

Full wwPDB X-ray Structure Validation Report (i)

Dec 6, 2023 - 05:48 am GMT

PDB ID	:	2JD6
Title	:	Crystal Structure of the as isolated Ferritin from the Hyperthermophilic Ar-
		chaeal Anaerobe Pyrococcus furiosus
Authors	:	Tatur, J.; Hagen, W.R.; Matias, P.M.
Deposited on	:	2007-01-05
Resolution	:	2.75 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.4, CSD as541be (2020)
Xtriage (Phenix)	:	NOT EXECUTED
EDS	:	NOT EXECUTED
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.75 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Matria	Whole archive	Similar resolution		
wietric	$(\# {\rm Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$		
Clashscore	141614	1277 (2.78-2.74)		
Ramachandran outliers	138981	1257 (2.78-2.74)		
Sidechain outliers	138945	1257 (2.78-2.74)		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Note EDS was not executed.

Mol	Chain	Length	Quality of chain	
1	0	174	86%	9% • •
1	1	174	84%	12% •
1	2	174	86%	10% •
1	3	174	83%	13% • •
1	4	174	84%	9% • •
1	5	174	83%	13% • •
1	6	174	80%	14% • •
1	7	174	84%	10% • •

Chain Length Quality of chain Mol 8 1 17410% • • 85% 9• • 1 17484% 10% А 174• 1 81% 15% . . В 1 17484% 10% \mathbf{C} 1 174• • 84% 11% D 1741 80% 14% . . Е 1741 87% 7% •• • F • • 1 17484% 11% \mathbf{G} 1741 90% 6% • • • • Η 1 17483% 11% Ι 1 17484% 10% • • J 8% • • 1 17487% 7% • • Κ 1741 85% L 1 17484% 11% • • •• М 1741 79% 16% 1 Ν 174• • 83% 10% Ο 1741 81% 13% • • Р ••• 1 17479% 16% Q • 1 17485% 11% \mathbf{R} 1741 83% 12% . . \mathbf{S} 1 174• • 85% 10% Т • • 1 17485% 9% U 1741 87% 8% • • V 1 174• • 83% 12% W . . 1 17481% 14%

Continued from previous page...

Mol	Chain	Length	Quality of chain	
1	Х	174	87%	8% • •
1	Y	174	80%	14% • •
1	Ζ	174	83%	10% • •

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 50819 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace	
1	0	167	Total	С	Ν	0	S	0	0	0	
1	0	107	1383	897	220	261	5	0	0	0	
1	1	167	Total	С	Ν	Ο	S	0	0	0	
1	1	107	1383	897	220	261	5	0	0	0	
1	2	167	Total	С	Ν	0	S	0	0	0	
1		107	1383	897	220	261	5	0	0	0	
1	2	167	Total	С	Ν	0	S	0	0	0	
1	3	107	1383	897	220	261	5	0	0	0	
1	4	167	Total	С	Ν	Ο	S	0	0	0	
1	4	107	1383	897	220	261	5	0	0	0	
1	F	167	Total	С	Ν	0	S	0	0	0	
1	5	107	1383	897	220	261	5	0	0	0	
1	6	167	Total	С	Ν	0	S	0	0	0	0
1	0	107	1383	897	220	261	5		0	U	
1	7	167	Total	С	Ν	0	S	0	0	0	
1	(107	1383	897	220	261	5			0	
1	0	167	Total	С	Ν	0	S	0	0	0	
1	0	107	1383	897	220	261	5		0	0	
1	0	167	Total	С	Ν	0	S	0	0	0	
1	9	107	1383	897	220	261	5	0	0	0	
1	Δ	167	Total	С	Ν	0	S	0	0	0	
1	A	107	1383	897	220	261	5	0	0	0	
1	D	167	Total	С	Ν	0	S	0	0	0	
1	D	107	1383	897	220	261	5	0	0	0	
1	C	167	Total	С	Ν	0	S	0	1	0	
1		107	1388	900	221	262	5	0	L	0	
1	л	167	Total	С	Ν	0	S	0	0	0	
		107	1383	897	220	261	5		U	U	
1	F	167	Total	С	Ν	Ο	S	0	0	0	
	<u>ц</u>	107	1383	897	220	261	5		0	U	
1	Б	167	Total	С	Ν	Ο	S	0	0	0	
	Г	107	1383	897	220	261	5	U	U	U	

• Molecule 1 is a protein called FERRITIN HOMOLOG.

Continued from previous page...

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	C	107	Total	С	Ν	0	S	0	0	0
	G	107	1383	897	220	261	5	0	0	0
1	тт	107	Total	С	Ν	0	S	0	0	0
1	П	107	1383	897	220	261	5	0	0	0
1	т	167	Total	С	Ν	0	S	0	0	0
	1	107	1383	897	220	261	5	0	0	0
1	т	167	Total	С	Ν	0	S	0	0	0
1	1	107	1383	897	220	261	5	0	0	0
1	K	167	Total	С	Ν	0	S	0	0	0
1	Γ	107	1383	897	220	261	5	0	0	0
1	т	167	Total	С	Ν	0	S	0	0	0
1		107	1383	897	220	261	5	0	0	0
1	М	167	Total	С	Ν	0	S	0	0	0
1	111	107	1383	897	220	261	5	0	0	0
1	N	167	Total	С	Ν	0	S	0	0	0
1	IN	107	1383	897	220	261	5	0	0	0
1	0	167	Total	С	Ν	0	\mathbf{S}	0	0	0
L	U	107	1383	897	220	261	5	0	0	0
1	р	167	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	T	107	1383	897	220	261	5	0	0	0
1	0	167	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	Q.	107	1383	897	220	261	5	0	0	0
1	В	167	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
	10	101	1383	897	220	261	5	0	0	0
1	S	167	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
	5	101	1383	897	220	261	5	0	0	0
1	Т	167	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
1	1	101	1383	897	220	261	5	0	0	0
1	U	167	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
	0	101	1383	897	220	261	5	0	0	0
1	V	167	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
1	v	101	1383	897	220	261	5	0	0	0
1	W	167	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
		101	1383	897	220	261	5	0	0	0
1	x	167	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
		101	1383	897	220	261	5			
1	V	167	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
	1	101	1383	897	220	261	5			
1	Z	167	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
		101	1383	897	220	261	5			0

• Molecule 2 is FE (III) ION (three-letter code: FE) (formula: Fe).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	0	1	Total Fe 1 1	0	0
2	1	1	Total Fe 1 1	0	0
2	2	1	Total Fe 1 1	0	0
2	3	1	Total Fe 1 1	0	0
2	4	1	Total Fe 1 1	0	0
2	5	1	Total Fe 1 1	0	0
2	6	1	Total Fe 1 1	0	0
2	7	1	Total Fe 1 1	0	0
2	8	1	Total Fe 1 1	0	0
2	9	1	Total Fe 1 1	0	0
2	А	1	Total Fe 1 1	0	0
2	В	1	Total Fe 1 1	0	0
2	С	1	Total Fe 1 1	0	0
2	D	1	Total Fe 1 1	0	0
2	Ε	1	Total Fe 1 1	0	0
2	\mathbf{F}	1	Total Fe 1 1	0	0
2	G	1	Total Fe 1 1	0	0
2	Н	1	Total Fe 1 1	0	0
2	Ι	1	$\begin{array}{ccc} \text{Total} & \text{Fe} \\ 1 & 1 \end{array}$	0	0
2	J	1	Total Fe 1 1	0	0
2	K	1	TotalFe11	0	0
2	L	1	Total Fe 1 1	0	0

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	М	1	Total Fe 1 1	0	0
2	Ν	1	Total Fe 1 1	0	0
2	О	1	Total Fe 1 1	0	0
2	Р	1	Total Fe 1 1	0	0
2	Q	1	Total Fe 1 1	0	0
2	R	1	Total Fe 1 1	0	0
2	S	1	Total Fe 1 1	0	0
2	Т	1	Total Fe 1 1	0	0
2	U	1	Total Fe 1 1	0	0
2	V	1	Total Fe 1 1	0	0
2	W	1	Total Fe 1 1	0	0
2	Х	1	Total Fe 1 1	0	0
2	Y	1	TotalFe11	0	0
2	Z	1	Total Fe 1 1	0	0

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	1	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	1	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	2	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	2	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	3	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	3	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	4	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	5	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	6	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	7	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	8	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	В	1	Total O S	0	0
0	D	T	$5 \ 4 \ 1$	0	0
3	С	1	Total O S	0	0
		1	5 4 1	0	0
3	С	1	Total O S	0	0
		_	5 4 1		
3	Е	1	Total O S	0	0
			5 4 1		
3	F	1	Total O S	0	0
			5 4 1		
3	G	1	Total O S	0	0
			$\begin{array}{ccc} 5 & 4 & 1 \\ \hline \end{array}$		
3	G	1	$\begin{array}{ccc} 10tal & O & S \\ 5 & 4 & 1 \end{array}$	0	0
			0 4 1 Total O S		
3	Н	1	$\begin{array}{ccc} 10tal & 0 & 5 \\ 5 & 4 & 1 \end{array}$	0	0
			$\begin{array}{ccc} 5 & 4 & 1 \\ \hline Total & O & S \end{array}$		
3	Ι	1	5 4 1	0	0
			Total O S		
3	J	1	5 4 1	0	0
			Total O S		
3	J	1	5 4 1	0	0
			Total O S		
3	J	1	5 4 1	0	0
	IZ.	1	Total O S	0	0
3	K	1	5 4 1	0	0
2	м	1	Total O S	0	0
3	IVI	L	$5 \ 4 \ 1$	0	0
9	0	1	Total O S	0	0
່ງ	0	L	$5 \ 4 \ 1$	0	0
3	0	1	Total O S	0	0
	Q.	I	5 4 1	0	0
3	B	1	Total O S	0	0
0	10	T	5 4 1	0	0
3	S	1	Total O S	0	0
		±	5 4 1		, v
3	S	1	Total O S	0	0
		-	5 4 1	ļ	
3	Т	1	Total O S	0	0
			5 4 1	_	_
3	V	1	Total O S	0	0
			5 4 1		

