Mar 2, 2017 – 11:42 am GMT

PDB ID : 3JBA
EMDB ID: EMD-6424
Title : The U4 antibody epitope on human papillomavirus 16 identified by cryo-EM
Authors : Guan, J.; Bywaters, S.M.; Brendle, S.A.; Lee, H.; Ashley, R.E.; Christensen, N.D.; Hafenstein, S.
Deposited on : 2015-08-11
Resolution : 12.00 Å (reported)
Based on PDB ID : 3J6R

This is a Full wwPDB/EMDataBank EM Map/Model Validation Report for a publicly released PDB/EMDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at http://wwpdb.org/validation/2016/EMValidationReportHelp
with specific help available everywhere you see the ⌐ symbol.

MolProbity : 4.02b-467
Percentile statistics : 20161228v01 (using entries in the PDB archive December 28th 2016)
Ideal geometry (proteins) : Engh & Huber (2001)
Ideal geometry (DNA, RNA) : Parkinson et. al. (1996)
Validation Pipeline (wwPDB-VP) : recalc29047
1 Overall quality at a glance

The following experimental techniques were used to determine the structure:

ELECTRON MICROSCOPY

The reported resolution of this entry is 12.00 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Whole archive (#Entries)</th>
<th>EM structures (#Entries)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clashscore</td>
<td>125131</td>
<td>1336</td>
</tr>
<tr>
<td>Ramachandran outliers</td>
<td>121729</td>
<td>1120</td>
</tr>
<tr>
<td>Sidechain outliers</td>
<td>121581</td>
<td>1026</td>
</tr>
</tbody>
</table>

The table below summarises the geometric issues observed across the polymeric chains. The red, orange, yellow and green segments on the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L</td>
<td>115</td>
<td>91%</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>115</td>
<td>90%</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>478</td>
<td>92%</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>478</td>
<td>90%</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>478</td>
<td>89%</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>478</td>
<td>90%</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>478</td>
<td>91%</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>478</td>
<td>91%</td>
</tr>
</tbody>
</table>
2 Entry composition

There are 3 unique types of molecules in this entry. The entry contains 20721 atoms, of which 7468 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called H16.U4 antibody light chain.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L</td>
<td>115</td>
<td>Total C H N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1772 567 879 144 178 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 2 is a protein called H16.U4 antibody heavy chain.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>H</td>
<td>115</td>
<td>Total C H N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1735 560 841 151 178 5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 3 is a protein called Major capsid protein L1.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>B</td>
<td>478</td>
<td>Total C H N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2869 956 958 478 477</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>478</td>
<td>Total C H N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2869 956 958 478 477</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>478</td>
<td>Total C H N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2869 956 958 478 477</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>478</td>
<td>Total C H N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2869 956 958 478 477</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>478</td>
<td>Total C H N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2869 956 958 478 477</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>478</td>
<td>Total C H N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2869 956 958 478 477</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There are 18 discrepancies between the modelled and reference sequences:

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>177</td>
<td>GLN</td>
<td>ASN</td>
<td>CONFLICT</td>
<td>UNP C9E771</td>
</tr>
<tr>
<td>B</td>
<td>181</td>
<td>GLN</td>
<td>ASN</td>
<td>CONFLICT</td>
<td>UNP C9E771</td>
</tr>
<tr>
<td>B</td>
<td>472</td>
<td>LEU</td>
<td>ALA</td>
<td>CONFLICT</td>
<td>UNP C9E771</td>
</tr>
<tr>
<td>A</td>
<td>177</td>
<td>GLN</td>
<td>ASN</td>
<td>CONFLICT</td>
<td>UNP C9E771</td>
</tr>
<tr>
<td>A</td>
<td>181</td>
<td>GLN</td>
<td>ASN</td>
<td>CONFLICT</td>
<td>UNP C9E771</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>472</td>
<td>LEU</td>
<td>ALA</td>
<td>CONFLICT</td>
<td>UNP C9E771</td>
</tr>
<tr>
<td>E</td>
<td>177</td>
<td>GLN</td>
<td>ASN</td>
<td>CONFLICT</td>
<td>UNP C9E771</td>
</tr>
<tr>
<td>E</td>
<td>181</td>
<td>GLN</td>
<td>ASN</td>
<td>CONFLICT</td>
<td>UNP C9E771</td>
</tr>
<tr>
<td>E</td>
<td>472</td>
<td>LEU</td>
<td>ALA</td>
<td>CONFLICT</td>
<td>UNP C9E771</td>
</tr>
<tr>
<td>D</td>
<td>177</td>
<td>GLN</td>
<td>ASN</td>
<td>CONFLICT</td>
<td>UNP C9E771</td>
</tr>
<tr>
<td>D</td>
<td>181</td>
<td>GLN</td>
<td>ASN</td>
<td>CONFLICT</td>
<td>UNP C9E771</td>
</tr>
<tr>
<td>D</td>
<td>472</td>
<td>LEU</td>
<td>ALA</td>
<td>CONFLICT</td>
<td>UNP C9E771</td>
</tr>
<tr>
<td>C</td>
<td>177</td>
<td>GLN</td>
<td>ASN</td>
<td>CONFLICT</td>
<td>UNP C9E771</td>
</tr>
<tr>
<td>C</td>
<td>181</td>
<td>GLN</td>
<td>ASN</td>
<td>CONFLICT</td>
<td>UNP C9E771</td>
</tr>
<tr>
<td>C</td>
<td>472</td>
<td>LEU</td>
<td>ALA</td>
<td>CONFLICT</td>
<td>UNP C9E771</td>
</tr>
<tr>
<td>F</td>
<td>177</td>
<td>GLN</td>
<td>ASN</td>
<td>CONFLICT</td>
<td>UNP C9E771</td>
</tr>
<tr>
<td>F</td>
<td>181</td>
<td>GLN</td>
<td>ASN</td>
<td>CONFLICT</td>
<td>UNP C9E771</td>
</tr>
<tr>
<td>F</td>
<td>472</td>
<td>LEU</td>
<td>ALA</td>
<td>CONFLICT</td>
<td>UNP C9E771</td>
</tr>
</tbody>
</table>
3 Residue-property plots

