

wwPDB EM Validation Summary Report (i)

Dec 17, 2023 – 03:47 AM JST

PDB ID	:	8JDJ
EMDB ID	:	EMD-36178
Title	:	Structure of the Human cytoplasmic Ribosome with human $tRNA Asp(Q34)$
		and mRNA(GAU)
Authors	:	Ishiguro, K.; Yokoyama, T.; Shirouzu, M.; Suzuki, T.
Deposited on	:	2023-05-14
Resolution	:	2.50 Å(reported)
Based on initial model	:	6Y0G

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev70
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.50 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Qua	lity of chain		
1	А	14	7%	93%		7%
2	В	75	11%		19%	7%
2	С	75	21%		20%	7%
3	D	5070	8%	14%	31%	
4	Е	120	88	3%		12%
5	F	156	80%		19%	6 •
6	G	257		95%		
7	Н	403	•	97%		••

Continue contract c	nued fron	n previous	page		
Mol	Chain	Length	Quality of chain		
8	Ι	427	83%		• 15%
9	J	297	<u>8%</u> 97%		••
10	Κ	288	10%	.	25%
11	L	248	5% 90%		• 9%
12	М	266	83%		• 15%
13	Ν	192	97%		
14	Ο	214	5% 94%		
15	Р	178	93%		
16	Q	211	97%		••
17	R	215	6 1% •	37%	9
18	S	204	98%		·
19	Т	203	96%		••
20	U	184	83%		• 15%
21	V	188	99%		••
22	W	196	91%		• 8%
23	Х	176	99%		
24	Y	160	96%		••
25	Ζ	128	74%	5%	21%
26	a	140	92%		• 6%
27	b	157	3 9% • 60	%	
28	с	156	76%	•	23%
29	d	145	90%		•• 8%
30	е	136	• 95%		
31	f	148	9 9%		
32	g	159	61% ••	35	%

 $Continued \ from \ previous \ page...$ Chain Length Quality of chain Mol 33 h 11583% 16% •• 9% i 3412583% • 14% i. 35j 135• 5% 94% i. k 36 11099% 8% 1 3711795% . . 5% 38123m 98% . 11% • • 39105n 96% 9740 0 87% • 11% 19% 70... 41 р 97% 6% • 425192% q ÷ 43128r 39% 59% • 2544 \mathbf{S} 96% . 9% ... 45106t 97% 5% 9246 u 99% . 47137v 89% 9% 17% 481869W 63% 24% 13% • 22% 29549х 70% 27% • 20% 50264у 80% 20% 12% 293 51 \mathbf{Z} 71% 28% • 40% 520 85% 24313% • 87% 531 26399% 21% 22045489% 8% • 84% 553 24991% • 5% 73% . . 41945695% 46% 5208 • • 5796%

Mol	Chain	Length	Quality of chain	
			72%	
58	6	194	91%	• 6%
59	7	165	50%	
00	•	100	28%	
60	8	158	85% ••	10%
61	9	151	98%	••
62	AA	151	12% 85% •	11%
63	AB	145	89%	• 8%
64	AC	146	93%	• • •
65	AD	135	93%	•••
66	AE	152	92%	• 5%
67	AF	145	95%	•••
68	AG	119	84% ·	14%
69	AH	83	95%	5%
70	AI	130	96%	•••
71	AJ	143	97%	•••
72	AK	133	89%	• 8%
73	AL	125	64% 5% 31%	
74	AM	115	82% ·	14%
75	AN	84	94%	5%•
76	AO	69	84%	12%
77	AP	56	77% · 20	0%
78	AQ	59	93%	• •
79	AR	317	96%	

2 Entry composition (i)

There are 81 unique types of molecules in this entry. The entry contains 209545 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called mRNA.

Mol	Chain	Residues		Ate	\mathbf{oms}	AltConf	Trace		
1	А	14	Total 303	C 135	N 55	O 99	Р 14	0	0

• Molecule 2 is a RNA chain called tRNA(Asp).

Mol	Chain	Residues		A	toms	AltConf	Trace		
2	В	75	Total 1612	C 726	N 283	O 529	Р 74	0	0
2	С	75	Total 1612	C 726	N 283	O 529	Р 74	0	0

• Molecule 3 is a RNA chain called 28S ribosomal RNA.

Mol	Chain	Residues		-	AltConf	Trace			
3	D	3512	Total 75336	C 33585	N 13757	O 24482	Р 3512	0	0

• Molecule 4 is a RNA chain called 5S ribosomal RNA.

Mol	Chain	Residues		A	AltConf	Trace			
4	Е	120	Total 2558	C 1141	N 456	0 842	Р 119	0	0

• Molecule 5 is a RNA chain called 5.8S ribosomal RNA.

Mol	Chain	Residues		А	AltConf	Trace			
5	F	156	Total 3315	C 1481	N 585	O 1094	Р 155	0	0

• Molecule 6 is a protein called 60S ribosomal protein L8.

Mol	Chain	Residues		At	AltConf	Trace			
6	G	247	Total 1891	C 1185	N 388	O 312	S 6	0	0

• Molecule 7 is a protein called 60S ribosomal protein L3.

Mol	Chain	Residues		At	oms			AltConf	Trace
7	Н	398	Total 3211	C 2045	N 604	0 548	S 14	0	0

• Molecule 8 is a protein called 60S ribosomal protein L4.

Mol	Chain	Residues		At	Atoms					
8	Ι	363	Total 2884	C 1815	N 577	0 478	S 14	0	0	

• Molecule 9 is a protein called 60S ribosomal protein L5.

Mol	Chain	Residues		At	oms			AltConf	Trace
9	J	293	Total 2379	C 1506	N 434	0 425	S 14	0	0

• Molecule 10 is a protein called 60S ribosomal protein L6.

Mol	Chain	Residues		At	oms			AltConf	Trace
10	K	217	Total 1751	C 1128	N 332	O 287	$\frac{S}{4}$	0	0

• Molecule 11 is a protein called 60S ribosomal protein L7.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	L	225	Total 1870	C 1202	N 358	O 301	S 9	0	0

• Molecule 12 is a protein called 60S ribosomal protein L7a.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
12	М	227	Total 1832	C 1168	N 352	O 308	${S \atop 4}$	0	0

• Molecule 13 is a protein called 60S ribosomal protein L9.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	Ν	190	Total 1518	C 956	N 284	O 272	S 6	0	0

• Molecule 14 is a protein called 60S ribosomal protein L10-like.

Mol	Chain	Residues		At	oms			AltConf	Trace
14	0	206	Total 1660	C 1053	N 319	0 275	S 13	0	0

• Molecule 15 is a protein called 60S ribosomal protein L11.

Mol	Chain	Residues		At	oms	AltConf	Trace		
15	Р	170	Total 1362	C 861	N 254	0 241	S 6	0	0

• Molecule 16 is a protein called 60S ribosomal protein L13.

Mol	Chain	Residues		At	oms			AltConf	Trace
16	Q	208	Total 1682	C 1052	N 348	0 278	${S \atop 4}$	0	0

• Molecule 17 is a protein called 60S ribosomal protein L14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
17	R	136	Total 1120	C 719	N 215	O 179	S 7	0	0

• Molecule 18 is a protein called 60S ribosomal protein L15.

Mol	Chain	Residues		At	oms			AltConf	Trace
18	S	203	Total 1701	C 1072	N 359	O 266	$\frac{S}{4}$	0	0

• Molecule 19 is a protein called 60S ribosomal protein L13a.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
19	Т	200	Total 1641	C 1058	N 320	0 258	${S \atop 5}$	0	0

• Molecule 20 is a protein called 60S ribosomal protein L17.

Mol	Chain	Residues		At	oms			AltConf	Trace
20	U	157	Total 1273	C 797	N 246	0 221	${f S}$ 9	0	0

• Molecule 21 is a protein called 60S ribosomal protein L18.

Mol	Chain	Residues		At	oms			AltConf	Trace
21	V	187	Total 1513	C 944	N 314	O 250	${f S}{5}$	0	0

• Molecule 22 is a protein called 60S ribosomal protein L19.

Mol	Chain	Residues		At	oms			AltConf	Trace
22	W	180	Total 1508	C 933	N 328	0 238	S 9	0	0

• Molecule 23 is a protein called 60S ribosomal protein L18a.

Mol	Chain	Residues		\mathbf{A}	toms			AltConf	Trace
23	Х	175	Total 1453	C 925	N 283	O 235	S 10	0	0

• Molecule 24 is a protein called 60S ribosomal protein L21.

Mol	Chain	Residues		At	oms	AltConf	Trace		
24	Y	159	Total 1298	C 823	N 252	0 217	S 6	0	0

• Molecule 25 is a protein called 60S ribosomal protein L22.

Mol	Chain	Residues		At	oms			AltConf	Trace
25	Ζ	101	Total 821	C 526	N 143	O 150	${S \over 2}$	0	0

• Molecule 26 is a protein called 60S ribosomal protein L23.

Mol	Chain	Residues		At	oms			AltConf	Trace
26	a	131	Total 979	C 618	N 184	0 172	${f S}{5}$	0	0

• Molecule 27 is a protein called 60S ribosomal protein L24.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
27	b	63	Total 528	C 337	N 103	O 85	${ m S} { m 3}$	0	0

• Molecule 28 is a protein called 60S ribosomal protein L23a.

Mol	Chain	Residues		Atoms					Trace
28	с	120	Total 981	C 628	N 185	0 167	S 1	0	0

• Molecule 29 is a protein called 60S ribosomal protein L26.

Mol	Chain	Residues		At	oms			AltConf	Trace
29	d	134	Total 1115	C 700	N 226	0 186	${ m S} { m 3}$	0	0

• Molecule 30 is a protein called 60S ribosomal protein L27.

Mol	Chain	Residues		At	oms			AltConf	Trace
30	е	135	Total 1107	C 714	N 208	0 182	${ m S} { m 3}$	0	0

• Molecule 31 is a protein called 60S ribosomal protein L27a.

Mol	Chain	Residues		At	oms	AltConf	Trace		
31	f	147	Total 1162	C 736	N 237	0 186	${ m S} { m 3}$	0	0

• Molecule 32 is a protein called 60S ribosomal protein L29.

Mol	Chain	Residues		At	oms	AltConf	Trace		
32	g	104	Total 832	C 515	N 182	0 132	${ m S} { m 3}$	0	0

• Molecule 33 is a protein called 60S ribosomal protein L30.

Mol	Chain	Residues		At	oms	AltConf	Trace		
33	h	97	Total 755	C 479	N 133	0 137	${f S}{f 6}$	0	0

• Molecule 34 is a protein called 60S ribosomal protein L31.

Mol	Chain	Residues		At	oms	AltConf	Trace		
34	i	107	Total 888	$\begin{array}{c} \mathrm{C} \\ 560 \end{array}$	N 171	O 155	${ m S} { m 2}$	0	0

• Molecule 35 is a protein called 60S ribosomal protein L32.

Mol	Chain	Residues		At	oms	AltConf	Trace		
35	j	128	Total 1053	C 667	N 216	0 165	${ m S}{ m 5}$	0	0

• Molecule 36 is a protein called 60S ribosomal protein L35a.

Mol	Chain	Residues		At	oms	AltConf	Trace		
36	k	109	Total 876	C 555	N 174	0 144	${ m S} { m 3}$	0	0

• Molecule 37 is a protein called 60S ribosomal protein L34.

Mol	Chain	Residues		At	oms	AltConf	Trace		
37	1	112	Total 888	C 555	N 183	0 144	S 6	0	0

• Molecule 38 is a protein called 60S ribosomal protein L35.

Mol	Chain	Residues		At	oms	AltConf	Trace		
38	m	121	Total 1010	C 638	N 204	0 167	S 1	0	0

• Molecule 39 is a protein called 60S ribosomal protein L36.

Mol	Chain	Residues		At	oms	AltConf	Trace		
39	n	102	Total 832	C 521	N 177	0 129	${ m S}{ m 5}$	0	0

• Molecule 40 is a protein called 60S ribosomal protein L37.

Mol	Chain	Residues		At	oms	AltConf	Trace		
40	О	86	Total 705	C 434	N 155	0 111	${f S}{5}$	0	0

• Molecule 41 is a protein called 60S ribosomal protein L38.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
41	р	69	Total 569	C 366	N 103	O 99	S 1	0	0

• Molecule 42 is a protein called 60S ribosomal protein L39.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
42	q	50	Total 444	C 281	N 98	O 64	S 1	0	0

• Molecule 43 is a protein called Ubiquitin-60S ribosomal protein L40.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
43	r	52	Total 429	C 266	N 90	O 67	S 6	0	0

• Molecule 44 is a protein called 60S ribosomal protein L41.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
44	5	25	Total	С	N	0	S	0	0
44	a	20	239	145	64	27	3	0	0

• Molecule 45 is a protein called 60S ribosomal protein L36a.

