

Full wwPDB X-ray Structure Validation Report (i)

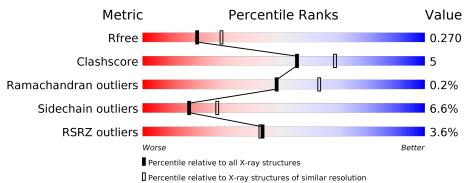
May 22, 2020 - 09:03 am BST

PDB ID	:	6JH0
Title	:	Crystal structure of $cISG15/NS1B$ complex
Authors	:	Jiang, Y.N.; Wang, X.Q.
Deposited on		
$\operatorname{Resolution}$:	2.40 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:


MolProbity	:	4.02b-467
Xtriage (Phenix)	:	1.13
EDS	:	2.11
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
$\operatorname{CCP4}$:	$7.0.044 (\mathrm{Gargrove})$
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.11

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 2.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries},{ m resolution\ range}({ m \AA}))$
R_{free}	130704	3907 (2.40-2.40)
Clashscore	141614	4398 (2.40-2.40)
Ramachandran outliers	138981	4318 (2.40-2.40)
Sidechain outliers	138945	4319 (2.40-2.40)
RSRZ outliers	127900	3811 (2.40-2.40)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain			
1	А	103	6% 78%	13%	•	9%
1	С	103	^{2%} 79 %	12%	•	9%
2	В	163	75%	17%		6%
2	D	163	4% 79%	13%		6%

2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 3951 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Non-structural protein 1.

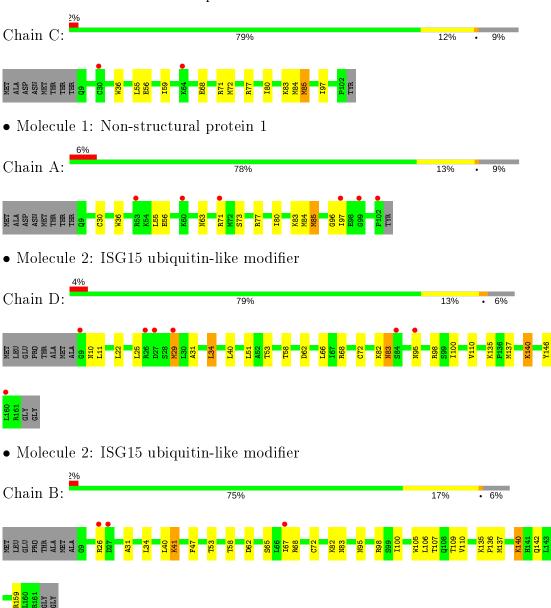
Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
1	С	94	Total	С	Ν	Ο	\mathbf{S}	0	0	0
L	U	94	759	477	138	139	5	0	0	0
1	Λ	94	Total	С	Ν	Ο	\mathbf{S}	0	0	0
L	Л	94	759	477	138	139	5	0	0	0

• Molecule 2 is a protein called ISG15 ubiquitin-like modifier.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
0	а	152	Total	С	Ν	Ο	S	0	0	0
		153	1195	758	210	220	7	0	0	U
0	р	153	Total	С	Ν	0	S	0	0	0
	D	100	1192	755	210	220	7			U

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
D	84	SER	CYS	engineered mutation	UNP E2R7R1
В	84	SER	CYS	engineered mutation	UNP E2R7R1


• Molecule 3 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	С	11	Total O 11 11	0	0
3	А	5	$\begin{array}{cc} \text{Total} & \text{O} \\ 5 & 5 \end{array}$	0	0
3	D	19	Total O 19 19	0	0
3	В	11	Total O 11 11	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Non-structural protein 1

