

Full wwPDB NMR Structure Validation Report (i)

May 29, 2020 – 08:19 am BST

PDB ID : 5JTM

Title : The structure of chaperone SecB in complex with unstructured PhoA binding

site a

Authors: Huang, C.; Saio, T.; Rossi, P.; Kalodimos, C.G.

Deposited on : 2016-05-09

This is a Full wwPDB NMR Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at

https://www.wwpdb.org/validation/2017/NMRValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

Cyrange : Kirchner and Güntert (2011)

NmrClust : Kelley et al. (1996)

MolProbity: 4.02b-467

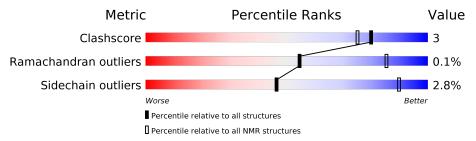
Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)

RCI : v 1n 11 5 13 A (Berjanski et al., 2005)

PANAV : Wang et al. (2010)

ShiftChecker : 2.11

Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996)


Validation Pipeline (wwPDB-VP) : 2.11

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $SOLUTION\ NMR$

The overall completeness of chemical shifts assignment is 13%.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	NMR archive		
Metric	$(\# \mathrm{Entries})$	$(\# \mathrm{Entries})$		
Clashscore	158937	12864		
Ramachandran outliers	154571	11451		
Sidechain outliers	154315	11428		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the experimental data. The red, orange, yellow and green segments indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria. A cyan segment indicates the fraction of residues that are not part of the well-defined cores, and a grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain		
1	A	155	71%	•	26%
1	В	155	77%	5%	19%
1	С	155	75%	•••	20%
1	D	155	77%	·	21%
2	Е	25	100%		
2	F	25	100%		
2	G	25	100%		
2	Н	25	100%		

2 Ensemble composition and analysis (i)

This entry contains 20 models. Model 20 is the overall representative, medoid model (most similar to other models). The authors have identified model 1 as representative, based on the following criterion: lowest energy.

The following residues are included in the computation of the global validation metrics.

Well-defined (core) protein residues							
Well-defined core Residue range (total) Backbone RMSD (Å) Medoid mode							
1	A:11-A:86, A:95-A:133,	0.44	20				
	B:9-B:134, C:11-C:134,						
	D:10-D:131 (487)						

Ill-defined regions of proteins are excluded from the global statistics.

Ligands and non-protein polymers are included in the analysis.

The models can be grouped into 4 clusters and 2 single-model clusters were found.

Cluster number	Models
1	1, 2, 5, 8, 9, 10, 11, 14, 16, 17, 18, 20
2	6, 13
3	7, 12
4	3, 4
Single-model clusters	15; 19

3 Entry composition (i)

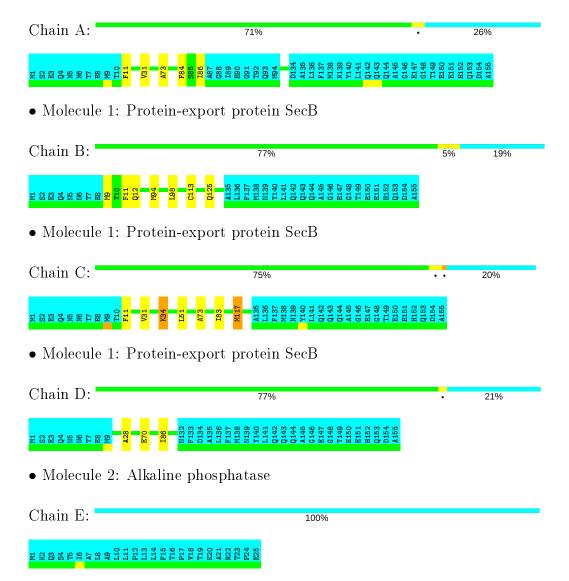
There are 2 unique types of molecules in this entry. The entry contains 11104 atoms, of which 5488 are hydrogens and 0 are deuteriums.

• Molecule 1 is a protein called Protein-export protein SecB.

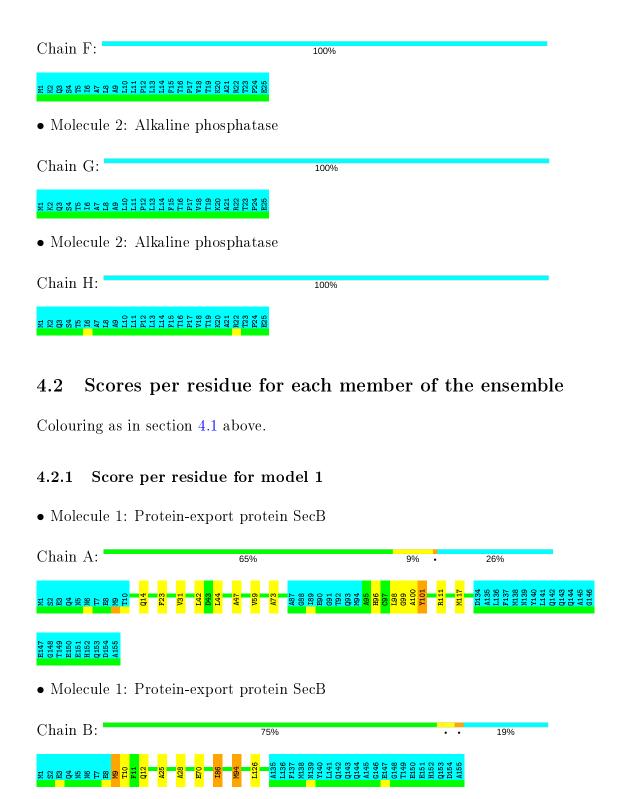
Mol	Chain	Residues		Atoms					Trace
1	A	155	Total	С	Н	N	О	S	0
1	A	155	2367	762	1155	198	243	9	
1	В	155	Total	С	Н	N	О	S	0
1	D	155	2367	762	1155	198	243	9	0
1	С	155	Total	С	Н	N	О	S	0
1		155	2367	762	1155	198	243	9	0
1	D	155	Total	С	Н	N	О	S	0
1	ש	199	2367	762	1155	198	243	9	0

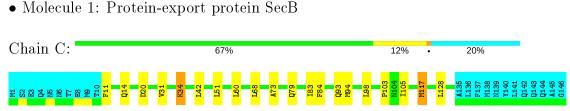
• Molecule 2 is a protein called Alkaline phosphatase.

Mol	Chain	Residues		Atoms					Trace
2	Е	25	Total	С	Н	N	О	S	0
2	15	29	409	126	217	31	34	1	
2	F	25	Total	С	Н	N	О	S	0
	1'	20	409	126	217	31	34	1	
2	G	25	Total	С	Н	N	О	S	0
	G	20	409	126	217	31	34	1	
2	Н	25	Total	С	Н	N	О	S	0
	11	20	409	126	217	31	34	1	U



4 Residue-property plots (i)


4.1 Average score per residue in the NMR ensemble


These plots are provided for all protein, RNA and DNA chains in the entry. The first graphic is the same as shown in the summary in section 1 of this report. The second graphic shows the sequence where residues are colour-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outliers are shown as green connectors. Residues which are classified as ill-defined in the NMR ensemble, are shown in cyan with an underline colour-coded according to the previous scheme. Residues which were present in the experimental sample, but not modelled in the final structure are shown in grey.

• Molecule 1: Protein-export protein SecB

21%

E147 G148 T149 E150 E151 H152 Q153 D154

Chain D:

• Molecule 1: Protein-export protein SecB

• Molecule 2: Alkaline phosphatase

Chain E:

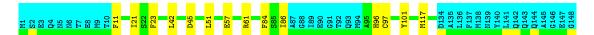
• Molecule 2: Alkaline phosphatase

Chain F:

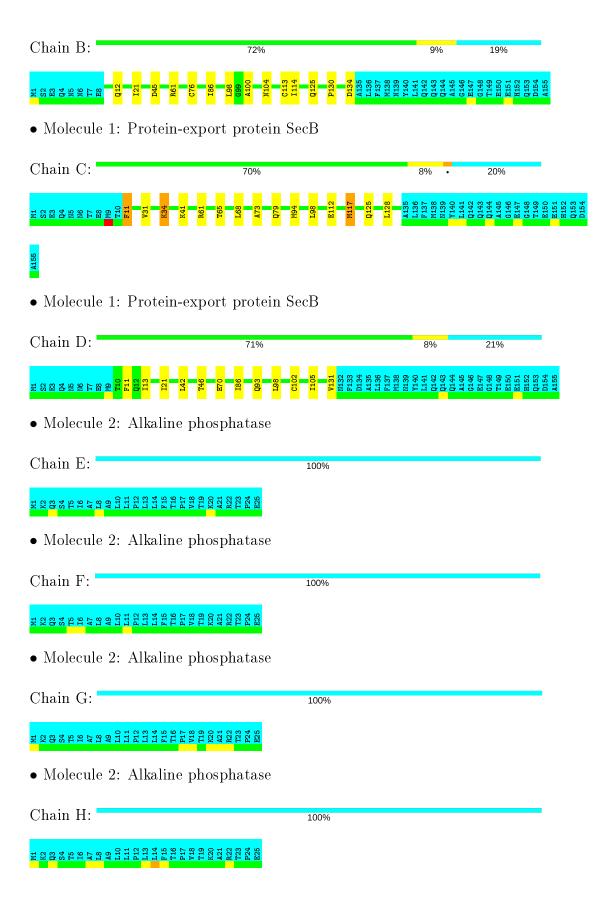
• Molecule 2: Alkaline phosphatase

Chain G:

• Molecule 2: Alkaline phosphatase

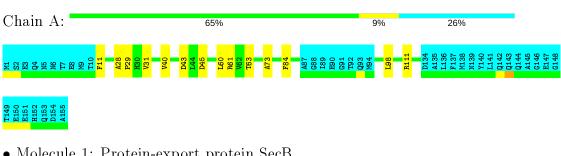

Chain H: 100%

4.2.2 Score per residue for model 2


• Molecule 1: Protein-export protein SecB

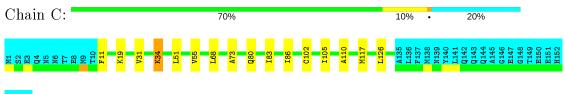
Chain A: 65% 9% 26%

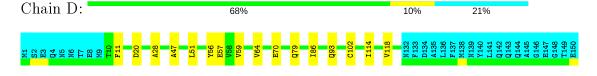
T149 E150 E151 H152 Q153 D154





4.2.3 Score per residue for model 3


• Molecule 1: Protein-export protein SecB


• Molecule 1: Protein-export protein SecB

• Molecule 1: Protein-export protein SecB

• Molecule 1: Protein-export protein SecB

• Molecule 2: Alkaline phosphatase

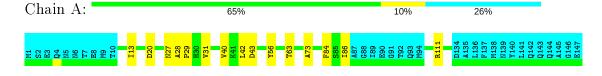
Chain E: 100%

• Molecule 2: Alkaline phosphatase

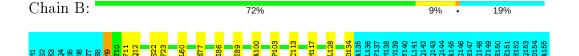
Chain F: 100%

• Molecule 2: Alkaline phosphatase

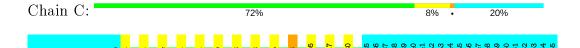
Chain G:


• Molecule 2: Alkaline phosphatase

Chain H:


4.2.4 Score per residue for model 4

• Molecule 1: Protein-export protein SecB

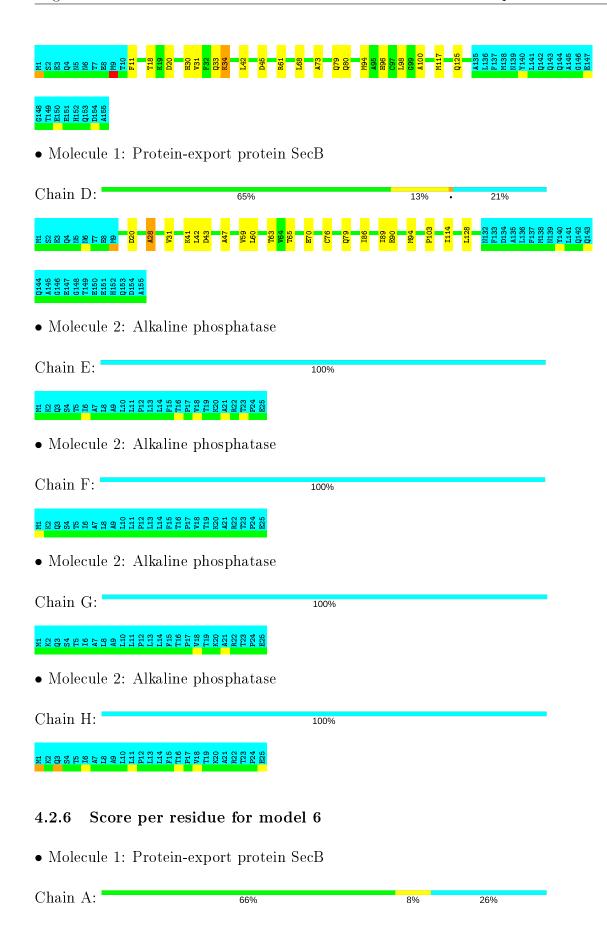


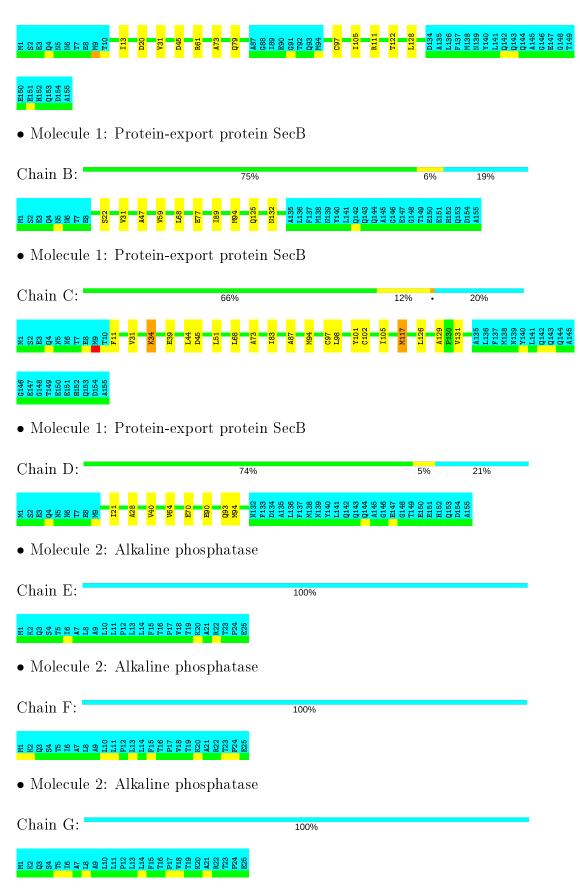
G148 T149 E150 E151 H152 Q153 D154

• Molecule 1: Protein-export protein SecB

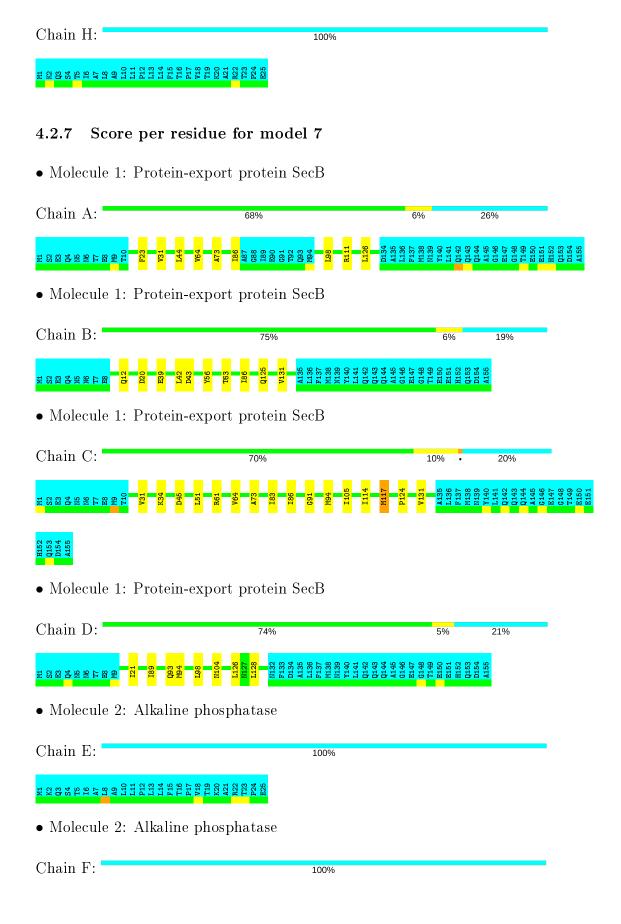
• Molecule 1: Protein-export protein SecB

• Molecule 1: Protein-export protein SecB

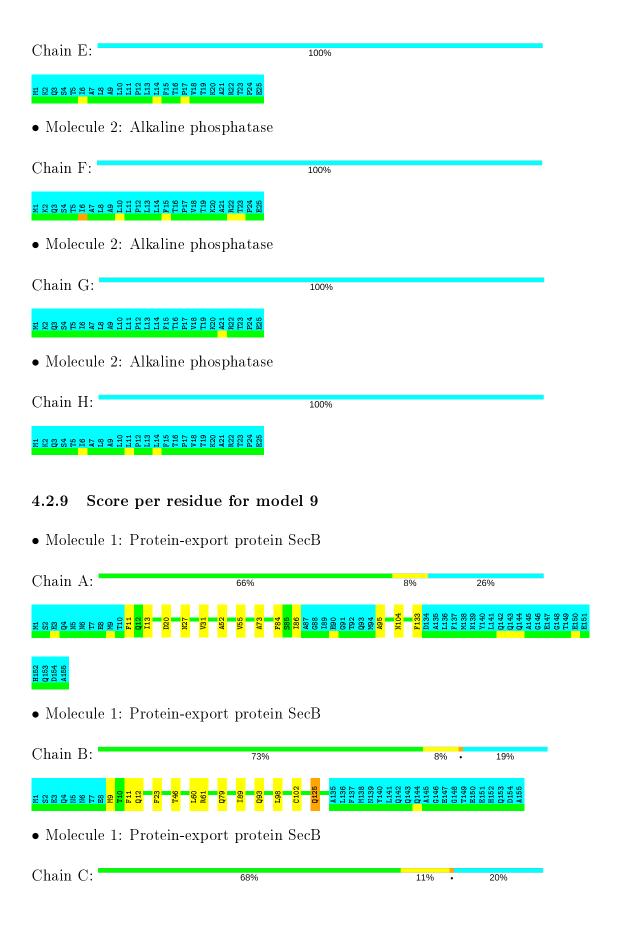

Chain D: 73% 5% 21%

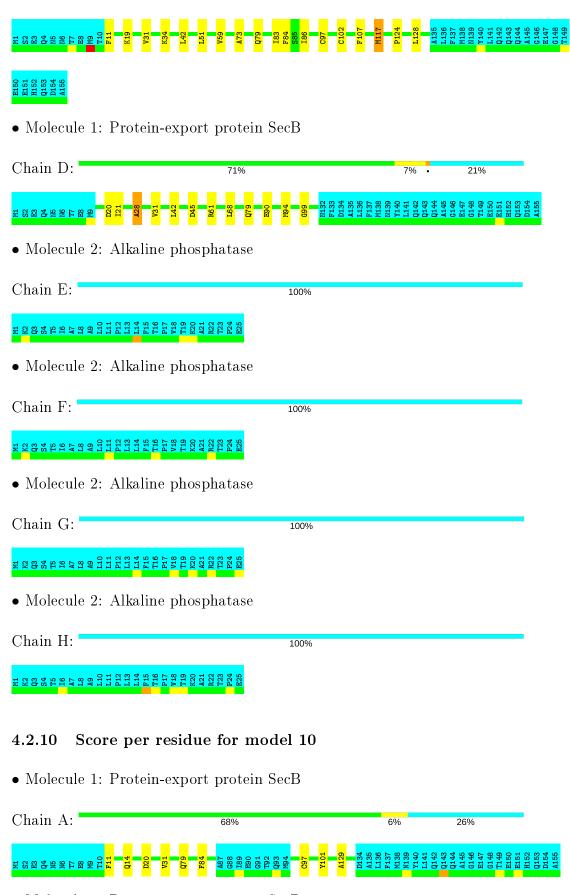


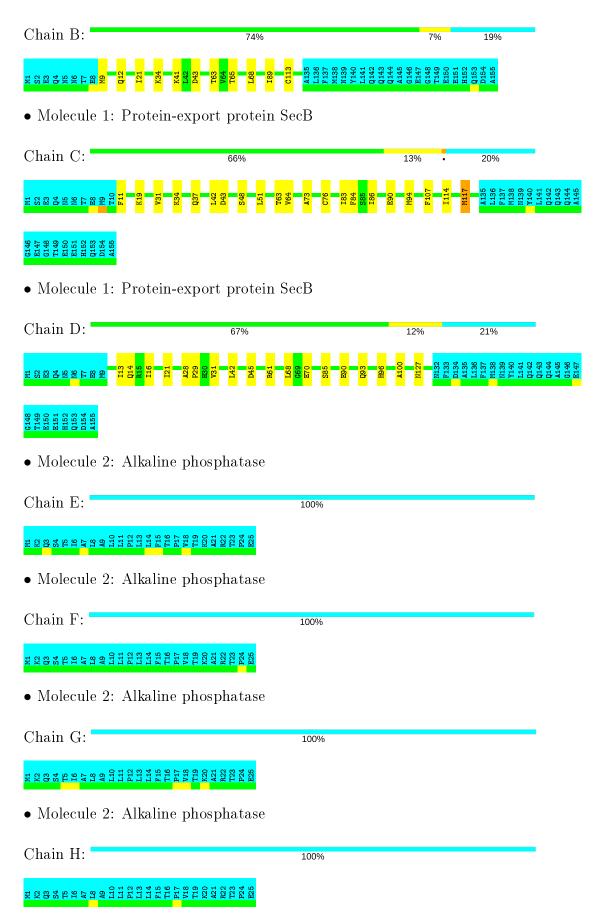
Chain E:	100%			
M S S S S S S S S S S S S S S S S S S S	114 116 116 117 119 120 120 120 123 123 123			
• Molecule 2: All	kaline phosphatase			
Chain F:	100%			
M1 K2 K2 C43 C43 C54 C16 C16 C10 C10 C11 C11 C11 C11 C11 C11 C11 C11	116 116 116 116 119 119 119 123 123 123 123			
• Molecule 2: All	kaline phosphatase			
Chain G:	100%			
M2 C3	114 116 117 119 119 119 119 119 119 119 119 119			
• Molecule 2: All	kaline phosphatase			
Chain H:	100%			
M1 K2 K2 K2 K2 K4	114 116 119 119 119 123 1733 1733 1733 1733			
_	er residue for model 5 otein-export protein SecB			
Chain A:	63%	11% •	26%	
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	74 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A73 Q77 Q77 I86 A87 G88 G88 G99 G91 G91	093 M94 1106 D134 A136 L136	F137 M138 N139
1141 0142 0143 0144 0144 0146 0146 0148 0148 0148 0148 0148	A165			
• Molecule 1: Pro	otein-export protein SecB			
Chain B:	77%	5%	19%	
M	744 744 7445 7446 7446 7446 7446 7446 74	E147 (148 T149 E150 E151 (1152 (1153 D154 A155		
• Molecule 1: Pre	otein-export protein SecB			
Chain C:	67%	12% •	20%	