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: H16.U4 antibody light chain

Chain L:

• Molecule 2: H16.U4 antibody heavy chain

Chain H:

• Molecule 3: Major capsid protein L1

Chain B:

• Molecule 3: Major capsid protein L1

Chain A:

• Molecule 3: Major capsid protein L1

Chain E:
• Molecule 3: Major capsid protein L1

Chain D:

• Molecule 3: Major capsid protein L1

Chain C:

• Molecule 3: Major capsid protein L1

Chain F:
4 Experimental information

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reconstruction method</td>
<td>SINGLE PARTICLE</td>
<td>Depositor</td>
</tr>
<tr>
<td>Imposed symmetry</td>
<td>POINT, I</td>
<td>Depositor</td>
</tr>
<tr>
<td>Number of particles used</td>
<td>5806</td>
<td>Depositor</td>
</tr>
<tr>
<td>Resolution determination method</td>
<td>FSC 0.5</td>
<td>Depositor</td>
</tr>
<tr>
<td>CTF correction method</td>
<td>each particle</td>
<td>Depositor</td>
</tr>
<tr>
<td>Microscope</td>
<td>JEOL 2100</td>
<td>Depositor</td>
</tr>
<tr>
<td>Voltage (kV)</td>
<td>200</td>
<td>Depositor</td>
</tr>
<tr>
<td>Electron dose ($e^-/\text{Å}^2$)</td>
<td>15</td>
<td>Depositor</td>
</tr>
<tr>
<td>Minimum defocus (nm)</td>
<td>1600</td>
<td>Depositor</td>
</tr>
<tr>
<td>Maximum defocus (nm)</td>
<td>5430</td>
<td>Depositor</td>
</tr>
<tr>
<td>Magnification</td>
<td>50000</td>
<td>Depositor</td>
</tr>
<tr>
<td>Image detector</td>
<td>GATAN ULTRASCAN 4000 (4k x 4k)</td>
<td>Depositor</td>
</tr>
</tbody>
</table>
5 Model quality

5.1 Standard geometry

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with \(|Z| > 5 \) is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RMSZ</td>
<td>#</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>0.69</td>
<td>1/913 (0.1%)</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>1.07</td>
<td>1/916 (0.1%)</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1.50</td>
<td>3/1910 (0.2%)</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1.52</td>
<td>1/1910 (0.1%)</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1.55</td>
<td>11/1910 (0.6%)</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1.58</td>
<td>7/1910 (0.4%)</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1.58</td>
<td>5/1910 (0.3%)</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1.51</td>
<td>4/1910 (0.2%)</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1.47</td>
<td>33/13289 (0.2%)</td>
</tr>
</tbody>
</table>

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>#Chirality outliers</th>
<th>#Planarity outliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>A</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>0</td>
<td>70</td>
</tr>
</tbody>
</table>

