

wwPDB X-ray Structure Validation Summary Report (i)

Jan 2, 2024 - 09:24 am GMT

PDB ID	:	5JU6
Title	:	Structural and Functional Studies of Glycoside Hydrolase Family 3 beta-
		Glucosidase Cel3A from the Moderately Thermophilic Fungus Rasamsonia
		emersonii
Authors	:	Gudmundsson, M.; Sandgren, M.; Karkehabadi, S.
Deposited on	:	2016-05-10
Resolution	:	2.20 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.4, CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.20 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motria	Whole archive	Similar resolution
wietric	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
R_{free}	130704	4898 (2.20-2.20)
Clashscore	141614	5594(2.20-2.20)
Ramachandran outliers	138981	5503 (2.20-2.20)
Sidechain outliers	138945	5504 (2.20-2.20)
RSRZ outliers	127900	4800 (2.20-2.20)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length		Quality of chain	
1	А	857		93%	
1	В	857	% •	91%	<u>6</u> % •
1	С	857		92%	5% •
1	D	857		92%	5% •
2	Е	5	20%	60%	20%

Mol	Chain	Length	Quality of chain	
2	М	5	20% 80%	
3	F	7	14% 86%	
4	G	4	100%	
4	L	4	25% 50%	25%
4	Ν	4	100%	
4	с	4	100%	
5	Н	9	11% 89%	
5	V	9	11% 89%	
6	Ι	4	100%	
7	J	9	11% 89%	
8	K	2	50% 50%	
8	R	2	100%	
8	Y	2	100%	
9	0	10	20% 80%	
9	d	10	10% 90%	
10	Р	5	20% 80%	
11	Q	10	30% 70%	
12	S	9	11% 78%	11%
13	Т	8	12% 88%	
13	b	8	100%	
14	U	5	40% 60%	
15	W	3	100%	
15	Z	3	100%	
15	е	3	100%	
16	Х	8	25% 75%	

Mol	Chain	Length		Quality of chain	
16	f	8	25%	75%	-
17	a	6	17%	83%	-

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
4	MAN	Ν	4	-	-	-	Х

2 Entry composition (i)

There are 21 unique types of molecules in this entry. The entry contains 29503 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		Α	toms			ZeroOcc	AltConf	Trace
1	Δ	835	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	Л	000	6373	4018	1093	1239	23	0	0	U
1	В	025	Total	С	Ν	Ο	S	0	1	0
1	D	000	6379	4021	1094	1241	23			0
1	С	835	Total	С	Ν	Ο	S	0	3	0
1		000	6388	4028	1095	1242	23	0	3	0
1	П	835	Total	С	Ν	Ο	S	0	2	0
		835	6382	4023	1094	1241	24	0	2	U

• Molecule 1 is a protein called Beta-glucosidase.

• Molecule 2 is an oligosaccharide called alpha-D-mannopyranose-(1-2)-alpha-D-mannopyran ose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
2	F	5	Total	С	Ν	0	0	0	0
	Ľ	5	61	34	2	25	0	0	0
0	м	5	Total	С	Ν	0	0	0	0
	111		61	34	2	25	0	0	0

• Molecule 3 is an oligosaccharide called alpha-D-mannopyranose-(1-2)-alpha-D-mannopyran ose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]beta-D-mannopyran ose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
3	F	7	Total 83	C 46	N 2	O 35	0	0	0

• Molecule 4 is an oligosaccharide called alpha-D-mannopyranose-(1-3)-beta-D-mannopyranos e-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluco pyranose.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
4	С	4	Total C N O	0	0	0
4	G	4	50 28 2 20	0	0	0
4	т	4	Total C N O	0	0	0
4	L		50 28 2 20			0
4	N	4	Total C N O	0	0	0
4	IN	4	50 28 2 20			0
4	0	4	Total C N O	0	0	0
4	C	4	50 28 2 20	U	0	0

• Molecule 5 is an oligosaccharide called alpha-D-mannopyranose-(1-2)-alpha-D-mannopyran ose-(1-6)-[alpha-D-mannopyranose-(1-3)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deox y-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
5	Н	9	Total C N O 105 58 2 45	0	0	0
5	V	9	Total C N O 105 58 2 45	0	0	0

• Molecule 6 is an oligosaccharide called alpha-D-mannopyranose-(1-6)-beta-D-mannopyranos e-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
6	Ι	4	Total 50	C 28	N 2	O 20	0	0	0

• Molecule 7 is an oligosaccharide called alpha-D-mannopyranose-(1-2)-alpha-D-mannopyran ose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-6)-alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy -beta-D-glucopyranose.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
7	J	9	Total 105	$\begin{array}{c} \mathrm{C} \\ 58 \end{array}$	N 2	O 45	0	0	0

• Molecule 8 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
8	Κ	2	Total C N O 28 16 2 10	0	0	0
8	R	2	Total C N O 28 16 2 10	0	0	0
8	Y	2	Total C N O 28 16 2 10	0	0	0

• Molecule 9 is an oligosaccharide called alpha-D-mannopyranose-(1-2)-alpha-D-mannopyran ose-(1-3)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-6)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)]beta-D-mannopyra nose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyrano

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
9	О	10	Total C N O 116 64 2 50	0	0	0
9	d	10	Total C N O 116 64 2 50	0	0	0

• Molecule 10 is an oligosaccharide called beta-D-mannopyranose-(1-3)-[alpha-D-mannopyran ose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
10	Р	5	Total 61	С 34	N 2	O 25	0	0	0

• Molecule 11 is an oligosaccharide called alpha-D-mannopyranose-(1-2)-alpha-D-mannopyra nose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyr anose-(1-6)-[alpha-D-mannopyranose-(1-3)]alpha-D-mannopyranose-(1-6)]beta-D-mannopyr anose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	Trace
11	Q	10	Total C N 116 64 2	O 50	0	0	0

• Molecule 12 is an oligosaccharide called alpha-D-mannopyranose-(1-2)-alpha-D-mannopyra nose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deox y-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues		Aton	ns		ZeroOcc	AltConf	Trace
12	S	9	Total 105	C 58	N 2	O 45	0	0	0

• Molecule 13 is an oligosaccharide called alpha-D-glucopyranose-(1-3)-alpha-D-mannopyrano se-(1-2)-alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
13	Т	8	Total 94	C 52	N 2	O 40	0	0	0
13	b	8	Total 94	C 52	N 2	O 40	0	0	0

• Molecule 14 is an oligosaccharide called alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyra nose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
14	U	5	Total 61	С 34	N 2	O 25	0	0	0

• Molecule 15 is an oligosaccharide called beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxybeta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
15	W	3	Total C N O 39 22 2 15	0	0	0
15	Ζ	3	Total C N O 39 22 2 15	0	0	0
15	е	3	Total C N O 39 22 2 15	0	0	0

• Molecule 16 is an oligosaccharide called alpha-D-mannopyranose-(1-2)-alpha-D-mannopyra nose-(1-6)-alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
16	Х	8	$\begin{array}{c cccc} Total & C & N & O \\ 94 & 52 & 2 & 40 \end{array}$	0	0	0
16	f	8	$\begin{array}{c cccc} Total & C & N & O \\ 94 & 52 & 2 & 40 \end{array}$	0	0	0

• Molecule 17 is an oligosaccharide called alpha-D-mannopyranose-(1-2)-alpha-D-mannopyra nose-(1-3)-[alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	Trace		
17	a	6	Total 72	C 40	N 2	O 30	0	0	0

• Molecule 18 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

Mol	Chain	Residues	A	ton	ns		ZeroOcc	AltConf
10	Δ	1	Total	С	Ν	0	0	0
18	A	1	14	8	1	5	0	0
10	Δ	1	Total	С	Ν	0	0	0
10	A	L	14	8	1	5	0	0
18	Δ	1	Total	С	Ν	0	0	0
10	Л	T	14	8	1	5	0	0
18	Δ	1	Total	С	Ν	0	0	0
10	Π	T	14	8	1	5	0	0
18	Δ	1	Total	С	Ν	Ο	0	0
10	11	I	14	8	1	5	0	0
18	В	1	Total	С	Ν	Ο	0	0
10	D	I	14	8	1	5	0	0
18	В	1	Total	С	Ν	Ο	0	0
10	D	T	14	8	1	5	0	0
18	В	1	Total	С	Ν	Ο	0	0
10		1	14	8	1	5	0	0
18	С	1	Total	С	Ν	Ο	0	0
		*	14	8	1	5	Ŭ	
18	С	1	Total	С	Ν	Ο	0	0
10		1	14	8	1	5	0	0
18	С	1	Total	С	Ν	Ο	0	0
10		1	14	8	1	5	0	0
18	Л	1	Total	С	Ν	Ο	0	0
	D	1	14	8	1	5	Ŭ	Ŭ
18	Л	1	Total	С	Ν	Ο	0	0
		*	14	8	1	5	Ŭ	
18	О	1	Total	С	Ν	Ο	0	0
10	D		14	8	1	5		

α \cdot \cdot \cdot	C		
Continued	trom	previous	page
	5	1	1 5

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf		
18	D	1	Total 14	C 8	N 1	O 5	0	0
18	D	1	Total 14	C 8	N 1	O 5	0	0

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
19	А	1	Total C O 12 6 6	0	0
19	В	1	Total C O 12 6 6	0	0
19	С	1	Total C O 12 6 6	0	0
19	D	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 12 & 6 & 6 \end{array}$	0	0

• Molecule 20 is alpha-D-mannopyranose (three-letter code: MAN) (formula: $C_6H_{12}O_6$).

