

Full wwPDB X-ray Structure Validation Report (i)

Oct 9, 2023 – 08:37 AM EDT

PDB ID	:	7JOQ
Title	:	Structure of NV1 small terminase
Authors	:	Cingolani, G.; Lokareddy, R.
Deposited on	:	2020-08-07
Resolution	:	3.95 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Xtriage (Phenix)	:	1.13
EDS	:	2.35.1
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.35.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 3.95 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	Similar resolution				
	(#Entries)	(#Entries, resolution range(A))				
R _{free}	130704	1025 (4.22-3.70)				
Ramachandran outliers	138981	1047 (4.22-3.70)				
Sidechain outliers	138945	1039 (4.22-3.70)				
RSRZ outliers	127900	1013 (4.28-3.64)				

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain							
1	0	157	3% 67%	• 32%						
1	1	157	3% 65%	• 34%						
1	2	157	2% 68%	• 32%						
1	3	157	2% 67%	• 32%						
1	4	157	2% 64%	• 34%						
1	5	157	67%	• 32%						

Mol	Chain	Length	Quality of chain	
1	0	155	4%	_
	0	157	67% • 32%	
1	7	157	65%	_
-	1	101	<u>2%</u>	
1	8	157	• 32%	_
			4%	
1	9	157	66% · 32%	
1	٨	157		
1	A	197	67% • 32%	
1	AA	157	64%	-
		101	0470	
1	AB	157	68% 32%	_
			%	
1	AC	157	67% · 32%	_
1		157	3%	_
	AD	107	64% • 34%	
1	AE	157	67%	
		101	<u>4%</u>	
1	AF	157	68% 32%	_
			2%	
1	AG	157	66% · 34%	
1	A T T	157	2%	
	АН	157	66% · 32%	
1	AT	157	67 %	
-		101	4%	
1	AJ	157	• 34%	-
			%	
1	В	157	65% · 34%	
1	C	157		
1	C	157	<u>68%</u> <u>32%</u>	
1	Л	157	67%	
-		101	<u>3%</u>	
1	Ε	157	66% 34%	_
			3%	
1	F	157	67% • 32%	
1	C	157	3%	_
	G	197	66% • 33%	
1	Н	157	66%	
-	**	101	0,FC 0,00	
1	Ι	157	68% 32%	-
			%	_
1	J	157	68% 32%	
-	17	1	.% 	_
	К	157	6 7% • 32%	

Mol	Chain	Length	Quality of chain					
			4%					
1	L	157	64% •	34%				
			2%					
1	М	157	67% ·	32%				
			% •					
1	Ν	157	67% •	32%				
	â		6%					
1	0	157	66%	34%				
	- E		3%					
1	P	157	67% •	32%				
1	0	1	4%					
	Q	157	· ·	32%				
1	л	155	.%					
	К	157	65% ·	34%				
1	C	157	.70 •					
	5	157	68% ·	32%				
1	т	157						
	1	107	67% •	32%				
1	TT	157						
1	U	197	65% ·	34%				
1	V	157		220/				
	v	107	67% ·	32%				
1	W	157	C70/	220/				
1	vv	101	67% ·	52%				
1	x	157	660/	220/				
		101	•	0,55				
1	Y	157	66%	32%				
	-	101	.%	5270				
1	Z	157	66%	32%				
			3%					
1	а	157	65%	34%				
			3%					
1	b	157	68% •	32%				
			3%					
1	с	157	67%	32%				
			.%					
1	d	157	64%	34%				
			.%					
1	е	157	67% •	32%				
			15%					
1	ee	157	68% •	32%				
			%					
1	f	157	67% •	32%				
			10%					
1	ff	157	67% •	32%				
			4%					
1	g	157	65% •	34%				
			13%					
1	gg	157	64%	34%				

Mol	Chain	Length	Quality of chain						
			. <mark>%</mark>						
1	h	157	68%	32%					
			15%						
1	hh	157	67%	• 32%					
	_		4%						
1	i	157	66%	• 32%					
			11%						
1	ii	157	67%	• 32%					
			3%						
	J	157	64%	• 34%					
1		1	12%						
	JJ	157	65%	• 34%					
1	1	155							
	k	157	68%	• 32%					
1	11	155	6%						
	kk	157	67%	• 32%					
1	1	155	3%						
	l	157	66%	• 32%					
1	11	155	15%						
	II	157	66%	• 32%					
1		157	3%						
	m	157	65%	• 34%					
1		157	13%						
	mm	157	64%	• 34%					
1		157	.% 						
	n	157	68%	32%					
1		157							
	0	197	67%	• 32%					
1	n	157		220/					
1	p	107	6/%	33%					
1	a	157		22%					
	q	107	67% 3%	• 32%					
1	r	157		22%					
1	1	107	3%	• 32%					
1	q	157		2.40/					
	د	101	04%	• 54%					
1	ť	157	69%	220/					
	0	101	2%	• 52 /0					
1	11	157	6 8%	32%					
	u	101	.%	52 /0					
1	v	157	65%	24%					
	v	101	.%	+/0					
1	W	157	68%	320%					
	vv	101	2%	JZ /0					
1	x	157	6 7%	. 32%					
		101	.%	- J2 /0					
1	V	157	66%	3/1%					
	y	101	2%	- 0/+/C					
1	7	157	6 8%	320%					
∸			0070	5270					

2 Entry composition (i)

There is only 1 type of molecule in this entry. The entry contains 62617 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	Ι	107	Total 788	C 498	N 142	O 147	S 1	0	0	0
1	А	106	Total 779	C 492	N 141	0 145	S 1	0	0	0
1	В	103	Total 759	C 478	N 138	0 142	S 1	0	0	0
1	С	106	Total 776	C 489	N 141	0 145	S 1	0	0	0
1	D	106	Total 779	C 492	N 141	0 145	S 1	0	0	0
1	Е	104	Total 766	C 483	N 139	0 143	S 1	0	0	0
1	F	106	Total 776	C 489	N 141	0 145	S 1	0	0	0
1	G	105	Total 773	C 487	N 140	0 145	S 1	0	0	0
1	Н	103	Total 755	$\begin{array}{c} \mathrm{C} \\ 475 \end{array}$	N 137	O 142	S 1	0	0	0
1	J	107	Total 788	C 498	N 142	0 147	S 1	0	0	0
1	K	106	Total 779	C 492	N 141	0 145	S 1	0	0	0
1	L	103	Total 759	C 478	N 138	O 142	S 1	0	0	0
1	М	106	Total 776	C 489	N 141	0 145	S 1	0	0	0
1	Ν	106	Total 779	C 492	N 141	0 145	\mathbf{S} 1	0	0	0
1	Ο	104	Total 766	C 483	N 139	0 143	S 1	0	0	0
1	Р	106	Total 776	C 489	N 141	0 145	S 1	0	0	0

• Molecule 1 is a protein called Small Terminase subunit.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace			
1	0	100	Total	С	Ν	0	S	0	0	0			
	Q	106	781	493	141	146	1	0	0	0			
1	р	100	Total	С	Ν	0	S	0	0	0			
	К	103	755	475	137	142	1	0	0	0			
1	C	107	Total	С	Ν	0	S	0	0	0			
1	5	107	788	498	142	147	1	0	0	0			
1	т	100	Total	С	Ν	0	S	0	0	0			
	1	100	779	492	141	145	1	0	0	0			
1	TT	102	Total	С	Ν	0	S	0	0	0			
1	U	105	759	478	138	142	1	0	0	0			
1	V	106	Total	С	Ν	0	S	0	0	0			
1	v	100	776	489	141	145	1	0	0	0			
1	W	106	Total	С	Ν	0	S	0	0	0			
1	vv	100	779	492	141	145	1	0	0	0			
1	v	105	Total	С	Ν	0	S	0	0	0			
1	Λ	105	771	486	140	144	1	0	0	0			
1	v	106	Total	С	Ν	0	S	0	0	0			
1	1	100	776	489	141	145	1	0	0	0			
1	7	106	Total	С	Ν	0	S	0	0	0			
1		100	779	492	141	145	1	0	0	0			
1	0	103	Total	С	Ν	0	\mathbf{S}	0	0	0			
1	a	105	755	475	137	142	1	0	0	0			
1	h	107	Total	С	Ν	0	\mathbf{S}	0	0	0			
1	U	107	788	498	142	147	1	0	0	0			
1	C	106	Total	С	Ν	Ο	\mathbf{S}	0	0	0			
1	C	100	779	492	141	145	1	0	0	0			
1	d	103	Total	С	Ν	Ο	\mathbf{S}	0	0	0			
1	u	105	759	478	138	142	1	0	0	0			
1	ρ	106	Total	С	Ν	Ο	\mathbf{S}	0	0	0			
	C	100	776	489	141	145	1	0	0	0			
1	f	106	Total	С	Ν	Ο	\mathbf{S}	0	0	0			
-	1	100	779	492	141	145	1	0	0	0			
1	o	104	Total	С	Ν	Ο	\mathbf{S}	0	0	0			
-	5	104	766	483	139	143	1	0	0	0			
1	h	106	Total	С	Ν	Ο	\mathbf{S}	0	0	0			
-		100	776	489	141	145	1	0	0	0			
1	1 i	106	Total	С	Ν	Ο	\mathbf{S}	0	0	0			
		100	779	492	141	145	1			0			
1	1 i	103	Total	С	Ν	Ο	\mathbf{S}	0	0	0			
	J	100	755	475	137	142	1			0			
1	k	k	ŀ	k	107	Total	С	Ν	Ο	S	0	0	0
	IX I	101	788	498	142	147	1			0			