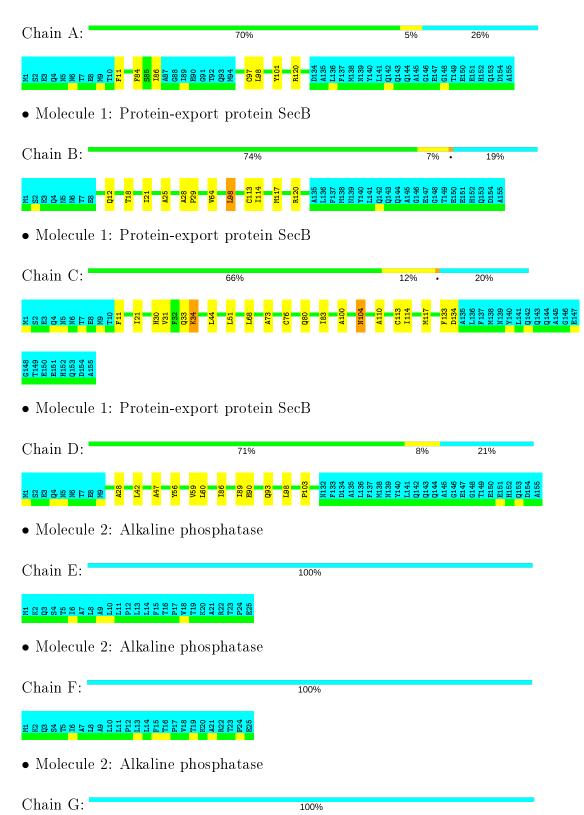


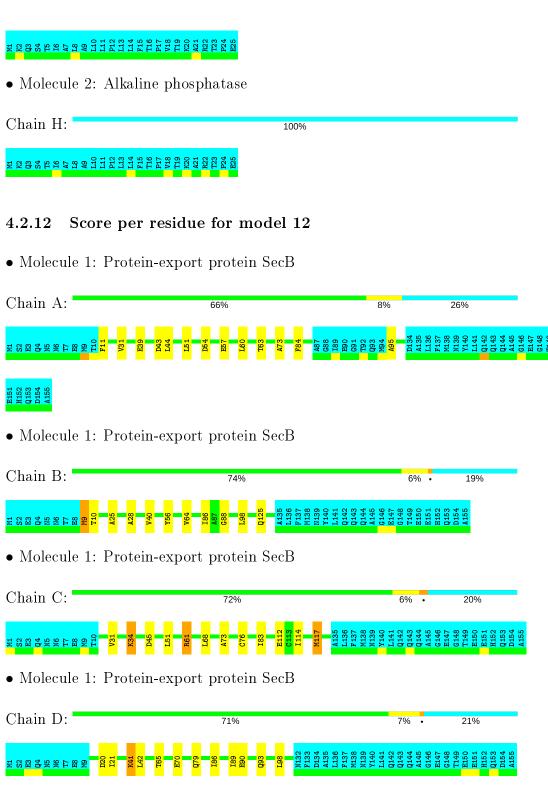
 \bullet Molecule 2: Alkaline phosphatase



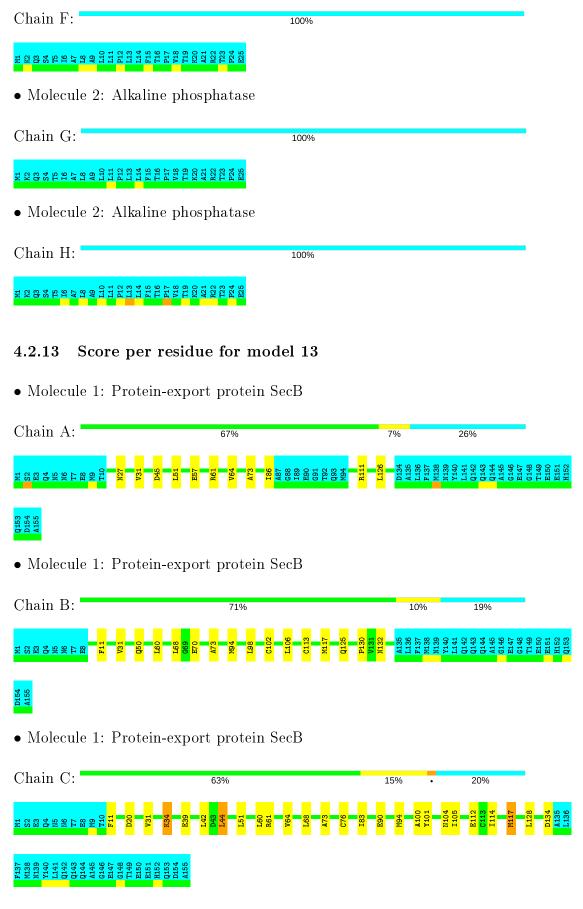




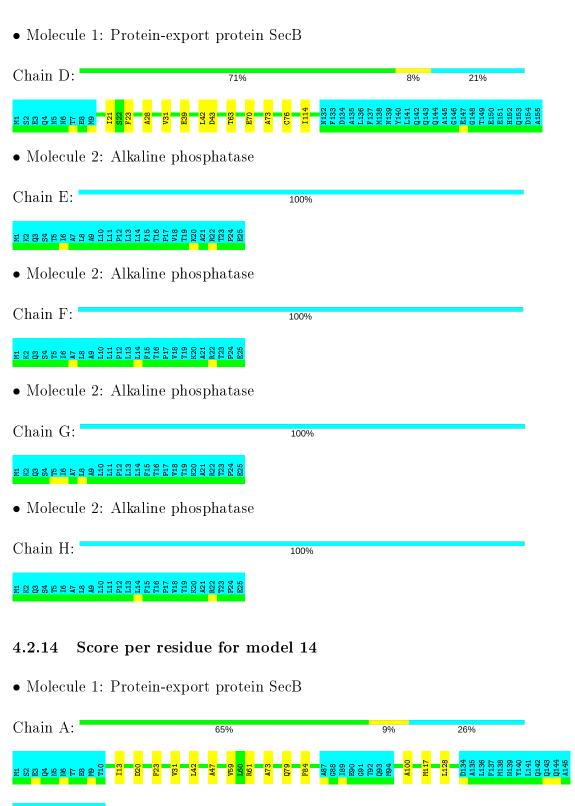


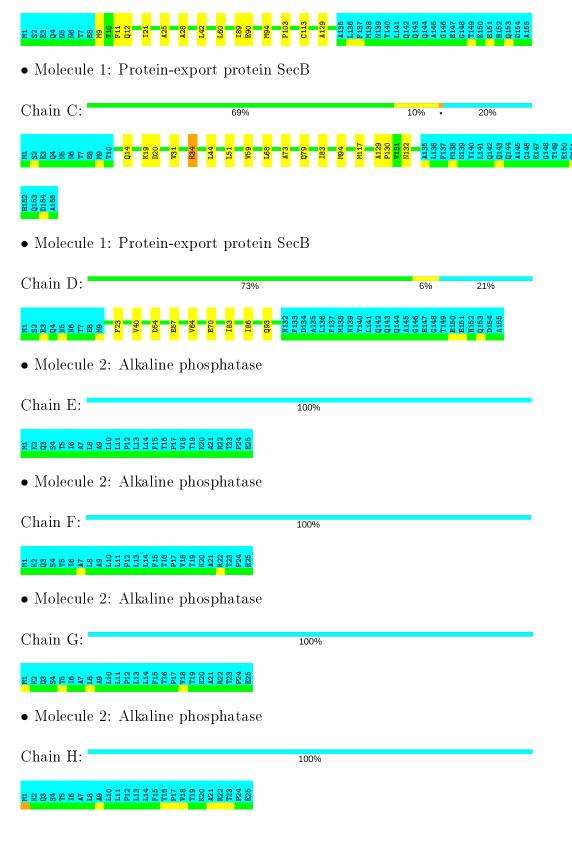


4.2.11 Score per residue for model 11

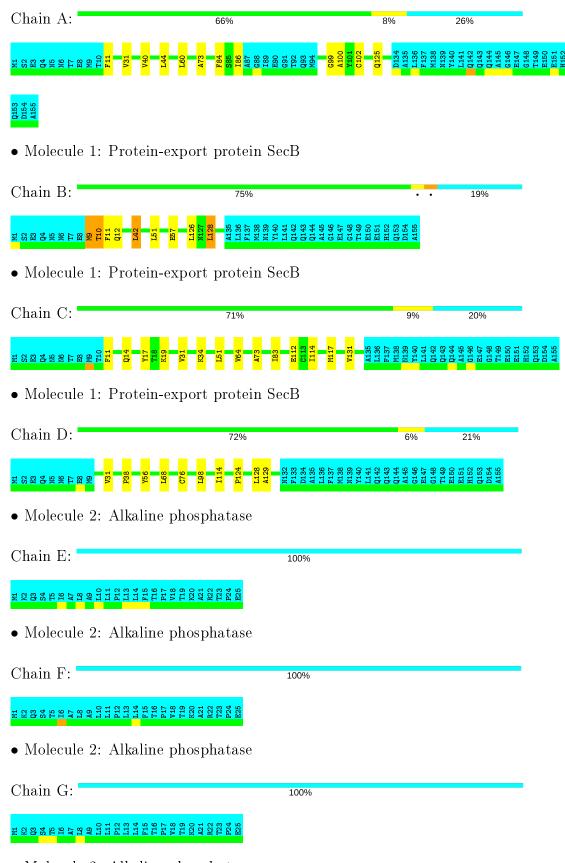


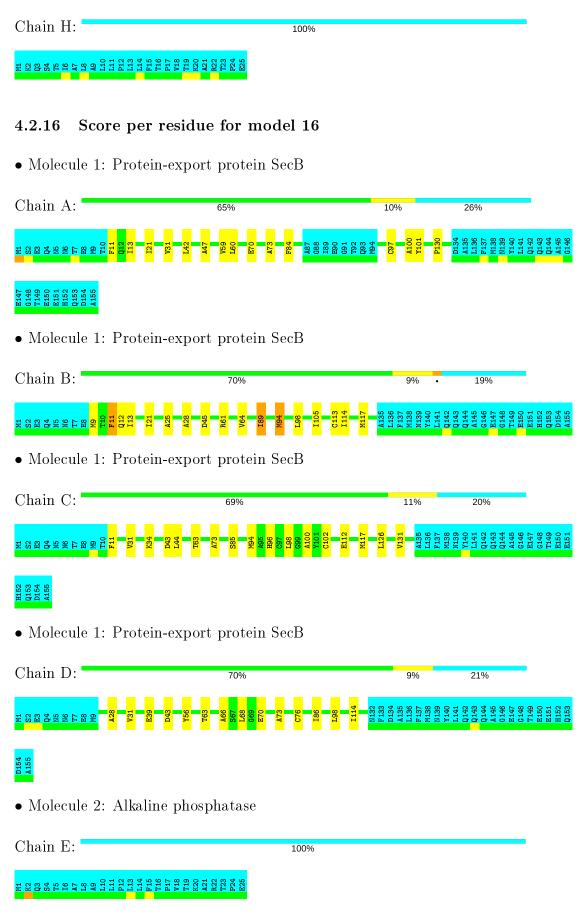
• Molecule 2: Alkaline phosphatase


Chain E:

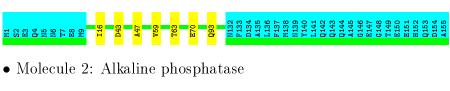


• Molecule 1: Protein-export protein SecB


Chain B: 72% 9% 19%



4.2.15 Score per residue for model 15



• Molecule 2: Alkaline phospha	atase			
Chain F:	100%			
新 16 16 16 16 16 17 17 17 17 18 17 18 17 18 17 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18	2			
• Molecule 2: Alkaline phospha	atase			
Chain G:	100%			
M 72	25 4 4 4 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5			
• Molecule 2: Alkaline phospha	atase			
Chain H:	100%			
所 23 24 24 25 26 27 27 27 27 27 27 27 27 27 27	2			
4.2.17 Score per residue f	or model 17			
-				
• Molecule 1: Protein-export p	orotein SecB			
Chain A:	5% 9%	269	%	
M1	V64 T65 T73 473 186 186 188 189 192 192 192 193 194	L98 M117 D134 A135 L136	F137 M138 M139 Y140 L141 Q142 Q143	Q144 A145 G146 E147
0148 2150 2150 2151 2151 2153 20153 20154 4155				
• Molecule 1: Protein-export p	orotein SecB			
Chain B:	72%	8% •	19%	
M	E112 1114 1114 1116 1118 1119 1110 1100	1141 Q142 Q143 Q144 A145 G146 G148	T149 E150 E151 H152 Q153 D154	
• Molecule 1: Protein-export p	orotein SecB			
Chain C:	70%	10%	20%	
표	M17 M129 M135 M136 M136 M136 M136 M136 M136 M136 M136	F137 M138 M139 V140 Q142 Q143 Q144	A145 G146 E147 G148 T149 E150	H152 Q153 D154 A155
• Molecule 1: Protein-export p	orotein SecB			
Chain D:	74%	5%	21%	

100%

Chain E:

• Molecule 2: Alkaline phosphatase

Chain F: 100%

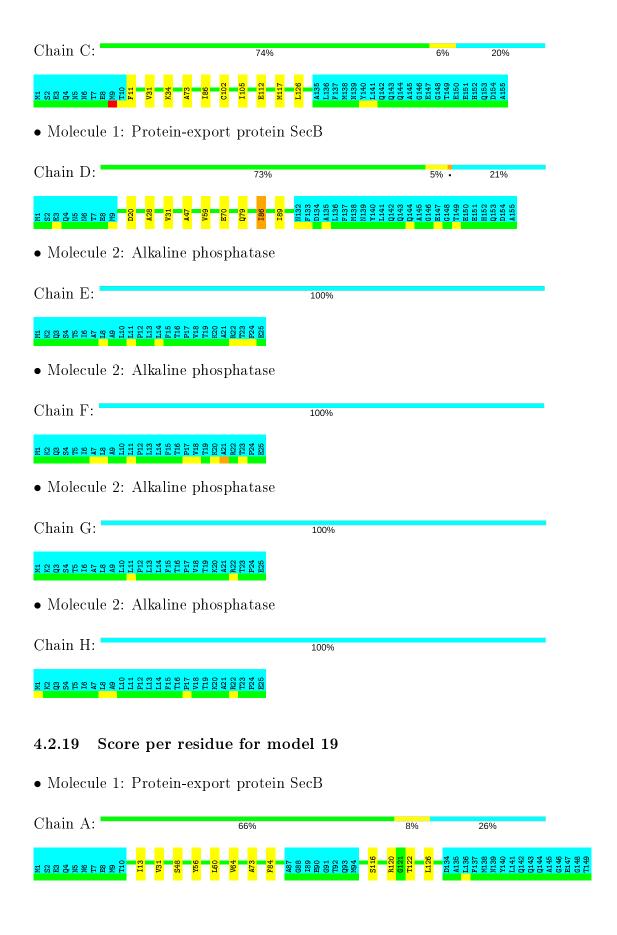
• Molecule 2: Alkaline phosphatase

Chain G: 100%

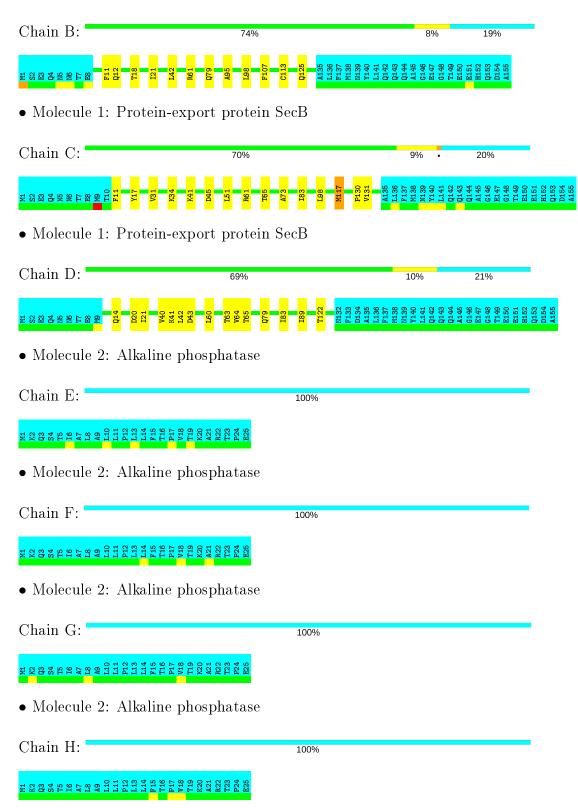
• Molecule 2: Alkaline phosphatase

Chain H: 100%

Score per residue for model 18 4.2.18


• Molecule 1: Protein-export protein SecB

• Molecule 1: Protein-export protein SecB


Chain B: 74% 19%

E150 E151 H152 Q153 D154

4.2.20 Score per residue for model 20 (medoid)

• Molecule 1: Protein-export protein SecB

E151 H152 Q153 D154 A155

• Molecule 1: Protein-export protein SecB

Chain B: 75% 6% 19%

• Molecule 1: Protein-export protein SecB

Chain C: 70% 10% • 20%

A155

• Molecule 1: Protein-export protein SecB

Chain D: 72% 6% 21%

• Molecule 2: Alkaline phosphatase

Chain E:

• Molecule 2: Alkaline phosphatase

Chain F:

α_1 , α	
Chain G:	100%
Chan Ci.	100%

• Molecule 2: Alkaline phosphatase

Chain H: 100%

5 Refinement protocol and experimental data overview (i)

The models were refined using the following method: molecular dynamics.

Of the 100 calculated structures, 20 were deposited, based on the following criterion: target function.

The following table shows the software used for structure solution, optimisation and refinement.

Software name	Classification	Version
CNS	refinement	
CYANA	structure calculation	

The following table shows chemical shift validation statistics as aggregates over all chemical shift files. Detailed validation can be found in section 6 of this report.

Chemical shift file(s)	$input_cs.cif$
Number of chemical shift lists	8
Total number of shifts	5090
Number of shifts mapped to atoms	5090
Number of unparsed shifts	0
Number of shifts with mapping errors	0
Number of shifts with mapping warnings	0
Assignment completeness (well-defined parts)	13%

No validations of the models with respect to experimental NMR restraints is performed at this time.

COVALENT-GEOMETRY INFOmissingINFO

5.1Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in each chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes averaged over the ensemble.

Mol	Chain	Non-H	H(model)	H(added)	Clashes
1	A	904	883	881	5±1
1	В	981	955	953	6±2
1	С	966	939	937	7±2
1	D	946	927	925	5±2
2	Е	0	0	0	0±0
2	F	0	0	0	0±0
2	G	0	0	0	0±0

Continued from previous page...

Mol	Chain	Non-H	H(model)	$\mathbf{H}(\mathbf{added})$	Clashes
2	Н	0	0	0	0±0
All	All	75940	74080	73920	407

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 3.

All unique clashes are listed below, sorted by their clash magnitude.

A., 1	A 0	$oxed{ ext{Clash(\AA)} \ ext{Distance(Å)} }$	D: 4 (8)	Models	
Atom-1	Atom-2		Distance(A)	Worst	Total
1:B:25:ALA:HB1	1:B:28:ALA:HB2	0.80	1.53	14	7
1:B:13:ILE:HD11	1:B:105:ILE:HD13	0.68	1.66	16	1
1:A:31:VAL:HG21	1:A:73:ALA:HA	0.64	1.67	5	16
1:B:25:ALA:CB	1:B:28:ALA:HB2	0.61	2.24	14	6
1:D:20:ASP:HB3	1:D:79:GLN:HB2	0.60	1.73	19	6
1:C:34:LYS:HG2	1:C:68:LEU:HD13	0.59	1.73	20	10
1:C:31:VAL:HG21	1:C:73:ALA:HA	0.58	1.75	17	20
1:C:11:PHE:HE1	1:C:102:CYS:HG	0.58	1.42	18	1
1:B:98:LEU:HA	1:B:102:CYS:SG	0.58	2.39	3	4
1:A:44:LEU:HD23	1:A:60:LEU:HD21	0.58	1.74	12	1
1:B:42:LEU:HD22	1:B:128:LEU:HD11	0.57	1.75	3	1
1:B:60:LEU:HD22	1:B:103:PRO:HB3	0.57	1.75	14	2
1:D:43:ASP:HB2	1:D:63:THR:HB	0.57	1.75	17	5
1:C:64:VAL:HG23	1:C:114:ILE:HD13	0.57	1.75	13	3
1:B:21:ILE:HD11	1:B:113:CYS:SG	0.57	2.40	14	6
1:B:41:LYS:HB2	1:B:65:THR:HB	0.56	1.76	10	1
1:A:43:ASP:HB2	1:A:63:THR:HB	0.56	1.77	3	4
1:D:86:ILE:HG12	1:D:89:ILE:HD13	0.55	1.77	5	2
1:C:45:ASP:HB3	1:C:61:ARG:HD2	0.55	1.76	19	2
1:A:86:ILE:HD11	1:A:102:CYS:SG	0.54	2.42	15	1
1:A:64:VAL:HG11	1:A:126:LEU:HD21	0.54	1.77	13	3
1:B:9:MET:SD	1:B:10:THR:N	0.54	2.80	15	4
1:D:40:VAL:HG13	1:D:64:VAL:HG13	0.54	1.79	4	5
1:C:41:LYS:HB2	1:C:65:THR:HB	0.54	1.80	19	2
1:B:43:ASP:HB2	1:B:63:THR:HB	0.54	1.79	7	2
1:C:117:MET:HE2	1:D:21:ILE:HG21	0.53	1.80	1	10
1:D:47:ALA:HB3	1:D:59:VAL:HB	0.53	1.80	8	7
1:B:11:PHE:CZ	1:B:13:ILE:HG13	0.53	2.38	16	1
1:A:23:PHE:HB2	1:A:117:MET:SD	0.53	2.43	2	5
1:D:90:GLU:HA	1:D:94:MET:HE3	0.53	1.80	6	1
1:A:111:ARG:NH1	1:C:105:ILE:HG23	0.53	2.18	20	2
1:A:20:ASP:HB3	1:A:79:GLN:HB2	0.52	1.81	5	5
1:C:60:LEU:HD22	1:C:103:PRO:HB2	0.52	1.80	1	1

Continued from previous page...