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 43 21 2	Depositor
Cell constants	77.30Å 77.30Å 217.58Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Resolution (Å)	36.42 - 2.40	Depositor
Resolution (A)	36.42 - 2.40	EDS
% Data completeness	99.6 (36.42-2.40)	Depositor
(in resolution range)	99.6(36.42 - 2.40)	EDS
R _{merge}	(Not available)	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	2.68 (at 2.39 Å)	Xtriage
Refinement program	PHENIX (1.11.1_2575: ???)	Depositor
D D.	0.207 , 0.266	Depositor
R, R_{free}	0.216 , 0.270	DCC
R_{free} test set	1271 reflections $(4.79%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	55.8	Xtriage
Anisotropy	0.001	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.33 , 45.0	EDS
L-test for twinning ²	$ \langle L \rangle = 0.48, \langle L^2 \rangle = 0.31$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.94	EDS
Total number of atoms	3951	wwPDB-VP
Average B, all atoms $(Å^2)$	70.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 13.63% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Mol Chain		lengths	Bond angles		
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.43	0/773	0.57	0/1034	
1	С	0.46	0/773	0.60	0/1034	
2	В	0.41	0/1212	0.61	0/1641	
2	D	0.39	0/1215	0.57	0/1645	
All	All	0.42	0/3973	0.59	0/5354	

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	759	0	765	7	0
1	С	759	0	765	7	0
2	В	1192	0	1217	18	0
2	D	1195	0	1226	14	0
3	А	5	0	0	0	0
3	В	11	0	0	3	0
3	С	11	0	0	1	0
3	D	19	0	0	0	0
All	All	3951	0	3973	41	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 5.

A to 1	Atom-2	Interatomic	Clash
Atom-1	Atom-2	${ m distance}~({ m \AA})$	overlap (Å)
2:B:31:ALA:HB3	2:B:62:ASP:HA	1.81	0.63
1:C:85:MET:HE1	1:A:30:CYS:HB3	1.83	0.59
2:D:31:ALA:HB3	2:D:62:ASP:HA	1.87	0.57
1:C:36:TRP:CD2	2:D:83:ASN:HB2	2.39	0.57
2:B:26:ARG:NH2	3:B:201:HOH:O	2.33	0.57
2:B:53:THR:OG1	2:B:58:THR:HG22	2.04	0.56
1:C:72:MET:HE1	3:C:201:HOH:O	2.07	0.55
1:A:36:TRP:CE2	2:B:83:ASN:HB3	2.43	0.53
2:B:83:ASN:OD1	2:B:107:THR:HG21	2.09	0.53
2:B:41:LYS:HG3	2:B:41:LYS:O	2.09	0.51
1:A:80:ILE:O	1:A:84:MET:HG3	2.11	0.50
2:B:159:ARG:NH2	3:B:202:HOH:O	2.38	0.50
2:D:29:MET:O	2:D:66:LEU:HG	2.12	0.50
2:D:98:ARG:NE	2:D:100:ILE:HD11	2.26	0.50
2:B:106:LEU:HD22	2:B:144:GLY:HA2	1.95	0.49
1:A:36:TRP:CD2	2:B:83:ASN:HB3	2.48	0.48
1:A:63:ASN:O	1:A:71:ARG:NE	2.40	0.48
2:D:98:ARG:HE	2:D:100:ILE:HD11	1.79	0.47
1:C:68:GLU:HA	1:C:71:ARG:HD2	1.97	0.47
1:C:80:ILE:O	1:C:84:MET:HG3	2.15	0.47
2:B:41:LYS:HB2	2:B:41:LYS:HE2	1.59	0.47
2:B:47:PHE:HE1	2:B:142:GLN:OE1	1.98	0.46
2:D:11:LEU:HD22	2:D:25:LEU:HD13	1.96	0.46
2:B:109:THR:HA	2:B:142:GLN:HA	1.97	0.46
2:D:140:LYS:HE2	2:D:140:LYS:HB2	1.68	0.46
1:A:73:SER:O	1:A:77:ARG:HG3	2.16	0.45
2:B:110:VAL:HG21	2:B:137:MET:HB3	1.99	0.44
2:D:10:ASN:HB3	2:D:22:LEU:HD22	2.00	0.44
2:D:53:THR:OG1	2:D:58:THR:HG22	2.19	0.43
2:D:135:LYS:HE3	2:D:146:TYR:HD1	1.82	0.43
1:A:85:MET:HE2	1:A:85:MET:HB3	1.90	0.42
2:D:110:VAL:HG21	2:D:137:MET:HB3	2.00	0.42
2:D:34:LEU:HD13	2:D:51:LEU:HD13	2.01	0.42
2:B:65:SER:OG	2:B:67:ILE:HG22	2.20	0.41
2:B:140:LYS:HE2	2:B:140:LYS:HB2	1.75	0.41
1:C:59:ILE:HD13	1:C:77:ARG:HD2	2.03	0.41
1:C:36:TRP:CE3	2:D:83:ASN:HB2	2.56	0.41
2:B:98:ARG:NE	2:B:100:ILE:HD11	2.35	0.41
2:B:142:GLN:HG3	3:B:208:HOH:O	2.20	0.40
2:B:135:LYS:HA	2:B:136:PRO:HD3	1.98	0.40