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	V	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	W	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	W	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	Х	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	Ζ	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0

• Molecule 4 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	0	18	Total O 18 18	0	0
4	1	23	Total O 23 23	0	0
4	2	19	Total O 19 19	0	0
4	3	25	TotalO2525	0	0
4	4	25	TotalO2525	0	0
4	5	13	Total O 13 13	0	0
4	6	14	Total O 14 14	0	0
4	7	19	Total O 19 19	0	0
4	8	13	Total O 13 13	0	0
4	9	26	Total O 26 26	0	0
4	А	40	Total O 40 40	0	0
4	В	26	Total O 26 26	0	0
4	С	19	Total O 19 19	0	0
4	D	29	Total O 29 29	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	Е	37	Total O 37 37	0	0
4	F	24	Total O 24 24	0	0
4	G	31	Total O 31 31	0	0
4	Н	10	Total O 10 10	0	0
4	Ι	30	Total O 30 30	0	0
4	J	31	Total O 31 31	0	0
4	К	12	Total O 12 12	0	0
4	L	20	Total O 20 20	0	0
4	М	20	Total O 20 20	0	0
4	Ν	24	Total O 24 24	0	0
4	0	14	Total O 14 14	0	0
4	Р	13	Total O 13 13	0	0
4	Q	18	Total O 18 18	0	0
4	R	20	Total O 20 20	0	0
4	S	28	Total O 28 28	0	0
4	Т	19	Total O 19 19	0	0
4	U	27	$\begin{array}{c c} \hline Total & O \\ 27 & 27 \end{array}$	0	0
4	V	18	Total O 18 18	0	0
4	W	23	TotalO2323	0	0
4	Х	24	TotalO2424	0	0
4	Y	31	Total O 31 31	0	0

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	Ζ	7	Total O 7 7	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

Note EDS was not executed.

• Molecule 1: FERRITIN HOMOLOG

M1 415 416 416 416 416 421 421 421 421 421 421 421 421	F114- 5115 S115 1116 1120 1135 1136 1136 1136 1137 1136 1136 1136 1137 1136 1136 1136 1136 1136 1154 1156 1154 1156 1154 1156 1154 1156 1154 1150 1154 1150 1150 1151 1151 1151 1154 1151 1154 1151 1157 1151 1151 1151 1151 1151 1151 1151 1151 1151 1151 1151 1151 1151 1151 1151 1151 1151 1151 1151 1151 1151 1151 1151	OLD GLY GLY GLY
• Molecule 1: FERRITIN HOMOI	LOG	
Chain 6:	30% 1	4% • •
M1 1.2 1.2 1.3 1.4 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.15 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.14 1.14 1.15 1.23 1.23 1.23 1.14 1	E72 8100 1124 1124 8133 8133 8133 8133 8149 1149 1158 1158 1158	L165 P166 G167 LEU LEU MET GLN GLY GLY GLU
• Molecule 1: FERRITIN HOMOI	LOG	
Chain 7:	84%	10% • •
M1 Y22 H64 H67 H67 H67 H67 H67 H67 H67 H67 H67 H67	A140 4140 M153 M153 M154 M154 L154 L165 L165 L165 L165 L165 C167 C167 C167 C107 C17 C107 C17 C17 C17 C17 C17 C17 C17 C17 C17 C1	
• Molecule 1: FERRITIN HOMOI	LOG	
Chain 8:	85%	10% • •
M1 L2 K5 M6 M6 X21 Y22 X22 X22 X22 X22 X23 X23 X23 X23 X23 X	F143 A144 L154 L154 L156 C187 C186 C180 C180 C18 C18 C18 C18 C18 C18 C18 C18 C18 C18	
• Molecule 1: FERRITIN HOMOI	LOG	
Chain 9:	84%	10% • •
M1 R5 R5 722 722 723 723 723 864 864 864 864 865 869 872 872 872 872 872 872 872 872 872 872	n. 13 13 13 14 14 14 14 14 14 14 14 14 14	
• Molecule 1: FERRITIN HOMOI	LOG	
Chain A:	81%	15% •
M1 M6 M6 M6 M6 V22 V22 V22 V22 V22 V22 V22 V22 V22 V2	L120 L121 E121 E121 E121 E130 L138 L138 L138 L138 L138 L147 L138 L147 L110 LEU	MET GLN GLY GLU GLU
• Molecule 1: FERRITIN HOMOI	LOG	
Chain B:	84%	10% • •
M1 12 83 84 84 85 84 86 86 86 87 87 19 7 19 7 19 7 19 7 19 7 11 8 80 8100 8100 8100 8100 8100 8100	0146 0146 1146 1166 1164 1166 1164 1166 1164 1166 1164 1166 1164 1166 1164 1166 1164 1166 1164 1166 1164 1166 1167 1166 1167 1166 1166 1167 1166 1167 1166 1167 1166 1167 1166 1167 1	
• Molecule 1: FERRITIN HOMOI	LOG	
Chain C:	84%	11% ••

M 120 120 120 120 120 120 120 120 120 120
• Molecule 1: FERRITIN HOMOLOG
Chain K: 85% 7% • •
M1 M1 M6 M6 M6 M6 B3 B48 B71 B71 B71 B71 B71 B71 B71 B71 B71 B71
• Molecule 1: FERRITIN HOMOLOG
Chain L: 84% 11% ••
M M15 M15 M15 M15 M15 M15 M12 M21 M21 M22 M22 M22 M22 M22 M22 M22
• Molecule 1: FERRITIN HOMOLOG
Chain M: 79% 16% · ·
M1 E4 M6 M6 M6 M6 M1 M2 M16 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2
• Molecule 1: FERRITIN HOMOLOG
Chain N: 83% 10% • •
M1 122 122 122 122 122 122 122 1
• Molecule 1: FERRITIN HOMOLOG
Chain O: 81% 13% ••
M1 12 12 12 12 12 12 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14
• Molecule 1: FERRITIN HOMOLOG
Chain P: 79% 16% • •
H1 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2
CTU CTU CTU CTU CTU CTU CTU CTU CTU CTU
• Molecule 1: FERRITIN HOMOLOG
Chain Q: 85% 11% ·
WORLDWIDE PROTEIN DATA BANK

• Molecule 1: FERRITIN HOMOLOG

• Molecule 1: FERRITIN HOMOLOG

Chai	n Z	Z: '									8	3%									109	%	·	•
M1 L2 S3	MG	N11	M27	<mark>(38</mark>	E48	E69	E7 2	W80 E81	K85	E94	K99	Y102	E130	<mark>S133</mark>	L138	F143	Q149	D155	L165 P166 G167	LEU LEU MET	GLN GLN	GLU		

4 Data and refinement statistics (i)

Xtriage (Phenix) and EDS were not executed - this section is therefore incomplete.

Property	Value	Source		
Space group	C 2 2 21	Depositor		
Cell constants	254.10Å 341.42Å 265.52Å	Depositor		
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor		
Resolution (Å)	204.12 - 2.75	Depositor		
% Data completeness	99.6 (204 12-2 75)	Depositor		
(in resolution range)	55.0 (204.12 2.10)			
R_{merge}	0.08	Depositor		
R _{sym}	(Not available)	Depositor		
Refinement program	REFMAC 5.3.0021	Depositor		
R, R_{free}	0.195 , 0.247	Depositor		
Estimated twinning fraction	No twinning to report.	Xtriage		
Total number of atoms	50819	wwPDB-VP		
Average B, all atoms $(Å^2)$	33.0	wwPDB-VP		

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: FE, $\mathrm{SO4}$

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	ond lengths	Bond angles		
NIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	0	0.68	0/1417	0.70	0/1908	
1	1	0.68	0/1417	0.68	0/1908	
1	2	0.66	0/1417	0.71	1/1908~(0.1%)	
1	3	0.75	1/1417~(0.1%)	0.74	0/1908	
1	4	0.67	1/1417~(0.1%)	0.67	0/1908	
1	5	0.64	0/1417	0.67	0/1908	
1	6	0.66	0/1417	0.69	0/1908	
1	7	0.68	0/1417	0.69	0/1908	
1	8	0.72	0/1417	0.70	0/1908	
1	9	0.65	1/1417~(0.1%)	0.64	0/1908	
1	А	0.79	0/1417	0.74	0/1908	
1	В	0.77	0/1417	0.74	1/1908~(0.1%)	
1	С	0.78	0/1425	0.73	0/1919	
1	D	0.80	2/1417~(0.1%)	0.79	0/1908	
1	Е	0.73	1/1417~(0.1%)	0.73	1/1908~(0.1%)	
1	F	0.77	1/1417~(0.1%)	0.70	0/1908	
1	G	0.74	0/1417	0.73	0/1908	
1	Н	0.67	0/1417	0.66	0/1908	
1	Ι	0.74	0/1417	0.70	1/1908~(0.1%)	
1	J	0.72	1/1417~(0.1%)	0.70	0/1908	
1	Κ	0.66	0/1417	0.67	0/1908	
1	L	0.69	0/1417	0.70	0/1908	
1	М	0.68	0/1417	0.69	0/1908	
1	Ν	0.67	0/1417	0.66	0/1908	
1	0	0.70	0/1417	0.70	1/1908~(0.1%)	
1	Р	0.69	0/1417	0.68	0/1908	
1	Q	0.72	0/1417	0.68	0/1908	
1	R	0.64	0/1417	0.66	0/1908	
1	S	0.75	0/1417	0.71	0/1908	
1	Т	0.79	$1/1417\ (0.1\%)$	0.77	0/1908	
1	U	0.78	0/1417	0.75	0/1908	
1	V	0.79	1/1417~(0.1%)	0.78	0/1908	

Mal	Chain	Bo	ond lengths	Bond angles		
IVIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	W	0.81	0/1417	0.76	0/1908	
1	Х	0.73	0/1417	0.69	0/1908	
1	Y	0.71	0/1417	0.73	1/1908~(0.1%)	
1	Ζ	0.64	0/1417	0.67	0/1908	
All	All	0.72	10/51020~(0.0%)	0.71	6/68699~(0.0%)	