Atom-1	Atom-2	$\operatorname{Clash}(ext{\AA})$	$\operatorname{Distance}(\operatorname{\AA})$	Models	
		Clash(A)	Distance(A)	Worst	Total
1:C:20:ASP:HB3	1:C:79:GLN:HB2	0.52	1.82	17	5
1:C:51:LEU:HD11	1:C:83:ILE:HD12	0.52	1.82	9	14
1:A:51:LEU:HD11	1:A:57:GLU:HB2	0.52	1.82	2	4
1:D:76:CYS:SG	1:D:114:ILE:HG12	0.52	2.45	15	4
1:B:117:MET:SD	1:B:120:ARG:HD2	0.51	2.45	20	3
1:C:19:LYS:HE3	1:D:28:ALA:HB3	0.51	1.81	3	2
1:B:100:ALA:HB1	1:B:134:ASP:HA	0.51	1.83	2	2
1:C:97:CYS:SG	1:C:102:CYS:SG	0.51	3.08	17	3
1:B:64:VAL:HG21	1:B:114:ILE:HG21	0.51	1.83	8	4
1:A:61:ARG:HB2	1:A:79:GLN:HG2	0.51	1.83	14	1
1:D:38:PRO:HD3	1:D:124:PRO:HG2	0.51	1.83	15	1
1:A:47:ALA:HB3	1:A:59:VAL:HB	0.51	1.83	16	4
1:D:31:VAL:HG22	1:D:68:LEU:HD12	0.50	1.83	10	4
1:B:12:GLN:HE22	1:D:129:ALA:HB2	0.50	1.67	15	1
1:D:25:ALA:HB1	1:D:28:ALA:HB2	0.50	1.83	8	1
1:D:11:PHE:HE2	1:D:102:CYS:SG	0.50	2.29	2	2
1:A:45:ASP:HB3	1:A:61:ARG:HB3	0.49	1.84	2	5
1:D:40:VAL:HG21	1:D:126:LEU:HG	0.49	1.85	1	1
1:B:21:ILE:CD1	1:B:113:CYS:SG	0.49	3.00	19	5
1:C:19:LYS:HE2	1:D:29:PRO:HD3	0.49	1.84	8	2
1:C:100:ALA:HB1	1:C:134:ASP:HA	0.49	1.84	11	1
1:B:21:ILE:HD12	1:B:113:CYS:SG	0.49	2.47	19	2
1:D:54:ASP:HB3	1:D:86:ILE:O	0.49	2.08	14	1
1:C:100:ALA:HB1	1:C:134:ASP:HB2	0.48	1.84	13	1
1:A:130:PRO:HG3	1:C:11:PHE:HD2	0.48	1.68	16	1
1:B:31:VAL:HG22	1:B:68:LEU:HD12	0.48	1.84	13	2
1:B:76:CYS:SG	1:B:114:ILE:HA	0.48	2.49	2	1
1:B:89:ILE:HG22	1:B:94:MET:HB2	0.48	1.85	6	1
1:D:11:PHE:HE2	1:D:102:CYS:HG	0.48	1.52	1	1
1:A:11:PHE:HE2	1:A:84:PHE:HB3	0.47	1.69	2	11
1:B:86:ILE:HD13	1:B:98:LEU:HD21	0.47	1.86	2	1
1:B:9:MET:HB3	1:B:89:ILE:HG12	0.47	1.85	14	2
1:B:11:PHE:CE1	1:B:13:ILE:HG13	0.47	2.44	16	1
1:C:80:GLN:HB2	1:C:110:ALA:HB2	0.47	1.86	3	2
1:C:30:HIS:O	1:C:33:GLN:HG2	0.47	2.09	11	2
1:B:125:GLN:HB2	1:C:124:PRO:HA	0.46	1.85	7	3
1:D:86:ILE:HG13	1:D:97:CYS:SG	0.46	2.51	20	1
1:A:111:ARG:HH12	1:C:105:ILE:HD12	0.46	1.71	3	1
1:B:9:MET:HB2	1:B:89:ILE:HB	0.46	1.87	9	1
1:A:97:CYS:HA	1:A:101:TYR:HB3	0.46	1.88	16	4
1:D:31:VAL:HG21	1:D:73:ALA:HA	0.46	1.88	16	3
	_	_	01:1	L	

Continued from previous page...

Atom-1	Atom-2	$oxed{ { m Clash}({ m \AA}) \ \ { m Distance}({ m \AA}) }$	Models		
			Distance(A)	Worst	Total
1:D:39:GLU:O	1:D:66:ALA:HA	0.46	2.11	16	1
1:B:40:VAL:HG13	1:B:64:VAL:HG13	0.46	1.88	12	1
1:A:13:ILE:HG12	1:A:84:PHE:HD2	0.45	1.71	14	7
1:B:56:TYR:HB2	1:B:86:ILE:HD11	0.45	1.89	7	2
1:B:22:SER:HB2	1:B:77:GLU:HB3	0.45	1.88	6	2
1:A:119:SER:HB2	1:A:125:GLN:HG3	0.45	1.89	20	1
1:B:10:THR:O	1:B:86:ILE:HA	0.45	2.12	1	1
1:C:94:MET:SD	1:C:98:LEU:HD12	0.45	2.51	1	1
1:C:11:PHE:HE1	1:C:102:CYS:SG	0.45	2.34	8	2
1:D:45:ASP:HB3	1:D:61:ARG:HB3	0.45	1.88	1	4
1:A:13:ILE:CD1	1:A:105:ILE:HG21	0.45	2.42	6	2
1:B:18:THR:HG21	1:B:21:ILE:HD11	0.45	1.88	11	2
1:B:130:PRO:HG3	1:D:16:ILE:HD13	0.45	1.87	17	1
1:A:111:ARG:NH1	1:C:105:ILE:HD12	0.45	2.27	1	5
1:B:9:MET:SD	1:B:89:ILE:HB	0.45	2.51	10	1
1:D:60:LEU:HD22	1:D:103:PRO:HB3	0.45	1.87	5	2
1:B:47:ALA:HB3	1:B:59:VAL:HB	0.45	1.88	6	2
1:B:113:CYS:O	1:B:117:MET:HG2	0.44	2.13	4	4
1:A:20:ASP:HA	1:B:23:PHE:O	0.44	2.12	17	3
1:D:76:CYS:SG	1:D:114:ILE:HA	0.44	2.52	16	1
1:A:28:ALA:HB3	1:A:29:PRO:HD3	0.44	1.88	3	2
1:B:61:ARG:HG3	1:B:79:GLN:HG2	0.44	1.90	19	1
1:D:90:GLU:HA	1:D:94:MET:SD	0.44	2.53	8	1
1:C:43:ASP:HB3	1:C:63:THR:HB	0.44	1.90	10	2
1:B:9:MET:HB3	1:B:89:ILE:HB	0.44	1.89	16	2
1:B:45:ASP:HB3	1:B:61:ARG:HB3	0.44	1.87	2	2
1:B:11:PHE:HE1	1:B:102:CYS:SG	0.44	2.36	3	2
1:B:9:MET:SD	1:B:89:ILE:HG22	0.44	2.53	9	1
1:A:96:HIS:O	1:A:100:ALA:HB3	0.44	2.13	1	1
1:D:41:LYS:HB2	1:D:65:THR:HB	0.44	1.90	19	1
1:C:96:HIS:O	1:C:100:ALA:HB3	0.43	2.12	5	2
1:C:19:LYS:HE2	1:D:28:ALA:HB3	0.43	1.88	9	2
1:D:13:ILE:HG21	1:D:16:ILE:HD11	0.43	1.89	10	1
1:D:16:ILE:N	1:D:16:ILE:HD12	0.43	2.27	10	1
1:C:11:PHE:HE2	1:C:84:PHE:HB3	0.43	1.73	1	3
1:C:90:GLU:HA	1:C:94:MET:HE3	0.43	1.90	13	1
1:B:9:MET:SD	1:B:11:PHE:HB2	0.43	2.54	4	1
1:C:51:LEU:HD11	1:C:57:GLU:HB2	0.43	1.90	8	1
1:A:120:ARG:HD3	1:B:113:CYS:SG	0.43	2.53	11	1
1:C:21:ILE:HG12	1:C:113:CYS:SG	0.43	2.53	11	1
1:C:64:VAL:HG21	1:C:114:ILE:HG21	0.43	1.89	15	1

Continued from previous page...

	Atom 2	$oxed{ ext{Clash(\AA)} \ ext{Distance(Å)} }$	Distance (Å)	Models	
Atom-1	Atom-2	Clash(A)			Total
1:A:43:ASP:HB3	1:A:63:THR:HB	0.43	1.90	5	1
1:B:11:PHE:HE1	1:B:102:CYS:HG	0.43	1.55	3	1
1:A:130:PRO:HD3	1:C:13:ILE:HG13	0.43	1.90	20	1
1:B:31:VAL:HG21	1:B:73:ALA:HA	0.42	1.91	13	1
1:A:98:LEU:HD12	1:A:99:GLY:N	0.42	2.29	1	1
1:C:76:CYS:SG	1:C:114:ILE:HG23	0.42	2.54	11	4
1:B:98:LEU:HD23	1:B:98:LEU:H	0.42	1.73	13	1
1:A:21:ILE:CG2	1:A:117:MET:SD	0.42	3.07	2	1
1:C:11:PHE:CE1	1:C:101:TYR:CE2	0.42	3.07	17	3
1:A:104:ASN:HD21	1:A:133:PHE:HB2	0.42	1.73	9	1
1:A:13:ILE:HG21	1:C:130:PRO:HG2	0.42	1.91	14	1
1:D:57:GLU:HB2	1:D:83:ILE:HG12	0.42	1.90	14	1
1:B:51:LEU:HD11	1:B:57:GLU:HB2	0.42	1.90	15	1
1:B:94:MET:SD	1:B:98:LEU:HD21	0.42	2.53	16	1
1:D:86:ILE:HB	1:D:89:ILE:HD12	0.42	1.92	18	1
1:B:61:ARG:HB2	1:B:79:GLN:HG2	0.42	1.91	9	1
1:C:59:VAL:HG12	1:C:79:GLN:HG2	0.42	1.91	9	1
1:D:28:ALA:O	1:D:31:VAL:HG12	0.42	2.15	5	3
1:A:40:VAL:HA	1:A:65:THR:O	0.42	2.15	17	1
1:D:86:ILE:HD13	1:D:98:LEU:HD21	0.42	1.91	2	1
1:B:96:HIS:O	1:B:100:ALA:HB3	0.42	2.14	3	1
1:D:64:VAL:CG2	1:D:114:ILE:HD13	0.42	2.45	3	1
1:D:51:LEU:HD11	1:D:57:GLU:HB2	0.42	1.92	3	1
1:C:45:ASP:HB3	1:C:61:ARG:HB3	0.42	1.92	17	3
1:A:52:ALA:HB3	1:A:55:VAL:HB	0.42	1.92	9	1
1:C:17:TYR:HB3	1:D:122:THR:HG23	0.42	1.92	19	1
1:B:56:TYR:HB3	1:B:86:ILE:HD13	0.41	1.90	12	1
1:A:116:SER:O	1:A:120:ARG:HB2	0.41	2.15	19	2
1:C:44:LEU:HA	1:C:61:ARG:O	0.41	2.14	13	1
1:C:20:ASP:HA	1:D:23:PHE:O	0.41	2.15	14	2
1:A:21:ILE:HD13	1:B:117:MET:SD	0.41	2.56	16	1
1:C:18:THR:HG22	1:C:80:GLN:HE22	0.41	1.74	5	1
1:C:47:ALA:HB3	1:C:59:VAL:HB	0.41	1.93	17	1
1:D:89:ILE:HG22	1:D:90:GLU:N	0.41	2.31	11	1
1:D:14:GLN:HE21	1:D:85:SER:HB2	0.41	1.76	10	1
1:D:56:TYR:HB3	1:D:86:ILE:HD13	0.41	1.91	11	2
1:B:42:LEU:HD13	1:B:128:LEU:HD21	0.41	1.91	15	1
1:D:41:LYS:HB3	1:D:65:THR:HB	0.41	1.92	12	2
1:A:23:PHE:O	1:B:20:ASP:HA	0.41	2.15	20	2
1:C:44:LEU:HD23	1:C:60:LEU:HD11	0.41	1.91	13	1
1:D:11:PHE:CE2	1:D:102:CYS:SG	0.41	3.13	2	1

Continued from previous page...

