	5 (2%) 54 62	20, 25, 33, 36	0
2	Е	182/197~(92%)	-0.00	1 (0%) 91 94	20, 25, 32, 36	0
2	F	182/197~(92%)	-0.01	0 100 100	19, 23, 30, 34	0
2	Н	182/197~(92%)	-0.17	0 100 100	19, 24, 30, 35	0
2	Ι	182/197~(92%)	0.09	0 100 100	19, 25, 30, 35	0
2	L	182/197~(92%)	0.18	3 (1%) 72 77	22, 27, 34, 36	0
2	М	182/197~(92%)	0.10	3 (1%) 72 77	21, 25, 30, 33	0
2	Ν	182/197~(92%)	-0.04	0 100 100	21, 26, 32, 37	0
2	Q	182/197~(92%)	0.37	12 (6%) 18 23	22, 29, 34, 39	0
2	R	182/197~(92%)	-0.03	0 100 100	22, 27, 34, 39	0
2	S	182/197~(92%)	-0.09	0 100 100	24, 31, 39, 41	0



Continued from previous page...

Mol	Chain	Analysed	<RSRZ $>$	# RSRZ > 2		$OWAB(Å^2)$	Q<0.9	
All	All	3623/3900~(92%)	0.33	257 (7%)	16	21	19, 30, 52, 60	0

The worst 5 of 257 RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	В	32	ALA	8.6
1	Y	112	LEU	6.6
1	V	34	GLY	6.4
1	В	91	VAL	6.0
1	В	136	VAL	6.0

## 6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

## 6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

## 6.4 Ligands (i)

There are no ligands in this entry.

## 6.5 Other polymers (i)

There are no such residues in this entry.