All (33) bond length outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>H</td>
<td>94</td>
<td>ARG</td>
<td>C-N</td>
<td>23.30</td>
<td>1.75</td>
<td>1.33</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>206</td>
<td>GLY</td>
<td>N-CA</td>
<td>-6.92</td>
<td>1.35</td>
<td>1.46</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>290</td>
<td>ASN</td>
<td>N-CA</td>
<td>-6.25</td>
<td>1.33</td>
<td>1.46</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>164</td>
<td>PRO</td>
<td>N-CA</td>
<td>-6.25</td>
<td>1.36</td>
<td>1.47</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>165</td>
<td>ILE</td>
<td>C-N</td>
<td>6.13</td>
<td>1.44</td>
<td>1.33</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>482</td>
<td>LEU</td>
<td>C-N</td>
<td>6.10</td>
<td>1.44</td>
<td>1.33</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>C</td>
<td>119</td>
<td>GLY</td>
<td>CA-C</td>
<td>-6.03</td>
<td>1.42</td>
<td>1.51</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>197</td>
<td>ASP</td>
<td>N-CA</td>
<td>-5.92</td>
<td>1.34</td>
<td>1.46</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>119</td>
<td>GLY</td>
<td>N-CA</td>
<td>-5.85</td>
<td>1.37</td>
<td>1.46</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>85</td>
<td>PHE</td>
<td>CA-C</td>
<td>-5.82</td>
<td>1.37</td>
<td>1.52</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>38</td>
<td>GLY</td>
<td>CA-C</td>
<td>-5.65</td>
<td>1.42</td>
<td>1.51</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>84</td>
<td>GLY</td>
<td>N-CA</td>
<td>-5.64</td>
<td>1.37</td>
<td>1.46</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>268</td>
<td>GLY</td>
<td>N-CA</td>
<td>-5.61</td>
<td>1.37</td>
<td>1.46</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>83</td>
<td>PHE</td>
<td>C-N</td>
<td>5.58</td>
<td>1.43</td>
<td>1.33</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>110</td>
<td>GLY</td>
<td>N-CA</td>
<td>-5.54</td>
<td>1.37</td>
<td>1.46</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>67</td>
<td>GLY</td>
<td>N-CA</td>
<td>-5.42</td>
<td>1.38</td>
<td>1.46</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>51</td>
<td>PRO</td>
<td>CA-C</td>
<td>-5.33</td>
<td>1.42</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>30(B)</td>
<td>SER</td>
<td>C-N</td>
<td>-5.32</td>
<td>1.21</td>
<td>1.34</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>159</td>
<td>ILE</td>
<td>C-N</td>
<td>5.29</td>
<td>1.42</td>
<td>1.33</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>435</td>
<td>ALA</td>
<td>N-CA</td>
<td>-5.29</td>
<td>1.35</td>
<td>1.46</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>116</td>
<td>GLY</td>
<td>CA-C</td>
<td>-5.29</td>
<td>1.43</td>
<td>1.51</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>280</td>
<td>SER</td>
<td>C-N</td>
<td>5.25</td>
<td>1.42</td>
<td>1.33</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>214</td>
<td>GLN</td>
<td>N-CA</td>
<td>-5.17</td>
<td>1.36</td>
<td>1.46</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>408</td>
<td>PRO</td>
<td>C-N</td>
<td>5.14</td>
<td>1.44</td>
<td>1.34</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>359</td>
<td>ASN</td>
<td>N-CA</td>
<td>-5.14</td>
<td>1.36</td>
<td>1.46</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>12</td>
<td>TYR</td>
<td>N-CA</td>
<td>-5.11</td>
<td>1.36</td>
<td>1.46</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>53</td>
<td>LYS</td>
<td>C-N</td>
<td>5.11</td>
<td>1.45</td>
<td>1.34</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>149</td>
<td>MET</td>
<td>CA-C</td>
<td>-5.10</td>
<td>1.39</td>
<td>1.52</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>182</td>
<td>PRO</td>
<td>N-CA</td>
<td>-5.09</td>
<td>1.38</td>
<td>1.47</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>38</td>
<td>GLY</td>
<td>N-CA</td>
<td>-5.09</td>
<td>1.38</td>
<td>1.46</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>197</td>
<td>ASP</td>
<td>C-N</td>
<td>5.06</td>
<td>1.42</td>
<td>1.33</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>277</td>
<td>ILE</td>
<td>C-N</td>
<td>5.06</td>
<td>1.45</td>
<td>1.34</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>13</td>
<td>LEU</td>
<td>N-CA</td>
<td>5.04</td>
<td>1.56</td>
<td>1.46</td>
</tr>
</tbody>
</table>