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	
20	В	1	Total 11	C 6	O 5	0	0

• Molecule 21 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
21	А	431	Total O 431 431	0	0
21	В	399	Total O 400 400	0	1
21	С	441	Total O 441 441	0	0
21	D	432	Total O 432 432	0	0

Chain D:

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

92%

5% •

• Molecule 1: Beta-glucosidase

D328 D328 T332 T45 H546 H546

 \bullet Molecule 2: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain E:	20%	60%	20%
NAG1 NAG2 BMA3 MAN4 MAN4 MAN5			

• Molecule 2: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain M:	20%	80%
NAG1 NAG2 BMA3 MAN4 MAN5		

 $\label{eq:mannopyranose-(1-2)-alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose \\ D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose \\ \end{array}$

Chain F:	14%	86%
NAG1 NAG2 BMA3 MAN4 MAN5 MAN5 MAN7		

 $\bullet \ Molecule \ 4: \ alpha-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose \\ eta-D-glucopyranose \ (1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose \ (1-4)-2-acetamido-2-deoxy-beta-D-glucopyra$

Chain G:	100%	
NAG1 BNAG2 MAG3 MAN4 MAN4		

 $\bullet \ Molecule \ 4: \ alpha-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose \\ \bullet \ (1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose \\ \bullet \ (1-4)-2-acetam$

Chain L:	25%	50%	25%

NAG1 NAG2 BMA3 MAN4

 $\bullet \ Molecule \ 4: \ alpha-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose \\ eta-D-glucopyranose \ (1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose \ (1-4)-2-acetamido-2-deoxy-beta-D-glucopyra$

Chain N:	100%	
NAG1 NAG2 BMA3 MAN4 MAN4		
• Molecul eta-D-glue	e 4: alpha-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1-4)-2 copyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose	2-acetamido-2-deoxy-b
Chain c:	100%	

NAG1 NAG2 BMA3 MAN4

 $\label{eq:stable} \bullet \mbox{ Molecule 5: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranoy-2-deoxy-beta-D-glucopyranose-$

Chain H: 11% 89%

 $\label{eq:stable} \bullet \mbox{Molecule 5: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-($

89%

Chain V: 11%

NAG1 NAG2 BMA3 MAN4 MAN5 MAN5 MAN5 MAN5 MAN5 MAN3 MAN9

 $\bullet \ Molecule \ 6: \ alpha-D-mannopyranose-(1-6)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose$

Chain I:

100%

NAG1 NAG2 BMA3 MAN4

 $\label{eq:constraint} \bullet \mbox{Molecule 7: alpha-D-mannopyranose-(1-2)-alpha-D-mannop$

Chain J: 11%

• Molecule 8: 2-acetamido-2-de
oxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-de
oxy-beta-D-glucopyranose

50%

Chain K:

NAG1 NAG2

• Molecule 8: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain R:

100%

50%

NAG1 NAG2

• Molecule 8: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain Y:

100%

NAG1 NAG2

 $\label{eq:mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-6)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glu copyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glu copyranose$

Chain O:	20%	80%	
NAG1 NAG2 BMA3 MAN4 MAN5 MAN6 MAN6 MAN6 MAN6 MAN6 MAN10			

• Molecule 9: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-6)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glu copyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glu copyranose

Chain d: 10	% 90%
NAG1 NAG2 NAN4 MAN5 MAN5 MAN5 MAN5 MAN5 MAN6 MAN8 MAN10	

 • Molecule 10: beta-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain P: 20%

NAG1 NAG2 BMA3 BMA4 MAN5

 $\label{eq:constraint} \bullet \mbox{Molecule 11: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyrano$

Chain Q:	30%	70%
NAG1 NAG2 BHA3 BHA3 MAN5 MAN5 MAN6 MAN6 MAN7 MAN8 MAN9 MAN9 MAN10		

• Molecule 12: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido -2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido -2-deoxy-beta-D-glucopyranose

Chain S: 11%	78%	11%
NAG1 NAG2 BMA3 MAN5 MAN6 MAN7 MAN8 MAN8 MAN9		

• Molecule 13: alpha-D-glucopyranose-(1-3)-alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose e

Chain T:	12%	88%
NAG1 NAG2 BMA3 BMA3 MAN5 MAN5 GLC7 MAN8 MAN8		

• Molecule 13: alpha-D-glucopyranose-(1-3)-alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose e

Chain b:

100%

NAG1 NAG2 BMA3 MAN4 MAN5 MAN5 GLC7 GLC7 MAN8

 \bullet Molecule 14: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain U: 40%

• Molecule 15: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain W:

100%

NAG1 NAG2 BMA3

• Molecule 15: beta-D
-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a
 cetamido-2-deoxy-beta-D-glucopyranose

Chain Z:

100%

NAG1 NAG2 BMA3

• Molecule 15: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose

Chain e: 100%

NAG1 NAG2 BMA3

• Molecule 16: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-6)-alpha-D-mannopyra nose-(1-6)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranos e

Chain X:	25%	75%	1
NAG1 BMA3 BMA3 MAN4 MAN5 MAN5 MAN7 MAN7 MAN8			

• Molecule 16: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-6)-alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy

Chain f:	25%	75%
NAG1 NAG2 BMA3 MAN4 MAN5 MAN6 MAN6 MAN8		

 $\label{eq:mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]} beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy$

Chain a: 17%

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 21 21 21	Depositor
Cell constants	137.29Å 148.63Å 196.39Å	Derreriter
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
$\mathbf{P}_{\text{assolution}}(\hat{\mathbf{A}})$	118.51 - 2.20	Depositor
Resolution (A)	48.04 - 2.20	EDS
% Data completeness	99.9 (118.51-2.20)	Depositor
(in resolution range)	99.9 (48.04-2.20)	EDS
R _{merge}	0.11	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	3.64 (at 2.20Å)	Xtriage
Refinement program	REFMAC 5.8.0155, REFMAC 5.8.0155	Depositor
D D	0.173 , 0.228	Depositor
$\mathbf{n}, \mathbf{n}_{free}$	0.180 , 0.233	DCC
R_{free} test set	10215 reflections $(5.03%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	22.4	Xtriage
Anisotropy	0.990	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.33, 36.2	EDS
L-test for twinning ²	$< L >=0.45, < L^2>=0.28$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.95	EDS
Total number of atoms	29503	wwPDB-VP
Average B, all atoms $(Å^2)$	28.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 4.12% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NAG, MAN, GLC, BMA, BGC

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond lengths		Bond angles	
		RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.74	0/6549	0.86	16/8954~(0.2%)
1	В	0.73	0/6555	0.87	14/8962~(0.2%)
1	С	0.74	0/6574	0.85	11/8988~(0.1%)
1	D	0.77	0/6561	0.86	14/8970~(0.2%)
All	All	0.74	0/26239	0.86	55/35874~(0.2%)

There are no bond length outliers.

The worst 5 of 55 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	В	326	ARG	NE-CZ-NH2	-10.85	114.87	120.30
1	А	326	ARG	NE-CZ-NH2	-9.85	115.38	120.30
1	В	326	ARG	NE-CZ-NH1	9.67	125.13	120.30
1	В	72	ARG	NE-CZ-NH1	8.24	124.42	120.30
1	А	326	ARG	NE-CZ-NH1	7.92	124.26	120.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	6373	0	6031	12	0
1	В	6379	0	6039	22	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	С	6388	0	6048	20	0
1	D	6382	0	6040	19	0
2	Е	61	0	52	1	0
2	М	61	0	52	0	0
3	F	83	0	70	0	0
4	G	50	0	43	0	0
4	L	50	0	43	1	0
4	N	50	0	43	0	0
4	с	50	0	43	0	0
5	Н	105	0	88	0	0
5	V	105	0	88	0	0
6	Ι	50	0	43	0	0
7	J	105	0	88	0	0
8	K	28	0	25	0	0
8	R	28	0	25	0	0
8	Y	28	0	25	0	0
9	0	116	0	97	0	0
9	d	116	0	97	0	0
10	Р	61	0	52	0	0
11	Q	116	0	97	0	0
12	S	105	0	88	1	0
13	Т	94	0	79	0	0
13	b	94	0	79	0	0
14	U	61	0	52	0	0
15	W	39	0	34	0	0
15	Z	39	0	34	0	0
15	e	39	0	34	0	0
16	X	94	0	79	0	0
16	İ	94	0	79	0	0
17	a	72	0	61	0	0
18	A	10	0	05	1	0
18	B	42	0	39	0	0
18		42	0		0	0
18		10	0	00	0	0
19	A D	12	0	12	1	0
19	D C	12	0	12	1	0
19		12	0	12	1	0
19	D D	12	0	12	1	0
20		<u> </u>	0	10	1	0
$\frac{21}{91}$	R	401	0	0	1 9	0
21 91	D C	400	0	0	<u>ک</u> ۲	0
<u></u> <u> </u>		441	U	U	1 0	U

Continued from previous page...

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
21	D	432	0	0	6	0
All	All	29503	0	26114	73	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 1.