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	1	100	Total	С	Ν	0	S	0	0	0
	1	106	779	492	141	145	1	0	0	0
1		102	Total	С	Ν	0	S	0	0	0
	m	103	759	478	138	142	1	0	0	0
1		100	Total	С	Ν	0	S	0	0	0
1	11	100	776	489	141	145	1	0	0	0
1		106	Total	С	Ν	0	S	0	0	0
1	0	100	779	492	141	145	1	0	0	0
1	n	105	Total	С	Ν	0	S	0	0	0
1	р	105	771	486	140	144	1	0	0	0
1	0	106	Total	С	Ν	0	S	0	0	0
1	Ч	100	776	489	141	145	1	0		0
1	r	106	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	1	100	779	492	141	145	1	0	0	0
1	S	103	Total	С	Ν	Ο	\mathbf{S}	0	0	0
-	6	105	755	475	137	142	1	0	0	
1	t	t 107	Total	С	Ν	Ο	\mathbf{S}	0	0	0
-	0		788	498	142	147	1	0	0	0
1	11	106	Total	С	Ν	Ο	\mathbf{S}	0	0	0
	ı u	100	779	492	141	145	1	Ŭ	0	0
1	V	103	Total	С	Ν	Ο	\mathbf{S}	0	0	0
	•	100	759	478	138	142	1	Ŭ	Ŭ	Ŭ
1	w	106	Total	С	Ν	0	S	0	0	0
			776	489	141	145	1	Ŭ	Ű.	, , , , , , , , , , , , , , , , , , ,
1	x	x 106	Total	С	N	0	S	0	0	0
			779	492	141	145	1	-		
1	v	104	Total	C	N	0	S	0	0	0
	, , , , , , , , , , , , , , , , , , ,		766	483	139	143	1			
1	Z	106	Total	C	N	0	S	0	0	0
			776	489	141	145	1			
1	0	106	Total 770	C	N	0	S	0	0	0
			779	492	141	145				
1	1	103	Total	C	N 197	140	S	0	0	0
			(55 TL (1	475	137 N	142	1			
1	2	107	10tal 700	U 409	IN 149	147	5 1	0	0	0
			788 Tratal	498	142 N	147	1 C			
1	1 3	106	10tal 770	409	1N 1 / 1	145	Э 1	0	0	0
			Total	492	141 N	140				
1	1 4	103	Total 750	U 179	1N 190	149	0 1	0	0	0
			709 Total	410	199 199	142				
1	5	106	776	100	1N 1/11	145	5 1	0	0	0
			110	409	141	140	T			

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	C	100	Total	С	Ν	0	S	0	0	0
	0	106	779	492	141	145	1	0	0	0
1	-	104	Total	С	Ν	0	S	0	0	0
1	(104	766	483	139	143	1	0	0	0
1	0	106	Total	С	Ν	0	S	0	0	0
	8	100	776	489	141	145	1	0	0	0
1	0	106	Total	С	Ν	0	S	0	0	0
1	9	100	779	492	141	145	1	0	0	0
1		103	Total	С	Ν	0	S	0	0	0
1	AA	105	755	475	137	142	1	0	0	0
1	٨B	107	Total	С	Ν	0	S	0	0	0
1	AD	107	788	498	142	147	1	0	0	0
1		106	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	AU	100	779	492	141	145	1	0	0	0
1	AD	103	Total	С	Ν	Ο	\mathbf{S}	0	0	0
		100	759	478	138	142	1	0	0	
1	ΑE	106	Total	С	Ν	Ο	\mathbf{S}	0	0	0
-		100	776	489	141	145	1	0	0	0
1	AF	106	Total	С	Ν	Ο	\mathbf{S}	0	0	0
-		100	779	492	141	145	1	0	0	0
1	AG	104	Total	С	Ν	Ο	\mathbf{S}	0	0	0
-	110	101	766	483	139	143	1	0	0	0
1	AH	106	Total	С	Ν	Ο	\mathbf{S}	0	0	0
		100	776	489	141	145	1	Ŭ		0
1	AT	106	Total	С	Ν	Ο	\mathbf{S}	0	0	0
		100	779	492	141	145	1	Ŭ		0
1	AJ	103	Total	С	Ν	Ο	\mathbf{S}	0	0	0
			755	475	137	142	1	Ŭ	<u> </u>	, in the second
1	ee	107	Total	С	Ν	0	S	0	0	0
			788	498	142	147	1	, , , , , , , , , , , , , , , , , , ,	-	
1	ff	106	Total	С	Ν	0	S	0	0	0
			779	492	141	145	1		_	
1	gg	103	Total	C	N	0	S	0	0	0
			759	478	138	142	1			
1	hh	106	Total	С	Ν	0	S	0	0	0
			776	489	141	145	1		_	
1	1 ii	106	Total	C	N	0	S	0	0	0
		100	779	492	141	145	1	_		
1	1 ji	104	Total	C	N	O	S	0	0	0
	JJ		764	481	139	143	$\frac{1}{\alpha}$	_	-	_
1	kk	106	Total	C	N	U 1 d =	S	0	0	0
			776	489	141	145	1	Ĭ	Ĩ	Ŭ

001000	naca jion	i precious pu	yc							
Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	11	106	Total	С	Ν	0	S	0	0	0
1		100	779	492	141	145	1	0	0	0
1	mm	102	Total	С	Ν	0	\mathbf{S}	0	0	0
	111111	105	755	475	137	142	1	0	0	0

Continued from previous page...

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Small Terminase subunit

• Molecule 1: Small Terminase subunit

Chain W:	67%		32%	
	0, 10		5275	
MET THR ASP GLN GLN GLN VAL VAL VAL VAL VAL VAL VAL VAL SER SER SER SER	T21 721 721 721 836 836 836 836 857 857 857 857 857 857 857 857 857 857	LEU THR THR GLU GLU ASP LVS GLU LEU LEU LEU LEU	ASP ASP GLU PRO GLU CLEU CLEU CLEU CLEU CLEU VAL VAL VAL VAL VAL VAL VAL VAL VAL VAL	ASN
HIS SER LYS SER				
• Molecule 1: Small	l Terminase subunit			
Chain X:	66%	·	33%	
MRT THR AFF AFF AFF AFF AFF AFF AFF AFF AFF	T21 T21 P51 P51 P51 H52 N55 N55 N55 N55 N55 N55 N55 N55 N55 N	VAL VAL ALSO VALA VALA VALA VALA VALA VALA VALA VAL	LINE LEU PHE ASN ASN ASN ASP ALU CLU CLU CLU ALA ALA VAL VAL	HE
PRO ILE ASN HIS SER LYS SER				
• Molecule 1: Small	l Terminase subunit			
Chain Y:	66%		32%	
MET THR ASP GLN CHR CLN VAL VAL VAL THR THR SER SER SER SER SER	F37 F37 ASP ASP ASP ASP LEU THR THR THR THR THR THR THR THR THR THR	LYS ASN GLU GLU LLYS LLYS PHE ASN ASN ASN ASP CLU GLU CHI	ALA ALA VAL VAL VAL ALA ALA ALA ALA ALA	
• Molecule 1: Small	l Terminase subunit			
Chain Z:	66%	·	32%	
MET THR ASP CLN CLN CLN THR THR VAL THR SER SER SER SER SER	P51 P51 N64 N64 N124 ASP ASP ASP ASP ASP ASP THR THR THR THR	GLU ASP LITE LITE CLU ASN ASN ALA ASN ASN ASN ASN ASN ASN	PR00 GLU CLU CLYS CLU CLYS CLYS CLYS CLYS CLYS CLYS CLYS CLYS	LYS
SER				
• Molecule 1: Small	l Terminase subunit			
Chain a:	65%		34%	
MET THR ASP ASP CLN THR THR VAL VAL VAL ASP SER SER SER SER	THEU THE PRO K23 K23 N55 N55 N55 K125 N32 N42 A1A	ASP LEU THR THR THR CLU CLU ASP ASP GLU CLEU CLEU CLEU CLEU CLEU	PHE ASN ASN ASN ASP ALS CLU CLEU CLEU CLEU CLEU VAL ALA ALA ALA ALA	JLE
ASN HIS SER LYS SER				
• Molecule 1: Small	l Terminase subunit			
Chain b:	68%	·	32%	