Mol	Chain	Residues		At	oms			AltConf	Trace
45	t	105	Total 862	C 542	N 175	O 139	S 6	0	0

• Molecule 46 is a protein called 60S ribosomal protein L37a.

Mol	Chain	Residues		At	oms			AltConf	Trace
46	u	91	Total 708	С 445	N 136	O 120	${ m S} 7$	0	0

• Molecule 47 is a protein called 60S ribosomal protein L28.

Mol	Chain	Residues		At	oms			AltConf	Trace
47	V	125	Total 1002	C 622	N 207	0 168	${S \atop 5}$	0	0

• Molecule 48 is a RNA chain called 18S ribosomal RNA.

Mol	Chain	Residues		I	Atoms			AltConf	Trace
48	W	1634	Total 34933	C 15622	N 6267	O 11411	Р 1633	0	0

• Molecule 49 is a protein called 40S ribosomal protein SA.

Mol	Chain	Residues		Ate		AltConf	Trace		
49	x	215	Total 1695	C 1077	N 297	0 313	S 8	0	0

• Molecule 50 is a protein called 40S ribosomal protein S3a.

Mol	Chain	Residues		At	AltConf	Trace			
50	У	212	Total 1725	C 1096	N 308	O 307	S 14	0	0

• Molecule 51 is a protein called 40S ribosomal protein S2.

Mol	Chain	Residues		At	oms			AltConf	Trace
51	Z	212	Total 1633	C 1059	N 279	O 285	S 10	0	0

• Molecule 52 is a protein called 40S ribosomal protein S3.

Mol	Chain	Residues		At	oms			AltConf	Trace
52	0	212	Total 1646	C 1050	N 299	O 290	S 7	0	0

• Molecule 53 is a protein called 40S ribosomal protein S4, X isoform.

Mol	Chain	Residues		At	oms			AltConf	Trace
53	1	262	Total 2070	C 1321	N 383	O 358	S 8	0	0

• Molecule 54 is a protein called 40S ribosomal protein S5.

Mol	Chain	Residues		At	oms			AltConf	Trace
54	2	187	Total 1464	C 916	N 276	O 265	S 7	0	0

• Molecule 55 is a protein called 40S ribosomal protein S6.

Mol	Chain	Residues		At	oms			AltConf	Trace
55	3	237	Total 1917	C 1197	N 384	O 329	${ m S} 7$	0	0

• Molecule 56 is a protein called 40S ribosomal protein S7.

Mol	Chain	Residues		At	oms			AltConf	Trace
56	4	187	Total 1510	C 963	N 278	0 268	S 1	0	0

• Molecule 57 is a protein called 40S ribosomal protein S8.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
57	5	206	Total 1674	C 1049	N 329	0 291	$\frac{S}{5}$	0	0

• Molecule 58 is a protein called 40S ribosomal protein S9.

Mol	Chain	Residues		At	oms	AltConf	Trace		
58	6	182	Total 1506	$\begin{array}{c} \mathrm{C} \\ 959 \end{array}$	N 300	O 245	${ m S} { m 2}$	0	0

• Molecule 59 is a protein called 40S ribosomal protein S10.

Mol	Chain	Residues		At	AltConf	Trace			
59	7	96	Total 810	C 530	N 143	0 131	S 6	0	0

• Molecule 60 is a protein called 40S ribosomal protein S11.

Mol	Chain	Residues		At	oms			AltConf	Trace
60	8	142	Total 1150	C 732	N 215	0 197	S 6	0	0

• Molecule 61 is a protein called 40S ribosomal protein S13.

Mol	Chain	Residues		At	oms			AltConf	Trace
61	9	150	Total 1208	С 773	N 229	O 205	S 1	0	0

• Molecule 62 is a protein called 40S ribosomal protein S14.

Mol	Chain	Residues		At	oms			AltConf	Trace
62	AA	134	Total 1002	C 612	N 197	O 187	S 6	0	0

• Molecule 63 is a protein called 40S ribosomal protein S15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
63	AB	134	Total 1103	C 703	N 208	0 185	S 7	0	0

• Molecule 64 is a protein called 40S ribosomal protein S16.

Mol	Chain	Residues		At	oms			AltConf	Trace
64	AC	142	Total 1128	C 717	N 213	0 195	${ m S} { m 3}$	0	0

• Molecule 65 is a protein called 40S ribosomal protein S17.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
65	AD	131	Total 1057	C 665	N 197	0 191	${f S}$ 4	0	0

• Molecule 66 is a protein called 40S ribosomal protein S18.

Mol	Chain	Residues		At	oms	AltConf	Trace		
66	AE	144	Total 1169	С 731	N 236	0 201	S 1	0	0

• Molecule 67 is a protein called 40S ribosomal protein S19.

Mol	Chain	Residues		At	oms			AltConf	Trace
67	AF	143	Total 1111	C 696	N 213	0 198	$\frac{S}{4}$	0	0

• Molecule 68 is a protein called 40S ribosomal protein S20.

Mol	Chain	Residues		At	oms			AltConf	Trace
68	AG	102	Total 799	C 501	N 153	0 141	${f S}{4}$	0	0

• Molecule 69 is a protein called 40S ribosomal protein S21.

Mol	Chain	Residues		At	oms			AltConf	Trace
69	AH	83	Total 636	C 393	N 117	0 121	${f S}{5}$	0	0

• Molecule 70 is a protein called 40S ribosomal protein S15a.

Mol	Chain	Residues		At	oms	AltConf	Trace		
70	AI	129	Total 1034	C 659	N 193	0 176	S 6	0	0

• Molecule 71 is a protein called 40S ribosomal protein S23.

Mol	Chain	Residues		At	oms	AltConf	Trace		
71	AJ	141	Total 1098	C 693	N 219	0 183	${ m S} { m 3}$	0	0

• Molecule 72 is a protein called 40S ribosomal protein S24.

Mol	Chain	Residues		At	oms			AltConf	Trace
72	AK	123	Total 1002	C 634	N 196	0 167	${ m S}{ m 5}$	0	0

• Molecule 73 is a protein called 40S ribosomal protein S25.

Mol	Chain	Residues		At	oms			AltConf	Trace
73	AL	86	Total 680	C 436	N 127	0 116	S 1	0	0

• Molecule 74 is a protein called 40S ribosomal protein S26.

Mol	Chain	Residues		At	oms			AltConf	Trace
74	AM	99	Total 792	C 492	N 165	O 130	${ m S}{ m 5}$	0	0

• Molecule 75 is a protein called 40S ribosomal protein S27.

Mol	Chain	Residues		At	oms			AltConf	Trace
75	AN	83	Total 643	C 402	N 119	0 115	${f S}{7}$	0	0

• Molecule 76 is a protein called 40S ribosomal protein S28.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
76	AO	61	Total 479	C 292	N 95	O 90	${ m S} { m 2}$	0	0

• Molecule 77 is a protein called 40S ribosomal protein S29.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
77	AP	45	Total 370	C 228	N 77	O 60	${ m S}{ m 5}$	0	0

• Molecule 78 is a protein called 40S ribosomal protein S30.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
78	AQ	57	Total 452	C 279	N 99	O 73	S 1	0	0

• Molecule 79 is a protein called Receptor of activated protein C kinase 1.

Mol	Chain	Residues		At	oms			AltConf	Trace
79	AR	313	Total 2436	C 1535	N 424	0 465	S 12	0	0

• Molecule 80 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
80	А	1	Total Mg 1 1	0
80	D	398	Total Mg 398 398	0
80	Е	10	Total Mg 10 10	0
80	F	6	Total Mg 6 6	0
80	G	2	Total Mg 2 2	0
80	Н	1	Total Mg 1 1	0
80	Ι	1	Total Mg 1 1	0
80	Ν	1	Total Mg 1 1	0
80	О	2	Total Mg 2 2	0

Mol	Chain	Residues	Atoms	AltConf
80	S	1	Total Mg 1 1	0
80	U	2	Total Mg 2 2	0
80	V	2	Total Mg 2 2	0
80	Х	1	Total Mg 1 1	0
80	a	1	Total Mg 1 1	0
80	g	1	Total Mg 1 1	0
80	j	1	Total Mg 1 1	0
80	k	1	Total Mg 1 1	0
80	1	1	Total Mg 1 1	0
80	u	1	Total Mg 1 1	0
80	W	103	Total Mg 103 103	0
80	AA	1	Total Mg 1 1	0
80	AF	1	Total Mg 1 1	0

Continued from previous page...

• Molecule 81 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
81	О	1	Total Zn 1 1	0
81	r	1	Total Zn 1 1	0
81	t	1	Total Zn 1 1	0
81	u	1	Total Zn 1 1	0
81	AM	1	Total Zn 1 1	0
81	AP	1	Total Zn 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

PROTEIN DATA BANK

• Molecule 4: 5S	ribosomal RNA		
Chain E:	88%	12%	
G1 G7 A22 G3 G3 G3 G3 C3 C3 C3 C5 C3 AE5	03 03 03 03 03 03 03 03 03 03		
• Molecule 5: 5.8	3S ribosomal RNA		
Chain F:	80%	19% ·	
C1 C2 C2 C2 C2 C3 C3 C2 C3 C2 C3 C2 C3 C2 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4	A59 U63 C75 C75 C75 C75 C75 C31 A80 C33 A82 C33 A82 C33 C33 C32 C33 C32 C33 C32 C32 C32 C3	U123 U124 C125 C125 C128 C128 C128 C128 C155 C156 C153 C153 C153 U156 U156	
• Molecule 6: 605	S ribosomal protein L8		
Chain G:	95%		
MET 02 12 12 12 12 142 02 142 02 18 17 17 17 17 17 17 17 17 17 17	THR VAL GLU CLU LYS GLU ASN		
• Molecule 7: 609	S ribosomal protein L3		
Chain H:	97%	•••	
MET 82 82 810 816 8140 8140 8140 9141 428	(289 (289 (295 (296 (296 (296 (297 (297 (297 (297 (296) (296) (200) (20	ALA	
• Molecule 8: 605	S ribosomal protein L4		
Chain I:	83%	• 15%	
MET ALA C3 A91 A91 M95 W111	R188 R312 R312 R312 R316 A354 A354 A355 A356 A356 A356 A365 A365 A365 A365	ALA ALA VAL CITY CITY CITY CITY CITY VAL VAL VAL VAL VAL VAL VAL VAL VAL VAL	ALA VAL GLY VAL LYS LYS GLN
LYS LYS PRO PRO CLEU VAL CLEU CLYS ALA ALA ALA ALA ALA	LY18 LY18 PRIO PRIO PRIO CLU CLY8 LY18 CLY8 PRIO CLU CLY8 CLY8 CLY8 CLY8 CLY8 CLY8 CLY8 CLY8		
• Molecule 9: 60	S ribosomal protein L5		
Chain J:	97%		
MET G2 F3 V4 E124 M131 E186	E214 E215 E216 B217 E216 M235 M235 E254 F255 F255 K256 K256 K256 K256 K256 K256 K256 K	4221 E292 R293 A1294 ALA GLU SER	
• Molecule 10: 60	0S ribosomal protein L6		
Chain K:	74%	• 25%	
		E	

• Molecule 22: 60S ribosomal protein L19
13% Chain W: 91% • 8%
MET S2 KI 52 KI 52 AI 56 AI 66 AI 70 AI 70
\bullet Molecule 23: 60S ribosomal protein L18a
Chain X: 99%
MET K2
• Molecule 24: 60S ribosomal protein L21
Chain Y: 96% ···
MET T2 P41 P41 P52 P52 P52 P52 P52 P52 P52 P52
\bullet Molecule 25: 60S ribosomal protein L22
23% Chain Z: 74% 5% 21%
MET ALA ALA ALA ALA ALA VAL UVAL UVAL UVS LVS LVS LVS LVS LVS LVS LVS LVS LVS L
dt 117 ASN ASP ASP ASP GLU GLU CLU CLU ASP ASP
\bullet Molecule 26: 60S ribosomal protein L23
Chain a: 92% • 6%
MET SER ArxS OLY OLY SER SIO FI A140
\bullet Molecule 27: 60S ribosomal protein L24
Chain b: 39% · 60%
MI Construction