All (83) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>H</td>
<td>94</td>
<td>ARG</td>
<td>CA-C-N</td>
<td>-22.36</td>
<td>71.48</td>
<td>116.20</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>102</td>
<td>TYR</td>
<td>O-C-N</td>
<td>-8.84</td>
<td>108.56</td>
<td>122.70</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>420</td>
<td>PHE</td>
<td>C-N-CA</td>
<td>8.65</td>
<td>143.34</td>
<td>121.70</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>15</td>
<td>PRO</td>
<td>C-N-CA</td>
<td>8.15</td>
<td>142.07</td>
<td>121.70</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>427</td>
<td>ALA</td>
<td>O-C-N</td>
<td>-8.11</td>
<td>109.73</td>
<td>122.70</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>485</td>
<td>ARG</td>
<td>C-N-CA</td>
<td>8.08</td>
<td>141.90</td>
<td>121.70</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>94</td>
<td>ARG</td>
<td>C-N-CA</td>
<td>-7.90</td>
<td>105.71</td>
<td>122.30</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>354</td>
<td>THR</td>
<td>O-C-N</td>
<td>7.33</td>
<td>134.43</td>
<td>122.70</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>339</td>
<td>SER</td>
<td>C-N-CA</td>
<td>7.11</td>
<td>139.48</td>
<td>121.70</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>431</td>
<td>HIS</td>
<td>C-N-CA</td>
<td>7.06</td>
<td>139.34</td>
<td>121.70</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>479</td>
<td>LYS</td>
<td>C-N-CA</td>
<td>6.94</td>
<td>139.05</td>
<td>121.70</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>E</td>
<td>482</td>
<td>LEU</td>
<td>O-C-N</td>
<td>-6.92</td>
<td>111.44</td>
<td>123.20</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>256</td>
<td>PHE</td>
<td>O-C-N</td>
<td>-6.76</td>
<td>111.89</td>
<td>122.70</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>431</td>
<td>HIS</td>
<td>C-N-CA</td>
<td>6.74</td>
<td>138.55</td>
<td>121.70</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>431</td>
<td>HIS</td>
<td>O-C-N</td>
<td>-6.72</td>
<td>111.95</td>
<td>122.70</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>434</td>
<td>PRO</td>
<td>O-C-N</td>
<td>-6.43</td>
<td>112.42</td>
<td>122.70</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>45</td>
<td>VAL</td>
<td>N-CA-C</td>
<td>-6.29</td>
<td>94.03</td>
<td>111.00</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>426</td>
<td>ILE</td>
<td>CA-C-N</td>
<td>6.25</td>
<td>130.94</td>
<td>117.20</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>92</td>
<td>ASN</td>
<td>N-CA-C</td>
<td>-6.22</td>
<td>94.19</td>
<td>111.00</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>172</td>
<td>GLY</td>
<td>C-N-CA</td>
<td>6.22</td>
<td>137.25</td>
<td>121.70</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>483</td>
<td>GLY</td>
<td>C-N-CA</td>
<td>6.21</td>
<td>137.23</td>
<td>121.70</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>474</td>
<td>GLY</td>
<td>C-N-CA</td>
<td>6.21</td>
<td>137.22</td>
<td>121.70</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>438</td>
<td>GLY</td>
<td>C-N-CA</td>
<td>-5.96</td>
<td>94.28</td>
<td>111.00</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>341</td>
<td>ASN</td>
<td>N-CA-C</td>
<td>-6.08</td>
<td>94.59</td>
<td>111.00</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>415</td>
<td>GLU</td>
<td>C-N-CA</td>
<td>5.90</td>
<td>136.79</td>
<td>121.70</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>92</td>
<td>ASN</td>
<td>N-CA-C</td>
<td>-5.96</td>
<td>98.21</td>
<td>113.10</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>410</td>
<td>PRO</td>
<td>C-N-CA</td>
<td>5.90</td>
<td>134.69</td>
<td>122.30</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>406</td>
<td>LEU</td>
<td>C-N-CA</td>
<td>5.90</td>
<td>136.45</td>
<td>121.70</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>102</td>
<td>TYR</td>
<td>CA-C-N</td>
<td>5.89</td>
<td>130.16</td>
<td>117.20</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>424</td>
<td>GLN</td>
<td>N-CA-C</td>
<td>-5.84</td>
<td>95.23</td>
<td>111.00</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>10</td>
<td>THR</td>
<td>C-N-CA</td>
<td>5.81</td>
<td>136.23</td>
<td>121.70</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>425</td>
<td>ALA</td>
<td>C-N-CA</td>
<td>5.70</td>
<td>135.94</td>
<td>121.70</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>102</td>
<td>TYR</td>
<td>C-N-CA</td>
<td>5.66</td>
<td>135.86</td>
<td>121.70</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>395</td>
<td>ASN</td>
<td>C-N-CA</td>
<td>5.65</td>
<td>135.83</td>
<td>121.70</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>462</td>
<td>PHE</td>
<td>N-CA-C</td>
<td>-5.64</td>
<td>95.76</td>
<td>111.00</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>474</td>
<td>LEU</td>
<td>N-CA-C</td>
<td>-5.62</td>
<td>95.82</td>
<td>111.00</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>12</td>
<td>TYR</td>
<td>C-N-CA</td>
<td>5.62</td>
<td>135.74</td>
<td>121.70</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>9</td>
<td>ALA</td>
<td>CA-C-N</td>
<td>5.61</td>
<td>129.55</td>
<td>117.20</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>10</td>
<td>THR</td>
<td>C-N-CA</td>
<td>5.60</td>
<td>135.71</td>
<td>121.70</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>429</td>
<td>GLN</td>
<td>C-N-CA</td>
<td>5.46</td>
<td>135.35</td>
<td>121.70</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>422</td>
<td>THR</td>
<td>CA-C-N</td>
<td>5.45</td>
<td>129.20</td>