• Molecule 1: Sm	nall Terminase subunit		
Chain h:	68%	32%	-
MET THR ASP GLN GLN THR VAL VAL VAL VAL ILE THR THR	PRO L20 L20 R125 R125 ASP ASP ASP ASP ASP ASP ASP ASP	LIVE LIVE ASN GLU CLU CLU CLU CLU CLU CLU CLU CLU CLU C	HIS SER LYS SER
• Molecule 1: Sm	nall Terminase subunit		
Chain i:	66%	• 32%	
MET THR ASP GLN GLN CHR THR VAL VAL VAL ASP ILLE THR THR	PRO L20 L20 P51 P51 N55 N63 N64 L18 R111 R111 K125 K125	V ASF V ALL ALLA ALLA ALSP LEU CLU ASP CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	ALA LYS VAL VAL ALA PHE
PRO ILLE ASN HIS SER LYS SER SER			
• Molecule 1: Sm	nall Terminase subunit		
Chain j:	64%	• 34%	
MET THR ASP ASP GLN THR VAL VAL VAL VAL ASP THR THR SSP	PALA PALA PALA PALA PALA PALA PALA PALA	ASP ASP VAL ASP ALA ASP THR THR THR THR THR ASP CLU CLU CLU CLU ASP ASP CLU ASP CLU CLU CLU CLU CLU CLU	LEU ALA LYS VAL VAL ALA
PHE PRO ILE ASN HIS SER LYS SER SER			
• Molecule 1: Sm	nall Terminase subunit		
Chain k:	68%	• 32%	-
MET THR ASP ASP ASP VAL VAL VAL ASP THR SSR	P19 P51 ASP ASP ASP ASP ASP ASP ASP ASP LFU ASP ASP ASP ASP ASP ASP ASP	LUU LUS LUS LUS LUS PHE ASN ASP ASN PHE CUU CLUU CLUU VAL ALA ALA ALA ALA ALA ALA ALA ALA ALA	SER
• Molecule 1: Sm	nall Terminase subunit		
Chain l:	66%	• 32%	
MET THR ASP ASP ASP GLN THR THR VAL VAL VAL VAL THR VAL SSP SSP	PR0 L20 L20 D27 A46 M38 M64 M64 K125 K125 A5P A5P A5P	ASP LEU THR THR THR THR THR ASP ASP ASP ASN ALA ALA ALA ALA ALA ALA ALA ALA CLU CLU PHE ASP ASP CLU PHE ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	VAL VAL ALA PHE PRO ILE
ASN HIS SER LYS SER			
• Molecule 1: Sm	nall Terminase subunit		
Chain m:	65%	• 34%	-
MET THR ASP GLN GLN CHR THR VAL ASP ILLE THR THR SSER	ALA PRO LEU FRO FRO FRO FRO FRO FRO FRO FRO FRO FRO	VAL VAL ALA ALA ASP LEU THR THR THR GLU ASP CLU CVS CLU CVS CLU CVS CLU CVS CLU CVS CLU CLU CLU	ALA LYS VAL VAL ALA PHE
		WORLDWIDE PROTEIN DATA BANK	

PRO ILE ASN HIS SER LYS SER SER

• Molecule 1: Small Terminase subunit

• Molecule 1: Small Terminase subunit

Chain 4:	64% .	34%
MET THR ASP CLN CLN THR THR VAL VAL VAL VAL THR SER SER THR FRO FRO FRO FRO FRO	054 AB AB AB AB AB AB AB AB AB AB AB AB AB	ASN ASN LEU LEU LYS LEU LYS LEU PHE ASN ASP ASP ALA VAL LYS VAL LYS VAL LYS TLU ULU ULU ULU ULU ULU ULU TLU ILYS TLU ASP TLA
ASN SHIS LYS SER SER		
• Molecule 1: Small Termin	ase subunit	
Chain 5:	67%	• 32%
MET ASP GLN CLN CLN CLN CLN CLN CLN ASP FSI FSI FSI FSI FSI FSI FSI FSI FSI FSI	AVAL ASP ASP ASP THR THR THR GLU CSP ASP ASP ASP ASP ASP ASP ASP	CLU CLU CLU CLU LLEU LLEU VAL VAL ALA PALA ALA ALA ALA ALA ALA ALA ALA
• Molecule 1: Small Termin	ase subunit	
Chain 6:	67%	• 32%
MET THR ASP GLN THR THR THR ASP ASP THR SER SER ALA ALA ALA PRO PSO PSO PSO PSO PSO PSO PSO PSO PSO PS	NB4 E74 E74 S78 S78 S78 A125 A125 A125 A125 A125 A125 A125 A125	ASP 17E LYS ASN ASN ASN LEU LLU PHE ASP QLU CLU CLU CLU VAL VAL VAL
PHE TRO TLE ASN SER SER SER		
• Molecule 1: Small Termin	ase subunit	
Chain 7:	65% •	34%
MET ART ART ART ART ART THR ARL ARA ALA ALA ALA ALA ALA ALA ALA AL	Pater	LYS ASN GUU CLEU LLEU LLEU ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN
LILE HISN HIS SER LIYS SER		
• Molecule 1: Small Termin	ase subunit	
Chain 8:	67%	• 32%
MET THR ASP ALN ALN THR THR ASP ASP ASP ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	ACC ACC ALA ALA ALA ASP ASP ASP ASP CLU CLU ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	LYS PHE PHE ASN ASN ASP CLU PRO CLU PRO PRO PHE PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO
C ER		
• Molecule 1: Small Termin	ase subunit	
Chain 9:	66%	32%

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1	Depositor
Cell constants	119.24Å 119.14Å 382.90Å	Deneiten
a, b, c, α , β , γ	89.84° 90.00° 119.96°	Depositor
$\mathbf{P}_{\text{assolution}}(\hat{\mathbf{A}})$	10.00 - 3.95	Depositor
Resolution (A)	10.00 - 3.95	EDS
% Data completeness	95.1 (10.00-3.95)	Depositor
(in resolution range)	$95.6\ (10.00-3.95)$	EDS
R _{merge}	(Not available)	Depositor
R_{sym}	0.21	Depositor
$< I/\sigma(I) > 1$	$2.77 (at 3.95 \text{\AA})$	Xtriage
Refinement program	PHENIX 1.18.2-3874	Depositor
D D	0.259 , 0.291	Depositor
$\mathbf{n}, \mathbf{n}_{free}$	0.260 , 0.291	DCC
R_{free} test set	7364 reflections $(5.13%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	168.8	Xtriage
Anisotropy	0.078	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.16 , 5.9	EDS
L-test for $twinning^2$	$< L > = 0.39, < L^2 > = 0.21$	Xtriage
	0.000 for -k,h+k,l	
	$0.000 { m ~for~ h+k,-h,l}$	
	0.064 for -h-k,h,l	
	0.064 for k,-h-k,l	
	0.100 for -h-k,k,-l	
Estimated twinning fraction	0.065 for h,-h-k,-l	Xtriage
	0.000 for -h,-k,l	
	0.069 for k,h,-l	
	0.001 for -k,-h,-l	
	0.000 for h+k,-k,-l	
	0.001 for -h,h+k,-l	
F_o, F_c correlation	0.83	EDS
Total number of atoms	62617	wwPDB-VP
Average B, all atoms $(Å^2)$	124.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 42.00 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 2.1736e-04. The detected translational NCS is most likely also responsible for the elevated intensity ratio.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal Chai		Bond lengths		Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	0	0.28	0/789	0.57	0/1062	
1	1	0.27	0/764	0.52	0/1028	
1	2	0.26	0/799	0.49	0/1076	
1	3	0.26	0/789	0.53	0/1062	
1	4	0.26	0/768	0.48	0/1032	
1	5	0.26	0/786	0.47	0/1058	
1	6	0.25	0/789	0.48	0/1062	
1	7	0.26	0/776	0.48	0/1043	
1	8	0.25	0/786	0.46	0/1058	
1	9	0.25	0/789	0.49	0/1062	
1	А	0.25	0/789	0.49	0/1062	
1	AA	0.25	0/764	0.45	0/1028	
1	AB	0.25	0/799	0.47	0/1076	
1	AC	0.25	0/789	0.51	0/1062	
1	AD	0.25	0/768	0.45	0/1032	
1	AE	0.25	0/786	0.45	0/1058	
1	AF	0.25	0/789	0.49	0/1062	
1	AG	0.25	0/776	0.46	0/1043	
1	AH	0.25	0/786	0.48	0/1058	
1	AI	0.26	0/789	0.50	0/1062	
1	AJ	0.25	0/764	0.46	0/1028	
1	В	0.27	0/768	0.47	0/1032	
1	С	0.25	0/786	0.48	0/1058	
1	D	0.26	0/789	0.51	0/1062	
1	Ε	0.27	0/776	0.52	0/1043	
1	F	0.26	0/786	0.51	0/1058	
1	G	0.26	0/783	0.50	0/1054	
1	Н	0.26	0/764	0.49	$0/1\overline{028}$	
1	Ι	0.25	0/799	0.48	0/1076	
1	J	0.25	0/799	0.48	0/1076	
1	K	0.28	0/789	0.53	0/1062	
1	L	0.26	$0/\overline{768}$	0.49	$0/1\overline{032}$	
1	М	0.26	0/786	0.48	0/1058	
1	N	0.26	0/789	0.51	$0/1\overline{062}$	