 \bullet Molecule 28: 60S ribosomal protein L23a

Chain c:	76%	• 23%	
MET PRO LYS LYS LYS GLU GLU PRO PRO PRO PRO LYS	ALA ALA ALA ALA ALA LVS LVS ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	K38 K36 K115 11156	
• Molecule 29: 60S	ribosomal protein L26		
Chain d:	90%	•• 8%	
M1 E37 G66 R108 R108 C111 C111 C129 K130 E131	K132 G133 K134 LYS LYS CLU GLU GLU CYS MET GLU GLU GLU		
• Molecule 30: 60S	ribosomal protein L27		
Chain e:	95%	· · ·	
MET 62 233 533 733 534 733 733 733 733 733 733 733 733 733 7	K98 136 136 136		
• Molecule 31: 60S	ribosomal protein L27a		
Chain f:	99%		I
NET P2 K92 K94 K94 C96 C96 C96 A140 A140			
• Molecule 32: 60S	ribosomal protein L29		
Chain g:	61% .	• 35%	
MET A 2 K55 A 62 A 62 K 63	A64 M65 S66 A67 A67 A71 A71 A71 A74 L72 A74 L72 L72 L75 C12 L75 C12 L75 C12 L75 C12 C12 C12 C12 C12 C12 C12 C12 C12 C12	LVS ILE PRD GLY GLY K93 R91 B94 K103 K110 R111 I112	A113
ALA LYS LYS LYS ALA ALA ASP GLN GLN ALA ALA ALA	ALA ALA SER VAL PRO PRO ALA ALA ALA ALA ALA ALA ALA ALA ALA AL		
• Molecule 33: 60S	ribosomal protein L30		
Chain h:	83%	•• 16%	
MET ALA ALA ALA ALA ALA LYS LYS S10 E12 E12 E12	L20 K106 MET MET MET PRO GLN GLU GLU LYS		

• Molecule 34:	60S ribosomal protein	L31	
Chain i:	83%		• 14%
MET ALA PRO ALA LYS LYS GLY GLY CLYS LYS	CLY CLYS CLY ARC SER ALA ALA ILE ILE N18 M64 M64 M64 M63 M63 M63 M63 M63 M63 M63 M63 M63 M63	E366 197 298 898 1000 1123 123 123 123 123 123 123 123 123 12	
• Molecule 35:	60S ribosomal protein	L32	
Chain j:		94%	• 5%
MET A2	ASN		
• Molecule 36:	60S ribosomal protein	L35a	
Chain k:		99%	
MET 82 1110			
• Molecule 37:	60S ribosomal protein	L34	
Chain l:		95%	
MET V2 G51 M65 L107	A109 A111 A111 A111 A112 A113 A12 LVS LVS LVS LVS		
• Molecule 38:	60S ribosomal protein	L35	
Chain m:		98%	
MET ALA K3 I4 G1 1 G38 G38 G39	◆ CCTV		
• Molecule 39:	60S ribosomal protein	L36	
Chain n:		96%	• •
MET A2 L3 R4 V21 S22 K23	Dec R98 A102 A102 LYS LYS ASP		
• Molecule 40:	60S ribosomal protein	L37	
Chain o:	8	7%	• 11%

• Molecule 57: 40S ribosomal protein S8

• Molecule 58: 40S ribosomal protein S9

D158 113 R13 V13 R13 R13 K15 316 316 316 R16 P17 G17 R17: V17 K17/ R17! K17(N17 A178 K179

 \bullet Molecule 59: 40S ribosomal protein S10

 \bullet Molecule 60: 40S ribosomal protein S11

28% Chain 8: 85%

• •

10%

MET A2 A2 A2 A2 A2 A5 A15 A15 A15 A15 A15 A15 A15 A15 A15	CLY THR CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	A50 151 E52 G53 C53 C57 F62 F62 G70 F119 F119 F119 F119
V120 0121 01224 0123 0124 V147 V148 V149 0150 0150 0150 0156 V153 V153 V153 V153 V153 V153 V153 V153		
• Molecule 61: 40S ribosomal prote	in S13	
Chain 9:	98%	
MET G2 R3 M4 H5 P7 P7 G8 R19 C8 C8 K25 L26 K27 L26 K27 L28 K27 L28 S30 S31 S32 S32 S32 S32 S32 S32 S32 S32 S32 S32	K35 K42 K42 A61 A61 B66 A61 B63 B83 B83 A151	
• Molecule 62: 40S ribosomal prote	in S14	
Chain AA:	85% •	11%
MET MLA ALA PRO LYS CLV CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	R25 N26 N75 N75 N75 N75 R84 R84 R84 R85 R85 R85 R85 R85 R85 R85 R85 R82 R87 R82 R87 R82 R87 R84 R87 R84 R87 R86 R87 R86 R87 R86 R87 R86 R87 R86 R86 R86 R86 R86 R86 R86 R86 R86 R86	[15]
• Molecule 63: 40S ribosomal prote	in S15	
Chain AB:	89%	• 8%
MET ALA CLU CAL CLU CLU CLU CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	Q24 Q25 Q27 M28 M28 M32 C33 M34 C33 M34 M34 M35 M35 M35 M35 M35 M35 M35 M35	R50 R51 K52 K52 K52 H54 S55 L56 K58 K63 R61 R61 R61 R61 K65 K65 K65 K65 K65
A67 P68 P69 M70 M70 F73 F73 F74 F73 E74 V75 V75 M83 M83 194 194 185 M83 M89 V90 V90	S92 M93 M93 G95 G95 G95 G104 C107 F107 F107 F108 F1008 F1008 F1008 F1008 F1008 F1008 F110 M111 T112 F1008 F110	R120 P131 C132 C133 C133 C133 C133 F141 F141 F144 F144 F144 F144 F144
• Molecule 64: 40S ribosomal prote	in S16	
Chain AC:	93%	
MET PRO PRO CS CS P6 P6 P6 R22 CS R22 CS CS CS CS CS CS CS CS CS CS CS CS CS	142 142 143 1445 1445 1445 146 157 158 158 158 165 168 168 168 168 168	q97 101 101 102 102 102 103 103 108 108 108 108 108 1110 1111 1113
q114 Y115 B116 R117 L1120 R146		
• Molecule 65: 40S ribosomal prote	in S17	
Chain AD:	93%	

 \bullet Molecule 70: 40S ribosomal protein S15a

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	128240	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	50	Depositor
Minimum defocus (nm)	500	Depositor
Maximum defocus (nm)	2500	Depositor
Magnification	Not provided	
Image detector	GATAN K3 $(6k \ge 4k)$	Depositor
Maximum map value	0.163	Depositor
Minimum map value	-0.047	Depositor
Average map value	0.001	Depositor
Map value standard deviation	0.005	Depositor
Recommended contour level	0.0204	Depositor
Map size (Å)	439.9, 439.9, 439.9	wwPDB
Map dimensions	530, 530, 530	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.83, 0.83, 0.83	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: UR3, G7M, OMC, 5MC, 5MU, 1MA, 56B, PSU, ZN, 4AC, MA6, A2M, OMG, 2MG, UY1, 6MZ, H2U, OMU, MG, B8N

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	E	Bond angles
	Chan	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.43	0/339	0.68	0/527
2	В	0.40	0/1525	0.70	0/2375
2	С	0.30	0/1525	0.72	0/2375
3	D	0.65	0/81567	0.75	17/127232~(0.0%)
4	Е	0.66	0/2858	0.71	0/4455
5	F	0.63	0/3675	0.75	4/5725~(0.1%)
6	G	0.38	0/1929	0.52	0/2586
7	Н	0.37	0/3279	0.53	2/4388~(0.0%)
8	Ι	0.35	0/2938	0.50	1/3946~(0.0%)
9	J	0.36	0/2425	0.45	0/3248
10	Κ	0.32	0/1785	0.49	0/2394
11	L	0.37	0/1905	0.46	0/2539
12	М	0.33	0/1863	0.51	2/2510~(0.1%)
13	Ν	0.33	0/1537	0.49	0/2066
14	0	0.36	0/1699	0.50	1/2270~(0.0%)
15	Р	0.31	0/1385	0.49	0/1852
16	Q	0.34	0/1713	0.47	0/2293
17	R	0.34	0/1142	0.47	0/1527
18	S	0.39	0/1746	0.48	1/2338~(0.0%)
19	Т	0.38	0/1673	0.45	0/2238
20	U	0.38	0/1300	0.48	0/1746
21	V	0.38	0/1537	0.52	0/2052
22	W	0.32	0/1524	0.48	0/2013
23	Х	0.38	0/1493	0.45	0/2003
24	Y	0.38	0/1326	0.49	0/1770
25	Ζ	0.31	0/835	0.50	0/1122
26	a	0.37	0/993	0.49	0/1332
27	b	0.36	0/541	0.42	0/720
28	с	0.33	0/998	0.50	0/1340
29	d	0.36	0/1132	0.48	0/1504
30	е	0.37	0/1130	0.48	0/1507

Mal	Chain	Bond	lengths	B	ond angles
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
31	f	0.37	0/1191	0.49	0/1591
32	g	0.30	0/844	0.46	0/1115
33	h	0.35	0/765	0.51	1/1027~(0.1%)
34	i	0.35	0/903	0.47	0/1216
35	j	0.38	0/1071	0.45	0/1429
36	k	0.40	0/895	0.55	0/1198
37	1	0.36	0/898	0.46	0/1197
38	m	0.32	0/1018	0.42	0/1344
39	n	0.30	0/843	0.43	0/1115
40	0	0.38	0/720	0.49	0/952
41	р	0.33	0/575	0.46	0/761
42	q	0.33	0/454	0.42	0/599
43	r	0.34	0/435	0.50	1/575~(0.2%)
44	S	0.31	0/240	0.36	0/305
45	t	0.37	0/876	0.50	0/1156
46	u	0.38	0/718	0.47	0/953
47	V	0.37	0/1017	0.50	0/1364
48	W	0.43	0/37158	0.75	13/57908~(0.0%)
49	X	0.28	0/1732	0.49	1/2355~(0.0%)
50	у	0.28	0/1752	0.48	0/2345
51	Z	0.31	0/1668	0.49	0/2254
52	0	0.28	0/1672	0.47	0/2250
53	1	0.25	0/2112	0.46	0/2842
54	2	0.28	0/1485	0.47	0/1998
55	3	0.26	0/1940	0.50	0/2583
56	4	0.27	0/1533	0.52	0/2053
57	5	0.26	0/1703	0.48	1/2275~(0.0%)
58	6	0.25	0/1531	0.44	0/2045
59	7	0.32	0/834	0.64	2/1125~(0.2%)
60	8	0.30	0/1170	0.51	0/1568
61	9	0.27	0/1232	0.47	0/1656
62	AA	0.30	0/1015	0.53	1/1361~(0.1%)
63	AB	0.29	0/1126	0.50	0/1505
64	AC	0.31	0/1146	0.54	1/1534~(0.1%)
65	AD	0.27	0/1071	0.50	0/1438
66	AE	0.31	0/1187	0.58	0/1593
67	AF	0.29	0/1130	0.49	0/1515
68	AG	0.26	0/809	0.50	0/1087
69	AH	0.30	0/643	0.57	0/860
70	AI	0.29	0/1051	0.47	0/1406
71	AJ	0.27	0/1116	0.46	0/1490
72	AK	0.26	0/1019	0.54	0/1355
73	AL	0.26	0/688	0.50	0/921

Mal	Chain	Bond	lengths	E	Bond angles
IVIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
74	AM	0.33	0/805	0.46	0/1079
75	AN	0.28	0/657	0.52	0/883
76	AO	0.28	0/481	0.61	0/643
77	AP	0.35	0/375	0.55	0/492
78	AQ	0.28	0/458	0.48	0/602
79	AR	0.26	0/2493	0.54	2/3394~(0.1%)
All	All	0.50	0/219572	0.66	51/322305~(0.0%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
6	G	0	2
7	Н	0	2
8	Ι	0	1
9	J	0	1
10	Κ	0	1
11	L	0	1
16	Q	0	1
20	U	0	1
21	V	0	1
24	Y	0	1
29	d	0	1
32	g	0	1
40	0	0	1
54	2	0	1
65	AD	0	1
79	AR	0	1
All	All	0	18

There are no bond length outliers.