All (10) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	Т	92	GLU	CG-CD	6.10	1.61	1.51
1	D	92	GLU	CG-CD	5.98	1.60	1.51
1	J	92	GLU	CG-CD	5.68	1.60	1.51
1	V	15	ASN	CB-CG	5.34	1.63	1.51
1	3	129	GLU	CG-CD	5.25	1.59	1.51
1	Е	4	GLU	CG-CD	5.24	1.59	1.51
1	D	129	GLU	CG-CD	5.18	1.59	1.51
1	9	92	GLU	CG-CD	5.08	1.59	1.51
1	4	129	GLU	CG-CD	5.07	1.59	1.51
1	F	129	GLU	CG-CD	5.06	1.59	1.51

All (6) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	Е	67	ARG	NE-CZ-NH2	-7.07	116.76	120.30
1	Y	56	ARG	NE-CZ-NH2	-5.59	117.51	120.30
1	В	2	LEU	CA-CB-CG	5.36	127.63	115.30
1	2	16	ARG	NE-CZ-NH2	-5.28	117.66	120.30
1	Ι	56	ARG	NE-CZ-NH1	5.05	122.83	120.30
1	0	2	LEU	CA-CB-CG	5.03	126.87	115.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	0	1383	0	1352	8	0
1	1	1383	0	1352	10	0
1	2	1383	0	1352	8	0
1	3	1383	0	1352	15	0
1	4	1383	0	1352	12	0
1	5	1383	0	1352	11	0
1	6	1383	0	1352	15	0
1	7	1383	0	1352	12	0
1	8	1383	0	1352	9	0
1	9	1383	0	1352	14	0
1	А	1383	0	1352	13	0
1	В	1383	0	1352	15	0
1	С	1388	0	1358	13	0
1	D	1383	0	1352	13	0
1	Е	1383	0	1352	10	0
1	F	1383	0	1352	9	0
1	G	1383	0	1352	7	0
1	Н	1383	0	1352	13	0
1	Ι	1383	0	1352	13	0
1	J	1383	0	1352	8	0
1	Κ	1383	0	1352	15	0
1	L	1383	0	1352	8	0
1	М	1383	0	1352	15	0
1	N	1383	0	1352	15	0
1	0	1383	0	1352	16	0
1	Р	1383	0	1352	21	0
1	Q	1383	0	1352	5	0
1	R	1383	0	1352	12	0
1	S	1383	0	1352	5	0
1	Т	1383	0	1352	9	0
1	U	1383	0	1352	5	0
1	V	1383	0	1352	14	0
1	W	1383	0	1352	12	0
1	Х	1383	0	1352	7	0
1	Y	1383	0	1352	18	0
1	Z	1383	0	1352	14	0
2	0	1	0	0	0	0
2	1	1	0	0	0	0
2	2	1	0	0	0	0
2	3	1	0	0	0	0
2	4	1	0	0	0	0
2	5	1	0	0	0	0
2	6	1	0	0	0	0

2J	D	6
ΔJ	\mathcal{D}	υ

	Chain	Non H	$\mathbf{H}(\mathbf{modol})$	H(addad)	Clashos	Symm Clashos
		11011-11			Olasties	Symm-Clashes
	1	1	0	0	0	0
	8	1	0	0	0	0
2	9	1	0	0	0	0
2	A	1	0	0	0	0
2	B	1	0	0	0	0
2	C	1	0	0	0	0
2	D	1	0	0	0	0
2	E	1	0	0	0	0
2	F	1	0	0	0	0
2	G	1	0	0	0	0
2	Н	1	0	0	0	0
2	I	1	0	0	0	0
2	J	1	0	0	0	0
2	K	1	0	0	0	0
2	L	1	0	0	0	0
2	М	1	0	0	0	0
2	N	1	0	0	0	0
2	0	1	0	0	0	0
2	Р	1	0	0	0	0
2	Q	1	0	0	0	0
2	R	1	0	0	0	0
2	S	1	0	0	0	0
2	Т	1	0	0	0	0
2	U	1	0	0	0	0
2	V	1	0	0	0	0
2	W	1	0	0	0	0
2	Х	1	0	0	0	0
2	Y	1	0	0	0	0
2	Z	1	0	0	0	0
3	1	10	0	0	0	0
3	2	10	0	0	0	0
3	3	10	0	0	0	0
3	4	5	0	0	0	0
3	5	5	0	0	0	0
3	6	5	0	0	0	0
3	7	5	0	0	0	0
3	8	5	0	0	0	0
3	A	15	0	0	0	0
3	В	5	0	0	0	0
3	C	10	0	0	0	0
3	Ē	5	0	0	0	0
3	F	5	0	0	0	0

2J	D	6
2.0	\mathbf{D}	0

Conti	nuea fron	<i>previous</i>		TT(addad)	Clasher	Como Claskas
	Chain	NON-H	H(model)	H(added)	Clasnes	Symm-Clasnes
3	G	10	0	0	0	0
3	H	5	0	0	0	0
3	l	5	0	0	0	0
3	J	15	0	0	0	0
3	K	5	0	0	0	0
3	M	5	0	0	0	0
3	0	5	0	0	0	0
3	Q	5	0	0	0	0
3	R	5	0	0	0	0
3	S	10	0	0	0	0
3	Т	5	0	0	0	0
3	V	10	0	0	0	0
3	W	10	0	0	0	0
3	Х	5	0	0	0	0
3	Z	5	0	0	0	0
4	0	18	0	0	0	0
4	1	23	0	0	0	0
4	2	19	0	0	0	0
4	3	25	0	0	0	0
4	4	25	0	0	0	0
4	5	13	0	0	0	0
4	6	14	0	0	0	0
4	7	19	0	0	0	0
4	8	13	0	0	0	0
4	9	26	0	0	0	0
4	А	40	0	0	2	0
4	В	26	0	0	0	0
4	С	19	0	0	0	0
4	D	29	0	0	1	0
4	Ε	37	0	0	1	0
4	F	24	0	0	0	0
4	G	31	0	0	0	0
4	Н	10	0	0	0	0
4	Ι	30	0	0	0	0
4	J	31	0	0	0	0
4	K	12	0	0	0	0
4	L	20	0	0	0	0
4	М	20	0	0	0	0
4	N	24	0	0	0	0
4	0	14	0	0	0	0
4	Р	13	0	0	1	0
4	Q	18	0	0	0	0

Continu d fr _____

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
4	R	20	0	0	0	0
4	S	28	0	0	0	0
4	Т	19	0	0	1	0
4	U	27	0	0	0	0
4	V	18	0	0	0	0
4	W	23	0	0	0	0
4	Х	24	0	0	0	0
4	Y	31	0	0	0	0
4	Z	7	0	0	0	0
All	All	50819	0	48678	365	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 4.

All (365) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:N:149:GLN:HE21	1:N:149:GLN:H	0.98	0.95
1:B:144:ALA:HB2	1:B:150:ILE:HG21	1.48	0.95
1:D:144:ALA:HB2	1:D:150:ILE:HG21	1.53	0.90
1:B:144:ALA:HB2	1:B:150:ILE:CG2	2.05	0.86
1:N:149:GLN:H	1:N:149:GLN:NE2	1.76	0.83
1:6:32:GLU:HG3	1:O:58:TYR:OH	1.78	0.82
1:E:149:GLN:HE21	1:X:149:GLN:HG3	1.43	0.82
1:9:149:GLN:H	1:9:149:GLN:HE21	1.25	0.81
1:3:6:MET:CE	1:3:116:THR:HG21	2.13	0.78
1:P:116:THR:O	1:P:120:LEU:HD12	1.82	0.78
1:K:149:GLN:H	1:K:149:GLN:HE21	1.32	0.78
1:8:81:GLU:HB2	1:8:85:LYS:HD3	1.65	0.78
1:T:15:ASN:HB2	4:T:2008:HOH:O	1.85	0.77
1:6:149:GLN:HE21	1:6:149:GLN:H	1.29	0.77
1:O:11:ASN:HD21	1:O:68:VAL:HA	1.51	0.73
1:5:72:GLU:OE2	1:N:72:GLU:OE1	2.06	0.73
1:Z:81:GLU:H	1:Z:85:LYS:HD2	1.54	0.72
1:M:91:TYR:CZ	1:M:135:LYS:HD3	2.25	0.71
1:D:144:ALA:HB2	1:D:150:ILE:CG2	2.20	0.71
1:I:6:MET:HE3	1:I:108:ALA:HA	1.72	0.71
1:9:15:ASN:HD21	1:9:71:ASP:H	1.38	0.70
1:N:140:LYS:HB3	1:N:154:LEU:HD11	1.75	0.68
1:H:81:GLU:HB2	1:H:85:LYS:HG3	1.77	0.67
1:E:149:GLN:NE2	1:X:149:GLN:HG3	2.07	0.66