7	T	\cap	\cap
1	J	\mathbf{U}	Q.

Mal	Chain	Bond lengths		Bond angles		
IVIOI		RMSZ	# Z > 5	RMSZ	# Z > 5	
1	0	0.26	0/776	0.49	0/1043	
1	Р	0.25	0/786	0.51	0/1058	
1	Q	0.27	0/791	0.53	0/1065	
1	R	0.27	0/764	0.50	0/1028	
1	S	0.27	0/799	0.54	0/1076	
1	Т	0.26	0/789	0.48	0/1062	
1	U	0.26	0/768	0.50	0/1032	
1	V	0.25	0/786	0.46	0/1058	
1	W	0.26	0/789	0.49	0/1062	
1	Х	0.25	0/781	0.50	0/1051	
1	Y	0.26	0/786	0.49	0/1058	
1	Ζ	0.30	0/789	0.48	0/1062	
1	a	0.26	0/764	0.46	0/1028	
1	b	0.27	0/799	0.49	0/1076	
1	с	0.26	0/789	0.49	0/1062	
1	d	0.24	0/768	0.46	0/1032	
1	е	0.26	0/786	0.48	0/1058	
1	ee	0.25	0/799	0.51	0/1076	
1	f	0.27	0/789	0.54	0/1062	
1	ff	0.25	0/789	0.47	0/1062	
1	g	0.26	0/776	0.52	0/1043	
1	gg	0.25	0/768	0.45	0/1032	
1	h	0.25	0/786	0.52	0/1058	
1	hh	0.25	0/786	0.47	0/1058	
1	i	0.26	0/789	0.50	0/1062	
1	ii	0.25	0/789	0.49	0/1062	
1	j	0.26	0/764	0.49	0/1028	
1	jj	0.25	0/773	0.54	1/1039~(0.1%)	
1	k	0.26	0/799	0.48	0/1076	
1	kk	0.25	0/786	0.48	0/1058	
1	1	0.27	0/789	0.49	0/1062	
1	ll	0.26	0/789	0.48	0/1062	
1	m	0.26	0/768	0.46	0/1032	
1	mm	0.25	0/764	0.49	0/1028	
1	n	0.26	0/786	0.47	0/1058	
1	0	0.26	0/789	0.49	0/1062	
1	р	0.26	0/781	0.48	0/1051	
1	q	0.26	0/786	0.50	0/1058	
1	r	0.28	0/789	0.51	0/1062	
1	s	0.26	0/764	0.51	0/1028	
1	t	0.26	0/799	0.52	0/1076	
1	u	0.29	0/789	0.52	0/1062	
1	V	0.25	0/768	0.47	0/1032	

Mal Chair		Bond lengths		Bond angles	
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	W	0.26	0/786	0.48	0/1058
1	Х	0.26	0/789	0.50	0/1062
1	у	0.26	0/776	0.49	0/1043
1	Z	0.26	0/786	0.50	0/1058
All	All	0.26	0/63417	0.49	1/85336~(0.0%)

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	jj	22	PRO	N-CA-CB	6.00	110.50	103.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles	
1	0	104/157~(66%)	97~(93%)	7 (7%)	0	100	100
1	1	101/157~(64%)	92~(91%)	9 (9%)	0	100	100
1	2	105/157~(67%)	95~(90%)	10 (10%)	0	100	100
1	3	104/157~(66%)	97~(93%)	7 (7%)	0	100	100
1	4	101/157~(64%)	94~(93%)	7 (7%)	0	100	100
1	5	104/157~(66%)	98~(94%)	6 (6%)	0	100	100
1	6	104/157~(66%)	98 (94%)	6 (6%)	0	100	100

Continued	from	previous	page
	5	1	1 5

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	7	102/157~(65%)	95~(93%)	7 (7%)	0	100	100
1	8	104/157~(66%)	100 (96%)	4 (4%)	0	100	100
1	9	104/157~(66%)	97~(93%)	7 (7%)	0	100	100
1	А	104/157~(66%)	95 (91%)	9 (9%)	0	100	100
1	AA	101/157~(64%)	92 (91%)	9 (9%)	0	100	100
1	AB	105/157~(67%)	95 (90%)	10 (10%)	0	100	100
1	AC	104/157~(66%)	95 (91%)	9 (9%)	0	100	100
1	AD	101/157~(64%)	94 (93%)	7 (7%)	0	100	100
1	AE	104/157~(66%)	98 (94%)	6 (6%)	0	100	100
1	AF	104/157~(66%)	99 (95%)	5 (5%)	0	100	100
1	AG	102/157~(65%)	94 (92%)	8 (8%)	0	100	100
1	AH	104/157~(66%)	99 (95%)	4 (4%)	1 (1%)	15	52
1	AI	104/157~(66%)	97~(93%)	7 (7%)	0	100	100
1	AJ	101/157~(64%)	94 (93%)	7 (7%)	0	100	100
1	В	101/157~(64%)	96 (95%)	5 (5%)	0	100	100
1	С	104/157~(66%)	99 (95%)	5 (5%)	0	100	100
1	D	104/157~(66%)	101 (97%)	3 (3%)	0	100	100
1	Е	102/157~(65%)	96 (94%)	6 (6%)	0	100	100
1	F	104/157~(66%)	99 (95%)	5 (5%)	0	100	100
1	G	103/157~(66%)	97 (94%)	6 (6%)	0	100	100
1	Н	101/157~(64%)	92 (91%)	9 (9%)	0	100	100
1	Ι	105/157~(67%)	96 (91%)	9 (9%)	0	100	100
1	J	105/157~(67%)	95 (90%)	10 (10%)	0	100	100
1	K	104/157~(66%)	95 (91%)	9 (9%)	0	100	100
1	L	101/157~(64%)	95 (94%)	6 (6%)	0	100	100
1	М	104/157~(66%)	100 (96%)	4 (4%)	0	100	100
1	Ν	104/157~(66%)	97~(93%)	7 (7%)	0	100	100
1	Ο	102/157~(65%)	98 (96%)	4 (4%)	0	100	100
1	Р	104/157~(66%)	98 (94%)	6 (6%)	0	100	100
1	Q	104/157~(66%)	94 (90%)	9 (9%)	1 (1%)	15	52
1	R	101/157~(64%)	93 (92%)	8 (8%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	S	105/157~(67%)	96 (91%)	9~(9%)	0	100	100
1	Т	104/157~(66%)	96~(92%)	8 (8%)	0	100	100
1	U	101/157~(64%)	95~(94%)	6~(6%)	0	100	100
1	V	104/157~(66%)	97~(93%)	7 (7%)	0	100	100
1	W	104/157~(66%)	97~(93%)	7 (7%)	0	100	100
1	Х	103/157~(66%)	97~(94%)	6 (6%)	0	100	100
1	Y	104/157~(66%)	98~(94%)	5 (5%)	1 (1%)	15	52
1	Z	104/157~(66%)	96 (92%)	8 (8%)	0	100	100
1	a	101/157~(64%)	91 (90%)	10 (10%)	0	100	100
1	b	105/157~(67%)	96 (91%)	9 (9%)	0	100	100
1	с	104/157~(66%)	95 (91%)	9 (9%)	0	100	100
1	d	101/157~(64%)	96 (95%)	4 (4%)	1 (1%)	15	52
1	е	104/157~(66%)	98 (94%)	6 (6%)	0	100	100
1	ee	105/157~(67%)	95 (90%)	10 (10%)	0	100	100
1	f	104/157~(66%)	97~(93%)	7 (7%)	0	100	100
1	ff	104/157~(66%)	96 (92%)	8 (8%)	0	100	100
1	g	102/157~(65%)	97~(95%)	5 (5%)	0	100	100
1	gg	101/157~(64%)	95 (94%)	6 (6%)	0	100	100
1	h	104/157~(66%)	96 (92%)	8 (8%)	0	100	100
1	hh	104/157~(66%)	98 (94%)	6 (6%)	0	100	100
1	i	104/157~(66%)	96 (92%)	8 (8%)	0	100	100
1	ii	104/157~(66%)	97~(93%)	7 (7%)	0	100	100
1	j	101/157~(64%)	90 (89%)	11 (11%)	0	100	100
1	jj	102/157~(65%)	96 (94%)	6 (6%)	0	100	100
1	k	105/157~(67%)	97 (92%)	8 (8%)	0	100	100
1	kk	104/157~(66%)	99~(95%)	5 (5%)	0	100	100
1	1	104/157~(66%)	96~(92%)	6 (6%)	2 (2%)	8	40
1	11	104/157~(66%)	98 (94%)	6 (6%)	0	100	100
1	m	101/157~(64%)	95 (94%)	6 (6%)	0	100	100
1	mm	101/157~(64%)	93~(92%)	8 (8%)	0	100	100
1	n	104/157~(66%)	100 (96%)	4 (4%)	0	100	100