The worst 5 of 51 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	D	2101	С	O5'-P-OP1	-27.25	78.00	110.70
3	D	2101	С	OP1-P-OP2	-26.57	79.75	119.60
3	D	2101	С	O5'-P-OP2	16.09	130.01	110.70
3	D	2100	А	OP2-P-O3'	-15.46	71.19	105.20
3	D	2100	А	OP1-P-O3'	14.11	136.24	105.20

There are no chirality outliers.

5 of 18 planarity outliers are listed below:

Mol	Chain	Res	Type	Group
6	G	123	ARG	Peptide
6	G	239	ALA	Peptide
7	Н	16	PHE	Peptide
7	Н	258	HIS	Peptide
8	Ι	91	ALA	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
6	G	245/257~(95%)	227~(93%)	18 (7%)	0	100	100
7	Н	396/403~(98%)	375~(95%)	21 (5%)	0	100	100
8	Ι	361/427~(84%)	338~(94%)	23 (6%)	0	100	100
9	J	291/297~(98%)	271 (93%)	20 (7%)	0	100	100
10	K	211/288~(73%)	189 (90%)	22 (10%)	0	100	100
11	L	223/248~(90%)	212 (95%)	11 (5%)	0	100	100
12	М	223/266~(84%)	208 (93%)	14 (6%)	1 (0%)	34	54
13	Ν	188/192~(98%)	174 (93%)	14 (7%)	0	100	100
14	Ο	202/214~(94%)	186 (92%)	16 (8%)	0	100	100
15	Р	168/178~(94%)	158 (94%)	10 (6%)	0	100	100
16	Q	206/211~(98%)	192 (93%)	12 (6%)	2 (1%)	15	28
17	R	134/215~(62%)	120 (90%)	14 (10%)	0	100	100
18	S	201/204~(98%)	196 (98%)	5 (2%)	0	100	100

Continued	from	previous	page
Contracta	110110	proceeduo	pagem

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
19	Т	198/203~(98%)	195~(98%)	3 (2%)	0	100	100
20	U	155/184~(84%)	144 (93%)	11 (7%)	0	100	100
21	V	185/188~(98%)	173 (94%)	12 (6%)	0	100	100
22	W	178/196~(91%)	177 (99%)	1 (1%)	0	100	100
23	Х	173/176~(98%)	159 (92%)	14 (8%)	0	100	100
24	Y	157/160~(98%)	147 (94%)	10 (6%)	0	100	100
25	Ζ	99/128~(77%)	93 (94%)	6 (6%)	0	100	100
26	a	129/140~(92%)	120 (93%)	9 (7%)	0	100	100
27	b	61/157~(39%)	60 (98%)	1 (2%)	0	100	100
28	с	118/156~(76%)	111 (94%)	7 (6%)	0	100	100
29	d	132/145~(91%)	125 (95%)	7 (5%)	0	100	100
30	е	133/136~(98%)	126 (95%)	6 (4%)	1 (1%)	19	35
31	f	145/148~(98%)	131 (90%)	14 (10%)	0	100	100
32	g	100/159~(63%)	90 (90%)	8 (8%)	2(2%)	7	12
33	h	95/115~(83%)	91 (96%)	4 (4%)	0	100	100
34	i	105/125~(84%)	100 (95%)	5 (5%)	0	100	100
35	j	126/135~(93%)	124 (98%)	2 (2%)	0	100	100
36	k	107/110~(97%)	99 (92%)	8 (8%)	0	100	100
37	1	110/117~(94%)	106 (96%)	4 (4%)	0	100	100
38	m	119/123~(97%)	116 (98%)	3 (2%)	0	100	100
39	n	100/105~(95%)	98 (98%)	2 (2%)	0	100	100
40	0	84/97~(87%)	79 (94%)	5 (6%)	0	100	100
41	р	67/70~(96%)	61 (91%)	6 (9%)	0	100	100
42	q	48/51~(94%)	46 (96%)	2 (4%)	0	100	100
43	r	50/128~(39%)	49 (98%)	1 (2%)	0	100	100
44	s	23/25~(92%)	23 (100%)	0	0	100	100
45	t	103/106~(97%)	98 (95%)	5 (5%)	0	100	100
46	u	89/92~(97%)	84 (94%)	5 (6%)	0	100	100
47	V	123/137~(90%)	116 (94%)	7 (6%)	0	100	100
49	х	213/295~(72%)	200 (94%)	13 (6%)	0	100	100
50	у	210/264~(80%)	193 (92%)	17 (8%)	0	100	100

Continued	from	previous	page
• • • • • • • • • • • •	$J \cdot \cdot \cdot \cdot \cdot \cdot$	<i>P</i> · · · · · · · · · · · · · · · · · · ·	r ••9 ••••

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	\mathbf{ntiles}
51	z	210/293~(72%)	200~(95%)	9 (4%)	1 (0%)	29	48
52	0	210/243~(86%)	188 (90%)	22 (10%)	0	100	100
53	1	260/263~(99%)	245~(94%)	15~(6%)	0	100	100
54	2	185/204~(91%)	166 (90%)	19 (10%)	0	100	100
55	3	235/249~(94%)	226~(96%)	9~(4%)	0	100	100
56	4	185/194~(95%)	168 (91%)	17 (9%)	0	100	100
57	5	204/208~(98%)	192~(94%)	12~(6%)	0	100	100
58	6	180/194~(93%)	171~(95%)	9~(5%)	0	100	100
59	7	94/165~(57%)	86~(92%)	7 (7%)	1 (1%)	14	26
60	8	138/158~(87%)	126 (91%)	11 (8%)	1 (1%)	22	39
61	9	148/151~(98%)	142 (96%)	6 (4%)	0	100	100
62	AA	132/151~(87%)	123 (93%)	9~(7%)	0	100	100
63	AB	132/145~(91%)	126 (96%)	6 (4%)	0	100	100
64	AC	140/146~(96%)	124 (89%)	15 (11%)	1 (1%)	22	39
65	AD	129/135~(96%)	107 (83%)	20 (16%)	2 (2%)	9	17
66	AE	142/152~(93%)	128 (90%)	14 (10%)	0	100	100
67	AF	141/145~(97%)	132 (94%)	9 (6%)	0	100	100
68	AG	100/119~(84%)	92~(92%)	8 (8%)	0	100	100
69	AH	81/83~(98%)	72 (89%)	9 (11%)	0	100	100
70	AI	127/130~(98%)	119 (94%)	8 (6%)	0	100	100
71	AJ	139/143~(97%)	135 (97%)	4 (3%)	0	100	100
72	AK	121/133 (91%)	118 (98%)	3 (2%)	0	100	100
73	AL	84/125~(67%)	74 (88%)	10 (12%)	0	100	100
74	AM	97/115 (84%)	91 (94%)	6 (6%)	0	100	100
75	AN	81/84 (96%)	71 (88%)	9 (11%)	1 (1%)	13	24
76	AO	59/69~(86%)	53 (90%)	6 (10%)	0	100	100
77	AP	43/56~(77%)	42 (98%)	1 (2%)	0	100	100
78	AQ	55/59~(93%)	50 (91%)	5(9%)	0	100	100
79	AR	311/317~(98%)	261 (84%)	50 (16%)	0	100	100
All	All	10947/12400~(88%)	10208 (93%)	726 (7%)	13 (0%)	54	73

5 of 13 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
16	Q	48	PRO
32	g	111	ARG
64	AC	119	LEU
51	Z	78	LEU
65	AD	119	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
6	G	189/199~(95%)	189 (100%)	0	100 100
7	Н	346/349~(99%)	341 (99%)	5 (1%)	67 86
8	Ι	301/348~(86%)	294 (98%)	7 (2%)	50 76
9	J	245/250~(98%)	241 (98%)	4 (2%)	62 84
10	K	193/252~(77%)	189 (98%)	4 (2%)	53 78
11	L	194/215~(90%)	192 (99%)	2 (1%)	76 90
12	М	195/223~(87%)	192 (98%)	3 (2%)	65 85
13	Ν	169/171~(99%)	166 (98%)	3 (2%)	59 81
14	Ο	174/181~(96%)	171 (98%)	3~(2%)	60 82
15	Р	143/149~(96%)	139 (97%)	4 (3%)	43 70
16	Q	174/177~(98%)	172 (99%)	2(1%)	73 89
17	R	116/161~(72%)	112 (97%)	4(3%)	37 63
18	S	171/172~(99%)	168~(98%)	3~(2%)	59 81
19	Т	172/174~(99%)	167 (97%)	5(3%)	42 69
20	U	138/163~(85%)	135~(98%)	3~(2%)	52 77
21	V	164/165~(99%)	164 (100%)	0	100 100
22	W	159/175~(91%)	158 (99%)	1 (1%)	86 95
23	Х	156/157~(99%)	156 (100%)	0	100 100
24	Y	$\overline{139/140}\ (99\%)$	134 (96%)	5 (4%)	35 61
25	Z	90/115~(78%)	84 (93%)	6 (7%)	16 31

Continued from	n previous	page
----------------	------------	------

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
26	a	101/107~(94%)	99~(98%)	2(2%)	55	79
27	b	55/126~(44%)	54 (98%)	1 (2%)	59	81
28	с	107/133~(80%)	105~(98%)	2(2%)	57	80
29	d	124/135~(92%)	121 (98%)	3~(2%)	49	74
30	е	117/118 (99%)	112 (96%)	5 (4%)	29	53
31	f	120/121~(99%)	119 (99%)	1 (1%)	81	93
32	g	81/126 (64%)	76 (94%)	5~(6%)	18	35
33	h	82/97~(84%)	80 (98%)	2(2%)	49	74
34	i	98/110 (89%)	95~(97%)	3(3%)	40	67
35	j	114/121~(94%)	113 (99%)	1 (1%)	78	92
36	k	88/89~(99%)	88 (100%)	0	100	100
37	1	96/100~(96%)	95~(99%)	1 (1%)	76	90
38	m	109/110~(99%)	109 (100%)	0	100	100
39	n	86/89~(97%)	85 (99%)	1 (1%)	71	88
40	0	73/80~(91%)	72 (99%)	1 (1%)	67	86
41	р	64/65~(98%)	63~(98%)	1 (2%)	62	84
42	q	47/48~(98%)	44 (94%)	3~(6%)	17	33
43	r	48/116 (41%)	47 (98%)	1 (2%)	53	78
44	s	24/24~(100%)	23~(96%)	1 (4%)	30	54
45	t	93/94~(99%)	91 (98%)	2(2%)	52	77
46	u	74/75~(99%)	74 (100%)	0	100	100
47	V	109/121~(90%)	106 (97%)	3~(3%)	43	70
49	х	178/243~(73%)	171 (96%)	7 (4%)	32	57
50	У	194/231~(84%)	193 (100%)	1 (0%)	88	96
51	Z	176/225~(78%)	173~(98%)	3~(2%)	60	82
52	0	$\overline{175/202}$ (87%)	170 (97%)	5 (3%)	42	69
53	1	223/225~(99%)	221 (99%)	2 (1%)	78	92
54	2	154/170~(91%)	150 (97%)	4 (3%)	46	72
55	3	206/218~(94%)	195 (95%)	11 (5%)	22	43
56	4	168/174~(97%)	165 (98%)	3 (2%)	59	81
57	5	175/180~(97%)	170 (97%)	5 (3%)	42	69

			D / ·		D			
Mol	Chain	Analysed	Rotameric	Outliers	Percentiles			
58	6	160/168~(95%)	154 (96%)	6 (4%)	33	58		
59	7	87/136~(64%)	83~(95%)	4 (5%)	27	50		
60	8	125/142~(88%)	118 (94%)	7 (6%)	21	40		
61	9	130/131~(99%)	128 (98%)	2 (2%)	65	85		
62	AA	104/119~(87%)	99~(95%)	5 (5%)	25	48		
63	AB	120/130~(92%)	115 (96%)	5 (4%)	30	54		
64	AC	117/121~(97%)	112 (96%)	5 (4%)	29	53		
65	AD	117/122~(96%)	114 (97%)	3 (3%)	46	72		
66	AE	119/132~(90%)	115 (97%)	4 (3%)	37	63		
67	AF	113/115 (98%)	108 (96%)	5 (4%)	28	52		
68	AG	89/107~(83%)	87 (98%)	2 (2%)	52	77		
69	AH	67/67~(100%)	63 (94%)	4 (6%)	19	37		
70	AI	112/113~(99%)	108 (96%)	4 (4%)	35	61		
71	AJ	113/115 (98%)	110 (97%)	3 (3%)	44	71		
72	AK	106/115~(92%)	101 (95%)	5 (5%)	26	49		
73	AL	73/103 (71%)	67 (92%)	6 (8%)	11	22		
74	AM	86/98~(88%)	81 (94%)	5 (6%)	20	38		
75	AN	73/76~(96%)	70 (96%)	3 (4%)	30	55		
76	AO	54/62~(87%)	51 (94%)	3 (6%)	21	40		
77	AP	39/49~(80%)	37~(95%)	2 (5%)	24	45		
78	AQ	46/48~(96%)	44 (96%)	2 (4%)	29	53		
79	AR	272/275~(99%)	265 (97%)	7 (3%)	46	72		
All	All	9509/10553~(90%)	9273 (98%)	236 (2%)	50	73		