<td>117.20</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>475</td>
<td>LYS</td>
<td>N-CA-C</td>
<td>5.43</td>
<td>125.67</td>
<td>111.00</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>479</td>
<td>LYS</td>
<td>O-C-N</td>
<td>-5.42</td>
<td>114.03</td>
<td>122.70</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>359</td>
<td>ASN</td>
<td>O-C-N</td>
<td>5.41</td>
<td>131.35</td>
<td>122.70</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>431</td>
<td>HIS</td>
<td>O-C-N</td>
<td>-5.38</td>
<td>114.09</td>
<td>122.70</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>341</td>
<td>ASN</td>
<td>N-CA-C</td>
<td>-5.36</td>
<td>96.53</td>
<td>111.00</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>474</td>
<td>LEU</td>
<td>C-N-CA</td>
<td>5.36</td>
<td>135.09</td>
<td>121.70</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>432</td>
<td>THR</td>
<td>N-CA-C</td>
<td>-5.35</td>
<td>96.55</td>
<td>111.00</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>442</td>
<td>LYS</td>
<td>O-C-N</td>
<td>5.31</td>
<td>131.20</td>
<td>122.70</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>301</td>
<td>THR</td>
<td>N-CA-C</td>
<td>-5.30</td>
<td>96.68</td>
<td>111.00</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>414</td>
<td>LEU</td>
<td>C-N-CA</td>
<td>5.30</td>
<td>134.94</td>
<td>121.70</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>359</td>
<td>ASN</td>
<td>O-C-N</td>
<td>-5.29</td>
<td>114.24</td>
<td>122.70</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>C</td>
<td>422</td>
<td>THR</td>
<td>C-N-CA</td>
<td>5.28</td>
<td>134.90</td>
<td>121.70</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>434</td>
<td>PRO</td>
<td>C-N-CA</td>
<td>5.25</td>
<td>134.81</td>
<td>121.70</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>482</td>
<td>LEU</td>
<td>CA-C-N</td>
<td>5.24</td>
<td>126.69</td>
<td>116.20</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>107</td>
<td>VAL</td>
<td>O-C-N</td>
<td>5.24</td>
<td>132.11</td>
<td>123.20</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>139</td>
<td>ALA</td>
<td>N-CA-C</td>
<td>-5.23</td>
<td>96.89</td>
<td>111.00</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>296</td>
<td>SER</td>
<td>C-N-CA</td>
<td>5.22</td>
<td>133.25</td>
<td>122.30</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>461</td>
<td>GLN</td>
<td>C-N-CA</td>
<td>5.21</td>
<td>134.72</td>
<td>121.70</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>481</td>
<td>THR</td>
<td>C-N-CA</td>
<td>5.16</td>
<td>134.59</td>
<td>121.70</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>363</td>
<td>TYR</td>
<td>N-CA-C</td>
<td>-5.15</td>
<td>97.09</td>
<td>111.00</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>311</td>
<td>VAL</td>
<td>N-CA-C</td>
<td>-5.15</td>
<td>97.10</td>
<td>111.00</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>426</td>
<td>ILE</td>
<td>O-C-N</td>
<td>-5.14</td>
<td>114.47</td>
<td>122.70</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>420</td>
<td>PHE</td>
<td>C-N-CA</td>
<td>5.14</td>
<td>134.54</td>
<td>121.70</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>427</td>
<td>ALA</td>
<td>C-N-CA</td>
<td>5.12</td>
<td>134.51</td>
<td>121.70</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>106</td>
<td>GLU</td>
<td>N-CA-C</td>
<td>-5.12</td>
<td>97.18</td>
<td>111.00</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>371</td>
<td>ASP</td>
<td>N-CA-C</td>
<td>-5.09</td>
<td>97.26</td>
<td>111.00</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>406</td>
<td>LEU</td>
<td>N-CA-C</td>
<td>-5.08</td>
<td>97.27</td>
<td>111.00</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>315</td>
<td>ARG</td>
<td>N-CA-C</td>
<td>-5.08</td>
<td>97.27</td>
<td>111.00</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>45</td>
<td>VAL</td>
<td>N-CA-C</td>
<td>-5.06</td>
<td>97.33</td>
<td>111.00</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>381</td>
<td>ILE</td>
<td>N-CA-C</td>
<td>-5.04</td>
<td>97.38</td>
<td>111.00</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>342</td>
<td>MET</td>
<td>N-CA-C</td>
<td>-5.04</td>
<td>97.38</td>
<td>111.00</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>479</td>
<td>LYS</td>
<td>CA-C-N</td>
<td>5.04</td>
<td>128.28</td>
<td>117.20</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>331</td>
<td>VAL</td>
<td>N-CA-C</td>
<td>-5.03</td>
<td>97.41</td>
<td>111.00</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>323</td>
<td>ILE</td>
<td>N-CA-C</td>
<td>-5.03</td>
<td>97.42</td>
<td>111.00</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>431</td>
<td>HIS</td>
<td>N-CA-C</td>
<td>-5.03</td>
<td>97.43</td>
<td>111.00</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>10</td>
<td>THR</td>
<td>O-C-N</td>
<td>-5.02</td>
<td>114.67</td>
<td>122.70</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>427</td>
<td>ALA</td>
<td>O-C-N</td>
<td>-5.02</td>
<td>114.67</td>
<td>122.70</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>359</td>
<td>ASN</td>
<td>C-N-CA</td>
<td>5.02</td>
<td>134.25</td>
<td>121.70</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>428</td>
<td>CYS</td>
<td>CA-C-N</td>
<td>5.01</td>
<td>128.23</td>
<td>117.20</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>429</td>
<td>GLN</td>
<td>N-CA-C</td>
<td>-5.01</td>
<td>97.47</td>
<td>111.00</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>419</td>
<td>ARG</td>
<td>O-C-N</td>
<td>-5.00</td>
<td>114.70</td>
<td>122.70</td>
</tr>
</tbody>
</table>