7JOQ)
------	---

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	0	104/157~(66%)	99~(95%)	5 (5%)	0	100	100
1	р	103/157~(66%)	98~(95%)	5 (5%)	0	100	100
1	q	104/157~(66%)	100 (96%)	4 (4%)	0	100	100
1	r	104/157~(66%)	96~(92%)	7 (7%)	1 (1%)	15	52
1	S	101/157~(64%)	93~(92%)	8 (8%)	0	100	100
1	t	105/157~(67%)	97~(92%)	8 (8%)	0	100	100
1	u	104/157~(66%)	96~(92%)	8 (8%)	0	100	100
1	v	101/157~(64%)	95~(94%)	6 (6%)	0	100	100
1	W	104/157~(66%)	99~(95%)	5 (5%)	0	100	100
1	х	104/157~(66%)	98~(94%)	6 (6%)	0	100	100
1	У	102/157~(65%)	96~(94%)	6 (6%)	0	100	100
1	Z	104/157~(66%)	100 (96%)	4 (4%)	0	100	100
All	All	8362/12717~(66%)	7802 (93%)	553 (7%)	7 (0%)	51	83

All (7) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	Q	24	GLU
1	AH	56	ASN
1	Y	37	PHE
1	d	37	PHE
1	1	46	ALA
1	r	22	PRO
1	1	47	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	0	67/130~(52%)	66~(98%)	1 (2%)	65 79
1	1	64/130~(49%)	63~(98%)	1 (2%)	62 79

NUQ

Continued	from	previous	page
	9	1	1 0

Mol	Chain	Analysed	Rotameric	Outliers	Perce	\mathbf{ntiles}
1	2	69/130~(53%)	68~(99%)	1 (1%)	67	80
1	3	67/130~(52%)	66~(98%)	1 (2%)	65	79
1	4	65/130~(50%)	63~(97%)	2(3%)	40	63
1	5	66/130~(51%)	65~(98%)	1 (2%)	65	79
1	6	67/130~(52%)	66~(98%)	1 (2%)	65	79
1	7	66/130~(51%)	64 (97%)	2 (3%)	41	64
1	8	66/130~(51%)	65~(98%)	1 (2%)	65	79
1	9	67/130~(52%)	65~(97%)	2 (3%)	41	64
1	А	67/130~(52%)	66 (98%)	1 (2%)	65	79
1	AA	64/130~(49%)	62 (97%)	2 (3%)	40	63
1	AB	69/130~(53%)	69 (100%)	0	100	100
1	AC	67/130~(52%)	66 (98%)	1 (2%)	65	79
1	AD	65/130~(50%)	63~(97%)	2 (3%)	40	63
1	AE	66/130~(51%)	65~(98%)	1 (2%)	65	79
1	AF	67/130~(52%)	67 (100%)	0	100	100
1	AG	66/130~(51%)	65~(98%)	1 (2%)	65	79
1	AH	66/130~(51%)	65~(98%)	1 (2%)	65	79
1	AI	67/130~(52%)	66~(98%)	1 (2%)	65	79
1	AJ	64/130~(49%)	62 (97%)	2 (3%)	40	63
1	В	65/130~(50%)	64 (98%)	1 (2%)	65	79
1	С	66/130~(51%)	66 (100%)	0	100	100
1	D	67/130~(52%)	66~(98%)	1 (2%)	65	79
1	Е	66/130~(51%)	66 (100%)	0	100	100
1	F	66/130~(51%)	65~(98%)	1 (2%)	65	79
1	G	67/130~(52%)	66 (98%)	1 (2%)	65	79
1	Н	64/130~(49%)	64 (100%)	0	100	100
1	Ι	69/130~(53%)	69 (100%)	0	100	100
1	J	69/130~(53%)	69 (100%)	0	100	100
1	K	67/130~(52%)	66 (98%)	1 (2%)	65	79
1	L	65/130~(50%)	63~(97%)	2 (3%)	40	63
1	М	66/130~(51%)	65~(98%)	1 (2%)	65	79

Continued from previous page

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	Ν	67/130~(52%)	66~(98%)	1 (2%)	65	79
1	Ο	66/130~(51%)	66 (100%)	0	100	100
1	Р	66/130~(51%)	65~(98%)	1 (2%)	65	79
1	Q	68/130~(52%)	66~(97%)	2(3%)	42	64
1	R	64/130~(49%)	63~(98%)	1 (2%)	62	79
1	S	69/130~(53%)	68~(99%)	1 (1%)	67	80
1	Т	67/130~(52%)	66~(98%)	1 (2%)	65	79
1	U	65/130~(50%)	64 (98%)	1 (2%)	65	79
1	V	66/130~(51%)	65~(98%)	1 (2%)	65	79
1	W	67/130~(52%)	66~(98%)	1 (2%)	65	79
1	Х	66/130~(51%)	65~(98%)	1 (2%)	65	79
1	Y	66/130~(51%)	65~(98%)	1 (2%)	65	79
1	Ζ	67/130~(52%)	65~(97%)	2 (3%)	41	64
1	a	64/130~(49%)	63~(98%)	1 (2%)	62	79
1	b	69/130~(53%)	68~(99%)	1 (1%)	67	80
1	с	67/130~(52%)	66~(98%)	1 (2%)	65	79
1	d	65/130~(50%)	64 (98%)	1 (2%)	65	79
1	е	66/130~(51%)	65~(98%)	1 (2%)	65	79
1	ee	69/130~(53%)	68~(99%)	1 (1%)	67	80
1	f	67/130~(52%)	66~(98%)	1 (2%)	65	79
1	ff	67/130~(52%)	66~(98%)	1 (2%)	65	79
1	g	66/130~(51%)	64 (97%)	2 (3%)	41	64
1	gg	65/130~(50%)	63~(97%)	2 (3%)	40	63
1	h	66/130~(51%)	66 (100%)	0	100	100
1	hh	66/130~(51%)	65~(98%)	1 (2%)	65	79
1	i	67/130~(52%)	65~(97%)	2 (3%)	41	64
1	ii	67/130~(52%)	66~(98%)	1 (2%)	65	79
1	j	64/130~(49%)	62 (97%)	2 (3%)	40	63
1	jj	65/130~(50%)	64 (98%)	1 (2%)	65	79
1	k	69/130~(53%)	68~(99%)	1 (1%)	67	80
1	kk	66/130~(51%)	65~(98%)	1 (2%)	65	79

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	1	67/130~(52%)	67 (100%)	0	100	100
1	11	67/130~(52%)	65~(97%)	2 (3%)	41	64
1	m	65/130~(50%)	64~(98%)	1 (2%)	65	79
1	mm	64/130~(49%)	62~(97%)	2 (3%)	40	63
1	n	66/130~(51%)	66 (100%)	0	100	100
1	О	67/130~(52%)	66~(98%)	1 (2%)	65	79
1	р	66/130~(51%)	66 (100%)	0	100	100
1	q	66/130~(51%)	65~(98%)	1 (2%)	65	79
1	r	67/130~(52%)	66~(98%)	1 (2%)	65	79
1	\mathbf{S}	64/130~(49%)	62~(97%)	2 (3%)	40	63
1	t	69/130~(53%)	68~(99%)	1 (1%)	67	80
1	u	67/130~(52%)	67 (100%)	0	100	100
1	v	65/130~(50%)	64~(98%)	1 (2%)	65	79
1	W	66/130~(51%)	66 (100%)	0	100	100
1	х	67/130~(52%)	66~(98%)	1 (2%)	65	79
1	У	66/130~(51%)	65~(98%)	1 (2%)	65	79
1	Z	66/130~(51%)	66 (100%)	0	100	100
All	All	5373/10530~(51%)	5291 (98%)	82 (2%)	65	79