5 of 236 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
52	0	57	ASN
75	AN	80	ARG
57	5	186	ASP
75	AN	11	SER
70	AI	87	GLU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 11 such sidechains are listed below:

Mol	Chain	Res	Type
75	AN	83	GLN
78	AQ	88	GLN
79	AR	143	GLN
79	AR	117	ASN
55	3	110	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	А	13/14~(92%)	1 (7%)	0
2	В	73/75~(97%)	13 (17%)	0
2	С	73/75~(97%)	12 (16%)	2(2%)
3	D	3494/5070~(68%)	621 (17%)	26 (0%)
4	Е	119/120~(99%)	15 (12%)	0
48	W	1618/1869~(86%)	388 (23%)	0
5	F	155/156~(99%)	28 (18%)	3(1%)
All	All	5545/7379~(75%)	1078 (19%)	31~(0%)

5 of 1078 RNA backbone outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	29	А
2	В	4	U
2	В	9	1MA
2	В	12	А
2	В	13	PSU

5 of 31 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
3	D	2102	G
3	D	5016	А
3	D	3673	С
5	F	86	U
3	D	4678	G

5.4 Non-standard residues in protein, DNA, RNA chains (i)

216 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and

the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Type	Chain	Dog	Link	B	Bond lengths		Bond angles		
INIOI	туре	Unam	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
2	5MC	В	47	2	18,22,23	3.75	8 (44%)	$26,\!32,\!35$	1.05	2 (7%)
48	A2M	W	668	48,80	18,25,26	1.58	2 (11%)	18,36,39	0.95	1 (5%)
48	PSU	W	1625	48	18,21,22	1.07	1 (5%)	22,30,33	1.80	4 (18%)
3	PSU	D	1677	3	18,21,22	1.06	2 (11%)	22,30,33	1.75	4 (18%)
2	5MU	В	53	2	19,22,23	4.66	5 (26%)	28,32,35	3.64	8 (28%)
3	PSU	D	3762	3	18,21,22	1.06	1 (5%)	22,30,33	1.80	4 (18%)
3	6MZ	D	4220	3	18,25,26	2.01	2 (11%)	16,36,39	2.08	3 (18%)
3	OMC	D	2351	80,3	19,22,23	2.80	7 (36%)	26,31,34	0.77	0
48	PSU	W	119	48	18,21,22	1.06	1 (5%)	22,30,33	1.76	4 (18%)
3	UY1	D	3818	80,3	19,22,23	1.10	2(10%)	22,31,34	0.92	1 (4%)
2	2MG	С	6	2	18,26,27	2.20	5 (27%)	16,38,41	1.44	3 (18%)
3	PSU	D	4972	80,3	18,21,22	1.02	1 (5%)	22,30,33	1.85	4 (18%)
3	PSU	D	4500	2,3	18,21,22	1.10	1 (5%)	22,30,33	1.84	4 (18%)
48	PSU	W	966	48	18,21,22	1.03	1 (5%)	22,30,33	1.82	5 (22%)
48	OMU	W	116	48	19,22,23	2.92	8 (42%)	26,31,34	1.70	4 (15%)
48	4AC	W	1842	48	21,24,25	0.56	0	29,34,37	1.16	4 (13%)
48	A2M	W	27	48	18,25,26	1.50	1 (5%)	18,36,39	0.98	0
48	PSU	W	1347	48	18,21,22	1.03	1 (5%)	22,30,33	1.82	4 (18%)
3	PSU	D	4552	3	18,21,22	1.05	1 (5%)	22,30,33	1.81	4 (18%)
2	5MC	С	48	2	18,22,23	3.79	8 (44%)	26,32,35	1.02	2 (7%)
3	PSU	D	3770	3	18,21,22	1.06	1 (5%)	22,30,33	1.80	4 (18%)
3	PSU	D	4420	3	18,21,22	1.04	1 (5%)	22,30,33	1.80	5 (22%)
3	OMG	D	4228	3	18,26,27	2.73	8 (44%)	19,38,41	1.57	4 (21%)
3	PSU	D	4521	80,3	18,21,22	1.04	1 (5%)	22,30,33	1.88	5 (22%)
48	PSU	W	686	48	18,21,22	1.05	1 (5%)	22,30,33	1.82	4 (18%)
48	PSU	w	406	48	18,21,22	1.03	1 (5%)	22,30,33	1.86	5 (22%)
3	OMG	D	3944	3	18,26,27	2.81	8 (44%)	19,38,41	1.50	4 (21%)
48	B8N	W	1248	48	24,29,30	0.80	0	29,42,45	0.97	2 (6%)
3	A2M	D	3825	3	18,25,26	1.49	1 (5%)	18,36,39	1.04	1 (5%)
3	A2M	D	1326	3	18,25,26	1.45	1 (5%)	18,36,39	1.03	1 (5%)

Mal	Trune	Chain	Dec	Tinle	Bond lengths		Bond angles			
	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
3	PSU	D	5001	80,3	18,21,22	1.03	1 (5%)	22,30,33	1.78	4 (18%)
3	PSU	D	1860	3	18,21,22	1.05	1 (5%)	22,30,33	1.86	4 (18%)
48	A2M	W	99	48,80	18,25,26	1.47	1 (5%)	18,36,39	1.02	1 (5%)
48	OMG	W	1490	48,80	18,26,27	2.76	8 (44%)	19,38,41	1.47	4 (21%)
3	OMU	D	2837	3	19,22,23	2.75	<mark>6 (31%)</mark>	26,31,34	1.85	5 (19%)
48	MA6	W	1850	48	19,26,27	1.03	1 (5%)	18,38,41	1.60	3 (16%)
3	OMC	D	4456	3	19,22,23	2.82	8 (42%)	26,31,34	0.69	0
2	H2U	С	19	2	18,21,22	1.06	2 (11%)	21,30,33	0.80	0
48	PSU	W	1045	48	18,21,22	1.04	1 (5%)	22,30,33	1.87	5 (22%)
2	1MA	С	9	2	16,25,26	0.96	1 (6%)	18,37,40	0.82	0
48	PSU	W	93	48	18,21,22	1.05	1 (5%)	22,30,33	1.78	3 (13%)
3	PSU	D	3764	3	18,21,22	1.03	1 (5%)	22,30,33	1.82	4 (18%)
3	OMC	D	2824	3	19,22,23	2.86	8 (42%)	26,31,34	0.72	0
3	PSU	D	4442	3	18,21,22	1.05	1 (5%)	22,30,33	1.86	<u>6 (27%)</u>
3	PSU	D	3851	3	18,21,22	1.03	1 (5%)	22,30,33	1.87	5 (22%)
3	OMU	D	2415	3	19,22,23	2.83	6 (31%)	26,31,34	1.94	6 (23%)
3	PSU	D	2508	3	18,21,22	1.03	1 (5%)	22,30,33	1.82	4 (18%)
3	PSU	D	4293	3	18,21,22	1.06	2 (11%)	22,30,33	1.83	4 (18%)
3	OMG	D	4499	2,3	18,26,27	2.74	8 (44%)	19,38,41	1.50	4 (21%)
48	PSU	W	1004	48	18,21,22	1.06	1 (5%)	22,30,33	1.82	4 (18%)
48	4AC	W	1337	48	21,24,25	0.56	0	29,34,37	1.19	5 (17%)
3	PSU	D	3730	3	18,21,22	1.02	1 (5%)	22,30,33	1.82	5 (22%)
48	PSU	W	815	48	18,21,22	1.08	1 (5%)	22,30,33	1.86	5 (22%)
48	PSU	W	1643	48,80	18,21,22	1.04	1 (5%)	22,30,33	1.81	5 (22%)
2	5MC	С	47	2	18,22,23	<mark>3.79</mark>	8 (44%)	26,32,35	1.04	2 (7%)
3	1MA	D	1322	3	16,25,26	0.87	0	18,37,40	0.88	0
3	OMG	D	4637	3	18,26,27	2.73	8 (44%)	19,38,41	1.50	4 (21%)
48	OMU	W	1326	48	19,22,23	2.88	7 (36%)	26,31,34	1.78	<mark>6 (23%)</mark>
2	H2U	В	19	2	18,21,22	1.09	2 (11%)	21,30,33	0.82	0
3	OMU	D	1773	3	19,22,23	2.92	8 (42%)	26,31,34	1.68	4 (15%)
3	OMU	D	4498	80,3	19,22,23	2.79	6 (31%)	26,31,34	1.75	5 (19%)
2	5MU	С	53	2	19,22,23	4.66	6(31%)	28,32,35	3.61	9 (32%)
3	OMG	D	1316	3	18,26,27	2.73	8 (44%)	19,38,41	1.55	4 (21%)
3	OMG	D	1522	3	18,26,27	2.68	8 (44%)	19,38,41	1.50	4 (21%)
3	PSU	D	3920	80,3	18,21,22	1.02	1(5%)	22,30,33	1.85	4 (18%)

Mol	Type	Chain	Dog	Link	Bond lengths			Bond angles		
	Type	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
48	OMG	W	644	48	18,26,27	2.83	8 (44%)	19,38,41	1.50	4 (21%)
48	OMC	W	1703	48,80	19,22,23	2.89	8 (42%)	26,31,34	0.73	0
3	OMU	D	3925	3	19,22,23	2.78	6 (31%)	26,31,34	1.84	5 (19%)
3	PSU	D	4576	3	18,21,22	1.02	1 (5%)	22,30,33	1.84	4 (18%)
48	PSU	W	1367	48	18,21,22	1.04	1 (5%)	22,30,33	1.87	5 (22%)
3	OMU	D	4227	3	19,22,23	2.81	6 (31%)	26,31,34	1.75	4 (15%)
2	5MC	В	48	2	18,22,23	3.79	8 (44%)	26,32,35	1.03	2 (7%)
2	1MA	С	57	2	16,25,26	0.94	1 (6%)	18,37,40	0.85	0
3	A2M	D	1524	3	18,25,26	1.59	2 (11%)	18,36,39	1.00	1 (5%)
3	OMG	D	4494	3	18,26,27	2.75	8 (44%)	19,38,41	1.51	4 (21%)
48	PSU	W	822	48	18,21,22	1.08	1 (5%)	22,30,33	1.75	5 (22%)
48	PSU	W	1056	48	18,21,22	1.02	1 (5%)	22,30,33	1.81	4 (18%)
3	PSU	D	1792	3	18,21,22	0.99	1 (5%)	22,30,33	1.76	3 (13%)
3	OMC	D	2422	80,3	19,22,23	2.87	8 (42%)	26,31,34	0.73	0
2	2MG	В	6	2	18,26,27	2.19	5 (27%)	16,38,41	1.47	3 (18%)
48	PSU	W	218	48	18,21,22	1.05	1 (5%)	22,30,33	1.73	4 (18%)
48	OMG	W	436	48	18,26,27	2.82	8 (44%)	19,38,41	1.55	4 (21%)
3	PSU	D	4423	3	18,21,22	1.05	1 (5%)	22,30,33	1.81	4 (18%)
3	PSU	D	3758	3	18,21,22	0.97	1 (5%)	22,30,33	1.81	4 (18%)
2	5MC	С	38	2	18,22,23	3.76	8 (44%)	26,32,35	1.02	2 (7%)
48	PSU	W	681	48,80	18,21,22	1.04	1 (5%)	22,30,33	1.90	5 (22%)
3	A2M	D	3785	80,3	18,25,26	1.55	2 (11%)	18,36,39	1.23	1 (5%)
3	OMG	D	4370	3	18,26,27	2.73	8 (44%)	19,38,41	1.50	4 (21%)
3	A2M	D	400	3	18,25,26	1.52	1 (5%)	18,36,39	1.03	1 (5%)
3	5MC	D	4447	80,3	18,22,23	3.60	7 (38%)	26,32,35	1.13	1 (3%)
2	56B	В	34	2	27,35,36	3.03	13 (48%)	28,52,55	4.60	4 (14%)
3	OMC	D	2861	3	19,22,23	2.85	8 (42%)	26,31,34	0.67	0
48	OMG	W	601	48	18,26,27	2.82	8 (44%)	19,38,41	1.50	4 (21%)
3	PSU	D	3715	3	18,21,22	1.05	1 (5%)	22,30,33	1.85	5 (22%)
48	PSU	W	651	48	18,21,22	1.03	1 (5%)	22,30,33	1.87	5 (22%)
3	PSU	D	3695	3	18,21,22	1.03	1 (5%)	22,30,33	1.86	4 (18%)
48	PSU	W	105	48	18,21,22	1.04	1 (5%)	22,30,33	1.81	5 (22%)
48	A2M	W	512	48	18,25,26	1.50	1 (5%)	18,36,39	1.08	1 (5%)
48	OMU	W	1288	48	19,22,23	2.96	8 (42%)	26,31,34	1.67	4 (15%)
48	OMU	W	1442	48,80	19,22,23	2.87	6 (31%)	26,31,34	1.70	5 (19%)