Atom-1	Atom-2	$\operatorname{Clash}(\mathring{\mathrm{A}})$	$\mathbf{Distance}(\mathbf{\mathring{A}})$	Models	
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total
1:A:34:LYS:HD3	1:A:35:ASP:N	0.40	2.31	5	1
1:B:76:CYS:SG	1:B:114:ILE:HG23	0.40	2.56	8	1
1:B:28:ALA:HB3	1:B:29:PRO:HD3	0.40	1.92	11	1
1:C:104:ASN:HD21	1:C:133:PHE:HB3	0.40	1.75	11	1
1:B:60:LEU:HD23	1:B:106:LEU:HD12	0.40	1.93	13	1
1:C:19:LYS:HE2	1:C:59:VAL:HG21	0.40	1.93	14	1
1:D:13:ILE:HD13	1:D:105:ILE:HG21	0.40	1.94	2	1
1:B:114:ILE:O	1:B:118:VAL:HG23	0.40	2.16	17	1
1:C:14:GLN:HB2	1:C:83:ILE:HB	0.40	1.93	1	2
1:C:61:ARG:HB2	1:C:79:GLN:HG2	0.40	1.94	2	1
1:C:44:LEU:HD23	1:C:45:ASP:N	0.40	2.31	6	1
1:B:34:LYS:HB2	1:B:68:LEU:HD13	0.40	1.93	10	1
1:C:98:LEU:HA	1:C:102:CYS:SG	0.40	2.57	16	1
1:C:94:MET:O	1:C:98:LEU:HG	0.40	2.16	16	1
1:D:14:GLN:HB2	1:D:83:ILE:HB	0.40	1.92	19	1
1:D:114:ILE:O	1:D:118:VAL:HG23	0.40	2.16	3	1
1:B:125:GLN:HA	1:B:125:GLN:HE21	0.40	1.77	9	1
1:C:17:TYR:CE2	1:C:19:LYS:HD3	0.40	2.51	15	1

5.2 Torsion angles (i)

5.2.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the backbone conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percei	ntiles
1	A	115/155~(74%)	$109\pm2~(95\pm1\%)$	$6\pm 2 \ (5\pm 1\%)$	0±0 (0±0%)	100	100
1	В	126/155~(81%)	119±2 (94±2%)	$7\pm2~(6\pm2\%)$	0±0 (0±0%)	50	82
1	С	$124/155 \; (80\%)$	$115\pm 2 \ (93\pm 2\%)$	9±2 (7±2%)	0±0 (0±0%)	54	85
1	D	122/155~(79%)	$116\pm 2 \ (95\pm 1\%)$	5±2 (4±1%)	0±0 (0±0%)	50	82
2	Е	0	-	-	-	-	
2	F	0	-	-	-	-	
2	G	0	-	-	-	-	
2	Н	0	-	-	-	-	
All	All	9740/14400 (68%)	9171 (94%)	556 (6%)	13 (0%)	54	85

All 4 unique Ramachandran outliers are listed below. They are sorted by the frequency of occurrence in the ensemble.

Mol	Chain	Res	Type	Models (Total)
1	D	28	ALA	6
1	В	9	MET	3
1	С	130	PRO	2
1	В	130	PRO	2

5.2.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the sidechain conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	A	100/132~(76%)	98±1 (98±1%)	2±1 (2±1%)	59 93
1	В	$108/132 \; (82\%)$	$105\pm2~(97\pm2\%)$	$3\pm 2 \ (3\pm 2\%)$	43 88
1	С	$106/132 \; (80\%)$	102±1 (96±1%)	4±1 (4±1%)	36 84
1	D	$104/132 \ (79\%)$	102±1 (98±1%)	2±1 (2±1%)	57 93
2	Е	0	-	-	-
2	F	0	-	-	-
2	G	0	-	-	-
2	Н	0	-	-	-
All	All	$8360/12320 \ (68\%)$	8130 (97%)	230 (3%)	46 90

All 70 unique residues with a non-rotameric sidechain are listed below. They are sorted by the frequency of occurrence in the ensemble.

Mol	Chain	Res	Type	Models (Total)
1	С	34	LYS	20
1	С	117	MET	20
1	В	12	GLN	15
1	D	70	GLU	13
1	A	86	ILE	7
1	D	90	GLU	7
1	В	125	GLN	7
1	С	112	GLU	6
1	D	93	GLN	6
1	В	94	MET	6
1	В	11	PHE	6
1	A	60	LEU	5

Continued on next page...

Continued from previous page...

Mol	nued fron Chain	\mathbf{Res}	$\overline{ ext{Type}}$	Models (Total)
1	A	42	LEU	5
1	В	9	MET	4
1	В	42	LEU	4
1	A	14	GLN	4
1	С	126	LEU	4
1	С	128	LEU	4
1	С	11	PHE	4
1	В	86	ILE	3
1	С	44	LEU	3
1	С	86	ILE	3
1	С	125	GLN	3
1	В	70	GLU	3
1	A	56	TYR	3
1	A	27	ASN	3
1	В	89	ILE	3
1	D	86	ILE	3
1	D	42	LEU	3
1	С	104	ASN	2
1	В	126	LEU	2
1	A	70	GLU	2
1	С	61	ARG	2
1	С	107	PHE	2
1	В	98	LEU	2
1	С	39	GLU	2
1	С	98	LEU	2
1	С	42	LEU	2
1	A	122	THR	2
1	В	112	GLU	2
1	В	132	ASN	2
1	D	98	LEU	1
1	В	107	PHE	1
1	D	127	ASN	1
1	В	60	LEU	1
1	В	39	GLU	1
1	В	93	GLN	1
1	A	125	GLN	1
1	D	39	GLU	1
1	С	14	GLN	1
1	A	98	LEU	1
1	D	104	ASN	1
1	D	41	LYS	1
1	В	128	LEU	1

Continued on next page...

Continued from previous page...

Mol	Chain	Res	Type	Models (Total)
1	A	54	ASP	1
1	D	56	TYR	1
1	В	56	TYR	1
1	D	60	LEU	1
1	С	70	GLU	1
1	A	31	VAL	1
1	D	94	MET	1
1	В	35	ASP	1
1	В	104	ASN	1
1	В	90	GLU	1
1	D	126	LEU	1
1	С	93	GLN	1
1	A	101	TYR	1
1	A	128	LEU	1
1	С	37	GLN	1
1	A	41	LYS	1

5.2.3 RNA (i)

There are no RNA molecules in this entry.

5.3 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.4 Carbohydrates (i)

There are no carbohydrates in this entry.

5.5 Ligand geometry (i)

There are no ligands in this entry.

5.6 Other polymers (i)

There are no such molecules in this entry.

5.7 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Chemical shift validation (i)

The completeness of assignment taking into account all chemical shift lists is 13% for the well-defined parts and 13% for the entire structure.

6.1 Chemical shift list 1

File name: input cs.cif

Chemical shift list name: assigned_chemical_shift_5

6.1.1 Bookkeeping (i)

The following table shows the results of parsing the chemical shift list and reports the number of nuclei with statistically unusual chemical shifts.

Total number of shifts	226
Number of shifts mapped to atoms	226
Number of unparsed shifts	0
Number of shifts with mapping errors	0
Number of shifts with mapping warnings	0
Number of shift outliers (ShiftChecker)	0

6.1.2 Chemical shift referencing (i)

No chemical shift referencing corrections were calculated (not enough data).

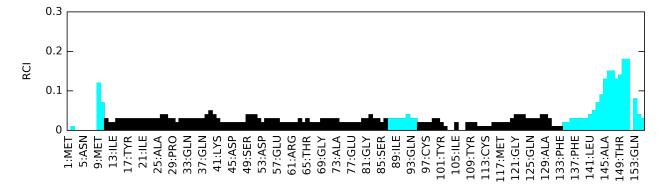
6.1.3 Completeness of resonance assignments (i)

The following table shows the completeness of the chemical shift assignments for the well-defined regions of the structure. The overall completeness is 0%, i.e. 0 atoms were assigned a chemical shift out of a possible 5840. 0 out of 80 assigned methyl groups (LEU and VAL) were assigned stereospecifically.

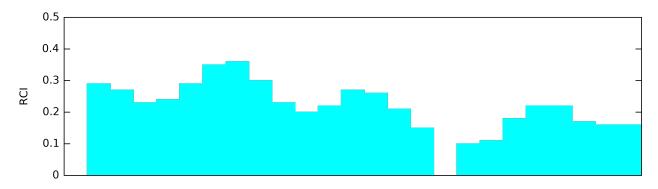
	Total	$^{1}\mathrm{H}$	$^{13}\mathbf{C}$	$^{15}{ m N}$
Backbone	$0/2379 \ (0\%)$	0/946~(0%)	0/974 (0%)	$0/459 \ (0\%)$
Sidechain	0/2942~(0%)	0/1716~(0%)	0/1116 (0%)	0/110 (0%)
Aromatic	0/519 (0%)	0/275~(0%)	0/224~(0%)	0/20~(0%)
Overall	0/5840 (0%)	0/2937~(0%)	0/2314~(0%)	0/589 (0%)

The following table shows the completeness of the chemical shift assignments for the full structure. The overall completeness is 2%, i.e. 192 atoms were assigned a chemical shift out of a possible 8632. 0 out of 112 assigned methyl groups (LEU and VAL) were assigned stereospecifically.

	Total	$^{1}\mathrm{H}$	$^{13}\mathbf{C}$	$^{15}{ m N}$
Backbone	77/3520~(2%)	37/1400 (3%)	19/1440 (1%)	21/680 (3%)
Sidechain	106/4448~(2%)	53/2596 (2%)	53/1684 (3%)	0/168 (0%)
Aromatic	9/664~(1%)	5/352 (1%)	4/284 (1%)	0/28 (0%)
Overall	192/8632 (2%)	95/4348 (2%)	76/3408 (2%)	21/876 (2%)


6.1.4 Statistically unusual chemical shifts (i)

There are no statistically unusual chemical shifts.


6.1.5 Random Coil Index (RCI) plots (i)

The images below report random coil index values for the protein chains in the structure. The height of each bar gives a probability of a given residue to be disordered, as predicted from the available chemical shifts and the amino acid sequence. A value above 0.2 is an indication of significant predicted disorder. The colour of the bar shows whether the residue is in the well-defined core (black) or in the ill-defined residue ranges (cyan), as described in section 2 on ensemble composition.

Random coil index (RCI) for chain A:

Random coil index (RCI) for chain E:

6.2 Chemical shift list 2

File name: input_cs.cif

Chemical shift list name: assigned_chemical_shift_6

6.2.1 Bookkeeping (i)

The following table shows the results of parsing the chemical shift list and reports the number of nuclei with statistically unusual chemical shifts.

Total number of shifts	226
Number of shifts mapped to atoms	226
Number of unparsed shifts	0
Number of shifts with mapping errors	0
Number of shifts with mapping warnings	0
Number of shift outliers (ShiftChecker)	0

6.2.2 Chemical shift referencing (i)

No chemical shift referencing corrections were calculated (not enough data).

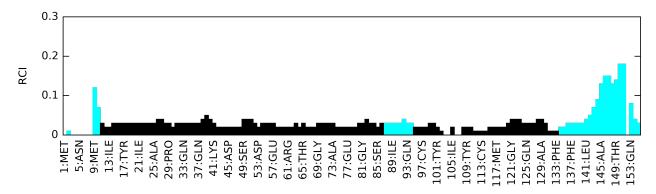
6.2.3 Completeness of resonance assignments (i)

The following table shows the completeness of the chemical shift assignments for the well-defined regions of the structure. The overall completeness is 0%, i.e. 0 atoms were assigned a chemical shift out of a possible 5840. 0 out of 80 assigned methyl groups (LEU and VAL) were assigned stereospecifically.