The worst 5 of 73 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)	
1:C:196:GLN:HE22	1:C:607:ILE:H	1.30	0.79	
1:B:804:GLN:HE22	1:C:348:VAL:HG12	1.54	0.73	
20:B:905:MAN:C1	4:L:4:MAN:O2	2.41	0.68	
1:D:360:TYR:O	21:D:1001:HOH:O	2.13	0.67	
1:B:225:LEU:HD23	1:B:226:TYR:CZ	2.31	0.65	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	833/857~(97%)	804 (96%)	29~(4%)	0	100	100
1	В	834/857~(97%)	802 (96%)	31 (4%)	1 (0%)	51	60
1	С	836/857~(98%)	807~(96%)	29~(4%)	0	100	100
1	D	835/857~(97%)	800 (96%)	35~(4%)	0	100	100
All	All	3338/3428~(97%)	3213 (96%)	124 (4%)	1 (0%)	100	100

All (1) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	В	694	ASP

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Percentiles		
1	А	672/685~(98%)	664 (99%)	8 (1%)	71 83	
1	В	673/685~(98%)	664 (99%)	9 (1%)	69 81	
1	С	675/685~(98%)	660~(98%)	15 (2%)	52 65	
1	D	674/685~(98%)	665~(99%)	9 (1%)	69 81	
All	All	2694/2740~(98%)	2653~(98%)	41 (2%)	65 78	

5 of 41 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	С	685	ASN
1	D	200	ARG
1	С	762	THR
1	D	83	LEU
1	D	278	TRP

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 51 such side chains are listed below:

Mol	Chain	Res	Type
1	С	261	ASN
1	С	660	GLN
1	D	716	ASN
1	С	463	GLN
1	С	558	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

166 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Mol Type Chain		n Bos	Ros	Res Link		Bond lengths			Bond angles		
with	Type	Chain	Ites		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2		
2	NAG	Ε	1	1,2	$14,\!14,\!15$	0.49	0	17,19,21	1.05	1 (5%)		
2	NAG	Е	2	2	$14,\!14,\!15$	0.66	0	17,19,21	1.30	1 (5%)		
2	BMA	Е	3	2	11,11,12	1.05	1 (9%)	$15,\!15,\!17$	1.81	5 (33%)		
2	MAN	Е	4	2	11,11,12	0.44	0	$15,\!15,\!17$	1.50	2 (13%)		
2	MAN	Е	5	2	11,11,12	0.66	0	15,15,17	0.85	0		
3	NAG	F	1	1,3	14,14,15	0.76	0	17,19,21	1.40	2 (11%)		
3	NAG	F	2	3	14,14,15	0.54	0	17,19,21	0.72	0		
3	BMA	F	3	3	11,11,12	0.23	0	15,15,17	1.45	3 (20%)		
3	MAN	F	4	3	11,11,12	0.91	1 (9%)	15,15,17	1.31	2 (13%)		
3	MAN	F	5	3	11,11,12	0.79	0	15,15,17	1.42	1 (6%)		
3	MAN	F	6	3	11,11,12	0.75	0	15,15,17	1.12	1 (6%)		
3	MAN	F	7	3	11,11,12	1.41	2 (18%)	15,15,17	2.07	6 (40%)		
4	NAG	G	1	1,4	14,14,15	0.69	0	17,19,21	1.57	4 (23%)		
4	NAG	G	2	4	14,14,15	0.61	0	17,19,21	1.26	1 (5%)		
4	BMA	G	3	4	11,11,12	0.61	0	15,15,17	2.52	7 (46%)		
4	MAN	G	4	4	11,11,12	0.97	0	15,15,17	1.63	2 (13%)		
5	NAG	Н	1	1,5	14,14,15	0.40	0	17,19,21	0.97	1 (5%)		
5	NAG	Н	2	5	14,14,15	0.96	1 (7%)	17,19,21	1.14	1 (5%)		
5	BMA	Н	3	5	11,11,12	0.67	0	15,15,17	0.92	0		
5	MAN	Н	4	5	11,11,12	0.51	0	15,15,17	1.40	3 (20%)		
5	MAN	Н	5	5	11,11,12	0.60	0	15,15,17	1.45	3 (20%)		
5	MAN	Н	6	5	11,11,12	0.72	0	15,15,17	1.43	3 (20%)		
5	MAN	Н	7	5	11,11,12	1.03	0	15,15,17	1.69	4 (26%)		
5	MAN	Н	8	5	11,11,12	0.62	0	15,15,17	1.85	5 (33%)		
5	MAN	Н	9	5	11,11,12	0.96	1 (9%)	15,15,17	1.46	3 (20%)		
6	NAG	Ι	1	1,6	14,14,15	0.79	0	17,19,21	0.88	1 (5%)		

Mal	Tune	Chain	Dec	Tink	Bo	ond leng	ths	В	ond ang	les
	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
6	NAG	Ι	2	6	14,14,15	0.61	0	$17,\!19,\!21$	1.64	2 (11%)
6	BMA	Ι	3	6	11,11,12	0.77	0	$15,\!15,\!17$	1.28	2 (13%)
6	MAN	Ι	4	6	11,11,12	0.86	0	$15,\!15,\!17$	1.48	1 (6%)
7	NAG	J	1	1,7	14,14,15	0.66	0	17,19,21	0.92	0
7	NAG	J	2	7	14,14,15	0.43	0	$17,\!19,\!21$	1.33	1 (5%)
7	BMA	J	3	7	11,11,12	0.70	0	$15,\!15,\!17$	1.43	3 (20%)
7	MAN	J	4	7	11,11,12	0.47	0	$15,\!15,\!17$	1.39	3 (20%)
7	MAN	J	5	7	11,11,12	1.05	0	$15,\!15,\!17$	1.51	4 (26%)
7	MAN	J	6	7	11,11,12	0.91	1 (9%)	$15,\!15,\!17$	1.03	1 (6%)
7	MAN	J	7	7	11,11,12	0.95	0	15, 15, 17	1.59	1 (6%)
7	MAN	J	8	7	11,11,12	0.52	0	15, 15, 17	1.64	3 (20%)
7	MAN	J	9	7	11,11,12	0.58	0	15,15,17	1.24	2 (13%)
8	NAG	K	1	1,8	14,14,15	0.42	0	17,19,21	1.35	1 (5%)
8	NAG	К	2	8	14,14,15	0.50	0	17,19,21	1.03	0
4	NAG	L	1	1,4	14,14,15	0.60	0	17,19,21	0.92	0
4	NAG	L	2	4	14,14,15	0.50	0	$17,\!19,\!21$	1.20	2 (11%)
4	BMA	L	3	4	11,11,12	0.39	0	$15,\!15,\!17$	1.14	2 (13%)
4	MAN	L	4	4	11,11,12	0.69	0	$15,\!15,\!17$	1.47	3 (20%)
2	NAG	М	1	1,2	14,14,15	0.41	0	17,19,21	1.68	4 (23%)
2	NAG	М	2	2	14,14,15	0.51	0	17,19,21	1.04	0
2	BMA	М	3	2	11,11,12	0.48	0	$15,\!15,\!17$	1.78	4 (26%)
2	MAN	М	4	2	11,11,12	0.91	1 (9%)	$15,\!15,\!17$	1.60	4 (26%)
2	MAN	М	5	2	11,11,12	0.84	1 (9%)	$15,\!15,\!17$	1.93	5 (33%)
4	NAG	Ν	1	1,4	14,14,15	0.73	0	17,19,21	1.41	4 (23%)
4	NAG	N	2	4	14,14,15	0.65	0	17,19,21	2.01	5 (29%)
4	BMA	Ν	3	4	11,11,12	0.90	0	15, 15, 17	1.27	2 (13%)
4	MAN	N	4	4	11,11,12	0.91	0	15,15,17	1.31	2 (13%)
9	NAG	0	1	1,9	14,14,15	0.74	0	17,19,21	1.23	2 (11%)
9	MAN	Ο	10	9	11,11,12	1.03	0	15,15,17	1.70	5 (33%)
9	NAG	Ο	2	9	14,14,15	0.60	0	17,19,21	1.14	1 (5%)
9	BMA	Ο	3	9	11,11,12	0.45	0	15,15,17	0.85	0
9	MAN	Ο	4	9	11,11,12	0.53	0	$15,\!15,\!17$	1.09	2 (13%)
9	MAN	Ο	5	9	11,11,12	1.07	0	15,15,17	1.71	3 (20%)
9	MAN	Ο	6	9	11,11,12	0.94	0	15,15,17	1.18	2 (13%)
9	MAN	Ο	7	9	11,11,12	0.78	0	15,15,17	1.21	2 (13%)
9	MAN	Ο	8	9	11,11,12	0.61	0	15,15,17	1.85	5 (33%)