Mol	Tuno	Chain	Dog	Link	B	Bond lengths			Bond angles		
	туре	Chan	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2	
48	PSU	W	1445	48	18,21,22	1.04	1 (5%)	22,30,33	1.81	5 (22%)	
3	PSU	D	1536	3	18,21,22	1.05	2 (11%)	22,30,33	1.88	4 (18%)	
3	PSU	D	4457	3	18,21,22	1.03	1 (5%)	22,30,33	1.79	4 (18%)	
48	6MZ	W	1832	48,80	18,25,26	1.99	3 (16%)	16,36,39	1.87	2 (12%)	
3	PSU	D	4471	3	18,21,22	1.04	1 (5%)	22,30,33	1.78	4 (18%)	
3	PSU	D	4431	3	18,21,22	1.03	1 (5%)	22,30,33	1.86	4 (18%)	
48	PSU	W	801	48	18,21,22	1.04	1 (5%)	22,30,33	1.78	4 (18%)	
3	PSU	D	4579	3	18,21,22	1.04	1 (5%)	22,30,33	1.83	4 (18%)	
3	OMU	D	4620	3	19,22,23	2.76	6 (31%)	26,31,34	1.78	5 (19%)	
2	5MC	В	38	2	18,22,23	<mark>3.71</mark>	8 (44%)	26,32,35	1.06	2 (7%)	
3	OMC	D	3701	80,3	19,22,23	2.85	8 (42%)	26,31,34	0.73	0	
48	OMC	W	462	48	19,22,23	<mark>3.01</mark>	8 (42%)	26,31,34	0.74	0	
3	A2M	D	3760	3	18,25,26	1.46	1 (5%)	18,36,39	1.25	2 (11%)	
48	PSU	W	863	48	18,21,22	1.08	1 (5%)	22,30,33	1.82	5 (22%)	
48	PSU	W	572	48	18,21,22	1.09	1 (5%)	22,30,33	1.79	3 (13%)	
2	PSU	С	13	2	18,21,22	1.05	1 (5%)	22,30,33	1.78	4 (18%)	
48	OMG	W	1328	48	18,26,27	2.82	8 (44%)	19,38,41	1.49	4 (21%)	
48	A2M	W	468	48	18,25,26	1.59	1 (5%)	18,36,39	1.02	0	
2	1MA	В	9	2	16,25,26	0.93	1 (6%)	18,37,40	0.86	0	
5	OMG	F	75	5	18,26,27	2.77	8 (44%)	19,38,41	1.49	4 (21%)	
48	OMU	W	428	48	19,22,23	2.93	8 (42%)	26,31,34	1.71	5 (19%)	
3	PSU	D	3639	3	18,21,22	1.04	1 (5%)	22,30,33	1.76	4 (18%)	
48	A2M	W	484	48	18,25,26	1.55	1 (5%)	18,36,39	1.03	1 (5%)	
3	PSU	D	4299	3	18,21,22	1.03	1 (5%)	22,30,33	1.84	4 (18%)	
3	A2M	D	398	3	18,25,26	1.46	1 (5%)	18,36,39	1.01	1 (5%)	
2	56B	С	34	2	27,35,36	3.02	12 (44%)	28,52,55	4.67	4 (14%)	
48	A2M	W	1678	48	18,25,26	1.50	1 (5%)	18,36,39	0.99	1 (5%)	
48	OMU	W	1804	48	19,22,23	2.86	<mark>6 (31%)</mark>	26,31,34	1.76	4 (15%)	
3	OMC	D	3808	3	19,22,23	2.84	8 (42%)	26,31,34	0.76	0	
3	PSU	D	1862	3	18,21,22	1.03	1 (5%)	22,30,33	1.89	5 (22%)	
48	OMU	W	121	48	19,22,23	2.94	8 (42%)	26,31,34	1.65	4 (15%)	
48	A2M	w	159	48	18,25,26	1.57	1 (5%)	18,36,39	1.07	1 (5%)	
2	PSU	В	13	2	18,21,22	1.03	1 (5%)	22,30,33	1.86	5 (22%)	
3	PSU	D	4296	3	18,21,22	1.08	1 (5%)	22,30,33	1.78	4 (18%)	
3	PSU	D	4353	3	18,21,22	1.03	1 (5%)	22,30,33	1.85	4 (18%)	

Mol	Type	Chain	Bos	Link	B	Bond lengths			Bond angles		
	туре	Ullalli	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2	
48	OMC	W	517	48,80	19,22,23	2.99	8 (42%)	26,31,34	0.76	0	
3	PSU	D	1782	3	18,21,22	1.00	1 (5%)	22,30,33	1.84	4 (18%)	
3	OMG	D	3744	3	18,26,27	2.76	8 (44%)	19,38,41	1.52	4 (21%)	
3	PSU	D	1683	3	18,21,22	1.07	2 (11%)	22,30,33	1.95	5 (22%)	
3	OMC	D	2365	80,3	19,22,23	2.84	8 (42%)	26,31,34	0.71	0	
48	OMU	W	627	48	19,22,23	2.90	7 (36%)	26,31,34	1.72	<mark>5 (19%)</mark>	
48	A2M	W	166	48	18,25,26	1.50	1 (5%)	18,36,39	1.09	1 (5%)	
48	OMU	W	799	48	19,22,23	2.94	8 (42%)	26,31,34	1.68	4 (15%)	
3	OMG	D	1760	3	18,26,27	2.83	8 (44%)	19,38,41	1.46	4 (21%)	
48	PSU	W	1232	48	18,21,22	1.06	1 (5%)	22,30,33	1.80	4 (18%)	
3	A2M	D	2815	3	18,25,26	1.55	1 (5%)	18,36,39	1.00	1 (5%)	
2	PSU	С	54	2	18,21,22	1.08	1 (5%)	22,30,33	1.82	4 (18%)	
3	OMG	D	3792	3	18,26,27	2.70	8 (44%)	19,38,41	1.47	4 (21%)	
48	PSU	W	1046	48	18,21,22	1.04	1 (5%)	22,30,33	1.83	4 (18%)	
48	G7M	W	1639	48,2	20,26,27	2.71	7 (35%)	17,39,42	1.23	2 (11%)	
3	PSU	D	4403	80,3	18,21,22	1.06	1 (5%)	22,30,33	1.88	5 (22%)	
48	PSU	W	1081	48	18,21,22	1.01	1 (5%)	22,30,33	1.81	4 (18%)	
3	PSU	D	5010	3	18,21,22	1.03	1 (5%)	22,30,33	1.87	5 (22%)	
3	PSU	D	2632	3	18,21,22	1.02	1 (5%)	22,30,33	1.80	4 (18%)	
48	A2M	W	576	48	18,25,26	1.43	1 (5%)	18,36,39	1.04	1 (5%)	
3	A2M	D	3718	3	18,25,26	1.48	1 (5%)	18,36,39	1.02	1 (5%)	
48	PSU	W	34	48	18,21,22	1.06	1 (5%)	22,30,33	1.69	4 (18%)	
3	PSU	D	3853	80,3	18,21,22	1.04	1 (5%)	22,30,33	1.74	4 (18%)	
48	PSU	W	814	48	18,21,22	1.05	1 (5%)	22,30,33	1.80	4 (18%)	
3	A2M	D	4523	80,3	18,25,26	1.59	2 (11%)	18,36,39	1.12	2 (11%)	
3	OMC	D	4536	3	19,22,23	2.83	8 (42%)	26,31,34	0.74	0	
3	PSU	D	4689	3	18,21,22	1.04	1 (5%)	22,30,33	1.81	4 (18%)	
3	OMU	D	4306	3	19,22,23	2.76	6 (31%)	26,31,34	1.78	5 (19%)	
3	OMG	D	4392	3	18,26,27	2.71	8 (44%)	19,38,41	1.52	4 (21%)	
3	PSU	D	1744	80,3	18,21,22	1.02	1 (5%)	22,30,33	1.82	4 (18%)	
3	OMG	D	4196	80,2,3	18,26,27	2.69	8 (44%)	19,38,41	1.45	4 (21%)	
3	A2M	D	2363	80,3	18,25,26	1.47	2 (11%)	18,36,39	1.02	1 (5%)	
3	PSU	D	3734	3	18,21,22	1.05	1 (5%)	22,30,33	1.86	5 (22%)	
2	PSU	В	54	2	18,21,22	1.04	1 (5%)	22,30,33	1.76	4 (18%)	
48	OMC	w	174	48	19,22,23	3.02	8 (42%)	26,31,34	0.77	0	

Mal	Tune	Chain	Dec	Tink	B	Bond lengths			Bond angles		
	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2	
3	OMG	D	4618	3	18,26,27	2.75	8 (44%)	19,38,41	1.47	4 (21%)	
48	PSU	W	210	48	18,21,22	1.09	1 (5%)	22,30,33	1.80	5 (22%)	
48	PSU	W	866	48	18,21,22	1.05	1 (5%)	22,30,33	1.82	4 (18%)	
3	A2M	D	2787	80,3	18,25,26	1.48	1 (5%)	18,36,39	1.08	1 (5%)	
3	OMG	D	3899	3	18,26,27	2.71	8 (44%)	19,38,41	1.50	4 (21%)	
3	PSU	D	4312	3	18,21,22	1.02	1 (5%)	22,30,33	1.82	4 (18%)	
3	PSU	D	4628	3	18,21,22	1.05	1 (5%)	22,30,33	1.87	4 (18%)	
3	A2M	D	1871	80,3	18,25,26	1.55	1 (5%)	18,36,39	1.15	1 (5%)	
48	A2M	W	590	48	18,25,26	1.44	1 (5%)	18,36,39	1.05	1 (5%)	
3	A2M	D	3830	3	18,25,26	1.48	1 (5%)	18,36,39	1.08	0	
3	A2M	D	1534	80,3	18,25,26	1.42	1 (5%)	18,36,39	1.40	3 (16%)	
2	1MA	В	57	2	16,25,26	0.97	1 (6%)	18,37,40	0.81	0	
3	OMC	D	3841	3	19,22,23	2.81	8 (42%)	26,31,34	0.68	0	
3	PSU	D	1781	3	18,21,22	1.05	1 (5%)	22,30,33	1.80	4 (18%)	
3	A2M	D	2401	3	18,25,26	1.51	1 (5%)	18,36,39	1.02	1 (5%)	
48	PSU	W	1177	48	18,21,22	1.03	1 (5%)	22,30,33	1.82	4 (18%)	
3	OMG	D	1625	80,3	18,26,27	2.78	8 (44%)	19,38,41	1.51	4 (21%)	
3	OMC	D	1340	3	19,22,23	2.82	8 (42%)	26,31,34	0.69	0	
3	OMC	D	2804	3	19,22,23	2.85	8 (42%)	26,31,34	0.69	0	
48	OMG	W	683	48	18,26,27	2.81	8 (44%)	19,38,41	1.54	4 (21%)	
3	OMC	D	3887	3	19,22,23	2.86	8 (42%)	26,31,34	0.76	0	
3	5MC	D	3782	80,3	18,22,23	3.61	7 (38%)	26,32,35	1.08	2 (7%)	
48	PSU	W	1238	48	18,21,22	1.05	1 (5%)	22,30,33	1.82	<mark>5 (22%)</mark>	
48	A2M	W	1383	48	18,25,26	1.48	1 (5%)	18,36,39	1.21	2 (11%)	
3	PSU	D	3768	3	18,21,22	1.05	1 (5%)	22,30,33	1.80	4 (18%)	
3	PSU	D	4361	3	18,21,22	1.04	1 (5%)	22,30,33	1.80	4 (18%)	
3	PSU	D	4532	3	18,21,22	1.08	1 (5%)	22,30,33	1.78	4 (18%)	
3	OMG	D	2364	3	18,26,27	2.68	8 (44%)	19,38,41	1.50	4 (21%)	
3	OMG	D	2424	3	18,26,27	2.77	8 (44%)	19,38,41	1.51	4 (21%)	
3	OMG	D	4623	3	18,26,27	2.72	8 (44%)	19,38,41	1.50	4 (21%)	
48	PSU	W	109	48	18,21,22	1.06	1 (5%)	22,30,33	1.81	4 (18%)	
48	OMG	w	509	48	18,26,27	2.88	8 (44%)	19,38,41	1.49	4 (21%)	
48	OMU	w	172	48	19,22,23	2.94	8 (42%)	26,31,34	1.71	5 (19%)	
3	PSU	D	3637	80,3	18,21,22	1.04	1 (5%)	22,30,33	1.90	4 (18%)	
48	PSU	w	609	48	18,21,22	1.06	1 (5%)	22,30,33	1.77	4 (18%)	