There are no chirality outliers.

All (70) planarity outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>A</td>
<td>105</td>
<td>VAL</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>13</td>
<td>LEU</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>16</td>
<td>VAL</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>405</td>
<td>GLY</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>407</td>
<td>GLN</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>408</td>
<td>PRO</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>409</td>
<td>PRO</td>
<td>Peptide</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>A</td>
<td>415</td>
<td>GLU</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>433</td>
<td>PRO</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>436</td>
<td>PRO</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>437</td>
<td>LYS</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>477</td>
<td>LYS</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>13</td>
<td>LEU</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>14</td>
<td>PRO</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>181</td>
<td>GLN</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>408</td>
<td>PRO</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>409</td>
<td>PRO</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>414</td>
<td>LEU</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>424</td>
<td>GLN</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>433</td>
<td>PRO</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>443</td>
<td>LYS</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>481</td>
<td>THR</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>12</td>
<td>TYR</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>13</td>
<td>LEU</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>14</td>
<td>PRO</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>16</td>
<td>VAL</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>181</td>
<td>GLN</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>405</td>
<td>GLY</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>407</td>
<td>GLN</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>416</td>
<td>ASP</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>418</td>
<td>TYR</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>421</td>
<td>VAL</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>435</td>
<td>ALA</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>476</td>
<td>ALA</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>477</td>
<td>LYS</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>13</td>
<td>LEU</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>17</td>
<td>PRO</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>407</td>
<td>GLN</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>408</td>
<td>PRO</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>409</td>
<td>PRO</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>422</td>
<td>THR</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>424</td>
<td>GLN</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>432</td>
<td>THR</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>433</td>
<td>PRO</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>435</td>
<td>ALA</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>438</td>
<td>GLU</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>473</td>
<td>GLY</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>477</td>
<td>LYS</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>481</td>
<td>THR</td>
<td>Peptide</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>D</td>
<td>9</td>
<td>ALA</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>10</td>
<td>THR</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>13</td>
<td>LEU</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>14</td>
<td>PRO</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>406</td>
<td>LEU</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>407</td>
<td>GLN</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>408</td>
<td>PRO</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>433</td>
<td>PRO</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>477</td>
<td>LYS</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>481</td>
<td>THR</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>10</td>
<td>THR</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>12</td>
<td>TYR</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>13</td>
<td>LEU</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>16</td>
<td>VAL</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>19</td>
<td>SER</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>408</td>
<td>PRO</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>409</td>
<td>PRO</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>414</td>
<td>LEU</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>435</td>
<td>ALA</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>476</td>
<td>ALA</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>479</td>
<td>LYS</td>
<td>Peptide</td>
</tr>
</tbody>
</table>

5.2 Too-close contacts

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L</td>
<td>893</td>
<td>879</td>
<td>878</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>894</td>
<td>841</td>
<td>836</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1911</td>
<td>958</td>
<td>512</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1911</td>
<td>958</td>
<td>512</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1911</td>
<td>958</td>
<td>512</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1911</td>
<td>958</td>
<td>512</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1911</td>
<td>958</td>
<td>512</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1911</td>
<td>958</td>
<td>512</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>13253</td>
<td>7468</td>
<td>4786</td>
<td>30</td>
<td>0</td>
</tr>
</tbody>
</table>