Mal	Tune	Chain	Dec	Tiple	Bond lengths			Bond angles			
WIOI	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2	
9	MAN	0	9	9	11,11,12	0.64	0	$15,\!15,\!17$	1.02	0	
10	NAG	Р	1	1,10	14,14,15	0.67	0	17,19,21	1.18	2 (11%)	
10	NAG	Р	2	10	14,14,15	0.65	0	17,19,21	1.01	0	
10	BMA	Р	3	10	11,11,12	0.69	0	15,15,17	1.36	1 (6%)	
10	BMA	Р	4	10	11,11,12	0.93	0	$15,\!15,\!17$	1.41	1 (6%)	
10	MAN	Р	5	10	11,11,12	0.95	0	$15,\!15,\!17$	1.47	4 (26%)	
11	NAG	Q	1	1,11	14,14,15	0.57	0	17,19,21	1.17	0	
11	MAN	Q	10	11	11,11,12	0.78	0	$15,\!15,\!17$	1.52	4 (26%)	
11	NAG	Q	2	11	14,14,15	0.62	0	$17,\!19,\!21$	1.24	1 (5%)	
11	BMA	Q	3	11	11,11,12	0.69	0	$15,\!15,\!17$	0.78	0	
11	MAN	Q	4	11	11,11,12	0.64	0	$15,\!15,\!17$	1.45	2 (13%)	
11	MAN	Q	5	11	11,11,12	0.89	0	$15,\!15,\!17$	1.49	4 (26%)	
11	MAN	Q	6	11	11,11,12	0.77	0	$15,\!15,\!17$	1.13	0	
11	MAN	Q	7	11	11,11,12	0.70	0	$15,\!15,\!17$	2.37	7 (46%)	
11	MAN	Q	8	11	11,11,12	0.62	0	15, 15, 17	1.22	2 (13%)	
11	MAN	Q	9	11	11,11,12	0.97	0	15,15,17	1.11	1 (6%)	
8	NAG	R	1	1,8	14,14,15	0.75	0	17,19,21	1.74	3 (17%)	
8	NAG	R	2	8	14,14,15	0.72	0	17,19,21	1.77	4 (23%)	
12	NAG	S	1	1,12	14,14,15	0.45	0	17,19,21	1.05	1 (5%)	
12	NAG	S	2	12	14,14,15	0.47	0	17,19,21	1.23	2 (11%)	
12	BMA	S	3	12	11,11,12	0.61	0	15,15,17	1.33	2 (13%)	
12	MAN	S	4	12	11,11,12	0.54	0	15,15,17	0.82	0	
12	MAN	S	5	12	11,11,12	0.77	0	15,15,17	1.48	3 (20%)	
12	MAN	S	6	12	11,11,12	1.06	1 (9%)	15,15,17	1.69	5 (33%)	
12	MAN	S	7	12	11,11,12	1.08	1 (9%)	15,15,17	1.43	2 (13%)	
12	MAN	S	8	12	11,11,12	0.93	0	15,15,17	1.24	1 (6%)	
12	MAN	S	9	12	11,11,12	0.93	1 (9%)	15,15,17	1.25	2 (13%)	
13	NAG	Т	1	1,13	14,14,15	0.73	0	17,19,21	1.81	6 (35%)	
13	NAG	Т	2	13	14,14,15	0.77	0	17,19,21	1.10	1 (5%)	
13	BMA	Т	3	13	11,11,12	0.59	0	15,15,17	2.03	5 (33%)	
13	MAN	Т	4	13	11,11,12	0.59	0	15,15,17	1.09	0	
13	MAN	Т	5	13	11,11,12	0.79	0	15,15,17	1.17	1 (6%)	
13	MAN	Т	6	13	11,11,12	1.31	1 (9%)	15,15,17	1.62	3 (20%)	
13	GLC	Т	7	13	11,11,12	1.06	1 (9%)	15,15,17	1.82	3 (20%)	
13	MAN	Т	8	13	11,11,12	1.28	2 (18%)	15,15,17	1.73	4 (26%)	
14	NAG	U	1	1,14	14,14,15	0.47	0	17,19,21	1.46	4 (23%)	

Mal	T	<u> </u>	Ъ	T 1.	Bo	ond leng	ths	Bond angles		
NIOI	Type	Chain	Res	LINK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
14	NAG	U	2	14	14,14,15	0.46	0	$17,\!19,\!21$	1.62	3 (17%)
14	BMA	U	3	14	11,11,12	0.67	0	$15,\!15,\!17$	1.08	0
14	MAN	U	4	14	11,11,12	0.60	0	$15,\!15,\!17$	1.02	0
14	MAN	U	5	14	11,11,12	1.01	1 (9%)	$15,\!15,\!17$	1.47	3 (20%)
5	NAG	V	1	1,5	14,14,15	0.48	0	$17,\!19,\!21$	1.40	2 (11%)
5	NAG	V	2	5	14,14,15	0.47	0	17,19,21	1.01	0
5	BMA	V	3	5	11,11,12	0.81	1 (9%)	$15,\!15,\!17$	1.02	0
5	MAN	V	4	5	11,11,12	0.69	0	$15,\!15,\!17$	1.11	1 (6%)
5	MAN	V	5	5	11,11,12	0.58	0	$15,\!15,\!17$	1.20	1 (6%)
5	MAN	V	6	5	11,11,12	0.63	0	$15,\!15,\!17$	1.18	2 (13%)
5	MAN	V	7	5	11,11,12	0.67	0	$15,\!15,\!17$	1.37	3 (20%)
5	MAN	V	8	5	11,11,12	0.62	0	$15,\!15,\!17$	1.45	4 (26%)
5	MAN	V	9	5	11,11,12	1.00	1 (9%)	$15,\!15,\!17$	1.35	2 (13%)
15	NAG	W	1	1,15	14,14,15	0.63	0	17,19,21	1.52	3 (17%)
15	NAG	W	2	15	14,14,15	0.55	0	17,19,21	1.42	2 (11%)
15	BMA	W	3	15	11,11,12	0.67	0	$15,\!15,\!17$	1.20	1 (6%)
16	NAG	Х	1	1,16	14,14,15	0.78	0	17,19,21	1.91	6 (35%)
16	NAG	Х	2	16	14,14,15	0.44	0	17,19,21	1.78	4 (23%)
16	BMA	Х	3	16	11,11,12	0.65	0	$15,\!15,\!17$	1.44	3 (20%)
16	MAN	Х	4	16	11,11,12	0.66	0	$15,\!15,\!17$	0.97	0
16	MAN	Х	5	16	11,11,12	0.82	1 (9%)	$15,\!15,\!17$	1.53	2 (13%)
16	MAN	Х	6	16	11,11,12	0.71	0	$15,\!15,\!17$	1.07	2 (13%)
16	MAN	Х	7	16	11,11,12	0.63	0	$15,\!15,\!17$	0.83	0
16	MAN	Х	8	16	11,11,12	1.19	1 (9%)	$15,\!15,\!17$	1.87	4 (26%)
8	NAG	Y	1	1,8	14,14,15	0.42	0	17,19,21	1.03	1 (5%)
8	NAG	Y	2	8	14,14,15	0.72	0	17,19,21	1.65	5 (29%)
15	NAG	Z	1	1,15	14,14,15	0.65	0	17,19,21	1.66	4 (23%)
15	NAG	Z	2	15	14,14,15	0.68	0	17,19,21	1.59	4 (23%)
15	BMA	Z	3	15	11,11,12	0.87	0	$15,\!15,\!17$	1.20	2 (13%)
17	NAG	a	1	1,17	14,14,15	0.59	0	17,19,21	1.41	3 (17%)
17	NAG	a	2	17	14,14,15	0.43	0	17,19,21	1.27	2 (11%)
17	BMA	a	3	17	11,11,12	0.61	0	15,15,17	1.01	1 (6%)
17	MAN	a	4	17	11,11,12	0.63	0	15,15,17	1.48	2 (13%)
17	MAN	a	5	17	11,11,12	0.83	0	15,15,17	1.06	1 (6%)
17	MAN	a	6	17	11,11,12	0.65	0	$15,\!15,\!17$	0.77	0
13	NAG	b	1	1,13	14,14,15	0.77	1 (7%)	17,19,21	1.14	1 (5%)

Mal	Type	Chain	Bos	Tink	Bo	Bond lengths			Bond angles		
WIOI	Type	Chain Res			Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2	
13	NAG	b	2	13	14,14,15	0.57	0	17,19,21	1.14	2 (11%)	
13	BMA	b	3	13	11,11,12	0.63	0	15,15,17	1.32	2 (13%)	
13	MAN	b	4	13	11,11,12	1.07	0	15,15,17	1.24	1 (6%)	
13	MAN	b	5	13	11,11,12	0.59	0	$15,\!15,\!17$	1.17	1 (6%)	
13	MAN	b	6	13	11,11,12	0.81	1 (9%)	$15,\!15,\!17$	1.42	2 (13%)	
13	GLC	b	7	13	11,11,12	0.71	0	15,15,17	1.28	1 (6%)	
13	MAN	b	8	13	11,11,12	1.28	1 (9%)	$15,\!15,\!17$	1.83	4 (26%)	
4	NAG	с	1	1,4	14,14,15	0.57	0	17,19,21	1.41	3 (17%)	
4	NAG	с	2	4	14,14,15	0.86	0	17,19,21	1.87	4 (23%)	
4	BMA	с	3	4	11,11,12	0.72	0	15,15,17	1.84	6 (40%)	
4	MAN	с	4	4	11,11,12	0.78	0	$15,\!15,\!17$	1.04	1 (6%)	
9	NAG	d	1	1,9	14,14,15	0.56	0	17,19,21	1.37	2 (11%)	
9	MAN	d	10	9	11,11,12	0.71	0	15,15,17	1.30	2 (13%)	
9	NAG	d	2	9	14,14,15	0.76	0	17,19,21	1.27	1 (5%)	
9	BMA	d	3	9	11,11,12	0.77	0	$15,\!15,\!17$	1.07	0	
9	MAN	d	4	9	11,11,12	0.54	0	$15,\!15,\!17$	1.11	1 (6%)	
9	MAN	d	5	9	11,11,12	0.75	0	$15,\!15,\!17$	1.27	1 (6%)	
9	MAN	d	6	9	11,11,12	0.71	0	$15,\!15,\!17$	0.98	1 (6%)	
9	MAN	d	7	9	11,11,12	0.91	0	$15,\!15,\!17$	1.16	2 (13%)	
9	MAN	d	8	9	11,11,12	0.61	0	$15,\!15,\!17$	1.37	2 (13%)	
9	MAN	d	9	9	11,11,12	0.62	0	15,15,17	1.34	2 (13%)	
15	NAG	е	1	1,15	14,14,15	0.76	0	17,19,21	1.13	2 (11%)	
15	NAG	е	2	15	14,14,15	0.51	0	17,19,21	1.27	2 (11%)	
15	BMA	е	3	15	11,11,12	0.68	0	15,15,17	1.30	3 (20%)	
16	NAG	f	1	1,16	14,14,15	0.52	0	17,19,21	1.24	3 (17%)	
16	NAG	f	2	16	14,14,15	0.84	1 (7%)	17,19,21	1.30	2 (11%)	
16	BMA	f	3	16	11,11,12	0.51	0	$15,\!15,\!17$	0.91	0	
16	MAN	f	4	16	11,11,12	0.69	0	15,15,17	0.86	0	
16	MAN	f	5	16	11,11,12	0.91	0	15,15,17	1.46	1 (6%)	
16	MAN	f	6	16	11,11,12	0.85	0	15,15,17	1.35	2 (13%)	
16	MAN	f	7	16	11,11,12	0.82	0	15,15,17	1.02	1 (6%)	
16	MAN	f	8	16	11,11,12	0.63	0	15,15,17	1.48	3 (20%)	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns.