Mal	Trung	Chain	Dec	Tinle	B	ond leng	gths	B	ond ang	les
1VIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
3	OMG	D	3627	3	18,26,27	2.73	8 (44%)	19,38,41	1.55	4 (21%)
3	A2M	D	3724	3	18,25,26	1.47	1 (5%)	18,36,39	1.02	1 (5%)
3	UR3	D	4530	3	19,22,23	2.63	7 (36%)	26,32,35	1.30	2 (7%)
48	PSU	W	1244	48	18,21,22	1.02	1 (5%)	22,30,33	1.79	4 (18%)
48	PSU	W	36	48	18,21,22	1.08	1 (5%)	22,30,33	1.86	5 (22%)
48	A2M	W	1031	48	18,25,26	1.50	1 (5%)	18,36,39	1.00	0
48	PSU	W	649	48	18,21,22	1.04	1 (5%)	22,30,33	1.85	5 (22%)
48	PSU	W	1692	48	18,21,22	1.00	1 (5%)	22,30,33	1.82	4 (18%)
48	MA6	W	1851	48	19,26,27	1.00	1 (5%)	18,38,41	1.78	3 (16%)
48	OMC	W	1391	48	19,22,23	2.93	8 (42%)	26,31,34	0.74	0
48	PSU	W	1174	48,80	18,21,22	1.06	1 (5%)	22,30,33	1.77	4 (18%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	\mathbf{Res}	Link	Chirals	Torsions	Rings
2	5MC	В	47	2	-	3/7/25/26	0/2/2/2
48	A2M	W	668	48,80	-	3/5/27/28	0/3/3/3
48	PSU	W	1625	48	-	0/7/25/26	0/2/2/2
3	PSU	D	1677	3	-	5/7/25/26	0/2/2/2
2	5MU	В	53	2	-	2/7/25/26	0/2/2/2
3	PSU	D	3762	3	-	0/7/25/26	0/2/2/2
3	6MZ	D	4220	3	-	0/5/27/28	0/3/3/3
3	OMC	D	2351	80,3	-	1/9/27/28	0/2/2/2
48	PSU	W	119	48	-	0/7/25/26	0/2/2/2
3	UY1	D	3818	80,3	-	4/9/27/28	0/2/2/2
2	2MG	С	6	2	-	0/5/27/28	0/3/3/3
3	PSU	D	4972	80,3	-	0/7/25/26	0/2/2/2
3	PSU	D	4500	2,3	-	3/7/25/26	0/2/2/2
48	PSU	W	966	48	-	0/7/25/26	0/2/2/2
48	OMU	W	116	48	-	2/9/27/28	0/2/2/2
48	4AC	W	1842	48	-	0/11/29/30	0/2/2/2
48	A2M	W	27	48	-	1/5/27/28	0/3/3/3
48	PSU	W	1347	48	-	0/7/25/26	0/2/2/2
3	PSU	D	4552	3	-	0/7/25/26	0/2/2/2
2	5MC	С	48	2	-	2/7/25/26	0/2/2/2

$\alpha \cdot \cdot \cdot \cdot$	C		
Continued	trom	previous	<i>paae</i>
0 01000100000	J . 0	p. 0000 a0	p @ g o

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	PSU	D	3770	3	-	1/7/25/26	0/2/2/2
3	PSU	D	4420	3	_	0/7/25/26	0/2/2/2
3	OMG	D	4228	3	-	0/5/27/28	0/3/3/3
3	PSU	D	4521	80,3	-	2/7/25/26	0/2/2/2
48	PSU	W	686	48	-	0/7/25/26	0/2/2/2
48	PSU	W	406	48	-	0/7/25/26	0/2/2/2
3	OMG	D	3944	3	-	4/5/27/28	0/3/3/3
48	B8N	W	1248	48	-	4/16/34/35	0/2/2/2
3	A2M	D	3825	3	_	0/5/27/28	0/3/3/3
3	A2M	D	1326	3	-	0/5/27/28	0/3/3/3
3	PSU	D	5001	80,3	-	0/7/25/26	0/2/2/2
3	PSU	D	1860	3	-	0/7/25/26	0/2/2/2
48	A2M	W	99	48,80	-	2/5/27/28	0/3/3/3
48	OMG	W	1490	48,80	-	3/5/27/28	0/3/3/3
3	OMU	D	2837	3	-	0/9/27/28	0/2/2/2
48	MA6	W	1850	48	-	0/7/29/30	0/3/3/3
3	OMC	D	4456	3	-	0/9/27/28	0/2/2/2
2	H2U	С	19	2	-	0/7/38/39	0/2/2/2
48	PSU	W	1045	48	_	0/7/25/26	0/2/2/2
2	1MA	С	9	2	-	2/3/25/26	0/3/3/3
48	PSU	W	93	48	-	0/7/25/26	0/2/2/2
3	PSU	D	3764	3	_	0/7/25/26	0/2/2/2
3	OMC	D	2824	3	-	0/9/27/28	0/2/2/2
3	PSU	D	4442	3	-	0/7/25/26	0/2/2/2
3	PSU	D	3851	3	-	1/7/25/26	0/2/2/2
3	OMU	D	2415	3	-	3/9/27/28	0/2/2/2
3	PSU	D	2508	3	_	0/7/25/26	0/2/2/2
3	PSU	D	4293	3	-	0/7/25/26	0/2/2/2
3	OMG	D	4499	2,3	_	1/5/27/28	0/3/3/3
48	PSU	W	1004	48	-	0/7/25/26	0/2/2/2
48	4AC	W	1337	48	-	0/11/29/30	0/2/2/2
3	PSU	D	3730	3	-	0/7/25/26	0/2/2/2
48	PSU	W	815	48	-	0/7/25/26	0/2/2/2
48	PSU	W	1643	48,80	-	0/7/25/26	0/2/2/2
2	$5\overline{\mathrm{MC}}$	С	47	2	-	3/7/25/26	0/2/2/2
3	1MA	D	1322	3	-	0/3/25/26	0/3/3/3
3	OMG	D	4637	3	-	1/5/27/28	0/3/3/3
48	OMU	W	1326	48	-	5/9/27/28	0/2/2/2
2	H2U	В	19	2	-	0/7/38/39	0/2/2/2
3	OMU	D	1773	3	-	1/9/27/28	0/2/2/2

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	OMU	D	4498	80,3	-	0/9/27/28	0/2/2/2
2	5MU	С	53	2	-	2/7/25/26	0/2/2/2
3	OMG	D	1316	3	-	0/5/27/28	0/3/3/3
3	OMG	D	1522	3	-	0/5/27/28	0/3/3/3
3	PSU	D	3920	80,3	-	0/7/25/26	0/2/2/2
48	OMG	W	644	48	-	3/5/27/28	0/3/3/3
48	OMC	W	1703	48,80	-	2/9/27/28	0/2/2/2
3	OMU	D	3925	3	-	0/9/27/28	0/2/2/2
3	PSU	D	4576	3	-	0/7/25/26	0/2/2/2
48	PSU	W	1367	48	-	0/7/25/26	0/2/2/2
3	OMU	D	4227	3	-	1/9/27/28	0/2/2/2
2	5MC	В	48	2	-	2/7/25/26	0/2/2/2
2	1MA	С	57	2	-	0/3/25/26	0/3/3/3
3	A2M	D	1524	3	-	1/5/27/28	0/3/3/3
3	OMG	D	4494	3	-	1/5/27/28	0/3/3/3
48	PSU	W	822	48	-	2/7/25/26	0/2/2/2
48	PSU	W	1056	48	_	0/7/25/26	0/2/2/2
3	PSU	D	1792	3	-	0/7/25/26	0/2/2/2
3	OMC	D	2422	80,3	-	1/9/27/28	0/2/2/2
2	2MG	В	6	2	-	2/5/27/28	0/3/3/3
48	PSU	W	218	48	-	0/7/25/26	0/2/2/2
48	OMG	W	436	48	-	0/5/27/28	0/3/3/3
3	PSU	D	4423	3	-	0/7/25/26	0/2/2/2
3	PSU	D	3758	3	-	0/7/25/26	0/2/2/2
2	5MC	С	38	2	-	0/7/25/26	0/2/2/2
48	PSU	W	681	48,80	-	0/7/25/26	0/2/2/2
3	A2M	D	3785	80,3	-	2/5/27/28	0/3/3/3
3	OMG	D	4370	3	-	1/5/27/28	0/3/3/3
3	A2M	D	400	3	-	0/5/27/28	0/3/3/3
3	5MC	D	4447	80,3	-	4/7/25/26	0/2/2/2
2	56B	В	34	2	-	3/6/43/44	0/4/4/4
3	OMC	D	2861	3	-	0/9/27/28	0/2/2/2
48	OMG	W	601	48	-	0/5/27/28	0/3/3/3
3	PSU	D	3715	3	-	0/7/25/26	0/2/2/2
48	PSU	W	651	48	-	0/7/25/26	0/2/2/2
3	PSU	D	3695	3	-	0/7/25/26	0/2/2/2
48	PSU	W	105	48	-	0/7/25/26	0/2/2/2
48	A2M	W	512	48	-	2/5/27/28	0/3/3/3
48	OMU	W	1288	48	-	3/9/27/28	0/2/2/2
48	OMU	W	1442	48,80	-	1/9/27/28	0/2/2/2

α $\cdot \cdot$ \cdot	e		
Continued i	trom	previous	page

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
48	PSU	W	1445	48	_	0/7/25/26	0/2/2/2
3	PSU	D	1536	3	-	0/7/25/26	0/2/2/2
3	PSU	D	4457	3	-	0/7/25/26	0/2/2/2
48	6MZ	W	1832	48,80	-	2/5/27/28	0/3/3/3
3	PSU	D	4471	3	-	0/7/25/26	0/2/2/2
3	PSU	D	4431	3	-	0/7/25/26	0/2/2/2
48	PSU	W	801	48	_	0/7/25/26	0/2/2/2
3	PSU	D	4579	3	-	0/7/25/26	0/2/2/2
3	OMU	D	4620	3	-	0/9/27/28	0/2/2/2
2	5MC	В	38	2	-	0/7/25/26	0/2/2/2
3	OMC	D	3701	80,3	-	4/9/27/28	0/2/2/2
48	OMC	W	462	48	-	1/9/27/28	0/2/2/2
3	A2M	D	3760	3	-	2/5/27/28	0/3/3/3
48	PSU	W	863	48	-	0/7/25/26	0/2/2/2
48	PSU	W	572	48	-	0/7/25/26	0/2/2/2
2	PSU	С	13	2	-	0/7/25/26	0/2/2/2
48	OMG	W	1328	48	-	0/5/27/28	0/3/3/3
48	A2M	W	468	48	-	2/5/27/28	0/3/3/3
2	1MA	В	9	2	-	2/3/25/26	0/3/3/3
5	OMG	F	75	5	-	0/5/27/28	0/3/3/3
48	OMU	W	428	48	-	7/9/27/28	0/2/2/2
3	PSU	D	3639	3	-	0/7/25/26	0/2/2/2
48	A2M	W	484	48	-	0/5/27/28	0/3/3/3
3	PSU	D	4299	3	-	0/7/25/26	0/2/2/2
3	A2M	D	398	3	-	2/5/27/28	0/3/3/3
2	56B	С	34	2	-	3/6/43/44	0/4/4/4
48	A2M	W	1678	48	-	1/5/27/28	0/3/3/3
48	OMU	W	1804	48	-	2/9/27/28	0/2/2/2
3	OMC	D	3808	3	-	0/9/27/28	0/2/2/2
3	PSU	D	1862	3	-	0/7/25/26	0/2/2/2
48	OMU	W	121	48	-	0/9/27/28	0/2/2/2
48	A2M	W	159	48	-	2/5/27/28	0/3/3/3
2	PSU	В	13	2	-	2/7/25/26	0/2/2/2
3	PSU	D	4296	3	_	0/7/25/26	0/2/2/2
3	PSU	D	4353	3	-	0/7/25/26	0/2/2/2
48	OMC	W	517	48,80	-	0/9/27/28	0/2/2/2
3	PSU	D	1782	3	-	0/7/25/26	0/2/2/2
3	OMG	D	3744	3	-	0/5/27/28	0/3/3/3
3	PSU	D	1683	3	-	0/7/25/26	0/2/2/2
3	OMC	D	2365	80,3	-	0/9/27/28	0/2/2/2