All (82) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	51	PRO
1	В	51	PRO
1	D	51	PRO
1	F	51	PRO
1	G	51	PRO
1	Κ	51	PRO
1	L	51	PRO
1	L	125	LYS
1	М	51	PRO
1	N	51	PRO
1	Р	51	PRO
1	Q	75	ARG
1	Q	111	ARG
1	R	51	PRO

Mol	Chain	Res	Type
1	S	125	LYS
1	Т	51	PRO
1	U	125	LYS
1	V	51	PRO
1	W	51	PRO
1	Х	51	PRO
1	Y	51	PRO
1	Ζ	51	PRO
1	Ζ	111	ARG
1	a	55	ARG
1	b	125	LYS
1	с	51	PRO
1	d	125	LYS
1	е	51	PRO
1	f	51	PRO
1	g	51	PRO
1	g	55	ARG
1	i	51	PRO
1	i	111	ARG
1	j	51	PRO
1	j	55	ARG
1	k	51	PRO
1	m	51	PRO
1	0	51	PRO
1	q	51	PRO
1	r	111	ARG
1	s	51	PRO
1	\mathbf{S}	55	ARG
1	t	51	PRO
1	v	51	PRO
1	Х	51	PRO
1	У	51	PRO
1	0	111	ARG
1	1	55	ARG
1	2	51	PRO
1	3	51	PRO
1	4	51	PRO
1	4	125	LYS
1	5	51	PRO
1	6	51	PRO
1	7	51	PRO
1	7	111	ARG

Mol	Chain	Res	Type
1	8	51	PRO
1	9	51	PRO
1	9	125	LYS
1	AA	51	PRO
1	AA	55	ARG
1	AC	51	PRO
1	AD	51	PRO
1	AD	125	LYS
1	AE	51	PRO
1	AG	51	PRO
1	AH	51	PRO
1	AI	51	PRO
1	AJ	51	PRO
1	AJ	55	ARG
1	ee	51	PRO
1	ff	51	PRO
1	gg	51	PRO
1	gg	125	LYS
1	hh	51	PRO
1	ii	51	PRO
1	jj	51	PRO
1	kk	51	PRO
1	11	111	ARG
1	11	125	LYS
1	mm	51	PRO
1	mm	55	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (21) such sidechains are listed below:

Mol	Chain	Res	Type
1	L	61	HIS
1	М	52	HIS
1	Ν	61	HIS
1	Q	61	HIS
1	V	61	HIS
1	Ζ	61	HIS
1	a	52	HIS
1	с	56	ASN
1	f	52	HIS
1	i	61	HIS
1	j	52	HIS
1	j	118	GLN

e entenada ji ente precete de pagem					
Mol	Chain	Res	Type		
1	n	41	GLN		
1	AD	61	HIS		
1	AF	95	ASN		
1	AF	106	GLN		
1	AJ	61	HIS		
1	ff	41	GLN		
1	gg	61	HIS		
1	jj	38	ASN		
1	kk	52	HIS		

Continued from previous page...

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$\mathbf{OWAB}(\mathrm{\AA}^2)$	Q<0.9
1	0	106/157~(67%)	0.25	4 (3%) 40 32	84, 128, 146, 158	0
1	1	103/157~(65%)	0.29	5 (4%) 29 25	82, 133, 170, 199	0
1	2	107/157~(68%)	0.06	3 (2%) 53 42	94, 114, 139, 150	0
1	3	106/157~(67%)	0.29	3 (2%) 53 42	95, 122, 140, 158	0
1	4	103/157~(65%)	0.36	3 (2%) 51 41	95, 121, 140, 150	0
1	5	106/157~(67%)	0.12	0 100 100	95, 118, 140, 154	0
1	6	106/157~(67%)	0.34	6 (5%) 23 20	91, 123, 143, 151	0
1	7	104/157~(66%)	0.12	3 (2%) 51 41	97, 124, 156, 175	0
1	8	106/157~(67%)	0.25	3 (2%) 53 42	91, 120, 138, 147	0
1	9	106/157~(67%)	0.50	7 (6%) 18 14	85, 126, 148, 161	0
1	А	106/157~(67%)	0.13	3 (2%) 53 42	98, 124, 146, 157	0
1	AA	103/157~(65%)	0.41	5 (4%) 29 25	92, 132, 170, 189	0
1	AB	107/157~(68%)	0.11	0 100 100	90, 117, 142, 155	0
1	AC	106/157~(67%)	0.19	2 (1%) 66 58	91, 122, 140, 148	0
1	AD	103/157~(65%)	0.25	4 (3%) 39 31	86, 119, 141, 159	0
1	AE	106/157~(67%)	-0.02	1 (0%) 84 77	90, 114, 140, 159	0
1	AF	106/157~(67%)	0.13	6 (5%) 23 20	90, 116, 140, 151	0
1	AG	104/157~(66%)	0.09	3 (2%) 51 41	92, 118, 142, 164	0
1	AH	106/157~(67%)	0.10	3 (2%) 53 42	88, 110, 127, 137	0
1	AI	106/157~(67%)	0.28	0 100 100	93, 119, 144, 150	0
1	AJ	103/157~(65%)	0.33	6 (5%) 23 19	92, 126, 156, 173	0
1	В	$10\overline{3}/157~(65\%)$	0.11	2 (1%) 66 58	95, 134, 152, 159	0
1	С	106/157~(67%)	0.22	0 100 100	97, 124, 138, 150	0
1	D	$10\overline{6/157}~(67\%)$	0.16	2 (1%) 66 58	89, 119, 137, 149	0

Continued from previous page...

Mol	Chain	Analysed	<RSRZ $>$	# RSRZ > 2	$OWAB(Å^2)$	Q<0.9
1	Е	104/157~(66%)	0.23	4 (3%) 40 32	92, 118, 150, 163	0
1	F	106/157~(67%)	0.15	5 (4%) 31 26	88, 113, 130, 141	0
1	G	105/157~(66%)	0.33	5 (4%) 30 26	97, 125, 154, 164	0
1	Н	103/157~(65%)	0.20	1 (0%) 82 74	95, 128, 162, 175	0
1	Ι	107/157~(68%)	0.27	0 100 100	90, 118, 141, 148	0
1	J	107/157~(68%)	0.23	2 (1%) 66 58	94, 117, 138, 143	0
1	K	106/157~(67%)	0.21	1 (0%) 84 77	98, 125, 147, 163	0
1	L	103/157~(65%)	0.30	7 (6%) 17 14	98, 130, 158, 169	0
1	М	106/157~(67%)	0.25	3 (2%) 53 42	93, 119, 138, 151	0
1	Ν	106/157~(67%)	0.26	1 (0%) 84 77	94, 119, 134, 149	0
1	Ο	104/157~(66%)	0.49	9 (8%) 10 9	91, 123, 155, 170	0
1	Р	106/157~(67%)	0.23	4 (3%) 40 32	92, 114, 132, 148	0
1	Q	106/157~(67%)	0.42	6 (5%) 23 20	95, 124, 148, 161	0
1	R	103/157~(65%)	0.17	1 (0%) 82 74	92, 123, 153, 171	0
1	S	107/157~(68%)	0.26	2 (1%) 66 58	89, 116, 138, 151	0
1	Т	106/157~(67%)	0.34	2 (1%) 66 58	90, 126, 150, 160	0
1	U	103/157~(65%)	0.38	3 (2%) 51 41	94, 122, 142, 156	0
1	V	106/157~(67%)	0.09	2 (1%) 66 58	91, 118, 140, 155	0
1	W	106/157~(67%)	0.25	4 (3%) 40 32	94, 125, 142, 159	0
1	Х	105/157~(66%)	0.38	6 (5%) 23 20	94, 120, 153, 161	0
1	Y	106/157~(67%)	0.08	0 100 100	89, 114, 135, 146	0
1	Z	106/157~(67%)	0.14	2 (1%) 66 58	103, 122, 142, 156	0
1	a	103/157~(65%)	0.29	4 (3%) 39 31	89, 135, 166, 179	0
1	b	107/157~(68%)	0.33	5 (4%) 31 26	92, 116, 136, 146	0
1	с	106/157~(67%)	0.40	4 (3%) 40 32	89, 127, 154, 163	0
1	d	103/157~(65%)	0.35	1 (0%) 82 74	92, 122, 146, 160	0
1	е	106/157~(67%)	0.06	1 (0%) 84 77	82, 115, 140, 157	0
1	ee	107/157~(68%)	1.05	23 (21%) 0 1	100, 130, 144, 151	0
1	f	106/157~(67%)	0.17	2 (1%) 66 58	96, 120, 137, 147	0
1	ff	106/157~(67%)	0.85	15 (14%) 2 3	99, 134, 157, 167	0
1	g	104/157~(66%)	0.43	6 (5%) 23 19	91, 121, 157, 165	0

Continued from previous page...