\mathbf{ngs}
/1/1
/1/1

'-' means no outliers of that kind were identified.

Mol	Type	Chain	\mathbf{Res}	Link	Chirals	Torsions	Rings
2	NAG	Е	1	1,2	-	0/6/23/26	0/1/1/1
2	NAG	Е	2	2	-	0/6/23/26	0/1/1/1
2	BMA	Е	3	2	-	0/2/19/22	0/1/1/1
2	MAN	Е	4	2	-	2/2/19/22	0/1/1/1
2	MAN	Е	5	2	-	0/2/19/22	0/1/1/1
3	NAG	F	1	1,3	-	0/6/23/26	0/1/1/1
3	NAG	F	2	3	-	1/6/23/26	0/1/1/1
3	BMA	F	3	3	-	2/2/19/22	0/1/1/1
3	MAN	F	4	3	-	0/2/19/22	0/1/1/1
3	MAN	F	5	3	-	1/2/19/22	0/1/1/1
3	MAN	F	6	3	-	0/2/19/22	0/1/1/1
3	MAN	F	7	3	-	2/2/19/22	0/1/1/1
4	NAG	G	1	1,4	-	0/6/23/26	0/1/1/1
4	NAG	G	2	4	-	0/6/23/26	0/1/1/1
4	BMA	G	3	4	-	1/2/19/22	0/1/1/1
4	MAN	G	4	4	-	1/2/19/22	0/1/1/1
5	NAG	Н	1	1,5	-	0/6/23/26	0/1/1/1
5	NAG	Н	2	5	-	0/6/23/26	0/1/1/1
5	BMA	Н	3	5	-	0/2/19/22	0/1/1/1
5	MAN	Н	4	5	-	0/2/19/22	0/1/1/1
5	MAN	Н	5	5	-	0/2/19/22	0/1/1/1
5	MAN	Н	6	5	-	0/2/19/22	0/1/1/1
5	MAN	Н	7	5	-	0/2/19/22	0/1/1/1
5	MAN	Н	8	5	-	0/2/19/22	0/1/1/1
5	MAN	Н	9	5	-	2/2/19/22	0/1/1/1
6	NAG	Ι	1	1,6	-	0/6/23/26	0/1/1/1
6	NAG	Ι	2	6	-	0/6/23/26	0/1/1/1
6	BMA	Ι	3	6	-	2/2/19/22	0/1/1/1
6	MAN	Ι	4	6	-	0/2/19/22	0/1/1/1
7	NAG	J	1	1,7	-	0/6/23/26	0/1/1/1
7	NAG	J	2	7	-	0/6/23/26	0/1/1/1
7	BMA	J	3	7	-	0/2/19/22	0/1/1/1
7	MAN	J	4	7	-	0/2/19/22	0/1/1/1
7	MAN	J	5	7	-	2/2/19/22	0/1/1/1
7	MAN	J	6	7	-	2/2/19/22	0/1/1/1
7	MAN	J	7	7	-	0/2/19/22	0/1/1/1
7	MAN	J	8	7	-	0/2/19/22	0/1/1/1
7	MAN	J	9	7	-	0/2/19/22	0/1/1/1
8	NAG	K	1	1,8	-	0/6/23/26	0/1/1/1
8	NAG	К	2	8	-	0/6/23/26	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	NAG	L	1	1,4	-	0/6/23/26	0/1/1/1
4	NAG	L	2	4	-	0/6/23/26	0/1/1/1
4	BMA	L	3	4	-	2/2/19/22	0/1/1/1
4	MAN	L	4	4	-	2/2/19/22	0/1/1/1
2	NAG	М	1	1,2	-	0/6/23/26	0/1/1/1
2	NAG	М	2	2	-	1/6/23/26	0/1/1/1
2	BMA	М	3	2	-	0/2/19/22	0/1/1/1
2	MAN	М	4	2	-	0/2/19/22	0/1/1/1
2	MAN	М	5	2	-	0/2/19/22	0/1/1/1
4	NAG	N	1	1,4	-	0/6/23/26	0/1/1/1
4	NAG	N	2	4	-	1/6/23/26	0/1/1/1
4	BMA	Ν	3	4	-	2/2/19/22	0/1/1/1
4	MAN	Ν	4	4	-	2/2/19/22	0/1/1/1
9	NAG	0	1	1,9	-	0/6/23/26	0/1/1/1
9	MAN	0	10	9	-	0/2/19/22	0/1/1/1
9	NAG	0	2	9	-	0/6/23/26	0/1/1/1
9	BMA	0	3	9	-	0/2/19/22	0/1/1/1
9	MAN	0	4	9	-	0/2/19/22	0/1/1/1
9	MAN	0	5	9	-	0/2/19/22	0/1/1/1
9	MAN	0	6	9	-	2/2/19/22	0/1/1/1
9	MAN	Ο	7	9	-	2/2/19/22	0/1/1/1
9	MAN	0	8	9	_	0/2/19/22	0/1/1/1
9	MAN	Ο	9	9	-	2/2/19/22	0/1/1/1
10	NAG	Р	1	1,10	-	0/6/23/26	0/1/1/1
10	NAG	Р	2	10	-	0/6/23/26	0/1/1/1
10	BMA	Р	3	10	-	1/2/19/22	0/1/1/1
10	BMA	Р	4	10	-	2/2/19/22	0/1/1/1
10	MAN	Р	5	10	-	0/2/19/22	0/1/1/1
11	NAG	Q	1	1,11	-	0/6/23/26	0/1/1/1
11	MAN	Q	10	11	-	2/2/19/22	0/1/1/1
11	NAG	Q	2	11	-	0/6/23/26	0/1/1/1
11	BMA	Q	3	11	-	0/2/19/22	0/1/1/1
11	MAN	Q	4	11	-	0/2/19/22	0/1/1/1
11	MAN	Q	5	11	-	2/2/19/22	0/1/1/1
11	MAN	Q	6	11	-	0/2/19/22	0/1/1/1
11	MAN	Q	7	11	-	0/2/19/22	0/1/1/1
11	MAN	Q	8	11	-	2/2/19/22	0/1/1/1
11	MAN	Q	9	11	-	0/2/19/22	0/1/1/1
8	NAG	R	1	1,8	-	0/6/23/26	0/1/1/1
							i

001000	nucu jio		o puge	• • •			
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
8	NAG	R	2	8	-	2/6/23/26	0/1/1/1
12	NAG	S	1	1,12	-	2/6/23/26	0/1/1/1
12	NAG	S	2	12	-	0/6/23/26	0/1/1/1
12	BMA	S	3	12	-	2/2/19/22	0/1/1/1
12	MAN	S	4	12	-	0/2/19/22	0/1/1/1
12	MAN	S	5	12	_	$\frac{2}{2}/\frac{2}{19}/22$	0/1/1/1
12	MAN	S	6	12	-	0/2/19/22	0/1/1/1
12	MAN	S	7	12	-	1/2/19/22	0/1/1/1
12	MAN	S	8	12	-	0/2/19/22	0/1/1/1
12	MAN	S	9	12	-	0/2/19/22	0/1/1/1
13	NAG	Т	1	1,13	-	1/6/23/26	0/1/1/1
13	NAG	Т	2	13	-	0/6/23/26	0/1/1/1
13	BMA	Т	3	13	-	2/2/19/22	0/1/1/1
13	MAN	Т	4	13	-	0/2/19/22	0/1/1/1
13	MAN	Т	5	13	-	0/2/19/22	0/1/1/1
13	MAN	Т	6	13	-	1/2/19/22	0/1/1/1
13	GLC	Т	7	13	-	2/2/19/22	0/1/1/1
13	MAN	Т	8	13	-	2/2/19/22	0/1/1/1
14	NAG	U	1	1,14	-	0/6/23/26	0/1/1/1
14	NAG	U	2	14	-	0/6/23/26	0/1/1/1
14	BMA	U	3	14	-	0/2/19/22	0/1/1/1
14	MAN	U	4	14	-	1/2/19/22	0/1/1/1
14	MAN	U	5	14	-	2/2/19/22	0/1/1/1
5	NAG	V	1	1,5	-	0/6/23/26	0/1/1/1
5	NAG	V	2	5	-	0/6/23/26	0/1/1/1
5	BMA	V	3	5	-	0/2/19/22	0/1/1/1
5	MAN	V	4	5	-	1/2/19/22	0/1/1/1
5	MAN	V	5	5	-	0/2/19/22	0/1/1/1
5	MAN	V	6	5	-	0/2/19/22	0/1/1/1
5	MAN	V	7	5	-	2/2/19/22	0/1/1/1
5	MAN	V	8	5	-	0/2/19/22	0/1/1/1
5	MAN	V	9	5	-	2/2/19/22	0/1/1/1
15	NAG	W	1	1,15	-	0/6/23/26	0/1/1/1
15	NAG	W	2	15	-	0/6/23/26	0/1/1/1
15	BMA	W	3	15	-	0/2/19/22	0/1/1/1
16	NAG	Х	1	1,16	-	0/6/23/26	0/1/1/1
16	NAG	X	2	16	-	0/6/23/26	0/1/1/1
16	BMA	X	3	16	-	0/2/19/22	0/1/1/1
16	MAN	X	4	16	-	0/2/19/22	0/1/1/1
16	MAN	X	5	16	-	2/2/19/22	0/1/1/1