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:3:6:MET:HE2	1:3:116:THR:HG21	1.76	0.65
1:F:144:ALA:HB2	1:F:150:ILE:HG21	1.79	0.65
1:5:13:GLN:OE1	1:5:16:ARG:HD2	1.98	0.64
1:A:138:LEU:HD23	1:A:138:LEU:O	1.98	0.64
1:K:15:ASN:HD21	1:K:71:ASP:H	1.46	0.63
1:N:138:LEU:HD23	1:N:138:LEU:C	2.18	0.63
1:N:149:GLN:HE21	1:N:149:GLN:N	1.83	0.63
1:G:138:LEU:C	1:G:138:LEU:HD23	2.20	0.62
1:U:94:GLU:OE1	1:U:130:GLU:HB3	2.00	0.62
1:X:147:SER:OG	1:X:149:GLN:HG2	1.99	0.62
1:C:144:ALA:HB2	1:C:150:ILE:HG21	1.80	0.62
1:A:138:LEU:HD23	1:A:138:LEU:C	2.20	0.62
1:6:140:LYS:HB3	1:6:154:LEU:HD11	1.82	0.61
1:Y:5:ARG:HD2	1:Y:111:GLU:OE2	2.00	0.61
1:W:9:ALA:HB1	1:W:104:LEU:CD2	2.30	0.61
1:I:11:ASN:HD21	1:I:68:VAL:HA	1.65	0.61
1:K:149:GLN:H	1:K:149:GLN:NE2	1.99	0.61
1:O:81:GLU:HB2	1:O:85:LYS:HG2	1.83	0.61
1:9:149:GLN:H	1:9:149:GLN:NE2	1.98	0.61
1:1:58:TYR:OH	1:J:32:GLU:HG3	2.01	0.60
1:C:72:GLU:OE1	1:U:72:GLU:OE1	2.20	0.60
1:G:140:LYS:HD3	1:G:154:LEU:HD21	1.83	0.60
1:I:5:ARG:H	1:I:5:ARG:HD3	1.66	0.60
1:S:91:TYR:CZ	1:S:135:LYS:HD3	2.37	0.60
1:3:144:ALA:HB2	1:3:150:ILE:HG21	1.84	0.59
1:S:138:LEU:C	1:S:138:LEU:HD23	2.23	0.59
1:O:6:MET:HE2	1:O:6:MET:O	2.02	0.59
1:V:91:TYR:CZ	1:V:135:LYS:HD3	2.38	0.59
1:7:140:LYS:HB3	1:7:154:LEU:HD11	1.85	0.58
1:3:6:MET:HE1	1:3:116:THR:HG21	1.86	0.58
1:B:64:ARG:O	1:B:65:ASN:HB3	2.03	0.58
1:B:72:GLU:OE1	1:T:72:GLU:OE1	2.21	0.58
1:3:15:ASN:HD21	1:3:71:ASP:H	1.51	0.58
1:D:91:TYR:CZ	1:D:135:LYS:HD3	2.38	0.58
1:I:6:MET:CE	1:I:108:ALA:HA	2.33	0.58
1:1:144:ALA:HB2	1:1:150:ILE:CG2	2.34	0.58
1:Y:91:TYR:CZ	1:Y:135:LYS:HD3	2.38	0.58
1:Y:95:LYS:O	1:Y:99:LYS:HG3	2.03	0.58
1:D:62:TYR:CE2	1:D:68:VAL:HG23	2.38	0.58
1:M:13:GLN:NE2	1:M:16:ARG:HH11	2.01	0.58
1:4:72:GLU:OE1	1:M:72:GLU:OE1	2.22	0.57

	lo de pagen	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:M:40:ALA:O	1:M:44:LYS:HG3	2.04	0.57
1:3:144:ALA:HB2	1:3:150:ILE:CG2	2.33	0.57
1:8:140:LYS:HB3	1:8:154:LEU:HD11	1.87	0.57
1:N:138:LEU:HD23	1:N:138:LEU:O	2.05	0.57
1:1:144:ALA:HB2	1:1:150:ILE:HG21	1.87	0.57
1:8:143:PHE:HZ	1:M:151:LEU:HD23	1.68	0.57
1:T:91:TYR:CZ	1:T:135:LYS:HD3	2.40	0.57
1:7:67:ARG:HD3	1:P:33:ASP:OD2	2.05	0.57
1:Y:48:GLU:OE2	1:Y:165:LEU:HB2	2.05	0.56
1:B:144:ALA:CB	1:B:150:ILE:CG2	2.81	0.56
1:F:72:GLU:OE1	1:X:72:GLU:OE1	2.24	0.56
1:2:135:LYS:NZ	1:2:139:ASP:OD1	2.37	0.56
1:C:8:LYS:HD2	1:Y:74:PRO:HG3	1.86	0.56
1:H:144:ALA:HB2	1:H:150:ILE:CG2	2.36	0.56
1:Y:149:GLN:H	1:Y:149:GLN:HE21	1.54	0.55
1:4:91:TYR:CZ	1:4:135:LYS:HD3	2.41	0.55
1:6:13:GLN:HB2	1:6:104:LEU:HD11	1.88	0.55
1:4:15:ASN:ND2	1:4:71:ASP:HB2	2.22	0.55
1:P:36:LEU:HB3	1:P:39:PHE:HD1	1.70	0.55
1:R:11:ASN:ND2	1:R:69:GLU:H	2.05	0.55
1:0:91:TYR:CE2	1:0:95:LYS:HE2	2.43	0.54
1:0:144:ALA:HB2	1:0:150:ILE:HG21	1.90	0.54
1:C:6:MET:HE3	1:C:108:ALA:HB2	1.90	0.54
1:9:149:GLN:HE21	1:9:149:GLN:N	2.00	0.54
1:6:69:GLU:HB2	1:O:78:LYS:HE3	1.90	0.53
1:I:44:LYS:HB2	1:I:163:PRO:HG3	1.90	0.53
1:W:13:GLN:HB2	1:W:104:LEU:HD11	1.90	0.53
1:Z:99:LYS:HA	1:Z:102:TYR:HD2	1.73	0.53
1:8:67:ARG:NH2	1:Q:78:LYS:O	2.42	0.53
1:5:69:GLU:OE2	1:N:75:LYS:NZ	2.37	0.53
1:0:145:LYS:C	1:O:147:SER:H	2.10	0.53
1:Z:94:GLU:OE1	1:Z:130:GLU:HB3	2.08	0.53
1:X:17:GLU:O	1:X:20:SER:HB2	2.08	0.53
1:P:130:GLU:O	1:P:134:VAL:HG23	2.08	0.53
1:V:14:LEU:C	1:V:14:LEU:HD23	2.30	0.52
1:Y:138:LEU:O	1:Y:138:LEU:HD23	2.09	0.52
1:N:144:ALA:HB2	1:N:150:ILE:HG21	1.91	0.52
1:G:138:LEU:HD23	1:G:138:LEU:O	2.09	0.52
1:H:65:ASN:OD1	1:R:135:LYS:HE3	2.09	0.52
1:H:144:ALA:HB2	1:H:150:ILE:HG21	1.91	0.52
1:A:15:ASN:HB2	4:A:2021:HOH:O	2.08	0.52

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:U:107:LEU:O	1:U:111:GLU:HG3	2.10	0.52
1:4:135:LYS:HE3	1:9:65:ASN:HD21	1.75	0.52
1:9:15:ASN:ND2	1:9:71:ASP:H	2.06	0.52
1:A:144:ALA:HB2	1:A:150:ILE:CG2	2.40	0.52
1:T:138:LEU:C	1:T:138:LEU:HD23	2.31	0.52
1:Y:165:LEU:HB3	1:Y:166:PRO:HD3	1.92	0.51
1:3:91:TYR:CZ	1:3:135:LYS:HD3	2.45	0.51
1:D:14:LEU:C	1:D:14:LEU:HD23	2.30	0.51
1:5:116:THR:O	1:5:120:LEU:HD12	2.09	0.51
1:I:88:GLU:HG2	1:I:138:LEU:HD11	1.92	0.51
1:V:138:LEU:C	1:V:138:LEU:HD23	2.31	0.51
1:D:144:ALA:CB	1:D:150:ILE:CG2	2.88	0.51
1:A:91:TYR:CZ	1:A:135:LYS:HD3	2.45	0.51
1:I:40:ALA:O	1:I:44:LYS:HG3	2.11	0.51
1:N:91:TYR:CZ	1:N:135:LYS:HD3	2.45	0.50
1:Y:144:ALA:O	1:Y:145:LYS:C	2.50	0.50
1:0:144:ALA:HB2	1:0:150:ILE:CG2	2.41	0.50
1:H:140:LYS:HD3	1:H:154:LEU:HD21	1.94	0.50
1:H:102:TYR:CE1	1:K:114:TYR:HB2	2.47	0.50
1:7:22:TYR:OH	1:P:70:LEU:HB3	2.11	0.50
1:0:67:ARG:NH2	1:I:30:TYR:HA	2.26	0.50
1:B:144:ALA:HB2	1:B:150:ILE:HG22	1.93	0.50
1:L:91:TYR:CZ	1:L:135:LYS:HD3	2.46	0.50
1:5:135:LYS:NZ	1:5:139:ASP:OD1	2.45	0.49
1:P:13:GLN:OE1	1:P:16:ARG:HD2	2.12	0.49
1:R:138:LEU:C	1:R:138:LEU:HD23	2.33	0.49
1:I:22:TYR:CD2	1:I:76:PRO:HD3	2.47	0.49
1:A:135:LYS:NZ	1:A:139:ASP:OD2	2.45	0.49
1:F:6:MET:HE3	1:F:108:ALA:HB2	1.93	0.49
1:E:94:GLU:OE1	1:E:94:GLU:HA	2.11	0.49
1:H:72:GLU:OE1	1:Z:72:GLU:OE1	2.31	0.49
1:0:131:GLU:OE1	1:Z:1:MET:CE	2.61	0.49
1:4:25:PHE:O	1:4:28:ALA:HB3	2.12	0.49
1:8:81:GLU:HB2	1:8:85:LYS:CD	2.42	0.49
1:1:58:TYR:OH	1:J:32:GLU:CG	2.60	0.49
1:V:62:TYR:CE2	1:V:68:VAL:HG23	2.48	0.49
1:Y:60:TYR:HB2	1:Y:119:PHE:CE1	2.48	0.49
1:Y:149:GLN:H	1:Y:149:GLN:NE2	2.10	0.49
1:7:22:TYR:CZ	1:P:70:LEU:HB3	2.48	0.48
1:M:138:LEU:C	1:M:138:LEU:HD23	2.33	0.48
1:2:165:LEU:HD13	1:K:165:LEU:HD12	1.95	0.48