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	gg	103/157~(65%)	1.07	20 (19%) 1 1	101, 140, 157, 167	0
1	h	106/157~(67%)	0.18	2 (1%) 66 58	99, 117, 137, 145	0
1	hh	106/157~(67%)	1.30	23~(21%) 0 1	109, 136, 156, 183	0
1	i	106/157~(67%)	0.34	6 (5%) 23 20	93, 122, 141, 156	0
1	ii	106/157~(67%)	1.13	18 (16%) 1 2	102, 131, 157, 167	0
1	j	103/157~(65%)	0.35	4 (3%) 39 31	90, 129, 154, 168	0
1	jj	104/157~(66%)	0.98	19 (18%) 1 1	107, 136, 164, 186	0
1	k	107/157~(68%)	-0.00	0 100 100	90, 120, 137, 153	0
1	kk	106/157~(67%)	0.84	10 (9%) 8 8	107, 129, 140, 151	0
1	1	106/157~(67%)	0.37	4 (3%) 40 32	87, 133, 155, 175	0
1	11	106/157~(67%)	1.24	23 (21%) 0 1	106, 138, 160, 175	0
1	m	103/157~(65%)	0.28	4 (3%) 39 31	105, 129, 155, 171	0
1	mm	103/157~(65%)	1.04	20 (19%) 1 1	101, 143, 174, 183	0
1	n	106/157~(67%)	0.26	1 (0%) 84 77	92, 123, 144, 156	0
1	О	106/157~(67%)	0.33	3 (2%) 53 42	87, 121, 146, 165	0
1	р	105/157~(66%)	0.22	4 (3%) 40 32	90, 129, 168, 187	0
1	q	106/157~(67%)	0.16	3 (2%) 53 42	94, 118, 137, 147	0
1	r	106/157~(67%)	0.22	5 (4%) 31 26	95, 126, 147, 159	0
1	S	103/157~(65%)	0.35	5 (4%) 29 25	102, 134, 162, 176	0
1	t	107/157~(68%)	0.08	3 (2%) 53 42	87, 118, 136, 144	0
1	u	106/157~(67%)	0.25	3 (2%) 53 42	90, 126, 149, 167	0
1	V	103/157~(65%)	0.08	2 (1%) 66 58	95, 119, 135, 148	0
1	w	106/157~(67%)	0.26	1 (0%) 84 77	79, 115, 132, 157	0
1	x	106/157~(67%)	0.18	3 (2%) 53 42	82, 120, 142, 160	0
1	У	104/157~(66%)	0.05	2 (1%) 66 58	83, 123, 157, 164	0
1	Z	106/157~(67%)	0.15	3 (2%) 53 42	83, 113, 133, 151	0
All	All	8524/12717~(67%)	0.33	396 (4%) 32 27	79, 122, 153, 199	0

All (396) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	ff	38	ASN	8.2
1	ll	54	GLN	6.9
	a		1	

Mol	Chain	Res	Type	RSRZ
1	gg	40	THR	6.5
1	hh	54	GLN	6.1
1	jj	92	ASN	6.1
1	ff	51	PRO	5.9
1	ll	42	ALA	5.6
1	1	47	GLY	5.6
1	jj	24	GLU	5.4
1	gg	47	GLY	5.3
1	hh	82	ALA	5.3
1	hh	81	PRO	5.2
1	gg	105	ALA	5.2
1	hh	83	ALA	5.1
1	Ο	52	HIS	5.0
1	kk	115	GLY	4.9
1	ee	78	SER	4.9
1	ii	52	HIS	4.9
1	mm	113	GLY	4.7
1	gg	106	GLN	4.7
1	11	47	GLY	4.6
1	hh	53	ALA	4.6
1	ll	84	ARG	4.5
1	j	92	ASN	4.5
1	Q	38	ASN	4.4
1	11	114	PHE	4.3
1	ii	75	ARG	4.3
1	g	47	GLY	4.2
1	ee	77	GLY	4.2
1	gg	104	ALA	4.2
1	hh	94	PRO	4.1
1	ee	49	SER	4.1
1	6	74	GLU	4.1
1	kk	104	ALA	4.1
1	9	22	PRO	4.1
1	3	64	ASN	3.9
1	ii	82	ALA	3.9
1	11	51	PRO	3.9
1	mm	73	SER	3.9
1	ee	40	THR	3.9
1	hh	27	ASP	3.9
1	X	64	ASN	3.8
1	gg	107	ASP	3.8
1	1	51	PRO	3.8

Mol	Chain	Res	Type	RSRZ
1	jj	38	ASN	3.8
1	hh	88	LEU	3.8
1	S	51	PRO	3.7
1	i	63	LYS	3.7
1	mm	38	ASN	3.7
1	3	45	LYS	3.7
1	ee	64	ASN	3.7
1	11	59	PRO	3.7
1	b	65	ALA	3.6
1	G	38	ASN	3.6
1	1	38	ASN	3.6
1	hh	80	ALA	3.6
1	11	83	ALA	3.6
1	jj	47	GLY	3.6
1	р	58	ALA	3.5
1	mm	77	GLY	3.5
1	L	54	GLN	3.5
1	S	47	GLY	3.5
1	AJ	47	GLY	3.5
1	AD	56	ASN	3.5
1	ff	36	GLY	3.4
1	g	92	ASN	3.4
1	Х	52	HIS	3.4
1	r	27	ASP	3.4
1	m	69	GLN	3.4
1	mm	63	LYS	3.4
1	mm	61	HIS	3.4
1	gg	30	CYS	3.4
1	kk	24	GLU	3.4
1	ee	54	GLN	3.4
1	0	47	GLY	3.4
1	a	70	ALA	3.3
1	ee	37	PHE	3.3
1	jj	73	SER	3.3
1	ii	83	ALA	3.3
1	р	63	LYS	3.3
1	q	92	ASN	3.3
1	ff	50	ALA	3.3
1	ee	74	GLU	3.3
1	hh	24	GLU	3.3
1	hh	73	SER	3.3
1	ff	37	PHE	3.3

Mol	Chain	Res	Type	RSRZ
1	kk	58	ALA	3.2
1	d	41	GLN	3.2
1	i	51	PRO	3.2
1	mm	83	ALA	3.2
1	i	56	ASN	3.2
1	6	64	ASN	3.2
1	Z	56	ASN	3.2
1	0	58	ALA	3.2
1	S	124	THR	3.2
1	2	53	ALA	3.2
1	у	52	HIS	3.2
1	W	36	GLY	3.1
1	ee	36	GLY	3.1
1	jj	37	PHE	3.1
1	0	49	SER	3.1
1	u	92	ASN	3.1
1	jj	52	HIS	3.1
1	V	115	GLY	3.1
1	Е	52	HIS	3.1
1	hh	74	GLU	3.1
1	ii	36	GLY	3.1
1	11	45	LYS	3.0
1	у	95	ASN	3.0
1	ii	30	CYS	3.0
1	11	113	GLY	3.0
1	mm	79	ASP	3.0
1	ii	37	PHE	3.0
1	с	40	THR	3.0
1	ii	86	VAL	3.0
1	mm	81	PRO	3.0
1	n	95	ASN	3.0
1	gg	56	ASN	3.0
1	hh	47	GLY	3.0
1	b	107	ASP	3.0
1	b	51	PRO	3.0
1	mm	82	ALA	2.9
1	ee	65	ALA	2.9
1	F	28	LEU	2.9
1	AH	28	LEU	2.9
1	mm	35	ASP	2.9
1	r	41	GLN	2.9
1	11	52	HIS	2.9

Mol	Chain	Res	Type	RSRZ
1	jj	72	ILE	2.9
1	mm	59	PRO	2.9
1	hh	93	ASP	2.9
1	ff	113	GLY	2.9
1	11	93	ASP	2.9
1	gg	54	GLN	2.9
1	3	23	LYS	2.9
1	1	27	ASP	2.9
1	mm	80	ALA	2.9
1	ff	46	ALA	2.9
1	X	56	ASN	2.8
1	Х	55	ARG	2.8
1	AJ	24	GLU	2.8
1	М	94	PRO	2.8
1	ee	95	ASN	2.8
1	8	70	ALA	2.8
1	К	44	ILE	2.8
1	gg	26	LEU	2.8
1	А	116	ALA	2.8
1	ff	30	CYS	2.8
1	L	93	ASP	2.7
1	i	88	LEU	2.7
1	hh	31	GLU	2.7
1	V	20	LEU	2.7
1	L	53	ALA	2.7
1	ii	27	ASP	2.7
1	jj	78	SER	2.7
1	7	35	ASP	2.7
1	S	65	ALA	2.7
1	0	41	GLN	2.7
1	11	28	LEU	2.7
1	AG	56	ASN	2.7
1	11	24	GLU	2.7
1	х	50	ALA	2.7
1	0	37	PHE	2.7
1	е	51	PRO	2.7
1	с	38	ASN	2.7
1	4	92	ASN	2.7
1	jj	62	ARG	2.7
1	hh	30	CYS	2.7
1	AJ	27	ASP	2.7
1	ee	125	LYS	2.6