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 2.
All (30) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:H:103:TRP:CE3</td>
<td>2:H:103:TRP:O</td>
<td>2.17</td>
<td>0.96</td>
</tr>
<tr>
<td>2:H:103:TRP:O</td>
<td>2:H:103:TRP:HE3</td>
<td>1.57</td>
<td>0.86</td>
</tr>
<tr>
<td>2:H:103:TRP:N</td>
<td>2:H:103:TRP:CE3</td>
<td>2.47</td>
<td>0.83</td>
</tr>
<tr>
<td>2:H:103:TRP:N</td>
<td>2:H:103:TRP:HE3</td>
<td>1.83</td>
<td>0.74</td>
</tr>
<tr>
<td>2:H:94:ARG:C</td>
<td>2:H:95:GLY:CA</td>
<td>2.56</td>
<td>0.73</td>
</tr>
<tr>
<td>2:H:94:ARG:HG3</td>
<td>2:H:94:ARG:O</td>
<td>1.90</td>
<td>0.69</td>
</tr>
<tr>
<td>1:L:50:TRP:CD2</td>
<td>1:L:50:TRP:O</td>
<td>2.47</td>
<td>0.68</td>
</tr>
<tr>
<td>1:L:44:PRO:O</td>
<td>2:H:103:TRP:NE1</td>
<td>2.28</td>
<td>0.66</td>
</tr>
<tr>
<td>1:L:50:TRP:CE3</td>
<td>1:L:50:TRP:O</td>
<td>2.50</td>
<td>0.64</td>
</tr>
<tr>
<td>2:H:94:ARG:CG</td>
<td>2:H:94:ARG:O</td>
<td>2.50</td>
<td>0.59</td>
</tr>
<tr>
<td>1:L:50:TRP:CG</td>
<td>1:L:50:TRP:O</td>
<td>2.61</td>
<td>0.54</td>
</tr>
<tr>
<td>2:H:35:SER:N</td>
<td>2:H:93:ALA:O</td>
<td>2.42</td>
<td>0.53</td>
</tr>
<tr>
<td>2:H:103:TRP:CE3</td>
<td>2:H:103:TRP:C</td>
<td>2.84</td>
<td>0.49</td>
</tr>
<tr>
<td>2:H:103:TRP:CE3</td>
<td>2:H:103:TRP:CA</td>
<td>2.99</td>
<td>0.45</td>
</tr>
<tr>
<td>3:A:12:TYR:H</td>
<td>3:A:13:LEU:CA</td>
<td>2.31</td>
<td>0.43</td>
</tr>
<tr>
<td>1:L:19:VAL:HG22</td>
<td>1:L:75:ILE:HB</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:L:33:LEU:HD22</td>
<td>1:L:71:PHE:CG</td>
<td>2.53</td>
<td>0.43</td>
</tr>
<tr>
<td>2:H:12:VAL:O</td>
<td>2:H:111:VAL:HA</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:L:43:SER:HB3</td>
<td>2:H:103:TRP:NE1</td>
<td>2.36</td>
<td>0.41</td>
</tr>
<tr>
<td>1:L:32:TYR:CD2</td>
<td>1:L:32:TYR:N</td>
<td>2.88</td>
<td>0.41</td>
</tr>
<tr>
<td>3:B:242:TYR:O</td>
<td>3:B:318:GLY:HA3</td>
<td>2.20</td>
<td>0.40</td>
</tr>
</tbody>
</table>

There are no symmetry-related clashes.

5.3 Torsion angles

5.3.1 Protein backbone

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.
The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Favoured</th>
<th>Allowed</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L</td>
<td>113/115 (98%)</td>
<td>109 (96%)</td>
<td>4 (4%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>113/115 (98%)</td>
<td>111 (98%)</td>
<td>2 (2%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>476/478 (100%)</td>
<td>403 (85%)</td>
<td>55 (12%)</td>
<td>18 (4%)</td>
<td>4 32</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>476/478 (100%)</td>
<td>395 (83%)</td>
<td>50 (10%)</td>
<td>31 (6%)</td>
<td>1 22</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>476/478 (100%)</td>
<td>402 (84%)</td>
<td>52 (11%)</td>
<td>22 (5%)</td>
<td>3 28</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>476/478 (100%)</td>
<td>404 (85%)</td>
<td>47 (10%)</td>
<td>25 (5%)</td>
<td>2 26</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>476/478 (100%)</td>
<td>417 (88%)</td>
<td>43 (9%)</td>
<td>16 (3%)</td>
<td>4 35</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>476/478 (100%)</td>
<td>405 (85%)</td>
<td>52 (11%)</td>
<td>19 (4%)</td>
<td>3 31</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>3082/3098 (100%)</td>
<td>2646 (86%)</td>
<td>305 (10%)</td>
<td>131 (4%)</td>
<td>6 29</td>
</tr>
</tbody>
</table>