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:Z:99:LYS:HA	1:Z:102:TYR:CD2	2.47	0.48
1:1:78:LYS:HE3	1:J:69:GLU:OE1	2.14	0.48
1:V:91:TYR:CE2	1:V:95:LYS:HE3	2.49	0.48
1:W:5:ARG:HD2	1:W:111:GLU:OE2	2.13	0.48
1:Y:81:GLU:HB2	1:Y:85:LYS:HG3	1.95	0.48
1:Z:27:MET:HG2	1:Z:80:TRP:CH2	2.48	0.48
1:9:72:GLU:OE1	1:R:72:GLU:OE1	2.31	0.48
1:1:46:GLN:NE2	1:1:130:GLU:OE1	2.45	0.48
1:3:51:ILE:O	1:3:54:ALA:HB3	2.13	0.48
1:F:48:GLU:OE2	1:F:165:LEU:HB2	2.14	0.48
1:X:91:TYR:CZ	1:X:135:LYS:HD3	2.49	0.48
1:3:15:ASN:OD1	1:3:71:ASP:HB2	2.12	0.48
1:6:32:GLU:HG3	1:O:58:TYR:HH	1.76	0.48
1:F:91:TYR:CZ	1:F:135:LYS:HD3	2.48	0.48
1:A:94:GLU:OE1	1:A:130:GLU:HB3	2.13	0.48
1:R:60:TYR:CZ	1:R:64:ARG:HG3	2.48	0.48
1:2:72:GLU:OE1	1:K:72:GLU:OE1	2.31	0.48
1:9:41:ASN:HA	1:9:44:LYS:HD2	1.94	0.48
1:E:67:ARG:NH2	4:E:2019:HOH:O	2.46	0.48
1:H:144:ALA:O	1:H:145:LYS:C	2.52	0.48
1:I:60:TYR:HB2	1:I:119:PHE:CE1	2.48	0.48
1:T:62:TYR:CE2	1:T:68:VAL:HG23	2.48	0.48
1:P:97:ILE:O	1:P:101:ILE:HG12	2.13	0.48
1:0:67:ARG:HH22	1:I:30:TYR:HA	1.79	0.48
1:Y:6:MET:HE1	1:Y:108:ALA:HB2	1.94	0.48
1:2:138:LEU:C	1:2:138:LEU:HD23	2.34	0.47
1:7:22:TYR:CE1	1:P:70:LEU:HD13	2.49	0.47
1:M:114:TYR:HB2	1:P:102:TYR:CD1	2.49	0.47
1:K:149:GLN:HE21	1:K:149:GLN:N	2.06	0.47
1:Z:138:LEU:HD23	1:Z:138:LEU:O	2.15	0.47
1:R:62:TYR:CE2	1:R:68:VAL:HG23	2.49	0.47
1:V:165:LEU:O	1:V:166:PRO:C	2.52	0.47
1:W:143:PHE:CG	1:W:143:PHE:O	2.67	0.47
1:4:165:LEU:O	1:4:166:PRO:C	2.53	0.47
1:J:81:GLU:HB2	1:J:85:LYS:HG3	1.97	0.47
1:Y:138:LEU:HD23	1:Y:138:LEU:C	2.35	0.47
1:7:70:LEU:HB3	1:P:22:TYR:CZ	2.50	0.47
1:8:25:PHE:O	1:8:28:ALA:HB3	2.14	0.47
1:B:3:SER:CB	1:B:6:MET:H	2.28	0.47
1:V:46:GLN:NE2	1:V:49:GLU:OE1	2.48	0.47
1:T:144:ALA:O	1:T:145:LYS:C	2.54	0.47

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:D:60:TYR:HB2	1:D:119:PHE:CE1	2.50	0.47
1:P:149:GLN:H	1:P:149:GLN:HG2	1.44	0.47
1:T:144:ALA:HB2	1:T:150:ILE:HG21	1.97	0.47
1:Y:150:ILE:O	1:Y:154:LEU:HB2	2.15	0.47
1:6:165:LEU:O	1:6:167:GLY:N	2.48	0.46
1:7:70:LEU:HD13	1:P:22:TYR:CE1	2.49	0.46
1:9:64:ARG:HD2	1:9:64:ARG:HA	1.66	0.46
1:E:13:GLN:OE1	1:E:100:SER:HB3	2.15	0.46
1:E:135:LYS:NZ	1:E:139:ASP:OD1	2.47	0.46
1:W:138:LEU:HD23	1:W:138:LEU:O	2.13	0.46
1:1:77:PRO:HB2	1:1:80:TRP:CZ2	2.51	0.46
1:D:5:ARG:NH2	4:D:2002:HOH:O	2.41	0.46
1:N:27:MET:HG2	1:N:80:TRP:CH2	2.50	0.46
1:W:64:ARG:O	1:W:65:ASN:HB3	2.15	0.46
1:6:64:ARG:HD2	1:6:64:ARG:HA	1.64	0.46
1:Z:11:ASN:HD21	1:Z:69:GLU:H	1.63	0.46
1:P:122:TRP:HB2	4:P:2012:HOH:O	2.16	0.46
1:4:6:MET:HE3	1:4:108:ALA:HA	1.97	0.46
1:4:48:GLU:OE2	1:4:165:LEU:HB2	2.16	0.46
1:5:91:TYR:CZ	1:5:135:LYS:HD3	2.51	0.46
1:D:72:GLU:OE1	1:V:72:GLU:OE1	2.34	0.46
1:G:111:GLU:O	1:G:112:LYS:HB2	2.15	0.46
1:2:156:LYS:O	1:2:159:SER:OG	2.27	0.46
1:7:64:ARG:HA	1:7:64:ARG:HD2	1.80	0.46
1:7:144:ALA:O	1:7:145:LYS:C	2.54	0.46
1:O:64:ARG:HD2	1:O:64:ARG:HA	1.64	0.46
1:5:17:GLU:O	1:5:20:SER:HB2	2.16	0.46
1:8:64:ARG:HD2	1:8:64:ARG:HA	1.67	0.46
1:Y:82:SER:HB2	1:Y:83:PRO:HD2	1.98	0.46
1:9:69:GLU:OE2	1:R:75:LYS:NZ	2.48	0.45
1:9:165:LEU:HB3	1:9:166:PRO:HD3	1.99	0.45
1:M:23:LEU:O	1:M:27:MET:HG3	2.16	0.45
1:1:94:GLU:OE2	1:1:94:GLU:HA	2.16	0.45
1:R:11:ASN:HD21	1:R:68:VAL:HA	1.82	0.45
1:B:138:LEU:C	1:B:138:LEU:HD23	2.37	0.45
1:E:138:LEU:C	1:E:138:LEU:HD23	2.36	0.45
1:I:88:GLU:CG	1:I:138:LEU:HD11	2.47	0.45
1:6:70:LEU:HD12	1:O:26:ALA:HB2	1.99	0.45
1:A:138:LEU:C	1:A:138:LEU:CD2	2.84	0.45
1:3:6:MET:HE3	1:3:10:LEU:HG	1.99	0.45
1:J:149:GLN:H	1:J:149:GLN:HE21	1.64	0.45