5.	U	6

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
16	MAN	Х	6	16	-	2/2/19/22	0/1/1/1
16	MAN	X	7	16	-	2/2/19/22	0/1/1/1
16	MAN	X	8	16	_	2/2/19/22	0/1/1/1
8	NAG	Y	1	1,8	-	0/6/23/26	0/1/1/1
8	NAG	Y	2	8	_	0/6/23/26	0/1/1/1
15	NAG	Z	1	1,15	-	0/6/23/26	0/1/1/1
15	NAG	Z	2	15	-	0/6/23/26	0/1/1/1
15	BMA	Z	3	15	-	0/2/19/22	0/1/1/1
17	NAG	a	1	1,17	-	0/6/23/26	0/1/1/1
17	NAG	a	2	17	-	0/6/23/26	0/1/1/1
17	BMA	a	3	17	-	2/2/19/22	0/1/1/1
17	MAN	a	4	17	-	2/2/19/22	0/1/1/1
17	MAN	a	5	17	-	0/2/19/22	0/1/1/1
17	MAN	a	6	17	-	1/2/19/22	0/1/1/1
13	NAG	b	1	1,13	-	0/6/23/26	0/1/1/1
13	NAG	b	2	13	-	2/6/23/26	0/1/1/1
13	BMA	b	3	13	-	0/2/19/22	0/1/1/1
13	MAN	b	4	13	-	0/2/19/22	0/1/1/1
13	MAN	b	5	13	-	0/2/19/22	0/1/1/1
13	MAN	b	6	13	-	1/2/19/22	0/1/1/1
13	GLC	b	7	13	-	1/2/19/22	0/1/1/1
13	MAN	b	8	13	-	2/2/19/22	0/1/1/1
4	NAG	с	1	1,4	-	0/6/23/26	0/1/1/1
4	NAG	с	2	4	-	0/6/23/26	0/1/1/1
4	BMA	с	3	4	-	2/2/19/22	0/1/1/1
4	MAN	с	4	4	-	1/2/19/22	0/1/1/1
9	NAG	d	1	1,9	-	0/6/23/26	0/1/1/1
9	MAN	d	10	9	-	2/2/19/22	0/1/1/1
9	NAG	d	2	9	-	1/6/23/26	0/1/1/1
9	BMA	d	3	9	-	0/2/19/22	0/1/1/1
9	MAN	d	4	9	-	0/2/19/22	0/1/1/1
9	MAN	d	5	9	-	0/2/19/22	0/1/1/1
9	MAN	d	6	9	-	0/2/19/22	0/1/1/1
9	MAN	d	7	9	-	0/2/19/22	0/1/1/1
9	MAN	d	8	9	-	0/2/19/22	0/1/1/1
9	MAN	d	9	9	-	1/2/19/22	0/1/1/1
15	NAG	e	1	1,15	-	0/6/23/26	0/1/1/1
15	NAG	e	2	15	-	0/6/23/26	0/1/1/1
15	BMA	e	3	15	-	2/2/19/22	0/1/1/1
16	NAG	f	1	1.16	_	0/6/23/26	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
16	NAG	f	2	16	-	0/6/23/26	0/1/1/1
16	BMA	f	3	16	-	0/2/19/22	0/1/1/1
16	MAN	f	4	16	-	0/2/19/22	0/1/1/1
16	MAN	f	5	16	-	2/2/19/22	0/1/1/1
16	MAN	f	6	16	-	2/2/19/22	0/1/1/1
16	MAN	f	7	16	-	0/2/19/22	0/1/1/1
16	MAN	f	8	16	-	0/2/19/22	0/1/1/1

The worst 5 of 25 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
13	Т	6	MAN	C2-C3	3.63	1.57	1.52
12	S	6	MAN	C2-C3	2.77	1.56	1.52
13	b	8	MAN	C2-C3	2.64	1.56	1.52
5	V	9	MAN	C2-C3	2.47	1.56	1.52
2	М	4	MAN	C2-C3	2.42	1.56	1.52

The worst 5 of 360 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
13	Т	7	GLC	C1-C2-C3	5.77	116.76	109.67
13	Т	3	BMA	O5-C5-C6	5.72	116.17	107.20
11	Q	7	MAN	O5-C5-C6	5.13	115.25	107.20
6	Ι	2	NAG	C2-N2-C7	5.02	130.04	122.90
4	G	4	MAN	C1-O5-C5	4.84	118.76	112.19

There are no chirality outliers.

5 of 100 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
11	Q	5	MAN	O5-C5-C6-O6
6	Ι	3	BMA	O5-C5-C6-O6
16	f	5	MAN	O5-C5-C6-O6
5	V	7	MAN	O5-C5-C6-O6
15	е	3	BMA	O5-C5-C6-O6

There are no ring outliers.

3 monomers are involved in 3 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes	
2	Е	2	NAG	1	0	

Continued from previous page...

Mol	Chain	Res	Type	Clashes	Symm-Clashes
4	L	4	MAN	1	0
12	S	2	NAG	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

21 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Res	Link	Bo	ond leng	$_{\rm ths}$	Bond angles		
	туре				Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
18	NAG	D	943	1	14,14,15	0.58	0	17,19,21	1.70	5 (29%)
19	BGC	А	946	-	12,12,12	1.09	1 (8%)	$17,\!17,\!17$	1.15	3 (17%)
18	NAG	А	944	1	14,14,15	0.73	0	$17,\!19,\!21$	2.01	4 (23%)
18	NAG	C	935	1	14,14,15	0.80	0	$17,\!19,\!21$	1.45	4 (23%)

Mal	True	Chain	Dec	Link	Bo	ond leng	$_{\rm sths}$	Bond angles		
WIOI	туре	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
18	NAG	D	942	1	14,14,15	1.02	1 (7%)	17,19,21	1.49	4 (23%)
18	NAG	А	930	1	14,14,15	0.68	0	17,19,21	1.57	4 (23%)
18	NAG	А	941	1	14,14,15	0.56	0	17,19,21	1.52	3 (17%)
18	NAG	В	944	1	14,14,15	0.39	0	17,19,21	1.21	3 (17%)
18	NAG	С	950	1	14,14,15	0.68	0	17,19,21	0.99	2 (11%)
18	NAG	D	940	1	14,14,15	0.77	0	17,19,21	1.35	2 (11%)
18	NAG	А	940	1	14,14,15	0.88	0	17,19,21	1.36	2 (11%)
19	BGC	С	951	-	12,12,12	1.23	1 (8%)	17,17,17	1.41	2 (11%)
18	NAG	В	943	1	14,14,15	0.57	0	17,19,21	1.26	2 (11%)
18	NAG	D	944	1	14,14,15	0.97	1 (7%)	17,19,21	1.84	5 (29%)
19	BGC	В	945	-	12,12,12	1.26	1 (8%)	17,17,17	1.10	1 (5%)
20	MAN	В	905	-	11,11,12	0.77	0	15,15,17	1.67	3 (20%)
18	NAG	В	940	1	14,14,15	0.94	0	17,19,21	1.66	4 (23%)
18	NAG	С	944	1	14,14,15	0.94	0	17,19,21	2.14	6 (35%)
19	BGC	D	945	-	12,12,12	0.84	0	17,17,17	1.23	2 (11%)
18	NAG	А	945	1	14,14,15	0.72	0	17,19,21	1.43	3 (17%)
18	NAG	D	941	1	14,14,15	0.52	0	17,19,21	1.20	1 (5%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
18	NAG	D	943	1	-	0/6/23/26	0/1/1/1
19	BGC	А	946	-	-	2/2/22/22	0/1/1/1
18	NAG	А	944	1	-	0/6/23/26	0/1/1/1
18	NAG	С	935	1	-	0/6/23/26	0/1/1/1
18	NAG	D	942	1	-	1/6/23/26	0/1/1/1
18	NAG	А	930	1	-	0/6/23/26	0/1/1/1
18	NAG	А	941	1	-	0/6/23/26	0/1/1/1
18	NAG	В	944	1	-	0/6/23/26	0/1/1/1
18	NAG	С	950	1	-	1/6/23/26	0/1/1/1
18	NAG	D	940	1	-	0/6/23/26	0/1/1/1
18	NAG	А	940	1	-	0/6/23/26	0/1/1/1
19	BGC	С	951	-	-	1/2/22/22	0/1/1/1
18	NAG	В	943	1	-	1/6/23/26	0/1/1/1
18	NAG	D	944	1	-	0/6/23/26	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
19	BGC	В	945	-	-	2/2/22/22	0/1/1/1
20	MAN	В	905	-	-	2/2/19/22	0/1/1/1
18	NAG	В	940	1	-	2/6/23/26	0/1/1/1
18	NAG	С	944	1	-	0/6/23/26	0/1/1/1
19	BGC	D	945	-	-	2/2/22/22	0/1/1/1
18	NAG	А	945	1	-	0/6/23/26	0/1/1/1
18	NAG	D	941	1	-	1/6/23/26	0/1/1/1

Continued from previous page...