All (131) Ramachandran outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>B</td>
<td>15</td>
<td>PRO</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>87</td>
<td>ASP</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>133</td>
<td>SER</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>395</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>408</td>
<td>PRO</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>409</td>
<td>PRO</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>414</td>
<td>LEU</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>415</td>
<td>GLU</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>439</td>
<td>ASP</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>41</td>
<td>ARG</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>86</td>
<td>PRO</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>340</td>
<td>THR</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>427</td>
<td>ALA</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>11</td>
<td>VAL</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>289</td>
<td>SER</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>475</td>
<td>LYS</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>480</td>
<td>PHE</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>152</td>
<td>LYS</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>290</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>476</td>
<td>ALA</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>89</td>
<td>SER</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>202</td>
<td>ASP</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>355</td>
<td>TYR</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>395</td>
<td>ASN</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>C</td>
<td>408</td>
<td>PRO</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>417</td>
<td>THR</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>425</td>
<td>ALA</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>478</td>
<td>PRO</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>339</td>
<td>SER</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>143</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>152</td>
<td>LYS</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>410</td>
<td>PRO</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>421</td>
<td>VAL</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>14</td>
<td>PRO</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>15</td>
<td>PRO</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>26</td>
<td>GLU</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>424</td>
<td>GLN</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>425</td>
<td>ALA</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>41</td>
<td>ARG</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>408</td>
<td>PRO</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>409</td>
<td>PRO</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>457</td>
<td>ALA</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>474</td>
<td>LEU</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>482</td>
<td>LEU</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>14</td>
<td>PRO</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>26</td>
<td>GLU</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>41</td>
<td>ARG</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>315</td>
<td>ARG</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>406</td>
<td>LEU</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>415</td>
<td>GLU</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>13</td>
<td>LEU</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>14</td>
<td>PRO</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>132</td>
<td>ALA</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>202</td>
<td>ASP</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>221</td>
<td>PRO</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>326</td>
<td>GLY</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>457</td>
<td>ALA</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>351</td>
<td>SER</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>358</td>
<td>THR</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>48</td>
<td>PRO</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>110</td>
<td>GLY</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>202</td>
<td>ASP</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>308</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>423</td>
<td>SER</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>479</td>
<td>LYS</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>78</td>
<td>PRO</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>D</td>
<td>89</td>
<td>SER</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>395</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>427</td>
<td>ALA</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>433</td>
<td>PRO</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>436</td>
<td>PRO</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>453</td>
<td>GLU</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>479</td>
<td>LYS</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>133</td>
<td>SER</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>182</td>
<td>PRO</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>459</td>
<td>LEU</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>479</td>
<td>LYS</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>314</td>
<td>GLN</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>395</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>425</td>
<td>ALA</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>477</td>
<td>LYS</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>435</td>
<td>ALA</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>475</td>
<td>LYS</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>478</td>
<td>PRO</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>479</td>
<td>LYS</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>482</td>
<td>LEU</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>13</td>
<td>LEU</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>185</td>
<td>CYS</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>247</td>
<td>PHE</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>308</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>437</td>
<td>LYS</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>440</td>
<td>PRO</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>462</td>
<td>PHE</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>314</td>
<td>GLN</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>439</td>
<td>ASP</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>90</td>
<td>PHE</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>139</td>
<td>ALA</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>259</td>
<td>HIS</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>410</td>
<td>PRO</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>434</td>
<td>PRO</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>16</td>
<td>VAL</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>161</td>
<td>CYS</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>173</td>
<td>SER</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>436</td>
<td>PRO</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>11</td>
<td>VAL</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>241</td>
<td>PRO</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>247</td>
<td>PHE</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>259</td>
<td>HIS</td>
</tr>
</tbody>
</table>

Continued on next page...
Protein sidechains

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L</td>
<td>100/100 (100%)</td>
<td>99 (99%)</td>
<td>1 (1%)</td>
<td>80/90</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>95/95 (100%)</td>
<td>94 (99%)</td>
<td>1 (1%)</td>
<td>78/89</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>195/195 (100%)</td>
<td>193 (99%)</td>
<td>2 (1%)</td>
<td>81/90</td>
</tr>
</tbody>
</table>

All (2) residues with a non-rotameric sidechain are listed below:
Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3 RNA

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates

There are no carbohydrates in this entry.

5.6 Ligand geometry

There are no ligands in this entry.

5.7 Other polymers

There are no such residues in this entry.

5.8 Polymer linkage issues

There are no chain breaks in this entry.