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:Z:11:ASN:ND2	1:Z:69:GLU:H	2.14	0.45	
1:6:42:TRP:CD1	1:6:158:LEU:HD22	2.51	0.44	
1:1:143:PHE:HE2	1:O:152:PHE:HB2	1.82	0.44	
1:C:64:ARG:O	1:C:65:ASN:HB3	2.16	0.44	
1:C:102:TYR:HB3	1:D:114:TYR:CE1	2.51	0.44	
1:M:6:MET:HE3	1:M:108:ALA:HB2	1.99	0.44	
1:M:73:ILE:HA	1:M:74:PRO:HD3	1.81	0.44	
1:5:70:LEU:HD13	1:N:22:TYR:CE1	2.52	0.44	
1:Z:81:GLU:H	1:Z:85:LYS:CD	2.26	0.44	
1:6:32:GLU:HG2	1:6:40:ALA:HB1	1.99	0.44	
1:Z:38:GLY:HA3	1:Z:155:ASP:O	2.17	0.44	
1:4:22:TYR:CE1	1:M:73:ILE:HD11	2.53	0.44	
1:A:85:LYS:HG3	4:A:2029:HOH:O	2.17	0.44	
1:E:165:LEU:HD12	1:E:165:LEU:HA	1.79	0.44	
1:W:6:MET:HE3	1:W:108:ALA:HB2	2.00	0.44	
1:6:23:LEU:O	1:6:26:ALA:HB3	2.18	0.44	
1:B:97:ILE:O	1:B:100:SER:HB2	2.18	0.44	
1:E:138:LEU:HD23	1:E:138:LEU:O	2.18	0.44	
1:P:116:THR:HG22	1:P:120:LEU:HD11	2.00	0.44	
1:7:165:LEU:HD12	1:7:165:LEU:HA	1.77	0.43	
1:C:103:GLU:HG2	1:Y:16:ARG:NH2	2.33	0.43	
1:L:15:ASN:ND2	1:L:71:ASP:HB2	2.33	0.43	
1:M:102:TYR:CE1	1:0:114:TYR:HB2	2.53	0.43	
1:C:144:ALA:HB2	1:C:150:ILE:CG2	2.47	0.43	
1:F:56:ARG:HB2	1:F:123:PHE:HZ	1.83	0.43	
1:Q:60:TYR:HB2	1:Q:119:PHE:CE1	2.53	0.43	
1:0:13:GLN:O	1:0:17:GLU:HG2	2.19	0.43	
1:D:69:GLU:HG3	1:V:78:LYS:HD2	2.01	0.43	
1:E:34:LEU:HD23	1:E:34:LEU:HA	1.78	0.43	
1:K:144:ALA:O	1:K:145:LYS:C	2.56	0.43	
1:L:140:LYS:HD2	1:L:154:LEU:HD21	1.99	0.43	
1:W:97:ILE:O	1:W:101:ILE:HG12	2.19	0.43	
1:7:83:PRO:O	1:7:86:ALA:HB3	2.18	0.43	
1:F:144:ALA:HB2	1:F:150:ILE:CG2	2.47	0.43	
1:P:127:GLN:HA	1:P:130:GLU:HB2	1.99	0.43	
1:Q:64:ARG:HA	1:Q:64:ARG:HD2	1.80	0.43	
1:3:48:GLU:OE2	1:3:165:LEU:HB3	2.18	0.43	
1:4:144:ALA:O	1:4:145:LYS:C	2.56	0.43	
1:A:144:ALA:HB2	1:A:150:ILE:HG21	2.01	0.43	
1:L:18:LEU:O	1:L:21:ALA:HB3	2.19	0.43	
1:R:94:GLU:OE1	1:R:94:GLU:HA	2.18	0.43	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:R:64:ARG:HA	1:R:64:ARG:HD2	1.83	0.43	
1:5:78:LYS:HE3	1:N:69:GLU:HB2	2.01	0.43	
1:B:3:SER:HB2	1:B:6:MET:H	1.83	0.43	
1:G:138:LEU:C	1:G:138:LEU:CD2	2.86	0.43	
1:P:41:ASN:HA	1:P:44:LYS:HD2	2.00	0.43	
1:V:13:GLN:HG2	1:V:57:PHE:CZ	2.54	0.43	
1:3:165:LEU:O	1:3:167:GLY:N	2.52	0.43	
1:B:64:ARG:HA	1:B:64:ARG:HD2	1.68	0.43	
1:0:64:ARG:0	1:O:65:ASN:HB3	2.19	0.43	
1:U:64:ARG:HA	1:U:64:ARG:HD2	1.91	0.43	
1:3:165:LEU:C	1:3:167:GLY:H	2.22	0.42	
1:7:149:GLN:O	1:7:153:MET:HG3	2.19	0.42	
1:P:60:TYR:CZ	1:P:64:ARG:HG3	2.55	0.42	
1:9:38:GLY:HA3	1:9:155:ASP:O	2.19	0.42	
1:G:24:TYR:CD2	1:G:46:GLN:HG3	2.54	0.42	
1:H:102:TYR:CD1	1:K:114:TYR:HB2	2.55	0.42	
1:M:61:ILE:HG23	1:M:66:GLY:HA3	2.00	0.42	
1:U:91:TYR:CZ	1:U:135:LYS:HD3	2.54	0.42	
1:W:91:TYR:CE2	1:W:95:LYS:HE3	2.54	0.42	
1:Y:165:LEU:HB3	1:Y:166:PRO:CD	2.50	0.42	
1:2:48:GLU:OE2	1:2:163:PRO:HB2	2.19	0.42	
1:4:135:LYS:CE	1:9:65:ASN:HD21	2.32	0.42	
1:C:165:LEU:HD12	1:C:165:LEU:HA	1.80	0.42	
1:C:165:LEU:HB3	1:C:166:PRO:HD3	2.01	0.42	
1:K:64:ARG:HA	1:K:64:ARG:HD2	1.73	0.42	
1:2:138:LEU:HD23	1:2:138:LEU:O	2.20	0.42	
1:D:144:ALA:O	1:D:145:LYS:C	2.58	0.42	
1:N:117:ARG:NH1	1:N:121:GLU:OE1	2.51	0.42	
1:P:27:MET:O	1:P:30:TYR:HB3	2.19	0.42	
1:S:97:ILE:O	1:S:100:SER:HB2	2.20	0.42	
1:3:147:SER:O	1:3:148:PRO:C	2.58	0.42	
1:K:48:GLU:OE2	1:K:165:LEU:HB2	2.19	0.42	
1:S:145:LYS:HB3	1:S:146:ASP:H	1.76	0.42	
1:W:91:TYR:CZ	1:W:95:LYS:HE3	2.55	0.42	
1:2:62:TYR:HE1	1:K:33:ASP:HB2	1.85	0.42	
1:6:165:LEU:HB3	1:6:166:PRO:HD3	2.01	0.41	
1:B:165:LEU:O	1:B:166:PRO:C	2.59	0.41	
1:5:114:TYR:HB3	1:6:124:ILE:HD13	2.03	0.41	
1:6:3:SER:OG	1:6:6:MET:HB2	2.20	0.41	
1:M:144:ALA:HB1	1:M:150:ILE:HB	2.00	0.41	
1:X:64:ARG:HA	1:X:64:ARG:HD2	1.76	0.41	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:B:22:TYR:CZ	1:T:70:LEU:HB3	2.55	0.41	
1:R:19:TYR:CD1	1:R:74:PRO:HG2	2.55	0.41	
1:5:143:PHE:HE2	1:J:152:PHE:HB2	1.84	0.41	
1:8:165:LEU:HD13	1:Q:165:LEU:HD13	2.03	0.41	
1:J:104:LEU:HB3	1:J:120:LEU:HD11	2.01	0.41	
1:T:165:LEU:O	1:T:166:PRO:C	2.58	0.41	
1:F:2:LEU:HD22	1:F:6:MET:HB3	2.02	0.41	
1:H:13:GLN:HG2	1:H:57:PHE:CZ	2.55	0.41	
1:O:55:LEU:HD23	1:O:55:LEU:HA	1.91	0.41	
1:Q:140:LYS:HD3	1:Q:154:LEU:HD21	2.02	0.41	
1:V:138:LEU:HD23	1:V:138:LEU:O	2.20	0.41	
1:W:4:GLU:O	1:W:8:LYS:HG3	2.21	0.41	
1:1:138:LEU:HD23	1:1:138:LEU:C	2.41	0.41	
1:L:144:ALA:HB2	1:L:150:ILE:HG21	2.02	0.41	
1:B:145:LYS:O	1:B:146:ASP:C	2.59	0.41	
1:H:138:LEU:HD23	1:H:138:LEU:C	2.41	0.41	
1:L:144:ALA:HB2	1:L:150:ILE:CG2	2.51	0.41	
1:S:165:LEU:HA	1:S:165:LEU:HD12	1.81	0.41	
1:V:64:ARG:HA	1:V:64:ARG:HD2	1.73	0.41	
1:4:106:ALA:O	1:4:110:GLU:HG3	2.21	0.41	
1:A:107:LEU:O	1:A:108:ALA:C	2.58	0.41	
1:K:73:ILE:HA	1:K:74:PRO:HD3	1.90	0.41	
1:O:11:ASN:HD22	1:O:11:ASN:HA	1.73	0.41	
1:V:165:LEU:HA	1:V:165:LEU:HD12	1.79	0.41	
1:0:149:GLN:HG3	1:H:149:GLN:HG2	2.03	0.41	
1:9:135:LYS:HE3	1:9:139:ASP:OD2	2.21	0.41	
1:C:5:ARG:HD3	1:C:5:ARG:N	2.35	0.41	
1:J:104:LEU:HB3	1:J:120:LEU:CD1	2.51	0.41	
1:L:64:ARG:HA	1:L:64:ARG:HD2	1.89	0.41	
1:R:13:GLN:OE1	1:R:100:SER:HB3	2.20	0.41	
1:8:2:LEU:HD22	1:8:6:MET:HB3	2.03	0.41	
1:A:147:SER:HA	1:A:148:PRO:HD2	1.84	0.41	
1:D:144:ALA:CB	1:D:150:ILE:HG21	2.37	0.41	
1:G:22:TYR:CD1	1:G:76:PRO:HD3	2.56	0.41	
1:0:145:LYS:O	1:O:147:SER:N	2.44	0.41	
1:W:144:ALA:O	1:W:145:LYS:C	2.59	0.41	
1:C:64:ARG:O	1:C:65:ASN:CB	2.70	0.40	
1:V:56:ARG:HH11	1:V:56:ARG:HG2	1.86	0.40	
1:Z:3:SER:OG	1:Z:6:MET:HB2	2.21	0.40	
1:B:22:TYR:CD2	1:B:76:PRO:HD3	2.56	0.40	
1:F:165:LEU:O	1:F:167:GLY:N	2.55	0.40	

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)	
1:N:3:SER:OG	1:N:6:MET:HB2	2.21	0.40	
1:3:72:GLU:OE1	1:L:72:GLU:OE1	2.40	0.40	
1:A:120:LEU:O	1:A:121:GLU:C	2.59	0.40	
1:C:165:LEU:HB3	1:C:166:PRO:CD	2.51	0.40	
1:I:5:ARG:HD3	1:I:5:ARG:N	2.35	0.40	
1:K:15:ASN:ND2	1:K:71:ASP:H	2.13	0.40	
1:P:58:TYR:C	1:P:58:TYR:CD1	2.95	0.40	
1:P:116:THR:HG22	1:P:120:LEU:CD1	2.51	0.40	
1:Z:48:GLU:OE2	1:Z:165:LEU:HB2	2.21	0.40	
1:H:60:TYR:CZ	1:H:64:ARG:HG3	2.57	0.40	
1:K:154:LEU:HD23	1:K:154:LEU:HA	1.74	0.40	
1:M:20:SER:O	1:M:24:TYR:CD2	2.75	0.40	
1:O:13:GLN:HG2	1:O:57:PHE:CZ	2.56	0.40	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	0	165/174~(95%)	160 (97%)	4 (2%)	1 (1%)	25	42
1	1	165/174~(95%)	161 (98%)	3 (2%)	1 (1%)	25	42
1	2	165/174~(95%)	160 (97%)	3 (2%)	2(1%)	13	23
1	3	165/174~(95%)	159~(96%)	5(3%)	1 (1%)	25	42
1	4	165/174~(95%)	159 (96%)	4 (2%)	2(1%)	13	23
1	5	165/174~(95%)	158 (96%)	5 (3%)	2(1%)	13	23
1	6	165/174~(95%)	156 (94%)	7 (4%)	2(1%)	13	23
1	7	165/174~(95%)	162 (98%)	1 (1%)	2(1%)	13	23
1	8	165/174~(95%)	160 (97%)	3 (2%)	2 (1%)	13	23
1	9	165/174~(95%)	161 (98%)	2 (1%)	2 (1%)	13	23