		Chain	Bes	 Link	Chirals	Torsions	Bings
19	OMU	w	627	19	Cimais	5/0/27/28	0/2/2/2
40		W	166	40	-	$\frac{3}{9}\frac{21}{20}$	0/2/2/2
48		W	700	48	-	2/3/21/28	0/3/3/3
48	OMU	W	799	48	-	3/9/27/28	0/2/2/2
3	OMG	D	1760	3	-	2/5/27/28	0/3/3/3
48	PSU	W	1232	48	-	0/7/25/26	0/2/2/2
3	A2M	D	2815	3	-	3/5/27/28	0/3/3/3
2	PSU	С	54	2	-	2/7/25/26	0/2/2/2
3	OMG	D	3792	3	-	0/5/27/28	0/3/3/3
48	PSU	W	1046	48	-	0/7/25/26	0/2/2/2
48	G7M	W	1639	48,2	-	2/3/25/26	0/3/3/3
3	PSU	D	4403	80,3	-	0/7/25/26	0/2/2/2
48	PSU	W	1081	48	-	0/7/25/26	0/2/2/2
3	PSU	D	5010	3	-	0/7/25/26	0/2/2/2
3	PSU	D	2632	3	-	0/7/25/26	0/2/2/2
48	A2M	W	576	48	-	2/5/27/28	0/3/3/3
3	A2M	D	3718	3	-	0/5/27/28	0/3/3/3
48	PSU	W	34	48	-	3/7/25/26	0/2/2/2
3	PSU	D	3853	80,3	-	0/7/25/26	0/2/2/2
48	PSU	W	814	48	-	0/7/25/26	0/2/2/2
3	A2M	D	4523	80,3	-	0/5/27/28	0/3/3/3
3	OMC	D	4536	3	-	0/9/27/28	0/2/2/2
3	PSU	D	4689	3	-	0/7/25/26	0/2/2/2
3	OMU	D	4306	3	-	0/9/27/28	0/2/2/2
3	OMG	D	4392	3	-	0/5/27/28	0/3/3/3
3	PSU	D	1744	80,3	-	0/7/25/26	0/2/2/2
3	OMG	D	4196	80,2,3	-	1/5/27/28	0/3/3/3
3	A2M	D	2363	80,3	-	0/5/27/28	0/3/3/3
3	PSU	D	3734	3	-	0/7/25/26	0/2/2/2
2	PSU	В	54	2	-	0/7/25/26	0/2/2/2
48	OMC	W	174	48	-	1/9/27/28	0/2/2/2
3	OMG	D	4618	3	-	0/5/27/28	0/3/3/3
48	PSU	W	210	48	-	0/7/25/26	0/2/2/2
48	PSU	W	866	48	-	0/7/25/26	0/2/2/2
3	A2M	D	2787	80,3	-	0/5/27/28	0/3/3/3
3	OMG	D	3899	3	_	0/5/27/28	0/3/3/3
3	PSU	D	4312	3	-	0/7/25/26	0/2/2/2
3	PSU	D	4628	3	_	0/7/25/26	0/2/2/2
3	A2M	D	1871	80,3	-	0/5/27/28	0/3/3/3
48	A2M	W	590	48		2/5/27/28	0/3/3/3
3	A2M	D	3830	3	-	0/5/27/28	0/3/3/3

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	A2M	D	1534	80,3	-	3/5/27/28	0/3/3/3
2	1MA	В	57	2	-	0/3/25/26	0/3/3/3
3	OMC	D	3841	3	-	0/9/27/28	0/2/2/2
3	PSU	D	1781	3	-	0/7/25/26	0/2/2/2
3	A2M	D	2401	3	-	1/5/27/28	0/3/3/3
48	PSU	W	1177	48	_	0/7/25/26	0/2/2/2
3	OMG	D	1625	80,3	-	1/5/27/28	0/3/3/3
3	OMC	D	1340	3	-	0/9/27/28	0/2/2/2
3	OMC	D	2804	3	-	0/9/27/28	0/2/2/2
48	OMG	W	683	48	-	0/5/27/28	0/3/3/3
3	OMC	D	3887	3	-	1/9/27/28	0/2/2/2
3	5MC	D	3782	80,3	-	0/7/25/26	0/2/2/2
48	PSU	W	1238	48	-	2/7/25/26	0/2/2/2
48	A2M	W	1383	48	-	0/5/27/28	0/3/3/3
3	PSU	D	3768	3	-	0/7/25/26	0/2/2/2
3	PSU	D	4361	3	-	0/7/25/26	0/2/2/2
3	PSU	D	4532	3	-	0/7/25/26	0/2/2/2
3	OMG	D	2364	3	-	2/5/27/28	0/3/3/3
3	OMG	D	2424	3	-	2/5/27/28	0/3/3/3
3	OMG	D	4623	3	-	0/5/27/28	0/3/3/3
48	PSU	W	109	48	-	0/7/25/26	0/2/2/2
48	OMG	W	509	48	-	1/5/27/28	0/3/3/3
48	OMU	W	172	48	-	1/9/27/28	0/2/2/2
3	PSU	D	3637	80,3	-	0/7/25/26	0/2/2/2
48	PSU	W	609	48	-	0/7/25/26	0/2/2/2
3	OMG	D	3627	3	-	0/5/27/28	0/3/3/3
3	A2M	D	3724	3	-	0/5/27/28	0/3/3/3
3	UR3	D	4530	3	-	0/7/25/26	0/2/2/2
48	PSU	W	1244	48	-	0/7/25/26	0/2/2/2
48	PSU	W	36	48	-	0/7/25/26	0/2/2/2
48	A2M	W	1031	48	-	0/5/27/28	0/3/3/3
48	PSU	W	649	48	-	0/7/25/26	0/2/2/2
48	PSU	W	1692	48	-	0/7/25/26	0/2/2/2
48	MA6	W	1851	48	-	2/7/29/30	0/3/3/3
48	OMC	W	1391	48	-	0/9/27/28	0/2/2/2
48	PSU	W	1174	48,80	-	0/7/25/26	0/2/2/2

The worst 5 of 760 bond length outliers are listed below:

2 B 53 5MU C2-N1 10.72 1.55 1.38	M	ol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
	2		В	53	5MU	C2-N1	10.72	1.55	1.38

pagen								
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)	
2	С	53	5MU	C6-N1	10.54	1.56	1.38	
2	С	53	5MU	C2-N1	10.54	1.55	1.38	
2	В	53	$5 \mathrm{MU}$	C6-N1	10.46	1.55	1.38	
2	С	48	5MC	C6-C5	9.53	1.50	1.34	

The worst 5 of 691 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	С	34	56B	C8-N9-C1'	23.29	146.11	125.48
2	В	34	56B	C8-N9-C1'	22.82	145.70	125.48
2	В	53	5MU	C5-C4-N3	12.26	125.77	115.31
2	С	53	5MU	C5-C4-N3	12.00	125.55	115.31
2	С	53	5MU	C5-C6-N1	-9.91	113.14	123.34

There are no chirality outliers.

5 of 168 torsion outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms
2	В	34	56B	C14-C10-N10-C9
2	С	34	56B	C11-C10-N10-C9
2	С	34	56B	C14-C10-N10-C9
2	В	47	5MC	O4'-C4'-C5'-O5'
2	В	47	5MC	C3'-C4'-C5'-O5'

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 545 ligands modelled in this entry, 545 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-36178. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 265

Z Index: 265

6.2.2 Raw map

X Index: 265

Y Index: 265

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 253

Z Index: 300

6.3.2 Raw map

X Index: 253

Y Index: 258

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.0204. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 872 nm^3 ; this corresponds to an approximate mass of 788 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.400 \AA^{-1}

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.400 ${\rm \AA^{-1}}$

8.2 Resolution estimates (i)

$\mathbf{Bosolution} \text{ ostimato } (\mathbf{\hat{A}})$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	2.50	-	-
Author-provided FSC curve	2.49	2.87	2.55
Unmasked-calculated*	2.84	3.22	2.88

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 2.84 differs from the reported value 2.5 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-36178 and PDB model 8JDJ. Per-residue inclusion information can be found in section 3 on page 19.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.0204 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.0204).

9.4 Atom inclusion (i)

At the recommended contour level, 78% of all backbone atoms, 76% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.0204) and Q-score for the entire model and for each chain.

All 0.7560 0 0 0.4300 0 1 0.1920 0 2 0.5890 0 3 0.1380 0 4 0.2120 0 5 0.4180 0 6 0.2690 0 7 0.1920 0	0.5940 0.5030 0.4160 0.5570 0.3760 0.4330 0.4690 0.4200
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.5030 0.4160 0.5570 0.3760 0.4330 0.4690 0.4200
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.4160 0.5570 0.3760 0.4330 0.4690 0.4200
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.5570 0.3760 0.4330 0.4690 0.4200
3 0.1380 0 4 0.2120 0 5 0.4180 0 6 0.2690 0 7 0.1920 0	0.3760 0.4330 0.4690 0.4200
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.4330 0.4690 0.4200
5 0.4180 0 6 0.2690 0 7 0.1920 0	0.4690 0.4200
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.4200
	0.4090
8 0.5540	0.5380
9 0.6460	0.5830
A 0.7530 0	0.5730
AA 0.7120 0	0.5910
AB 0.3450 0	0.5030
AC 0.5690 0	0.5560
AD 0.3730 0	0.4790
AE 0.4660	0.5170
AF 0.5290 0	0.5460
AG 0.3960 0	0.4720
AH 0.5030 0	0.5610
AI 0.7210 0	0.6100
AJ 0.6570 0	0.5690
AK 0.0850 0	0.3780
AL 0.2980 0	0.4910
AM 0.7380 0	0.6020
AN 0.4170 0	0.5080
AO 0.4970 0	0.5270
AP 0.7720 0	0.6050
AQ 0.2430 0	0.4390
AR 0.1450 0	0.4090
B 0.7340 0	0.5560
C 0.5610 0	0.5650
D 0.8550 0	0.6220
E 0.9800	0.6730
F 0.9010 0	0.6360

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
G	0.9550	0.6850
Н	0.8850	0.6650
Ι	0.8960	0.6530
J	0.7930	0.6250
K	0.7470	0.6060
L	0.8990	0.6680
М	0.7090	0.5960
N	0.8330	0.6410
0	0.8630	0.6450
Р	0.7060	0.5940
Q	0.8040	0.6270
R	0.8490	0.6380
S	0.9710	0.6860
Т	0.9130	0.6740
U	0.8890	0.6690
V	0.9320	0.6750
W	0.7920	0.6230
X	0.9190	0.6720
Y	0.8500	0.6450
Z	0.5790	0.5520
a	0.8970	0.6740
b	0.8780	0.6650
с	0.8270	0.6340
d	0.8200	0.6300
е	0.8170	0.6290
f	0.9170	0.6710
g	0.7080	0.5860
h	0.8250	0.6290
i	0.8220	0.6470
j	0.9330	0.6880
k	0.9370	0.6720
1	0.8510	0.6420
m	0.8160	0.6370
n	0.7680	0.6360
0	0.9550	0.6800
р	0.6550	0.5890
q	0.8960	0.6520
r	0.8750	0.6570
S	0.9130	0.6680
t	0.8330	0.6340
u	0.8800	0.6660
V	0.8920	0.6410

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
W	0.7260	0.5470
X	0.5390	0.5670
У	0.6030	0.5830
Z	0.6630	0.5930