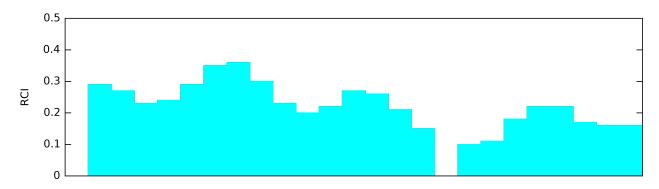
	Total	$^{1}\mathbf{H}$	$^{13}\mathbf{C}$	$^{15}{ m N}$
Backbone	$0/2379 \ (0\%)$	0/946~(0%)	0/974 (0%)	0/459~(0%)
Sidechain	0/2942~(0%)	$0/1716 \ (0\%)$	0/1116 (0%)	0/110 (0%)
Aromatic	0/519 (0%)	0/275~(0%)	0/224~(0%)	0/20~(0%)
Overall	0/5840 (0%)	0/2937~(0%)	0/2314~(0%)	0/589 (0%)

The following table shows the completeness of the chemical shift assignments for the full structure. The overall completeness is 2%, i.e. 192 atoms were assigned a chemical shift out of a possible 8632. 0 out of 112 assigned methyl groups (LEU and VAL) were assigned stereospecifically.

	Total	$^{1}\mathrm{H}$	$^{13}\mathbf{C}$	$^{15}{ m N}$
Backbone	77/3520 (2%)	37/1400 (3%)	19/1440 (1%)	21/680 (3%)
Sidechain	106/4448~(2%)	53/2596~(2%)	53/1684 (3%)	0/168 (0%)
Aromatic	9/664 (1%)	5/352 (1%)	4/284 (1%)	0/28 (0%)
Overall	192/8632 (2%)	95/4348 (2%)	76/3408 (2%)	21/876 (2%)


6.2.4 Statistically unusual chemical shifts (i)

There are no statistically unusual chemical shifts.


6.2.5 Random Coil Index (RCI) plots (1)

The images below report random coil index values for the protein chains in the structure. The height of each bar gives a probability of a given residue to be disordered, as predicted from the available chemical shifts and the amino acid sequence. A value above 0.2 is an indication of significant predicted disorder. The colour of the bar shows whether the residue is in the well-defined core (black) or in the ill-defined residue ranges (cyan), as described in section 2 on ensemble composition.

Random coil index (RCI) for chain A:

Random coil index (RCI) for chain E:

6.3 Chemical shift list 3

File name: input cs.cif

Chemical shift list name: assigned chemical shift 7

6.3.1 Bookkeeping (i)

The following table shows the results of parsing the chemical shift list and reports the number of nuclei with statistically unusual chemical shifts.

Total number of shifts	226
Number of shifts mapped to atoms	226
Number of unparsed shifts	0
Number of shifts with mapping errors	0
Number of shifts with mapping warnings	0
Number of shift outliers (ShiftChecker)	0

6.3.2 Chemical shift referencing (i)

No chemical shift referencing corrections were calculated (not enough data).

6.3.3 Completeness of resonance assignments (i)

The following table shows the completeness of the chemical shift assignments for the well-defined regions of the structure. The overall completeness is 0%, i.e. 0 atoms were assigned a chemical shift out of a possible 5840. 0 out of 80 assigned methyl groups (LEU and VAL) were assigned stereospecifically.

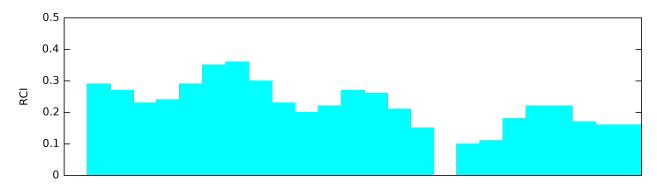
	Total	$^{1}{ m H}$	$^{13}\mathbf{C}$	$^{15}{ m N}$
Backbone	0/2379 (0%)	0/946~(0%)	0/974 (0%)	0/459~(0%)
Sidechain	0/2942 (0%)	0/1716~(0%)	0/1116 (0%)	0/110 (0%)
Aromatic	0/519 (0%)	0/275~(0%)	0/224~(0%)	0/20~(0%)
Overall	0/5840 (0%)	0/2937~(0%)	0/2314 (0%)	0/589~(0%)

The following table shows the completeness of the chemical shift assignments for the full structure. The overall completeness is 2%, i.e. 192 atoms were assigned a chemical shift out of a possible 8632. 0 out of 112 assigned methyl groups (LEU and VAL) were assigned stereospecifically.

	Total	$^{1}\mathrm{H}$	$^{13}\mathbf{C}$	$^{15}{ m N}$
Backbone	77/3520~(2%)	37/1400 (3%)	$19/1440 \ (1\%)$	21/680 (3%)
Sidechain	$106/4448 \ (2\%)$	53/2596 (2%)	53/1684 (3%)	0/168 (0%)
Aromatic	9/664 (1%)	5/352 (1%)	4/284 (1%)	0/28 (0%)
Overall	192/8632~(2%)	95/4348 (2%)	76/3408~(2%)	21/876 (2%)

6.3.4 Statistically unusual chemical shifts (i)

There are no statistically unusual chemical shifts.


6.3.5 Random Coil Index (RCI) plots (i)

The images below report random coil index values for the protein chains in the structure. The height of each bar gives a probability of a given residue to be disordered, as predicted from the available chemical shifts and the amino acid sequence. A value above 0.2 is an indication of significant predicted disorder. The colour of the bar shows whether the residue is in the well-defined core (black) or in the ill-defined residue ranges (cyan), as described in section 2 on ensemble composition.

Random coil index (RCI) for chain A:

Random coil index (RCI) for chain E:

6.4 Chemical shift list 4

File name: input cs.cif

Chemical shift list name: assigned chemical shift 8

6.4.1 Bookkeeping (i)

The following table shows the results of parsing the chemical shift list and reports the number of nuclei with statistically unusual chemical shifts.

Total number of shifts	
Number of shifts mapped to atoms	226

Number of unparsed shifts		
Number of shifts with mapping errors	0	
Number of shifts with mapping warnings	0	
Number of shift outliers (ShiftChecker)	0	

6.4.2 Chemical shift referencing (i)

No chemical shift referencing corrections were calculated (not enough data).

6.4.3 Completeness of resonance assignments (i)

The following table shows the completeness of the chemical shift assignments for the well-defined regions of the structure. The overall completeness is 0%, i.e. 0 atoms were assigned a chemical shift out of a possible 5840. 0 out of 80 assigned methyl groups (LEU and VAL) were assigned stereospecifically.

	Total	$^{1}{ m H}$	$^{13}\mathbf{C}$	$^{15}{ m N}$
Backbone	$0/2379 \ (0\%)$	0/946~(0%)	0/974 (0%)	0/459~(0%)
Sidechain	$0/2942 \ (0\%)$	0/1716~(0%)	0/1116 (0%)	0/110 (0%)
Aromatic	0/519 (0%)	0/275~(0%)	0/224~(0%)	0/20 (0%)
Overall	0/5840 (0%)	0/2937~(0%)	0/2314~(0%)	0/589 (0%)

The following table shows the completeness of the chemical shift assignments for the full structure. The overall completeness is 2%, i.e. 192 atoms were assigned a chemical shift out of a possible 8632. 0 out of 112 assigned methyl groups (LEU and VAL) were assigned stereospecifically.

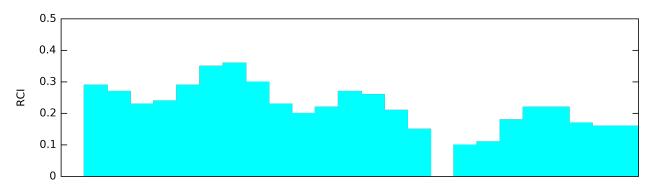
	Total	$^{1}\mathrm{H}$	$^{13}\mathbf{C}$	$^{15}{ m N}$
Backbone	77/3520~(2%)	37/1400 (3%)	19/1440 (1%)	21/680 (3%)
Sidechain	106/4448~(2%)	53/2596~(2%)	53/1684 (3%)	0/168 (0%)
Aromatic	9/664 (1%)	5/352 (1%)	4/284 (1%)	0/28 (0%)
Overall	192/8632~(2%)	95/4348 (2%)	76/3408 (2%)	21/876 (2%)

6.4.4 Statistically unusual chemical shifts (i)

There are no statistically unusual chemical shifts.

6.4.5 Random Coil Index (RCI) plots (i)

The images below report random coil index values for the protein chains in the structure. The height of each bar gives a probability of a given residue to be disordered, as predicted from the available chemical shifts and the amino acid sequence. A value above 0.2 is an indication



of significant predicted disorder. The colour of the bar shows whether the residue is in the well-defined core (black) or in the ill-defined residue ranges (cyan), as described in section 2 on ensemble composition.

Random coil index (RCI) for chain A:

Random coil index (RCI) for chain E:

6.5 Chemical shift list 5

File name: input cs.cif

Chemical shift list name: assigned chemical shift list 1

6.5.1 Bookkeeping (i)

The following table shows the results of parsing the chemical shift list and reports the number of nuclei with statistically unusual chemical shifts.

Total number of shifts	1049
Number of shifts mapped to atoms	1049
Number of unparsed shifts	0
Number of shifts with mapping errors	0
Number of shifts with mapping warnings	0
Number of shift outliers (ShiftChecker)	0

6.5.2 Chemical shift referencing (i)

The following table shows the suggested chemical shift referencing corrections.

Nucleus	# values	${\bf Correction}\pm{\bf precision},ppm$	Suggested action
$^{13}\mathrm{C}_{\alpha}$	139	0.26 ± 0.12	None needed ($< 0.5 \text{ ppm}$)
$^{13}C_{\beta}$	128	0.85 ± 0.16	Should be applied
¹³ C′	137	0.30 ± 0.16	None needed ($< 0.5 \text{ ppm}$)
^{15}N	133	-1.15 ± 0.27	Should be applied

6.5.3 Completeness of resonance assignments (i)

The following table shows the completeness of the chemical shift assignments for the well-defined regions of the structure. The overall completeness is 13%, i.e. 740 atoms were assigned a chemical shift out of a possible 5840. 0 out of 80 assigned methyl groups (LEU and VAL) were assigned stereospecifically.

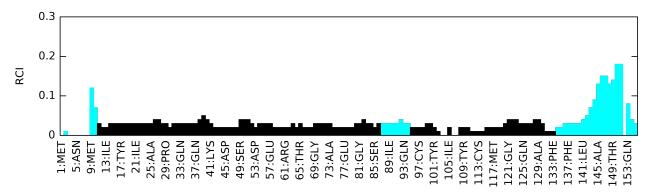
	Total	$^{1}\mathrm{H}$	$^{13}\mathbf{C}$	$^{15}{ m N}$
Backbone	422/2379 (18%)	103/946 (11%)	216/974~(22%)	103/459 (22%)
Sidechain	205/2942~(7%)	$57/1716 \ (3\%)$	$148/1116 \ (13\%)$	0/110 (0%)
Aromatic	113/519 (22%)	57/275 (21%)	55/224~(25%)	1/20 (5%)
Overall	740/5840 (13%)	$217/2937 \ (7\%)$	419/2314 (18%)	104/589 (18%)

The following table shows the completeness of the chemical shift assignments for the full structure. The overall completeness is 11%, i.e. 930 atoms were assigned a chemical shift out of a possible 8632. 0 out of 112 assigned methyl groups (LEU and VAL) were assigned stereospecifically.

	Total	$^{1}\mathrm{H}$	$^{13}\mathbf{C}$	$^{15}{ m N}$
Backbone	542/3520 (15%)	$133/1400 \ (10\%)$	276/1440 (19%)	133/680 (20%)
Sidechain	255/4448~(6%)	70/2596~(3%)	185/1684 (11%)	$0/168 \; (0\%)$
Aromatic	133/664 (20%)	67/352 (19%)	65/284~(23%)	$1/28 \ (4\%)$
Overall	930/8632 (11%)	270/4348~(6%)	526/3408 (15%)	134/876 (15%)

6.5.4 Statistically unusual chemical shifts (i)

There are no statistically unusual chemical shifts.