All (5) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
18	D	944	NAG	C1-C2	2.82	1.56	1.52
19	С	951	BGC	C1-C2	2.40	1.58	1.52
19	А	946	BGC	C1-C2	2.24	1.57	1.52
18	D	942	NAG	C3-C2	2.12	1.57	1.52
19	В	945	BGC	C3-C2	2.00	1.57	1.52

The worst 5 of 65 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
18	А	944	NAG	C1-O5-C5	4.71	118.58	112.19
18	D	944	NAG	C1-O5-C5	4.38	118.12	112.19
18	А	944	NAG	C1-C2-N2	-4.09	103.50	110.49
18	А	944	NAG	O5-C1-C2	-3.83	105.23	111.29
18	В	940	NAG	O5-C5-C6	3.81	113.17	107.20

There are no chirality outliers.

5 of 15 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
18	В	940	NAG	O5-C5-C6-O6
20	В	905	MAN	C4-C5-C6-O6
19	В	945	BGC	O5-C5-C6-O6
20	В	905	MAN	O5-C5-C6-O6
18	В	940	NAG	C4-C5-C6-O6

There are no ring outliers.

6 monomers are involved in 6 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
19	А	946	BGC	1	0
19	С	951	BGC	1	0
19	В	945	BGC	1	0
20	В	905	MAN	1	0
19	D	945	BGC	1	0
18	А	945	NAG	1	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<rsrz></rsrz>	#RSRZ>2		$OWAB(Å^2)$	Q < 0.9
1	А	835/857~(97%)	-0.48	2 (0%) 95 94		14, 25, 41, 69	7~(0%)
1	В	835/857~(97%)	-0.38	5 (0%) 89 88		16, 26, 43, 77	9 (1%)
1	С	835/857~(97%)	-0.38	4 (0%) 91 90		14, 24, 40, 75	11 (1%)
1	D	835/857~(97%)	-0.39	1 (0%) 95 95		12, 23, 39, 79	8 (0%)
All	All	3340/3428~(97%)	-0.41	12 (0%) 92 91	L	12, 25, 41, 79	35 (1%)

The worst 5 of 12 RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	В	854	TYR	3.6
1	В	853	PRO	3.4
1	А	208	ASP	3.4
1	А	206	GLY	3.0
1	D	855	PRO	2.7

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathrm{\AA}^2)$	Q < 0.9
4	MAN	с	4	11/12	0.52	0.29	87,104,110,111	0
15	BMA	Ζ	3	11/12	0.58	0.35	82,110,119,119	0

Mol	Tvpe	Chain	\mathbf{Res}	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
4	MAN	N	4	11/12	0.60	0.41	81.99.110.115	0
16	MAN	f	8	11/12 $11/12$	0.60	0.30	70.83.92.93	0
17	MAN	a	5	11/12	0.62	0.26	74.94.99.100	0
13	MAN	Т	8	11/12	0.63	0.37	82.88.94.96	0
13	MAN	b	8	11/12	0.64	0.39	88,102,108,109	0
5	MAN	V	9	11/12	0.65	0.31	84,91,100,101	0
10	BMA	Р	4	11/12	0.68	0.38	78,85,94,99	0
10	MAN	Р	5	11/12	0.69	0.29	92,101,109,109	0
12	MAN	S	9	11/12	0.69	0.33	73,89,92,94	0
6	MAN	Ι	4	11/12	0.69	0.38	89,98,103,106	0
13	GLC	b	7	11/12	0.69	0.29	$66,\!88,\!96,\!99$	0
15	BMA	е	3	11/12	0.71	0.28	72,81,84,86	0
16	MAN	Х	8	11/12	0.71	0.30	55,70,76,79	0
14	MAN	U	4	11/12	0.71	0.20	91,94,99,104	0
4	BMA	Ν	3	11/12	0.71	0.33	73,84,91,102	0
4	MAN	G	4	11/12	0.72	0.28	$69,\!85,\!86,\!87$	0
3	MAN	F	7	11/12	0.72	0.27	56,75,83,84	0
5	MAN	Н	9	11/12	0.73	0.30	$70,\!88,\!92,\!93$	0
9	MAN	d	10	11/12	0.75	0.23	$77,\!84,\!86,\!87$	0
11	MAN	Q	10	11/12	0.76	0.24	64,70,73,76	0
7	MAN	J	6	11/12	0.77	0.26	76,85,89,90	0
8	NAG	Y	2	14/15	0.77	0.39	67,82,96,100	0
6	BMA	Ι	3	11/12	0.77	0.21	71,77,91,102	0
2	MAN	М	4	11/12	0.77	0.17	67,75,78,81	0
15	BMA	W	3	11/12	0.78	0.26	75,85,92,95	0
2	MAN	E	5	11/12	0.78	0.26	92,94,96,97	0
11	MAN	Q	5	11/12	0.78	0.27	80,82,86,87	0
17	MAN	a	6	11/12	0.78	0.23	67,78,86,89	0
4	BMA	С	3	11/12	0.79	0.21	58,69,76,90	0
9	MAN	0	10	11/12	0.80	0.18	59,65,70,71	0
	MAN	Q	6	11/12	0.80	0.31	75,79,86,86	0
8	NAG	R	2	14/15	0.80	0.28	53,66,79,80	0
10	BMA	P	3	$\frac{11}{12}$	0.81	0.20	77,85,90,92	0
13	GLC			11/12	0.81	0.24	58,67,73,74	0
14	MAN		5 C	11/12	0.81	0.22	77,90,95,95	0
3	MAN		6	11/12	0.81	0.22	72,70,96,98	0
3	MAN		4	11/12	0.81	0.20	(3, (9, 86, 87	0
9	MAN	d T	0	11/12	0.82	0.41	50,01,04,70 66,70,76,70	0
4	MAN		4	11/12	0.82	0.13	00, (2, (0, (9	0
15	INAG MAN	L r	2	14/15	0.82	0.35	55,77,93,106	0
10	MAN			11/12	0.83	0.21	55,59,05,0 <i>i</i>	0
ব	MAN	L L	G	11/12	0.83	0.18	(0,82,85,100	U

Continued from previous page...

5J	U	6

Continued from previous page								
Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
7	MAN	J	5	11/12	0.83	0.20	57,65,70,71	0
12	MAN	S	6	11/12	0.83	0.20	59,68,74,76	0
12	MAN	S	8	11/12	0.85	0.20	72,76,79,84	0
8	NAG	K	2	14/15	0.86	0.28	$65,\!70,\!78,\!78$	0
4	BMA	G	3	11/12	0.86	0.22	60,70,79,81	0
2	MAN	М	5	11/12	0.87	0.19	$55,\!67,\!79,\!86$	0
17	MAN	a	4	11/12	0.87	0.21	71,79,88,90	0
13	MAN	b	6	11/12	0.87	0.11	$53,\!63,\!67,\!81$	0
8	NAG	Y	1	14/15	0.87	0.29	$56,\!66,\!73,\!77$	0
2	BMA	Е	3	11/12	0.88	0.23	$50,\!59,\!67,\!73$	0
12	MAN	S	7	11/12	0.88	0.26	57,63,65,71	0
2	BMA	М	3	11/12	0.88	0.13	45,54,57,67	0
5	MAN	V	8	11/12	0.88	0.17	46,48,56,72	0
16	MAN	f	4	11/12	0.88	0.13	39,42,46,47	0
3	BMA	F	3	11/12	0.89	0.10	43,48,58,64	0
14	BMA	U	3	11/12	0.89	0.12	62,70,78,83	0
17	BMA	a	3	11/12	0.89	0.21	44,65,82,84	0
5	MAN	V	7	11/12	0.89	0.19	47,52,53,60	0
2	MAN	Е	4	11/12	0.89	0.15	60,70,76,77	0
12	BMA	S	3	11/12	0.89	0.17	44,54,61,62	0
11	MAN	Q	9	11/12	0.90	0.17	35,43,48,53	0
7	MAN	J	9	11/12	0.90	0.17	43,49,51,52	0
9	MAN	0	6	11/12	0.90	0.35	50,57,60,60	0
15	NAG	е	2	14/15	0.90	0.14	36,43,49,60	0
10	NAG	Р	2	14/15	0.90	0.14	45,48,54,67	0
16	MAN	Х	5	11/12	0.90	0.23	35,40,44,48	0
4	BMA	L	3	11/12	0.90	0.14	55,66,73,73	0
10	NAG	Р	1	14/15	0.91	0.11	32,38,42,45	0
7	MAN	J	7	11/12	0.91	0.10	37,40,42,42	0
16	MAN	f	5	11/12	0.91	0.17	39,43,45,46	0
16	MAN	f	6	11/12	0.91	0.20	39,43,46,47	0
5	MAN	Н	8	11/12	0.91	0.18	47,55,60,67	0
13	MAN	b	4	11/12	0.91	0.14	40,43,45,46	0
7	BMA	J	3	11/12	0.91	0.09	33,34,37,38	0
4	NAG	N	2	14/15	0.91	0.15	36,43,50,59	0
11	MAN	Q	4	11/12	0.91	0.17	45,51,55,63	0
5	MAN	H	7	11/12	0.91	0.21	43,53,59,65	0
16	MAN	Х	7	11/12	0.92	0.20	46,49,52,59	0
14	NAG	U	2	14/15	0.92	0.13	39,43,46,52	0
9	MAN	0	9	11/12	0.92	0.12	42,45,47,52	0
7	MAN	J	4	11/12	0.92	0.13	43,49,57.57	0
13	MAN	Т	6	11/12	0.92	0.14	45,50,55,66	0