2J	D6
2J	D0

Continued from previou	is page

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	165/174~(95%)	163 (99%)	1 (1%)	1 (1%)	25	42
1	В	165/174~(95%)	159 (96%)	3(2%)	3(2%)	8	15
1	С	166/174~(95%)	159~(96%)	5(3%)	2(1%)	13	23
1	D	165/174~(95%)	160 (97%)	2(1%)	3~(2%)	8	15
1	Ε	165/174~(95%)	163 (99%)	1 (1%)	1 (1%)	25	42
1	F	165/174~(95%)	161 (98%)	3(2%)	1 (1%)	25	42
1	G	165/174~(95%)	162 (98%)	3 (2%)	0	100	100
1	Н	165/174~(95%)	160 (97%)	4 (2%)	1 (1%)	25	42
1	Ι	165/174~(95%)	159 (96%)	4 (2%)	2 (1%)	13	23
1	J	165/174~(95%)	161 (98%)	3 (2%)	1 (1%)	25	42
1	К	165/174~(95%)	162 (98%)	2 (1%)	1 (1%)	25	42
1	L	165/174~(95%)	161 (98%)	2 (1%)	2 (1%)	13	23
1	М	165/174~(95%)	155 (94%)	8 (5%)	2 (1%)	13	23
1	Ν	165/174~(95%)	160 (97%)	5 (3%)	0	100	100
1	Ο	165/174~(95%)	159 (96%)	4 (2%)	2 (1%)	13	23
1	Р	165/174~(95%)	158 (96%)	5 (3%)	2 (1%)	13	23
1	Q	165/174~(95%)	159 (96%)	4 (2%)	2 (1%)	13	23
1	R	165/174~(95%)	160 (97%)	3 (2%)	2 (1%)	13	23
1	S	165/174~(95%)	161 (98%)	3 (2%)	1 (1%)	25	42
1	Т	165/174~(95%)	161 (98%)	2 (1%)	2 (1%)	13	23
1	U	165/174~(95%)	162 (98%)	1 (1%)	2 (1%)	13	23
1	V	165/174~(95%)	158 (96%)	6 (4%)	1 (1%)	25	42
1	W	165/174~(95%)	161 (98%)	4 (2%)	0	100	100
1	Х	165/174~(95%)	161 (98%)	3 (2%)	1 (1%)	25	42
1	Y	165/174~(95%)	160 (97%)	3 (2%)	2 (1%)	13	23
1	Z	165/174~(95%)	158 (96%)	5 (3%)	2 (1%)	13	23
All	All	5941/6264~(95%)	5759 (97%)	126 (2%)	56 (1%)	17	31

All (56) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	2	145	LYS
1	3	166	PRO
	<i>a</i> .:	1	

Mol	Chain	Res	Type
1	4	145	LYS
1	7	145	LYS
1	8	145	LYS
1	Н	145	LYS
1	K	145	LYS
1	0	146	ASP
1	Р	145	LYS
1	R	145	LYS
1	S	145	LYS
1	Т	145	LYS
1	U	145	LYS
1	Х	145	LYS
1	Y	145	LYS
1	Z	143	PHE
1	9	145	LYS
1	9	166	PRO
1	В	146	ASP
1	D	145	LYS
1	0	145	LYS
1	Q	145	LYS
1	V	166	PRO
1	0	145	LYS
1	5	145	LYS
1	Е	145	LYS
1	F	166	PRO
1	Ι	36	LEU
1	U	166	PRO
1	Y	143	PHE
1	1	145	LYS
1	6	145	LYS
1	6	166	PRO
1	B	145	LYS
1	L	146	ASP
1	M	145	LYS
1	M	166	PRO
1	<u> </u>	143	PHE
1	7	166	PRO
1	I	166	PRO
1	Q	166	PRO
1	A	166	PRO
1	C	145	LYS
1	J	166	PRO

Mol	Chain	Res	Type
1	L	145	LYS
1	5	166	PRO
1	D	165	LEU
1	D	166	PRO
1	R	166	PRO
1	2	166	PRO
1	8	166	PRO
1	В	166	PRO
1	С	166	PRO
1	Р	166	PRO
1	Z	166	PRO
1	4	166	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	0	142/147~(97%)	133~(94%)	9~(6%)	18	31
1	1	142/147~(97%)	133 (94%)	9~(6%)	18	31
1	2	142/147~(97%)	138~(97%)	4(3%)	43	63
1	3	142/147~(97%)	137~(96%)	5 (4%)	36	56
1	4	142/147~(97%)	136~(96%)	6 (4%)	30	49
1	5	142/147~(97%)	135~(95%)	7~(5%)	25	43
1	6	142/147~(97%)	132 (93%)	10 (7%)	15	26
1	7	142/147~(97%)	134 (94%)	8 (6%)	21	36
1	8	142/147~(97%)	135~(95%)	7~(5%)	25	43
1	9	142/147~(97%)	135~(95%)	7~(5%)	25	43
1	А	142/147~(97%)	133 (94%)	9~(6%)	18	31
1	В	142/147~(97%)	138~(97%)	4 (3%)	43	63
1	С	143/147~(97%)	135 (94%)	8 (6%)	21	36
1	D	142/147~(97%)	131 (92%)	11 (8%)	13	22

\mathbf{Mol}	Chain	Analysed	Rotameric	Outliers	Percentiles		
1	Ε	142/147~(97%)	135~(95%)	7~(5%)	25	43	
1	F	142/147~(97%)	136~(96%)	6 (4%)	30	49	
1	G	142/147~(97%)	139~(98%)	3~(2%)	53	71	
1	Н	142/147~(97%)	135~(95%)	7 (5%)	25	43	
1	Ι	142/147~(97%)	137~(96%)	5(4%)	36	56	
1	J	142/147~(97%)	136~(96%)	6 (4%)	30	49	
1	Κ	142/147~(97%)	132 (93%)	10 (7%)	15	26	
1	L	142/147~(97%)	135~(95%)	7(5%)	25	43	
1	М	142/147~(97%)	135~(95%)	7(5%)	25	43	
1	Ν	142/147~(97%)	134 (94%)	8 (6%)	21	36	
1	О	142/147~(97%)	132 (93%)	10 (7%)	15	26	
1	Р	142/147~(97%)	136 (96%)	6 (4%)	30	49	
1	Q	142/147~(97%)	132 (93%)	10 (7%)	15	26	
1	R	142/147~(97%)	136 (96%)	6 (4%)	30	49	
1	S	142/147~(97%)	131 (92%)	11 (8%)	13	22	
1	Т	142/147~(97%)	135~(95%)	7 (5%)	25	43	
1	U	142/147~(97%)	136 (96%)	6 (4%)	30	49	
1	V	142/147~(97%)	136~(96%)	6 (4%)	30	49	
1	W	142/147~(97%)	134 (94%)	8 (6%)	21	36	
1	Х	142/147~(97%)	133 (94%)	9 (6%)	18	31	
1	Y	142/147~(97%)	139 (98%)	3 (2%)	53	71	
1	Ζ	142/147~(97%)	135~(95%)	7 (5%)	25	43	
All	All	5113/5292~(97%)	4854 (95%)	259 (5%)	24	41	

Continued from previous page...

All (259) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	0	5	ARG
1	0	6	MET
1	0	22	TYR
1	0	67	ARG
1	0	79	GLU
1	0	85	LYS
1	0	104	LEU

Mol	Chain	Res	Type		
1	0	110	GLU		
1	0	149	GLN		
1	1	1	MET		
1	1	5	ARG		
1	1	6	MET		
1	1	15	ASN		
1	1	22	TYR		
1	1	72	GLU		
1	1	104	LEU		
1	1	133	SER		
1	1	149	GLN		
1	2	6	MET		
1	2	22	TYR		
1	2	79	GLU		
1	2	149	GLN		
1	3	1	MET		
1	3	5	ARG		
1	3	49	GLU		
1	3	72	GLU		
1	3	104	LEU		
1	4	1	MET		
1	4	6	MET		
1	4	15	ASN		
1	4	72	GLU		
1	4	104	LEU		
1	4	149	GLN		
1	5	22	TYR		
1	5	72	GLU		
1	5	79	GLU		
1	5	100	SER		
1	5	104	LEU		
1	5	133	SER		
1	5	154	LEU		
1	6	1	MET		
1	6	6	MET		
1	6	15	ASN		
1	6	22	TYR		
1	6	72	GLU		
1	6	83	PRO		
1	6	100	SER		
1	6	133	SER		
1	6	149	GLN		

Mol	Chain	Res	Type		
1	6	154	LEU		
1	7	1	MET		
1	7	22	TYR		
1	7	98	SER		
1	7	100	SER		
1	7	104	LEU		
1	7	130	GLU		
1	7	154	LEU		
1	7	164	LYS		
1	8	1	MET		
1	8	5	ARG		
1	8	6	MET		
1	8	20	SER		
1	8	22	TYR		
1	8	133	SER		
1	8	154	LEU		
1	9	1	MET		
1	9	5	ARG		
1	9	15	ASN		
1	9	22	TYR		
1	9	72	GLU		
1	9	136	LYS		
1	9	149	GLN		
1	А	1	MET		
1	A	6	MET		
1	A	22	TYR		
1	A	34	LEU		
1	A	58	TYR		
1	A	72	GLU		
1	A	100	SER		
1	A	110	GLU		
1	A	149	GLN		
1	B	5	ARG		
1	B	34	LEU		
1	B	149	GLN		
1	B	154			
1	C	1	MET		
1	C	6	MET		
1	C	22	TYR		
1	C	34	LEU		
1	C	49	GLU		
1	C	56	ARG		

Mol	Chain	Res	Type
1	С	149	GLN
1	С	154	LEU
1	D	1	MET
1	D	5	ARG
1	D	6	MET
1	D	22	TYR
1	D	34	LEU
1	D	72	GLU
1	D	85	LYS
1	D	100	SER
1	D	110	GLU
1	D	133	SER
1	D	149	GLN
1	Е	1	MET
1	Е	4	GLU
1	Е	6	MET
1	Е	22	TYR
1	Е	67	ARG
1	Е	104	LEU
1	Е	149	GLN
1	F	1	MET
1	F	6	MET
1	F	22	TYR
1	F	146	ASP
1	F	149	GLN
1	F	156	LYS
1	G	1	MET
1	G	22	TYR
1	G	72	GLU
1	Н	1	MET
1	Н	4	GLU
1	Н	6	MET
1	Н	22	TYR
1	Н	67	ARG
1	Н	72	GLU
1	Н	79	GLU
1	Ι	5	ARG
1	Ι	22	TYR
1	Ι	72	GLU
1	Ι	119	PHE
1	I	149	GLN
1	J	22	TYR