Mol	Chain	Res	Type	RSRZ
1	AF	121	GLU	2.6
1	AA	41	GLN	2.6
1	j	47	GLY	2.6
1	mm	49	SER	2.6
1	F	56	ASN	2.6
1	11	22	PRO	2.6
1	mm	48	PHE	2.6
1	ee	89	GLU	2.6
1	u	38	ASN	2.6
1	hh	38	ASN	2.6
1	ii	124	THR	2.6
1	0	49	SER	2.6
1	gg	27	ASP	2.6
1	ii	34	CYS	2.6
1	ff	92	ASN	2.6
1	ee	79	ASP	2.6
1	U	41	GLN	2.6
1	ll	41	GLN	2.6
1	В	54	GLN	2.6
1	gg	48	PHE	2.6
1	1	92	ASN	2.6
1	hh	89	GLU	2.5
1	W	124	THR	2.5
1	AH	35	ASP	2.5
1	ii	22	PRO	2.5
1	a	92	ASN	2.5
1	AA	24	GLU	2.5
1	А	49	SER	2.5
1	mm	54	GLN	2.5
1	11	40	THR	2.5
1	F	20	LEU	2.5
1	jj	88	LEU	2.5
1	t	52	HIS	2.5
1	AG	52	HIS	2.5
1	с	49	SER	2.5
1	jj	58	ALA	2.5
1	g	40	THR	2.5
1	t	22	PRO	2.5
1	a	93	ASP	2.5
1	Е	41	GLN	2.5
1	р	24	GLU	2.5
1	2	52	HIS	2.5

Mol	Chain	Res	Type	RSRZ
1	Ζ	124	THR	2.5
1	ee	92	ASN	2.5
1	hh	60	TYR	2.5
1	G	49	SER	2.4
1	11	66	GLU	2.4
1	0	30	CYS	2.4
1	4	54	GLN	2.4
1	AJ	116	ALA	2.4
1	ff	40	THR	2.4
1	hh	113	GLY	2.4
1	ii	49	SER	2.4
1	N	110	ASP	2.4
1	Ζ	64	ASN	2.4
1	AF	22	PRO	2.4
1	X	49	SER	2.4
1	m	28	LEU	2.4
1	AF	64	ASN	2.4
1	AD	47	GLY	2.4
1	kk	59	PRO	2.4
1	S	95	ASN	2.4
1	ll	44	ILE	2.4
1	Q	78	SER	2.4
1	G	52	HIS	2.4
1	F	27	ASP	2.4
1	AH	107	ASP	2.4
1	g	95	ASN	2.4
1	ff	47	GLY	2.4
1	11	98	GLY	2.4
1	ii	38	ASN	2.4
1	R	36	GLY	2.4
1	f	82	ALA	2.4
1	Z	92	ASN	2.4
1	11	92	ASN	2.4
1	jj	50	ALA	2.4
1	6	22	PRO	2.3
1	jj	51	PRO	2.3
1	AC	64	ASN	2.3
1	kk	64	ASN	2.3
1	B	92	ASN	2.3
1	AD	92	ASN	2.3
1	gg	38	ASN	2.3
1	mm	64	ASN	2.3

Mol	Chain	Res	Type	RSRZ
1	Х	62	ARG	2.3
1	AG	121	GLU	2.3
1	Q	77	GLY	2.3
1	L	92	ASN	2.3
1	kk	92	ASN	2.3
1	8	56	ASN	2.3
1	ff	73	SER	2.3
1	h	95	ASN	2.3
1	11	107	ASP	2.3
1	mm	70	ALA	2.3
1	0	24	GLU	2.3
1	W	74	GLU	2.3
1	gg	25	LYS	2.3
1	L	64	ASN	2.3
1	AJ	113	GLY	2.3
1	Е	62	ARG	2.3
1	6	88	LEU	2.3
1	mm	51	PRO	2.3
1	G	110	ASP	2.3
1	9	27	ASP	2.3
1	jj	107	ASP	2.3
1	Q	52	HIS	2.3
1	ff	72	ILE	2.3
1	0	56	ASN	2.3
1	ii	89	GLU	2.3
1	р	54	GLN	2.3
1	1	64	ASN	2.3
1	AA	27	ASP	2.3
1	jj	56	ASN	2.3
1	kk	99	GLY	2.3
1	ii	71	TYR	2.3
1	AD	24	GLU	2.3
1	Х	58	ALA	2.3
1	AA	74	GLU	2.2
1	a	56	ASN	2.2
1	q	56	ASN	2.2
1	S	107	ASP	2.2
1	s	110	ASP	2.2
1	ee	19	PRO	2.2
1	Р	56	ASN	2.2
1	j	93	ASP	2.2
1	9	54	GLN	2.2

Mol	Chain	Res	Type	RSRZ
1	AE	69	GLN	2.2
1	F	74	GLU	2.2
1	Q	59	PRO	2.2
1	q	94	PRO	2.2
1	r	54	GLN	2.2
1	V	116	ALA	2.2
1	mm	125	LYS	2.2
1	ee	106	GLN	2.2
1	W	22	PRO	2.2
1	М	61	HIS	2.2
1	W	31	GLU	2.2
1	1	124	THR	2.2
1	ee	76	ILE	2.2
1	ee	88	LEU	2.2
1	Р	69	GLN	2.2
1	0	74	GLU	2.2
1	AJ	56	ASN	2.2
1	7	69	GLN	2.2
1	0	124	THR	2.2
1	6	56	ASN	2.2
1	ee	21	THR	2.2
1	G	106	GLN	2.2
1	j	70	ALA	2.2
1	6	78	SER	2.2
1	hh	63	LYS	2.2
1	0	31	GLU	2.2
1	0	47	GLY	2.1
1	i	40	THR	2.1
1	0	56	ASN	2.1
1	r	47	GLY	2.1
1	gg	$\overline{50}$	ALA	2.1
1	g	39	LYS	2.1
1	f	27	ASP	2.1
1	0	79	ASP	2.1
1	D	36	GLY	2.1
1	2	58	ALA	2.1
1	gg	108	ILE	2.1
1	h	69	GLN	2.1
1	AF	52	HIS	2.1
1	A	34	CYS	2.1
1	i	64	ASN	2.1
1	u	77	GLY	2.1

Mol	Chain	Res	Type	RSRZ
1	jj	61	HIS	2.1
1	Т	58	ALA	2.1
1	Z	94	PRO	2.1
1	b	71	TYR	2.1
1	jj	35	ASP	2.1
1	t	64	ASN	2.1
1	gg	95	ASN	2.1
1	Н	115	GLY	2.1
1	Р	74	GLU	2.1
1	ll	58	ALA	2.1
1	gg	24	GLU	2.1
1	9	21	THR	2.1
1	9	124	THR	2.1
1	D	31	GLU	2.1
1	М	64	ASN	2.1
1	AF	31	GLU	2.1
1	1	48	PHE	2.1
1	ee	53	ALA	2.1
1	AC	52	HIS	2.1
1	с	110	ASP	2.1
1	m	31	GLU	2.1
1	ee	93	ASP	2.1
1	L	58	ALA	2.1
1	U	109	LEU	2.1
1	9	24	GLU	2.1
1	L	56	ASN	2.1
1	Q	56	ASN	2.1
1	hh	64	ASN	2.1
1	8	69	GLN	2.1
1	kk	103	LYS	2.1
1	ff	52	HIS	2.0
1	9	99	GLY	2.0
1	AA	47	GLY	2.0
1	ee	62	ARG	2.0
1	1	89	GLU	2.0
1	jj	32	ALA	2.0
1	J	35	ASP	2.0
1	m	63	LYS	2.0
1	V	56	ASN	2.0
1	g	62	ARG	2.0
1	ii	116	ALA	2.0
1	Р	37	PHE	2.0

Mol	Chain	Res	Type	RSRZ
1	AF	56	ASN	2.0
1	gg	76	ILE	2.0
1	r	26	LEU	2.0
1	7	94	PRO	2.0
1	Ε	31	GLU	2.0
1	U	31	GLU	2.0
1	kk	30	CYS	2.0
1	J	53	ALA	2.0
1	Т	50	ALA	2.0
1	4	58	ALA	2.0
1	ii	53	ALA	2.0
1	Х	56	ASN	2.0
1	ff	39	LYS	2.0
1	b	94	PRO	2.0
1	gg	81	PRO	2.0
1	hh	84	ARG	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