, in c α n tin Jf

5J	U	6

Conti	Continued from previous page							
Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	$Q{<}0.9$
7	MAN	J	8	11/12	0.92	0.11	40,44,47,47	0
9	MAN	d	9	11/12	0.92	0.12	38,48,53,64	0
12	MAN	S	4	11/12	0.92	0.10	52,58,63,63	0
12	MAN	S	5	11/12	0.92	0.15	48,50,53,56	0
7	NAG	J	1	14/15	0.92	0.12	26,30,32,33	0
4	NAG	с	2	14/15	0.92	0.13	$29,\!36,\!43,\!46$	0
11	MAN	Q	8	11/12	0.93	0.18	$43,\!49,\!53,\!57$	0
13	NAG	b	2	14/15	0.93	0.15	$29,\!32,\!38,\!38$	0
13	BMA	b	3	11/12	0.93	0.12	38, 39, 52, 70	0
9	MAN	d	8	11/12	0.93	0.12	$29,\!31,\!33,\!38$	0
13	BMA	Т	3	11/12	0.93	0.11	33,33,44,61	0
9	MAN	0	5	11/12	0.93	0.20	39,42,45,51	0
11	NAG	Q	2	14/15	0.93	0.10	22,24,26,27	0
8	NAG	К	1	14/15	0.94	0.20	37,43,46,54	0
16	NAG	f	2	14/15	0.94	0.12	22,25,30,33	0
5	MAN	Н	6	11/12	0.94	0.12	28,30,32,37	0
13	MAN	Т	4	11/12	0.94	0.12	34,38,41,41	0
13	MAN	Т	5	11/12	0.94	0.12	31,36,40,43	0
8	NAG	R	1	14/15	0.94	0.19	29,38,41,53	0
6	NAG	Ι	2	14/15	0.94	0.12	40,43,48,58	0
17	NAG	a	2	14/15	0.94	0.13	22,28,34,41	0
16	BMA	Х	3	11/12	0.94	0.12	30,32,37,40	0
16	MAN	Х	4	11/12	0.94	0.13	30,36,42,43	0
11	NAG	Q	1	14/15	0.94	0.10	24,27,32,33	0
2	NAG	М	1	14/15	0.94	0.09	27,28,29,31	0
3	NAG	F	1	14/15	0.95	0.10	25,27,29,30	0
2	NAG	Е	2	14/15	0.95	0.09	21,27,38,40	0
9	BMA	0	3	11/12	0.95	0.09	27,28,31,35	0
16	MAN	Х	6	11/12	0.95	0.19	34,39,43,44	0
12	NAG	S	2	14/15	0.95	0.15	31,35,39,46	0
6	NAG	Ι	1	14/15	0.95	0.10	26,31,34,34	0
11	BMA	Q	3	11/12	0.95	0.09	29,32,36,44	0
16	BMA	f	3	11/12	0.95	0.11	29,34,37,42	0
4	NAG	L	1	14/15	0.95	0.10	22,28,29,30	0
15	NAG	W	1	14/15	0.95	0.10	30,33,35,35	0
15	NAG	W	2	14/15	0.95	0.17	40,44,50,64	0
13	NAG	b	1	14/15	0.95	0.11	22,24,27,28	0
15	NAG	Z	1	14/15	0.95	0.17	31,36,42,55	0
5	BMA	V	3	11/12	0.95	0.10	26,30,33.37	0
4	NAG	G	2	14/15	0.95	0.11	29,35,41.46	0
15	NAG	e	1	14/15	0.95	0.10	31,32.34.37	0
11	MAN	Q	7	11/12	0.95	0.08	38,40,46.54	0

..... Cntin d fa

5JU6	
------	--

Conti	nued fro	m previoi	is page	•••	Daar	DCD		0.00
Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
13	MAN	b	5	11/12	0.95	0.10	40,43,46,54	0
5	NAG	Н	1	14/15	0.96	0.09	24,25,28,29	0
9	NAG	d	1	14/15	0.96	0.10	20,24,27,28	0
9	MAN	d	4	11/12	0.96	0.11	22,25,27,29	0
16	NAG	Х	1	14/15	0.96	0.09	23,25,28,30	0
16	NAG	Х	2	14/15	0.96	0.09	22,24,28,28	0
9	MAN	d	5	11/12	0.96	0.19	35,39,42,45	0
5	MAN	V	4	11/12	0.96	0.09	$25,\!31,\!35,\!40$	0
9	MAN	d	7	11/12	0.96	0.09	$20,\!24,\!26,\!27$	0
7	NAG	J	2	14/15	0.96	0.08	24,28,31,32	0
5	MAN	V	6	11/12	0.96	0.08	$25,\!27,\!29,\!33$	0
2	NAG	М	2	14/15	0.96	0.09	34,37,41,45	0
16	NAG	f	1	14/15	0.96	0.10	23,25,30,30	0
4	NAG	G	1	14/15	0.96	0.10	$20,\!22,\!27,\!27$	0
14	NAG	U	1	14/15	0.96	0.10	24,29,32,34	0
9	NAG	0	1	14/15	0.96	0.09	25,26,27,28	0
9	NAG	0	2	14/15	0.96	0.10	23,26,27,27	0
3	NAG	F	2	14/15	0.96	0.12	29,32,37,40	0
9	MAN	0	4	11/12	0.96	0.10	27,28,34,36	0
13	NAG	Т	1	14/15	0.96	0.10	18,21,23,24	0
13	NAG	Т	2	14/15	0.96	0.08	25,27,30,31	0
4	NAG	L	2	14/15	0.96	0.09	$30,\!33,\!38,\!45$	0
5	NAG	V	1	14/15	0.96	0.11	25,27,32,34	0
9	MAN	0	7	11/12	0.96	0.09	24,25,29,29	0
5	NAG	V	2	14/15	0.96	0.09	21,26,29,29	0
12	NAG	S	1	14/15	0.97	0.10	24,25,28,28	0
5	BMA	Н	3	11/12	0.97	0.10	26,28,31,40	0
5	MAN	Н	4	11/12	0.97	0.10	27,29,33,40	0
4	NAG	N	1	14/15	0.97	0.08	22,25,27,30	0
9	NAG	d	2	14/15	0.97	0.08	20,21,24,24	0
17	NAG	a	1	14/15	0.97	0.07	21,23,25,26	0
9	BMA	d	3	11/12	0.97	0.09	22,24,29,35	0
4	NAG	с	1	14/15	0.97	0.08	19,20,22,27	0
5	NAG	Н	2	14/15	0.97	0.08	21,24,30,31	0
5	MAN	V	5	11/12	0.97	0.10	22,24,26,29	0
9	MAN	0	8	11/12	0.97	0.09	26,27,31,36	0
2	NAG	Е	1	14/15	0.98	0.08	22,24,27,30	0
5	MAN	Н	5	11/12	0.98	0.08	18,21,23,24	0

1 L. α *,* ·

The following is a graphical depiction of the model fit to experimental electron density for oligosaccharide. Each fit is shown from different orientation to approximate a three-dimensional view.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B-factors(Å ²)	Q < 0.9
20	MAN	В	905	11/12	0.68	0.20	$63,\!88,\!99,\!102$	0
19	BGC	С	951	12/12	0.69	0.27	44,58,64,67	0
18	NAG	D	944	14/15	0.72	0.23	$62,\!80,\!88,\!88$	0
18	NAG	D	940	14/15	0.74	0.21	$58,\!63,\!68,\!73$	0
19	BGC	В	945	12/12	0.77	0.28	$39,\!47,\!55,\!63$	0
18	NAG	С	950	14/15	0.80	0.31	62,72,82,88	0
18	NAG	В	944	14/15	0.80	0.19	54,65,70,76	0
18	NAG	С	935	14/15	0.81	0.21	61,72,85,87	0
18	NAG	В	943	14/15	0.82	0.22	64,74,84,84	0
18	NAG	А	930	14/15	0.83	0.17	$57,\!62,\!65,\!72$	0
18	NAG	A	941	14/15	0.84	0.25	59,66,69,70	0

Continued on next page...

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B -factors($Å^2$)	Q<0.9
19	BGC	А	946	12/12	0.87	0.20	36, 46, 49, 53	0
19	BGC	D	945	12/12	0.88	0.21	46,52,57,61	0
18	NAG	В	940	14/15	0.89	0.17	42,58,66,71	0
18	NAG	С	944	14/15	0.89	0.16	$41,\!47,\!50,\!51$	0
18	NAG	А	945	14/15	0.90	0.13	46,52,54,62	0
18	NAG	D	941	14/15	0.90	0.34	64,79,84,85	0
18	NAG	А	944	14/15	0.92	0.13	29,32,37,40	0
18	NAG	D	942	14/15	0.92	0.18	32,34,35,38	0
18	NAG	А	940	14/15	0.93	0.19	$41,\!51,\!56,\!57$	0
18	NAG	D	943	14/15	0.95	0.11	$25,\!28,\!36,\!36$	0

Continued from previous page...

6.5 Other polymers (i)

There are no such residues in this entry.