All (41) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Continued on next page...

$\alpha \cdot \cdot \cdot$	r		
Continued	from	previous	page

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
2:D:29:MET:HG2	2:D:66:LEU:HD11	2.03	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	\mathbf{n} tiles
1	А	92/103~(89%)	91~(99%)	0	1 (1%)	14	20
1	С	92/103~(89%)	91~(99%)	1 (1%)	0	100	100
2	В	151/163~(93%)	146~(97%)	5(3%)	0	100	100
2	D	151/163~(93%)	148~(98%)	3~(2%)	0	100	100
All	All	486/532~(91%)	476~(98%)	9(2%)	1 (0%)	47	62

All (1) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	96	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	81/89~(91%)	76 (94%)	5~(6%)	18 29

Continued on next page...

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	С	81/89~(91%)	76~(94%)	5~(6%)	18 29
2	В	132/139~(95%)	123~(93%)	9~(7%)	16 25
2	D	133/139~(96%)	124~(93%)	9~(7%)	16 25
All	All	427/456~(94%)	399~(93%)	28 (7%)	16 26

Continued from previous page...

All (28) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	С	55	LEU
1	С	56	GLU
1	С	83	LYS
1	С	85	MET
1	С	97	ILE
1	А	55	LEU
1	А	56	LEU GLU
1	А	83	LYS
1	C C C C A A A A A D D D D D	85	LYS MET
1	А	97	ILE MET
2	D	29	MET
$ \begin{array}{c} 2\\ 2\\ 2\\ 2\\ 2 \end{array} $	D	34	LEU
2	D	40	LEU
2	D	68	ARG
2	D	72	CYS
22	D	82	CYS LYS
2	D	83	ASN ASN
2	D	95	ASN
2	D	140	LYS LEU
2	В	34	
2	В	40	LEU
2	В	41	LYS
2	В	68	ARG
$ \begin{array}{r} 2 \\ $	В	72	CYS
2	В	82	LYS ASN
2	В	95	ASN
2	В	105	TRP
2	В	140	LYS

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (1) such sidechains are listed below:

Mol	Chain	Res	Type
2	В	85	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no carbohydrates in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	$\# RSRZ {>}2$	$\mathbf{OWAB}(\mathbf{\AA}^2)$	$\mathbf{Q}{<}0.9$
1	А	94/103~(91%)	0.51	6 (6%) 19 18	42, 65, 106, 135	0
1	С	94/103~(91%)	0.24	2 (2%) 63 61	39, 60, 91, 114	0
2	В	153/163~(93%)	-0.07	3 (1%) 65 63	43, 70, 102, 133	0
2	D	153/163~(93%)	0.08	7 (4%) 32 31	40, 69, 107, 134	0
All	All	494/532~(92%)	0.15	18 (3%) 42 42	39, 67, 105, 135	0

All (18) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
2	D	160	LEU	5.0
2	D	27	ASP	4.7
2	В	27	ASP	4.4
1	А	97	ILE	4.2
1	С	30	CYS	4.0
2	D	84	SER	3.8
2	В	26	ARG	3.5
2	D	26	ARG	3.1
2	В	67	ILE	2.6
2	D	95	ASN	2.5
1	А	60	LYS	2.4
1	А	102	PRO	2.4
1	С	64	LYS	2.4
1	А	53	ARG	2.2
2	D	9	GLY	2.2
2	D	29	MET	2.2
1	А	71	ARG	2.1
1	А	99	GLY	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no carbohydrates in this entry.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