Mol	Chain	Res	Type
1	J	49	GLU
1	J	72	GLU
1	J	112	LYS
1	J	149	GLN
1	J	165	LEU
1	Κ	1	MET
1	Κ	6	MET
1	Κ	15	ASN
1	Κ	22	TYR
1	Κ	33	ASP
1	Κ	72	GLU
1	K	100	SER
1	K	133	SER
1	K	149	GLN
1	K	165	LEU
1	L	1	MET
1	L	6	MET
1	L	22	TYR
1	L	72	GLU
1	L	104	LEU
1	L	112	LYS
1	L	149	GLN
1	М	1	MET
1	М	4	GLU
1	М	6	MET
1	М	22	TYR
1	М	49	GLU
1	М	72	GLU
1	М	149	GLN
1	N	6	MET
1	N	22	TYR
1	N	65	ASN
1	N	67	ARG
1	N	72	GLU
1	N	133	SER
1	N	146	ASP
1	N	149	GLN
1	0		MET
1	0		ASN
1	0	22	TYR
1	0	49	GLU
1	0	56	ARG

Mol	Chain	Res	Type		
1	0	85	LYS		
1	0	99	LYS		
1	0	100	SER		
1	0	147	SER		
1	0	164	LYS		
1	Р	22	TYR		
1	Р	98	SER		
1	Р	100	SER		
1	Р	104	LEU		
1	Р	149	GLN		
1	Р	154	LEU		
1	Q	1	MET		
1	Q	5	ARG		
1	Q	6	MET		
1	Q	22	TYR		
1	Q	75	LYS		
1	Q	100	SER		
1	Q	104	LEU		
1	Q	133	SER		
1	Q	149	GLN		
1	Q	156	LYS		
1	R	1	MET		
1	R	6	MET		
1	R	20	SER		
1	R	22	TYR		
1	R	72	GLU		
1	R	133	SER		
1	S	1	MET		
1	S	5	ARG		
1	S	22	TYR		
1	S	34	LEU		
1	S	49	GLU		
1	S	72	GLU		
1	S	99	LYS		
1	S	111	GLU		
1	S	147	SER		
1	S	149	GLN		
1	S	152	PHE		
1	Т	22	TYR		
1	Т	34	LEU		
1	Т	72	GLU		
1	Т	138	LEU		

Mol	Chain	Res	Type		
1	Т	143	PHE		
1	T	152	PHE		
1	T	154	LEU		
1	U	1	MET		
1	U	34	LEU		
1	U	72	GLU		
1	U	104	LEU		
1	U	133	SER		
1	U	149	GLN		
1	V	1	MET		
1	V	6	MET		
1	V	22	TYR		
1	V	72	GLU		
1	V	149	GLN		
1	V	156	LYS		
1	W	1	MET		
1	W	34	LEU		
1	W	72	GLU		
1	W	110	GLU		
1	W	143	PHE		
1	W	149	GLN		
1	W	152	PHE		
1	W	154	LEU		
1	Х	1	MET		
1	Х	6	MET		
1	Х	22	TYR		
1	Х	49	GLU		
1	Х	72	GLU		
1	Х	99	LYS		
1	Х	104	LEU		
1	Х	130	GLU		
1	Х	149	GLN		
1	Y	22	TYR		
1	Y	149	GLN		
1	Y	154	LEU		
1	Z	1	MET		
1	Ζ	6	MET		
1	Z	11	ASN		
1	Ζ	72	GLU		
1	Ζ	99	LYS		
1	Ζ	133	SER		
1	Ζ	149	GLN		

Continued from previous page...

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (52) such sidechains are listed below:

Mol	Chain	Res	Type		
1	0	15	ASN		
1	0	149	GLN		
1	1	15	ASN		
1	3	15	ASN		
1	6	127	GLN		
1	6	149	GLN		
1	7	127	GLN		
1	8	149	GLN		
1	9	15	ASN		
1	9	65	ASN		
1	9	125	ASN		
1	9	149	GLN		
1	В	127	GLN		
1	В	149	GLN		
1	С	149	GLN		
1	D	127	GLN		
1	Е	149	GLN		
1	F	127	GLN		
1	G	127	GLN		
1	Н	127	GLN		
1	Н	149	GLN		
1	Ι	11	ASN		
1	Ι	127	GLN		
1	Ι	149	GLN		
1	J	149	GLN		
1	K	15	ASN		
1	K	127	GLN		
1	K	149	GLN		
1	L	15	ASN		
1	L	127	GLN		
1	М	13	GLN		
1	М	127	GLN		
1	М	149	GLN		
1	N	65	ASN		
1	N	127	GLN		
1	N	149	GLN		
1	0	11	ASN		
1	0	127	GLN		
1	0	149	GLN		
1	Р	149	GLN		
1	Q	127	GLN		

Mol	Chain	Res	Type
1	Q	149	GLN
1	R	11	ASN
1	R	149	GLN
1	Т	127	GLN
1	U	149	GLN
1	V	149	GLN
1	W	149	GLN
1	Х	127	GLN
1	Y	127	GLN
1	Y	149	GLN
1	Z	11	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 76 ligands modelled in this entry, 36 are monoatomic - leaving 40 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Turn		Chain	Chain	Chain	Chain	Chain	Chain	Chain	Dog	Link	B	ond leng	gths	B	ond ang	gles
Moi Type	I nes			Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2							
3	SO4	Ι	1168	-	4,4,4	0.10	0	$6,\!6,\!6$	0.62	0						
3	SO4	М	1168	-	4,4,4	0.16	0	$6,\!6,\!6$	0.20	0						
3	SO4	S	1669	-	4,4,4	0.14	0	$6,\!6,\!6$	0.44	0						

Mal	Turne	Chain	Dec	Tinle	B	Bond lengths		Bond angles		
	Type	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
3	SO4	А	1170	-	4,4,4	0.32	0	$6,\!6,\!6$	0.31	0
3	SO4	3	1668	-	4,4,4	0.20	0	6,6,6	0.28	0
3	SO4	С	1168	-	4,4,4	0.12	0	$6,\!6,\!6$	0.20	0
3	SO4	G	1169	-	4,4,4	0.20	0	$6,\!6,\!6$	0.19	0
3	SO4	S	1668	-	4,4,4	0.13	0	$6,\!6,\!6$	0.30	0
3	SO4	Х	1668	-	4,4,4	0.14	0	$6,\!6,\!6$	0.49	0
3	SO4	V	1669	-	4,4,4	0.15	0	$6,\!6,\!6$	0.37	0
3	SO4	1	1668	-	4,4,4	0.16	0	$6,\!6,\!6$	0.34	0
3	SO4	А	1169	-	4,4,4	0.21	0	$6,\!6,\!6$	0.30	0
3	SO4	6	1668	-	4,4,4	0.28	0	$6,\!6,\!6$	0.48	0
3	SO4	5	1668	-	4,4,4	0.14	0	$6,\!6,\!6$	0.43	0
3	SO4	С	1169	-	4,4,4	0.10	0	$6,\!6,\!6$	0.40	0
3	SO4	3	1669	-	4,4,4	0.31	0	$6,\!6,\!6$	0.41	0
3	SO4	Т	1668	-	4,4,4	0.40	0	$6,\!6,\!6$	0.66	0
3	SO4	2	1669	-	4,4,4	0.18	0	$6,\!6,\!6$	0.30	0
3	SO4	W	1668	_	4,4,4	0.28	0	$6,\!6,\!6$	0.54	0
3	SO4	4	1668	-	4,4,4	0.28	0	$6,\!6,\!6$	0.28	0
3	SO4	J	1169	-	4,4,4	0.12	0	$6,\!6,\!6$	0.39	0
3	SO4	R	1168	-	4,4,4	0.17	0	$6,\!6,\!6$	0.36	0
3	SO4	7	1668	-	4,4,4	0.20	0	$6,\!6,\!6$	0.36	0
3	SO4	8	1668	-	4,4,4	0.15	0	$6,\!6,\!6$	0.27	0
3	SO4	К	1168	-	4,4,4	0.20	0	$6,\!6,\!6$	0.37	0
3	SO4	1	1669	-	4,4,4	0.16	0	$6,\!6,\!6$	0.64	0
3	SO4	Е	1168	-	4,4,4	0.24	0	$6,\!6,\!6$	0.60	0
3	SO4	F	1168	-	4,4,4	0.11	0	$6,\!6,\!6$	0.37	0
3	SO4	Q	1168	-	4,4,4	0.17	0	$6,\!6,\!6$	0.39	0
3	SO4	Н	1168	-	4,4,4	0.26	0	$6,\!6,\!6$	0.44	0
3	SO4	А	1168	-	4,4,4	0.27	0	$6,\!6,\!6$	0.46	0
3	SO4	В	1168	-	4,4,4	0.18	0	$6,\!6,\!6$	0.33	0
3	SO4	V	1668	-	4,4,4	0.16	0	$6,\!6,\!6$	0.41	0
3	SO4	J	1168	-	4,4,4	0.18	0	6,6,6	0.49	0
3	SO4	W	1669	-	4,4,4	0.22	0	6,6,6	0.17	0
3	SO4	0	1168	-	4,4,4	0.21	0	6,6,6	0.27	0
3	SO4	Ζ	1668	-	4,4,4	0.19	0	$6,\!6,\!6$	0.23	0
3	SO4	2	1668	-	4,4,4	0.18	0	$6,\!6,\!6$	0.34	0
3	SO4	G	1168	-	4,4,4	0.30	0	6,6,6	0.38	0
3	SO4	J	1170	-	4,4,4	0.19	0	$6,\!6,\!6$	0.78	0

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

EDS was not executed - this section is therefore empty.

6.2 Non-standard residues in protein, DNA, RNA chains (i)

EDS was not executed - this section is therefore empty.

6.3 Carbohydrates (i)

EDS was not executed - this section is therefore empty.

6.4 Ligands (i)

EDS was not executed - this section is therefore empty.

6.5 Other polymers (i)

EDS was not executed - this section is therefore empty.