6.5.5 Random Coil Index (RCI) plots (i)

The image below reports random coil index values for the protein chains in the structure. The height of each bar gives a probability of a given residue to be disordered, as predicted from the available chemical shifts and the amino acid sequence. A value above 0.2 is an indication of significant predicted disorder. The colour of the bar shows whether the residue is in the well-

defined core (black) or in the ill-defined residue ranges (cyan), as described in section 2 on ensemble composition.

Random coil index (RCI) for chain A:

6.6 Chemical shift list 6

File name: input cs.cif

Chemical shift list name: assigned chemical shift list 2

6.6.1 Bookkeeping (i)

The following table shows the results of parsing the chemical shift list and reports the number of nuclei with statistically unusual chemical shifts.

Total number of shifts	1044
Number of shifts mapped to atoms	1044
Number of unparsed shifts	0
Number of shifts with mapping errors	0
Number of shifts with mapping warnings	0
Number of shift outliers (ShiftChecker)	0

6.6.2 Chemical shift referencing (i)

The following table shows the suggested chemical shift referencing corrections.

Nucleus	# values	${\bf Correction}\pm{\bf precision},ppm$	Suggested action
$^{13}\mathrm{C}_{\alpha}$	140	0.28 ± 0.07	None needed ($< 0.5 \text{ ppm}$)
$^{13}C_{\beta}$	126	0.79 ± 0.12	Should be applied
¹³ C′	135	0.26 ± 0.10	None needed ($< 0.5 \text{ ppm}$)
^{15}N	132	-1.10 ± 0.16	Should be applied

6.6.3 Completeness of resonance assignments (i)

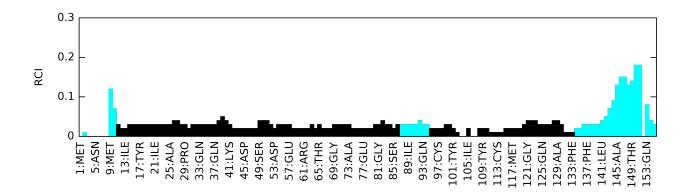
The following table shows the completeness of the chemical shift assignments for the well-defined regions of the structure. The overall completeness is 13%, i.e. 735 atoms were assigned a chemical shift out of a possible 5840. 0 out of 80 assigned methyl groups (LEU and VAL) were assigned stereospecifically.

	Total	$^{1}\mathrm{H}$	$^{13}\mathbf{C}$	$^{15}{ m N}$
Backbone	419/2379 (18%)	102/946 (11%)	215/974~(22%)	$102/459 \ (22\%)$
Sidechain	203/2942~(7%)	$57/1716 \ (3\%)$	146/1116 (13%)	0/110 (0%)
Aromatic	113/519 (22%)	57/275~(21%)	55/224~(25%)	1/20~(5%)
Overall	735/5840 (13%)	$216/2937 \ (7\%)$	416/2314 (18%)	103/589 (17%)

The following table shows the completeness of the chemical shift assignments for the full structure. The overall completeness is 11%, i.e. 925 atoms were assigned a chemical shift out of a possible 8632. 0 out of 112 assigned methyl groups (LEU and VAL) were assigned stereospecifically.

	Total	$^{1}\mathrm{H}$	$^{13}\mathbf{C}$	$^{15}{ m N}$
Backbone	539/3520 (15%)	$132/1400 \ (9\%)$	$275/1440 \ (19\%)$	132/680 (19%)
Sidechain	253/4448~(6%)	70/2596~(3%)	183/1684 (11%)	0/168 (0%)
Aromatic	133/664 (20%)	$67/352 \ (19\%)$	65/284~(23%)	1/28 (4%)
Overall	925/8632 (11%)	269/4348~(6%)	523/3408 (15%)	133/876 (15%)

6.6.4 Statistically unusual chemical shifts (i)


There are no statistically unusual chemical shifts.

6.6.5 Random Coil Index (RCI) plots (i)

The image below reports random coil index values for the protein chains in the structure. The height of each bar gives a probability of a given residue to be disordered, as predicted from the available chemical shifts and the amino acid sequence. A value above 0.2 is an indication of significant predicted disorder. The colour of the bar shows whether the residue is in the well-defined core (black) or in the ill-defined residue ranges (cyan), as described in section 2 on ensemble composition.

Random coil index (RCI) for chain A:

6.7 Chemical shift list 7

File name: input_cs.cif

Chemical shift list name: $assigned_chemical_shift_list_3$

6.7.1 Bookkeeping (i)

The following table shows the results of parsing the chemical shift list and reports the number of nuclei with statistically unusual chemical shifts.

Total number of shifts	1044
Number of shifts mapped to atoms	1044
Number of unparsed shifts	0
Number of shifts with mapping errors	0
Number of shifts with mapping warnings	0
Number of shift outliers (ShiftChecker)	0

6.7.2 Chemical shift referencing (i)

The following table shows the suggested chemical shift referencing corrections.

Nucleus	# values	${\bf Correction}\pm{\bf precision},ppm$	Suggested action
$^{13}\mathrm{C}_{\alpha}$	140	0.27 ± 0.10	None needed ($< 0.5 \text{ ppm}$)
$^{13}C_{\beta}$	126	0.78 ± 0.17	Should be applied
¹³ C′	135	0.26 ± 0.10	None needed ($< 0.5 \text{ ppm}$)
^{15}N	132	-1.09 ± 0.21	Should be applied

6.7.3 Completeness of resonance assignments (i)

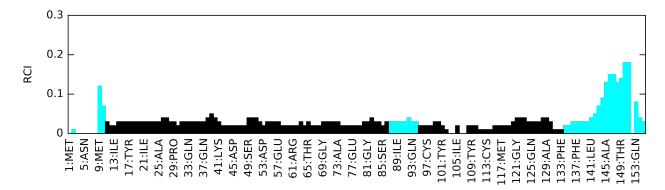
The following table shows the completeness of the chemical shift assignments for the well-defined regions of the structure. The overall completeness is 13%, i.e. 735 atoms were assigned a chemical shift out of a possible 5840. 0 out of 80 assigned methyl groups (LEU and VAL) were assigned

stereospecifically.

	Total	$^{1}\mathrm{H}$	$^{13}{ m C}$	$^{15}{ m N}$
Backbone	$419/2379 \ (18\%)$	102/946~(11%)	215/974~(22%)	102/459~(22%)
Sidechain	203/2942 (7%)	$57/1716 \ (3\%)$	146/1116 (13%)	0/110 (0%)
Aromatic	$113/519 \ (22\%)$	57/275~(21%)	55/224~(25%)	1/20~(5%)
Overall	735/5840 (13%)	$216/2937 \ (7\%)$	$416/2314 \ (18\%)$	103/589 (17%)

The following table shows the completeness of the chemical shift assignments for the full structure. The overall completeness is 11%, i.e. 925 atoms were assigned a chemical shift out of a possible 8632. 0 out of 112 assigned methyl groups (LEU and VAL) were assigned stereospecifically.

	Total	$^{1}{ m H}$	$^{13}\mathbf{C}$	$^{15}{ m N}$
Backbone	539/3520 (15%)	$132/1400 \ (9\%)$	$275/1440 \ (19\%)$	132/680 (19%)
Sidechain	253/4448 (6%)	70/2596~(3%)	183/1684 (11%)	0/168 (0%)
Aromatic	133/664 (20%)	$67/352 \ (19\%)$	65/284~(23%)	1/28 (4%)
Overall	925/8632 (11%)	269/4348~(6%)	523/3408 (15%)	133/876 (15%)


6.7.4 Statistically unusual chemical shifts (i)

There are no statistically unusual chemical shifts.

6.7.5 Random Coil Index (RCI) plots (i)

The image below reports random coil index values for the protein chains in the structure. The height of each bar gives a probability of a given residue to be disordered, as predicted from the available chemical shifts and the amino acid sequence. A value above 0.2 is an indication of significant predicted disorder. The colour of the bar shows whether the residue is in the well-defined core (black) or in the ill-defined residue ranges (cyan), as described in section 2 on ensemble composition.

Random coil index (RCI) for chain A:

6.8 Chemical shift list 8

File name: input_cs.cif

Chemical shift list name: assigned_chemical_shift_list_4

6.8.1 Bookkeeping (i)

The following table shows the results of parsing the chemical shift list and reports the number of nuclei with statistically unusual chemical shifts.

Total number of shifts	1049
Number of shifts mapped to atoms	1049
Number of unparsed shifts	0
Number of shifts with mapping errors	0
Number of shifts with mapping warnings	0
Number of shift outliers (ShiftChecker)	0

6.8.2 Chemical shift referencing (i)

The following table shows the suggested chemical shift referencing corrections.

Nucleus	# values	${\bf Correction} \pm {\bf precision}, ppm$	Suggested action
$^{13}\mathrm{C}_{\alpha}$	139	0.26 ± 0.09	None needed ($< 0.5 \text{ ppm}$)
$^{13}C_{\beta}$	128	0.84 ± 0.10	Should be applied
¹³ C′	137	0.29 ± 0.12	None needed ($< 0.5 \text{ ppm}$)
^{15}N	133	-1.15 ± 0.26	Should be applied

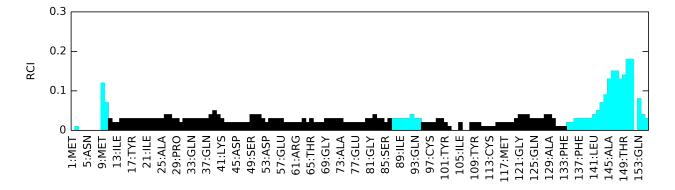
6.8.3 Completeness of resonance assignments (i)

The following table shows the completeness of the chemical shift assignments for the well-defined regions of the structure. The overall completeness is 13%, i.e. 740 atoms were assigned a chemical shift out of a possible 5840. 0 out of 80 assigned methyl groups (LEU and VAL) were assigned stereospecifically.

	Total	$^{1}\mathrm{H}$	$^{13}\mathbf{C}$	$^{15}{ m N}$
Backbone	$422/2379 \ (18\%)$	103/946 (11%)	216/974~(22%)	$103/459 \ (22\%)$
Sidechain	$205/2942 \ (7\%)$	57/1716 (3%)	148/1116 (13%)	0/110 (0%)
Aromatic	$113/519 \ (22\%)$	57/275~(21%)	55/224~(25%)	1/20~(5%)
Overall	$740/5840 \ (13\%)$	$217/2937 \ (7\%)$	$419/2314 \ (18\%)$	$104/589 \ (18\%)$

The following table shows the completeness of the chemical shift assignments for the full structure. The overall completeness is 11%, i.e. 930 atoms were assigned a chemical shift out of a possible 8632. 0 out of 112 assigned methyl groups (LEU and VAL) were assigned stereospecifically.

	Total	$^{1}\mathrm{H}$	$^{13}\mathbf{C}$	$^{15}{ m N}$
Backbone	542/3520 (15%)	$133/1400 \ (10\%)$	$276/1440 \ (19\%)$	$133/680 \ (20\%)$
Sidechain	255/4448~(6%)	$70/2596 \ (3\%)$	185/1684 (11%)	0/168 (0%)
Aromatic	133/664 (20%)	67/352 (19%)	65/284~(23%)	$1/28 \ (4\%)$
Overall	930/8632 (11%)	270/4348~(6%)	526/3408 (15%)	134/876 (15%)


6.8.4 Statistically unusual chemical shifts (i)

There are no statistically unusual chemical shifts.

6.8.5 Random Coil Index (RCI) plots (i)

The image below reports random coil index values for the protein chains in the structure. The height of each bar gives a probability of a given residue to be disordered, as predicted from the available chemical shifts and the amino acid sequence. A value above 0.2 is an indication of significant predicted disorder. The colour of the bar shows whether the residue is in the well-defined core (black) or in the ill-defined residue ranges (cyan), as described in section 2 on ensemble composition.

Random coil index (RCI) for chain A:

