

wwPDB X-ray Structure Validation Summary Report (i)

Aug 6, 2023 – 09:03 AM EDT

PDB ID	:	1JYX
Title	:	E. COLI (lacZ) BETA-GALACTOSIDASE IN COMPLEX WITH IPTG
Authors	:	Juers, D.H.; Matthews, B.W.
Deposited on	:	2001-09-13
Resolution	:	1.75 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.35
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.35

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 1.75 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive $(\#$ Entries)	$\begin{array}{c} {\rm Similar\ resolution} \\ (\#{\rm Entries,\ resolution\ range(Å)}) \end{array}$
R _{free}	130704	2340 (1.76-1.76)
Clashscore	141614	2466 (1.76-1.76)
Ramachandran outliers	138981	2437 (1.76-1.76)
Sidechain outliers	138945	2437 (1.76-1.76)
RSRZ outliers	127900	2298 (1.76-1.76)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	1023	4% 68%	26%	
1	В	1023	3% 67%	25%	6% ••
1	С	1023	73%	22%	• •
1	D	1023	4% 69%	26%	

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard

residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
5	DMS	В	8407	-	Х	-	-
5	DMS	С	8506	-	-	Х	-

2 Entry composition (i)

There are 6 unique types of molecules in this entry. The entry contains 36516 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
1	Δ	1011	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	Л	1011	8125	5138	1440	1509	38	0	0	U
1	В	1011	Total	С	Ν	Ο	S	0	0	0
1	D	1011	8125	5138	1440	1509	38	0		0
1	С	1011	Total	С	Ν	Ο	S	0	0	0
1	U	1011	8125	5138	1440	1509	38	0	0	0
1	1 D	1011	Total	С	Ν	Ο	S	0	0	0
	1011	8125	5138	1440	1509	38		0	U	

• Molecule 1 is a protein called Beta-Galactosidase.

There are 32 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	1	GLY	THR	cloning artifact	? P00722
А	2	SER	MET	cloning artifact	? P00722
А	3	HIS	ILE	cloning artifact	? P00722
А	4	MET	THR	cloning artifact	? P00722
А	5	LEU	ASP	cloning artifact	? P00722
А	6	GLU	SER	cloning artifact	? P00722
А	7	ASP	LEU	cloning artifact	? P00722
А	8	PRO	ALA	cloning artifact	? P00722
В	1	GLY	THR	cloning artifact	? P00722
В	2	SER	MET	cloning artifact	? P00722
В	3	HIS	ILE	cloning artifact	? P00722
В	4	MET	THR	cloning artifact	? P00722
В	5	LEU	ASP	cloning artifact	? P00722
В	6	GLU	SER	cloning artifact	? P00722
В	7	ASP	LEU	cloning artifact	? P00722
В	8	PRO	ALA	cloning artifact	? P00722
С	1	GLY	THR	cloning artifact	? P00722
С	2	SER	MET	cloning artifact	? P00722
С	3	HIS	ILE	cloning artifact	? P00722
С	4	MET	THR	cloning artifact	? P00722
С	5	LEU	ASP	cloning artifact	? P00722

Continu	Continued from previous page										
Chain	Residue	Modelled	Actual	Comment	Reference						
С	6	GLU	SER	cloning artifact	? P00722						
С	7	ASP	LEU	cloning artifact	? P00722						
С	8	PRO	ALA	cloning artifact	? P00722						
D	1	GLY	THR	cloning artifact	? P00722						
D	2	SER	MET	cloning artifact	? P00722						
D	3	HIS	ILE	cloning artifact	? P00722						
D	4	MET	THR	cloning artifact	? P00722						
D	5	LEU	ASP	cloning artifact	? P00722						
D	6	GLU	SER	cloning artifact	? P00722						
D	7	ASP	LEU	cloning artifact	? P00722						
D	8	PRO	ALA	cloning artifact	? P00722						

• Molecule 2 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	2	Total Mg 2 2	0	0
2	В	3	Total Mg 3 3	0	0
2	С	2	Total Mg 2 2	0	0
2	D	2	Total Mg 2 2	0	0

• Molecule 3 is SODIUM ION (three-letter code: NA) (formula: Na).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	3	Total Na 3 3	0	0
3	В	4	Total Na 4 4	0	0
3	С	4	Total Na 4 4	0	0
3	D	3	Total Na 3 3	0	0

• Molecule 4 is 1-methylethyl 1-thio-beta-D-galactopyranoside (three-letter code: IPT) (formula: $C_9H_{18}O_5S$).

Mol	Chain	Residues	A	ton	ns		ZeroOcc	AltConf
4	Δ	1	Total	С	0	S	0	0
4	Π	T	15	9	5	1	0	0
1	Δ	1	Total	С	Ο	\mathbf{S}	0	0
т	11	I	15	9	5	1	0	0
1	В	1	Total	С	Ο	\mathbf{S}	0	0
т	D	I	15	9	5	1	0	0
1	С	1	Total	С	Ο	\mathbf{S}	0	0
T	U	I	15	9	5	1	0	0
1	Л	1	Total	С	Ο	\mathbf{S}	0	0
T	D	I	15	9	5	1	0	0
1	σ	1	Total	Ċ	Ō	S	0	0
		L	15	9	5	1	0	0

• Molecule 5 is DIMETHYL SULFOXIDE (three-letter code: DMS) (formula: C_2H_6OS).

Mol	Chain	Residues	A	ton	ns		ZeroOcc	AltConf
۲.	Δ	1	Total	С	Ο	\mathbf{S}	0	0
0	A	L	4	2	1	1	0	0
5	Δ	1	Total	С	Ο	\mathbf{S}	0	0
0	Π	T	4	2	1	1	0	0
5	А	1	Total	С	Ο	\mathbf{S}	0	0
		1	4	2	1	1	0	
5	А	1	Total	С	Ο	\mathbf{S}	0	0
		-	4	2	1	1		
5	А	1	Total	С	0	S	0	0
			4	2	1	1		_
5	А	1	Total	С	0	S	0	0
			4	2	1	1		
5	А	1	Total	C		S	0	0
			4 Tetal	$\frac{2}{C}$		1 C		
5	А	1			1	ט 1	0	0
			4 Total	$\frac{2}{C}$	$\frac{1}{0}$	1 C		
5	А	1		$\frac{0}{2}$	1	1	0	0
			Total	$\frac{2}{C}$	$\frac{1}{0}$	$\frac{1}{S}$		
5	А	1	4	$\frac{0}{2}$	1	1	0	0
			Total	Ē	0	S		
5	A	1	4	2	1	1	0	0
			Total	С	0	S		
5	A		4	2	1	1		0
F	•	1	Total	С	0	S	0	0
	A		4	2	1	1	0	U
F	Δ	1	Total	С	0	S	0	0
6	A		4	2	1	1	U	U

Continued from previous page...

Mol	Chain	Residues	Α	ton	ns		ZeroOcc	AltConf
5	Λ	1	Total	С	0	S	0	0
0	A	1	4	2	1	1	0	0
5	Δ	1	Total	С	Ο	\mathbf{S}	0	0
0	Л	1	4	2	1	1	0	0
5	Δ	1	Total	С	Ο	\mathbf{S}	0	0
0	11	1	4	2	1	1	0	0
5	Δ	1	Total	С	Ο	\mathbf{S}	0	0
		1	4	2	1	1	Ŭ	Ŭ
5	В	1	Total	С	Ο	\mathbf{S}	0	0
		-	4	2	1	1		<u> </u>
5	В	1	Total	С	Ο	\mathbf{S}	0	0
		-	4	2	1	1	Ŭ,	
5	В	1	Total	С	0	S	0	0
	_	_	4	2	1	1	, , , , , , , , , , , , , , , , , , ,	
5	В	1	Total	С	0	S	0	0
			4	2	1	1		
5	В	1	Total	С	0	S	0	0
			4	2	1	1		
5	В	1	Total	С	0	S	0	0
			4	2	1	1		_
5	В	1	Total	C	0	S	0	0
			4	$\frac{2}{2}$	1	<u> </u>		
5	В	1	Total	C		5	0	0
			4 Tutul	$\frac{2}{C}$		1 0		
5	В	1	10tal			5 1	0	0
			4 Tetal	$\frac{2}{C}$		1 C		
5	В	1	10tai	0	1	ט 1	0	0
			4 Total	$\frac{2}{C}$				
5	В	1	10tai	0 9	1	ວ 1	0	0
			4 Total	$\frac{2}{C}$	<u> </u>	<u>г</u>		
5	В	1	1001	$\frac{0}{2}$	1	0 1	0	0
			Total	$\frac{2}{C}$	$\frac{1}{0}$	<u>r</u>		
5	В	1		$\frac{0}{2}$	1	1	0	0
			Total	$\frac{2}{C}$	$\overline{0}$	$\frac{1}{S}$		
5	В	1	100a1 4	$\frac{0}{2}$	1	1	0	0
			Total	$\frac{2}{C}$	$\overline{0}$	S		
5	В	1	4	$\frac{1}{2}$	1	1	0	0
			Total	$\frac{1}{C}$	0	S		
5	В	1	4	$\frac{1}{2}$	1	1	0	0
			Total	$\frac{1}{C}$	0	S		
5	В	1	4	$\frac{1}{2}$	1	1	0	0

Continued from previous page...

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mol	Chain	Residues	Α	ton	ıs		ZeroOcc	AltConf
5 B 1 4 2 1 0 0 5 C 1 Total C S 0 0 5 C 1 Total C O 0 0 5 C 1 Total	5	В	1	Total	С	0	S	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	D	1	4	2	1	1	0	0
3 C 1 4 2 1 1 0 0 5 C 1 4 2 1 1 0 0 5 C 1 4 2 1 1 0 0 5 C 1 4 2 1 1 0 0 5 C 1 4 2 1 1 0 0 5 C 1 4 2 1 1 0 0 5 C 1 $Total$ C O S 0 0 5 C 1 $Total$ C O S 0 0 5 C 1 $Total$ C O S 0 0 0 5 C 1 $Total$ C O S 0 0 5 C 1 $Total$ <th< td=""><td>5</td><td>С</td><td>1</td><td>Total</td><td>С</td><td>0</td><td>\mathbf{S}</td><td>0</td><td>0</td></th<>	5	С	1	Total	С	0	\mathbf{S}	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	1	4	2	1	1	0	0
0 1 4 2 1 1 0 0 5 C 1 4 2 1 1 0 0 5 C 1 4 2 1 1 0 0 5 C 1 4 2 1 1 0 0 5 C 1 4 2 1 1 0 0 5 C 1 4 2 1 1 0 0 5 C 1 4 2 1 1 0 0 5 C 1 4 2 1 1 0 0 5 C 1 70 0 0 0 0 0 0 5 C 1 70 0 0 0 0 0 0 5 C 1 70 0 <	5	С	1	Total	С	Ο	\mathbf{S}	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	4	2	1	1	Ŭ	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5	C	1	Total	С	0	\mathbf{S}	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			_	4	2	1	1		-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	С	1	Total	C	0	S	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				4	2	1	<u>I</u>		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	С	1	Total	C		S	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				4 Tetal	$\frac{2}{C}$	$\frac{1}{0}$	1 C		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	С	1		0 0	1	С 1	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				4 Total	$\frac{2}{C}$	$\frac{1}{0}$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	С	1		$\frac{0}{2}$	1	5 1	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Total	$\frac{2}{C}$	$\frac{1}{0}$	- 		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	С	1		$\frac{0}{2}$	1	1	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Total	$\frac{2}{C}$	$\frac{1}{0}$	S		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	С	1	4	$\frac{0}{2}$	1	1	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Total	C	0	S		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	С	1	4	2	1	1	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		a		Total	С	0	S	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	C	1	4	2	1	1	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C	1	Total	С	0	S	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	б	C	1	4	2	1	1	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	C	1	Total	С	Ο	S	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	U	1	4	2	1	1	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	С	1	Total	С	Ο	\mathbf{S}	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	I	4	2	1	1	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	С	1	Total	С	0	\mathbf{S}	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	4	2	1	1		
	5	С	1	Total	С	0	S	0	0
		_		4	2	1	1	-	_
$ 5 C 1 \frac{100a}{4} = 0 0 0 0$	5	С	1	Total	C	0	S	0	0
				4	$\frac{2}{C}$	1			
$\begin{vmatrix} 5 \\ C \end{vmatrix}$ C $\begin{vmatrix} 1 \\ 4 \\ 2 \\ 1 \\ 4 \\ 2 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{vmatrix}$	5	С	1	Total	C o		5 1	0	0
				$\frac{4}{T_{a+-1}}$	$\frac{2}{C}$		<u>с</u>		
$\begin{vmatrix} 5 \\ C \end{vmatrix}$ $\begin{vmatrix} 1 \\ 4 \\ 2 \\ 1 \\ \end{vmatrix}$ $\begin{vmatrix} 101a1 \\ 4 \\ 2 \\ 1 \\ 1 \\ 0 \end{vmatrix}$ $\begin{vmatrix} 0 \\ 0 \\ 0 \\ 0 \end{vmatrix}$	5	С	1		U n		ວ 1	0	0
				4 Total	$\frac{2}{C}$		<u>г</u>		
$\begin{vmatrix} 5 \\ C \\ \end{vmatrix} \begin{pmatrix} 1 \\ 4 \\ 2 \\ 1 \\ 1 \\ \end{vmatrix} \begin{vmatrix} 101 \\ 4 \\ 2 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	5	С	1		0 9	1	1	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	С	1	$\begin{array}{cccc} \text{Total} & \text{C} & \text{O} & \text{S} \\ 4 & 2 & 1 & 1 \end{array}$	0	0
5	D	1	$\begin{array}{cccc} \text{Total} & \text{C} & \text{O} & \text{S} \\ 4 & 2 & 1 & 1 \end{array}$	0	0
5	D	1	$\begin{array}{cccc} \text{Total} & \text{C} & \text{O} & \text{S} \\ 4 & 2 & 1 & 1 \end{array}$	0	0
5	D	1	$\begin{array}{cccc} \text{Total} & \text{C} & \text{O} & \text{S} \\ 4 & 2 & 1 & 1 \end{array}$	0	0
5	D	1	$\begin{array}{cccc} \text{Total} & \text{C} & \text{O} & \text{S} \\ 4 & 2 & 1 & 1 \end{array}$	0	0
5	D	1	$\begin{array}{cccc} \text{Total} & \text{C} & \text{O} & \text{S} \\ 4 & 2 & 1 & 1 \end{array}$	0	0
5	D	1	$\begin{array}{cccc} \text{Total} & \text{C} & \text{O} & \text{S} \\ 4 & 2 & 1 & 1 \end{array}$	0	0
5	D	1	$\begin{array}{cccc} \text{Total} & \text{C} & \text{O} & \text{S} \\ 4 & 2 & 1 & 1 \end{array}$	0	0
5	D	1	$\begin{array}{cccc} \text{Total} & \text{C} & \text{O} & \text{S} \\ 4 & 2 & 1 & 1 \end{array}$	0	0
5	D	1	$\begin{array}{cccc} \text{Total} & \text{C} & \text{O} & \text{S} \\ 4 & 2 & 1 & 1 \end{array}$	0	0
5	D	1	$\begin{array}{cccc} \text{Total} & \text{C} & \text{O} & \text{S} \\ 4 & 2 & 1 & 1 \end{array}$	0	0
5	D	1	$\begin{array}{cccc} \text{Total} & \text{C} & \text{O} & \text{S} \\ 4 & 2 & 1 & 1 \end{array}$	0	0
5	D	1	$\begin{array}{cccc} \text{Total} & \text{C} & \text{O} & \text{S} \\ 4 & 2 & 1 & 1 \end{array}$	0	0
5	D	1	$\begin{array}{cccc} \text{Total} & \text{C} & \text{O} & \text{S} \\ 4 & 2 & 1 & 1 \end{array}$	0	0
5	D	1	$\begin{array}{cccc} \text{Total} & \text{C} & \text{O} & \text{S} \\ 4 & 2 & 1 & 1 \end{array}$	0	0
5	D	1	$\begin{array}{cccc} \text{Total} & \text{C} & \text{O} & \text{S} \\ 4 & 2 & 1 & 1 \end{array}$	0	0
5	D	1	$\begin{array}{cccc} \text{Total} & \text{C} & \text{O} & \text{S} \\ 4 & 2 & 1 & 1 \end{array}$	0	0
5	D	1	$\begin{array}{cccc} \text{Total} & \text{C} & \text{O} & \text{S} \\ 4 & 2 & 1 & 1 \end{array}$	0	0

• Molecule 6 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	А	865	Total O 865 865	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	В	935	Total O 935 935	0	0
6	С	922	Total O 922 922	0	0
6	D	885	Total O 885 885	0	0

Chain B:

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Beta-Galactosidase

25%

6%

67%

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 21 21 21	Depositor
Cell constants	151.77Å 161.19Å 202.91Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
$\mathbf{Posolution} \left(\overset{\texttt{A}}{A} \right)$	27.00 - 1.75	Depositor
Resolution (A)	17.00 - 1.75	EDS
% Data completeness	89.6 (27.00-1.75)	Depositor
(in resolution range)	89.7 (17.00-1.75)	EDS
R_{merge}	0.07	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$2.06 (at 1.75 \text{\AA})$	Xtriage
Refinement program	TNT	Depositor
P. P.	0.168 , 0.244	Depositor
n, n_{free}	0.172 , 0.237	DCC
R_{free} test set	6397 reflections $(1.44%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	16.8	Xtriage
Anisotropy	0.253	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.36, 98.2	EDS
L-test for $twinning^2$	$ \langle L \rangle = 0.50, \langle L^2 \rangle = 0.33$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.97	EDS
Total number of atoms	36516	wwPDB-VP
Average B, all atoms $(Å^2)$	26.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 37.80 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 4.0575e-04. The detected translational NCS is most likely also responsible for the elevated intensity ratio.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MG, IPT, DMS, NA

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	B	ond lengths	Bond angles	
Mol Chain		RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	1.03	45/8367~(0.5%)	1.57	134/11415~(1.2%)
1	В	1.06	51/8367~(0.6%)	1.56	154/11415~(1.3%)
1	С	1.06	41/8367~(0.5%)	1.59	137/11415~(1.2%)
1	D	1.03	46/8367~(0.5%)	1.56	152/11415~(1.3%)
All	All	1.04	183/33468~(0.5%)	1.57	577/45660~(1.3%)

The worst 5 of 183 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
1	С	40	GLU	CD-OE2	9.35	1.35	1.25
1	D	40	GLU	CD-OE2	8.65	1.35	1.25
1	С	684	GLU	CD-OE2	8.60	1.35	1.25
1	А	358	GLU	CD-OE2	8.38	1.34	1.25
1	С	338	GLU	CD-OE2	8.26	1.34	1.25

The worst 5 of 577 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	С	630	ARG	NE-CZ-NH1	13.65	127.12	120.30
1	А	442	ARG	NE-CZ-NH2	-13.52	113.54	120.30
1	С	442	ARG	NE-CZ-NH2	-12.71	113.95	120.30
1	С	442	ARG	NE-CZ-NH1	12.61	126.61	120.30
1	А	772	ASP	CB-CG-OD2	-12.61	106.95	118.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	8125	0	7716	174	0
1	В	8125	0	7716	216	0
1	С	8125	0	7716	158	0
1	D	8125	0	7716	158	0
2	А	2	0	0	0	0
2	В	3	0	0	0	0
2	С	2	0	0	0	0
2	D	2	0	0	0	0
3	А	3	0	0	0	0
3	В	4	0	0	0	0
3	С	4	0	0	0	0
3	D	3	0	0	0	0
4	А	30	0	35	2	0
4	В	15	0	17	0	0
4	С	15	0	17	0	0
4	D	30	0	35	0	0
5	А	72	0	108	7	0
5	В	72	0	108	3	0
5	С	84	0	126	11	0
5	D	68	0	102	5	0
6	А	865	0	0	25	0
6	В	935	0	0	20	0
6	С	922	0	0	13	0
6	D	885	0	0	19	0
All	All	36516	0	31412	701	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 11.

The worst 5 of 701 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	$\begin{array}{c} \text{Interatomic} \\ \text{distance} \ (\text{\AA}) \end{array}$	Clash overlap (Å)
1:D:804:ASN:ND2	1:D:809:ARG:HH21	1.40	1.18
1:B:730:LEU:HD12	1:B:731:PRO:HD3	1.24	1.16
1:B:804:ASN:ND2	1:B:809:ARG:HH21	1.40	1.15

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:D:581:ASN:ND2	1:D:583:ASN:HD22	1.46	1.12
1:D:863:GLN:HE22	1:D:952:ARG:NH2	1.49	1.10

Continued from previous page...

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	1009/1023~(99%)	971 (96%)	37 (4%)	1 (0%)	51	33
1	В	1009/1023~(99%)	971 (96%)	33 (3%)	5 (0%)	29	12
1	С	1009/1023~(99%)	968 (96%)	38 (4%)	3~(0%)	41	22
1	D	1009/1023~(99%)	971 (96%)	37 (4%)	1 (0%)	51	33
All	All	4036/4092 (99%)	3881 (96%)	145 (4%)	10 (0%)	47	29

5 of 10 Ramachandran outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
1	В	686	PRO
1	В	687	GLN
1	В	731	PRO
1	С	687	GLN
1	В	732	ALA

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Percentiles		
1	А	864/875~(99%)	821 (95%)	43~(5%)	24	6
1	В	864/875~(99%)	815 (94%)	49 (6%)	20	5
1	\mathbf{C}	864/875~(99%)	833 (96%)	31 (4%)	35	13
1	D	864/875~(99%)	826 (96%)	38 (4%)	28	8
All	All	3456/3500~(99%)	3295~(95%)	161 (5%)	26	7

5 of 161 residues with a non-rotameric side chain are listed below:

Mol	Chain	\mathbf{Res}	Type
1	С	755	ARG
1	D	663	LEU
1	С	817	GLN
1	D	135	GLN
1	D	772	ASP

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 67 such sidechains are listed below:

Mol	Chain	Res	Type
1	D	646	HIS
1	D	693	GLN
1	D	878	HIS
1	В	725	ASN
1	В	718	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 103 ligands modelled in this entry, 23 are monoatomic - leaving 80 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Tuno	Chain	Dog	Link	Bond lengths		В	ond ang	les	
WIOI	туре	Ullalli	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
4	IPT	А	2001	3	$14,\!15,\!15$	0.50	0	$18,\!21,\!21$	1.44	3 (16%)
5	DMS	С	8406	-	3,3,3	1.22	0	$3,\!3,\!3$	0.91	0
5	DMS	С	8414	-	3, 3, 3	0.28	0	$3,\!3,\!3$	0.31	0
5	DMS	С	8422	-	3,3,3	1.22	0	$3,\!3,\!3$	0.33	0
5	DMS	D	8405	-	3,3,3	0.41	0	$3,\!3,\!3$	0.28	0
5	DMS	D	8501	-	3,3,3	1.07	0	$3,\!3,\!3$	0.44	0
5	DMS	А	8409	-	3, 3, 3	1.74	1 (33%)	3, 3, 3	0.32	0
5	DMS	В	8410	-	3,3,3	1.19	0	3, 3, 3	0.21	0
5	DMS	С	8411	-	$3,\!3,\!3$	1.79	1 (33%)	$3,\!3,\!3$	0.60	0
5	DMS	А	8410	-	3, 3, 3	1.02	0	$3,\!3,\!3$	0.92	0
5	DMS	С	8403	-	3, 3, 3	1.21	0	$3,\!3,\!3$	0.49	0
5	DMS	С	8506	-	$3,\!3,\!3$	1.45	1 (33%)	$3,\!3,\!3$	0.29	0
5	DMS	А	8412	-	3,3,3	1.00	0	$3,\!3,\!3$	0.72	0
5	DMS	С	8503	-	3,3,3	0.96	0	$3,\!3,\!3$	0.64	0
5	DMS	А	8502	-	$3,\!3,\!3$	1.70	1 (33%)	$3,\!3,\!3$	1.09	0
5	DMS	А	8407	-	3,3,3	1.40	1 (33%)	$3,\!3,\!3$	0.61	0
5	DMS	В	8421	-	3,3,3	0.94	0	$3,\!3,\!3$	0.19	0
5	DMS	С	8402	-	3,3,3	1.42	1 (33%)	$3,\!3,\!3$	1.08	0
5	DMS	А	8404	-	3,3,3	1.24	1 (33%)	3, 3, 3	1.58	1 (33%)
5	DMS	С	8412	-	3,3,3	0.84	0	$3,\!3,\!3$	0.47	0
5	DMS	В	8402	-	3,3,3	1.08	0	3,3,3	0.26	0
5	DMS	С	8420	-	3,3,3	1.78	1 (33%)	3, 3, 3	0.56	0
5	DMS	А	8420	-	3,3,3	0.93	0	3,3,3	0.38	0
5	DMS	С	8501	-	3,3,3	0.80	0	$3,\!3,\!3$	0.33	0
5	DMS	С	8404	-	3,3,3	0.86	0	$3,\!3,\!3$	0.93	0
5	DMS	D	8413	-	3,3,3	1.45	0	3,3,3	0.50	0
4	IPT	D	2001	3	14,15,15	0.43	0	18,21,21	1.97	5 (27%)
5	DMS	A	8415	_	3,3,3	1.55	1 (33%)	3,3,3	0.51	0
5	DMS	А	8602	-	3,3,3	0.92	0	3,3,3	0.29	0

	T a	Chain	Dag	T : 1-	Bo	ond leng	ths	В	ond ang	les
NIOI	Type	Chain	Res	LINK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
5	DMS	В	8403	-	$3,\!3,\!3$	2.01	2 (66%)	$3,\!3,\!3$	0.20	0
5	DMS	С	8405	-	3,3,3	0.58	0	3,3,3	0.59	0
5	DMS	В	8404	-	3,3,3	0.28	0	3,3,3	1.02	0
4	IPT	А	2002	-	14,15,15	0.71	0	18,21,21	1.20	2 (11%)
5	DMS	D	8401	-	3,3,3	0.87	0	3,3,3	0.49	0
5	DMS	D	8411	-	3,3,3	0.54	0	3,3,3	0.29	0
5	DMS	В	8409	-	3,3,3	1.74	1 (33%)	$3,\!3,\!3$	0.85	0
5	DMS	С	8408	-	3,3,3	1.77	1 (33%)	3,3,3	0.74	0
5	DMS	В	8502	-	3, 3, 3	1.46	1 (33%)	$3,\!3,\!3$	0.48	0
5	DMS	D	8414	-	3,3,3	0.43	0	3,3,3	0.18	0
5	DMS	А	8405	-	3,3,3	0.15	0	3,3,3	0.63	0
5	DMS	А	8501	-	3,3,3	1.08	0	3,3,3	0.43	0
5	DMS	В	8420	-	3,3,3	1.63	0	3, 3, 3	0.29	0
5	DMS	В	8406	-	3,3,3	1.62	1 (33%)	3, 3, 3	0.38	0
4	IPT	В	2001	3	14,15,15	0.47	0	18,21,21	1.75	<mark>3 (16%)</mark>
5	DMS	В	8408	-	3,3,3	0.42	0	3,3,3	0.66	0
5	DMS	С	8401	-	3,3,3	0.34	0	3,3,3	0.90	0
5	DMS	А	8408	-	3,3,3	0.31	0	3, 3, 3	0.50	0
5	DMS	В	8401	-	3,3,3	0.23	0	3,3,3	0.66	0
5	DMS	С	8421	-	3,3,3	0.67	0	3,3,3	0.21	0
5	DMS	D	8408	-	3,3,3	0.92	0	3,3,3	0.46	0
5	DMS	А	8403	-	3, 3, 3	1.55	1 (33%)	3, 3, 3	0.45	0
5	DMS	D	8403	-	3,3,3	1.58	0	3, 3, 3	0.57	0
5	DMS	D	8410	-	3, 3, 3	1.62	1 (33%)	$3,\!3,\!3$	1.03	0
5	DMS	С	8407	-	3,3,3	1.67	0	3, 3, 3	0.76	0
5	DMS	A	8413	-	3,3,3	1.32	0	3,3,3	0.36	0
5	DMS	D	8415	-	3,3,3	1.22	0	3,3,3	0.57	0
5	DMS	D	8412	-	3,3,3	0.36	0	3,3,3	0.43	0
5	DMS	D	8407	-	3,3,3	1.70	0	3,3,3	0.96	0
5	DMS	A	8411	-	3,3,3	1.11	0	3,3,3	0.02	0
5	DMS	С	8425	3	3,3,3	1.92	1 (33%)	3,3,3	0.08	0
5	DMS	В	8411	-	3,3,3	0.72	0	3,3,3	0.34	0
5	DMS	D	8404	-	3, 3, 3	1.63	1 (33%)	$3,\!3,\!3$	0.39	0
5	DMS	В	8412	-	3,3,3	0.50	0	3,3,3	0.12	0
5	DMS	A	8402	-	3,3,3	1.11	0	3,3,3	0.14	0
5	DMS	D	8417	-	3,3,3	1.26	1 (33%)	3,3,3	0.17	0
5	DMS	D	8409	-	$3,\!3,\!3$	1.78	1 (33%)	$3,\!3,\!3$	1.18	0
5	DMS	В	8413	-	3,3,3	1.88	1 (33%)	3,3,3	0.07	0
5	DMS	В	8501	-	3,3,3	1.87	1 (33%)	3,3,3	0.44	0

Mal	Tuno	Chain	ain Res	Link	Bo	ond leng	$_{\rm sths}$	B	ond ang	les
WIOI	туре	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
4	IPT	C	2001	3	$14,\!15,\!15$	0.59	0	18,21,21	1.91	5 (27%)
5	DMS	В	8407	-	$3,\!3,\!3$	2.04	2 (66%)	$3,\!3,\!3$	1.31	1 (33%)
5	DMS	С	8409	-	$3,\!3,\!3$	2.05	1 (33%)	$3,\!3,\!3$	0.56	0
5	DMS	В	8425	3	3,3,3	0.65	0	3,3,3	0.24	0
5	DMS	А	8421	-	3,3,3	0.68	0	3,3,3	0.17	0
5	DMS	С	8415	-	3,3,3	1.43	0	3,3,3	0.36	0
5	DMS	A	8401	-	3,3,3	0.71	0	3,3,3	0.36	0
5	DMS	С	8410	-	3,3,3	0.60	0	3,3,3	0.27	0
5	DMS	D	8704	-	3,3,3	0.46	0	3,3,3	0.10	0
5	DMS	В	8405	-	3,3,3	1.14	0	3,3,3	0.82	0
5	DMS	D	8402	-	3,3,3	0.61	0	3,3,3	0.43	0
4	IPT	D	2002	-	14,15,15	0.54	0	18,21,21	1.78	5 (27%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	IPT	D	2001	3	-	1/6/26/26	0/1/1/1
4	IPT	А	2001	3	-	1/6/26/26	0/1/1/1
4	IPT	С	2001	3	-	1/6/26/26	0/1/1/1
4	IPT	D	2002	-	-	0/6/26/26	0/1/1/1
4	IPT	А	2002	-	-	0/6/26/26	0/1/1/1
4	IPT	В	2001	3	-	1/6/26/26	0/1/1/1

The worst 5 of 26 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
5	В	8413	DMS	O-S	3.24	1.72	1.50
5	С	8425	DMS	O-S	3.23	1.72	1.50
5	С	8409	DMS	O-S	3.09	1.71	1.50
5	D	8409	DMS	O-S	3.00	1.70	1.50
5	В	8403	DMS	O-S	2.83	1.69	1.50

The worst 5 of 25 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
4	С	2001	IPT	C2-C1-S1	-4.61	104.20	111.30
4	D	2001	IPT	C6-C5-C4	4.37	123.24	113.00
4	D	2002	IPT	C6-C5-C4	4.26	122.97	113.00

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
4	В	2001	IPT	C6-C5-C4	4.11	122.63	113.00
4	В	2001	IPT	C2-C1-S1	-3.69	105.61	111.30

There are no chirality outliers.

All (4) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
4	В	2001	IPT	O5-C5-C6-O6
4	D	2001	IPT	O5-C5-C6-O6
4	А	2001	IPT	O5-C5-C6-O6
4	С	2001	IPT	O5-C5-C6-O6

There are no ring outliers.

17 monomers are involved in 28 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
4	А	2001	IPT	1	0
5	С	8406	DMS	1	0
5	В	8410	DMS	1	0
5	С	8411	DMS	1	0
5	А	8410	DMS	2	0
5	С	8506	DMS	5	0
5	А	8412	DMS	3	0
5	А	8502	DMS	1	0
5	С	8420	DMS	1	0
5	А	8420	DMS	1	0
4	А	2002	IPT	1	0
5	С	8408	DMS	3	0
5	D	8414	DMS	1	0
5	D	8403	DMS	2	0
5	D	8410	DMS	1	0
5	D	8417	DMS	1	0
5	В	8413	DMS	2	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	< RSRZ >	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	1011/1023 (98%)	0.06	44 (4%) 34 40	11, 22, 50, 98	0
1	В	1011/1023~(98%)	0.05	35 (3%) 44 50	11, 20, 51, 100	0
1	С	1011/1023~(98%)	-0.00	31 (3%) 49 55	11, 19, 50, 99	0
1	D	1011/1023~(98%)	0.06	44 (4%) 34 40	12, 23, 52, 96	0
All	All	4044/4092 (98%)	0.04	154 (3%) 40 47	11, 21, 51, 100	0

The worst 5 of 154 RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	В	731	PRO	11.0
1	В	730	LEU	9.1
1	А	735	HIS	8.8
1	С	733	ALA	8.4
1	С	731	PRO	8.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
5	DMS	С	8422	4/4	0.90	0.17	34,42,54,66	0
5	DMS	А	8420	4/4	0.92	0.14	39,40,51,84	0
5	DMS	А	8502	4/4	0.92	0.13	40,41,45,54	0
5	DMS	А	8602	4/4	0.92	0.21	42,52,61,79	0
5	DMS	С	8420	4/4	0.92	0.17	51,51,62,94	0
5	DMS	А	8409	4/4	0.92	0.15	36,38,45,46	0
5	DMS	D	8410	4/4	0.93	0.10	25,39,50,55	0
5	DMS	D	8415	4/4	0.93	0.13	39,41,58,66	0
5	DMS	С	8406	4/4	0.94	0.10	22,46,49,55	0
5	DMS	С	8503	4/4	0.94	0.20	35,41,54,64	0
5	DMS	С	8415	4/4	0.94	0.16	$29,\!55,\!67,\!77$	0
5	DMS	D	8413	4/4	0.94	0.19	27,40,43,54	0
5	DMS	А	8407	4/4	0.94	0.15	32,34,38,40	0
5	DMS	В	8406	4/4	0.95	0.15	43,44,100,100	0
5	DMS	С	8421	4/4	0.95	0.18	48,57,64,83	0
5	DMS	В	8407	4/4	0.95	0.10	22,33,38,45	0
5	DMS	В	8413	4/4	0.95	0.21	38,54,55,100	0
5	DMS	С	8506	4/4	0.95	0.20	46,50,76,100	0
5	DMS	D	8407	4/4	0.95	0.12	26,31,33,40	0
5	DMS	D	8408	4/4	0.95	0.13	35,42,49,50	0
5	DMS	В	8420	4/4	0.95	0.13	41,44,49,100	0
4	IPT	D	2002	15/15	0.95	0.11	19,26,33,100	0
5	DMS	А	8421	4/4	0.95	0.23	43,59,69,79	0
4	IPT	А	2001	15/15	0.96	0.10	14,18,23,37	0
5	DMS	В	8409	4/4	0.96	0.11	22,39,41,41	0
4	IPT	В	2001	15/15	0.96	0.08	10,18,24,25	0
4	IPT	С	2001	15/15	0.96	0.09	$15,\!17,\!26,\!26$	0
5	DMS	В	8425	4/4	0.96	0.14	43,54,64,100	0
5	DMS	С	8404	4/4	0.96	0.08	26,29,35,40	0
5	DMS	А	8413	4/4	0.96	0.17	37,52,80,94	0
5	DMS	С	8407	4/4	0.96	0.08	28,28,31,39	0
5	DMS	С	8408	4/4	0.96	0.10	$16,\!38,\!39,\!40$	0
5	DMS	А	8415	4/4	0.96	0.12	30,37,54,62	0
5	DMS	D	8417	4/4	0.96	0.14	26,28,64,100	0
5	DMS	D	8501	4/4	0.96	0.09	$25,\!40,\!41,\!47$	0
5	DMS	В	8410	4/4	0.97	0.10	37,39,40,42	0
5	DMS	A	8408	4/4	0.97	0.10	35,47,48,100	0
5	DMS	A	8501	4/4	0.97	0.09	22,41,53,58	0
5	DMS	С	8425	4/4	0.97	0.16	38,40,44,100	0
5	DMS	С	8501	4/4	0.97	0.09	$21,\overline{42,47,48}$	0
3	NA	В	3103	1/1	0.97	0.08	$35,\!35,\!35,\!35$	0
5	DMS	В	8502	4/4	0.97	0.10	$28,29,\overline{46,100}$	0
5	DMS	D	8404	4/4	$0.9\overline{7}$	0.08	18,27,31,34	0

11	VV
тэ	$I\Lambda$

Contri	Continued from previous page									
Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9		
5	DMS	A	8410	4/4	0.97	0.08	$26,\!45,\!47,\!100$	0		
5	DMS	В	8402	4/4	0.97	0.07	21,28,30,31	0		
5	DMS	D	8409	4/4	0.97	0.09	34,34,35,42	0		
4	IPT	D	2001	15/15	0.97	0.07	14,18,31,33	0		
4	IPT	А	2002	15/15	0.97	0.10	13,21,26,28	15		
5	DMS	D	8414	4/4	0.97	0.16	31,61,100,100	0		
5	DMS	С	8409	4/4	0.97	0.09	$24,\!37,\!39,\!57$	0		
5	DMS	С	8410	4/4	0.97	0.08	29,36,44,45	0		
3	NA	В	3104	1/1	0.97	0.09	$28,\!28,\!28,\!28$	0		
5	DMS	D	8704	4/4	0.97	0.23	32,55,100,100	0		
2	MG	D	3002	1/1	0.98	0.07	23,23,23,23	0		
3	NA	D	3103	1/1	0.98	0.06	34,34,34,34	0		
5	DMS	А	8403	4/4	0.98	0.07	20,24,25,28	0		
5	DMS	А	8411	4/4	0.98	0.08	28,32,36,100	0		
5	DMS	В	8501	4/4	0.98	0.07	18,19,25,25	0		
5	DMS	А	8412	4/4	0.98	0.08	29,34,41,100	0		
5	DMS	С	8402	4/4	0.98	0.07	21,25,27,28	0		
5	DMS	D	8403	4/4	0.98	0.08	28,28,31,38	0		
5	DMS	С	8403	4/4	0.98	0.08	21,23,29,30	0		
5	DMS	D	8405	4/4	0.98	0.07	23,23,26,27	0		
5	DMS	В	8403	4/4	0.98	0.08	26,28,30,42	0		
5	DMS	С	8405	4/4	0.98	0.09	23,25,26,29	0		
5	DMS	В	8404	4/4	0.98	0.07	21,23,27,35	0		
5	DMS	В	8405	4/4	0.98	0.07	23,25,28,31	0		
5	DMS	А	8404	4/4	0.98	0.07	21,23,32,36	0		
5	DMS	А	8405	4/4	0.98	0.07	26,28,31,34	0		
5	DMS	В	8408	4/4	0.98	0.08	40,41,54,100	0		
5	DMS	С	8411	4/4	0.98	0.11	24,30,33,100	0		
5	DMS	С	8414	4/4	0.98	0.14	27,46,60,76	0		
2	MG	В	3007	1/1	0.98	0.17	24,24,24,24	0		
2	MG	А	3001	1/1	0.99	0.04	18,18,18,18	0		
2	MG	С	3001	1/1	0.99	0.04	17,17,17,17	0		
5	DMS	В	8411	4/4	0.99	0.08	34,38,49,100	0		
5	DMS	В	8412	4/4	0.99	0.07	22,29,30,34	0		
2	MG	D	3001	1/1	0.99	0.04	17,17,17,17	0		
2	MG	А	3002	1/1	0.99	0.06	21,21,21,21	0		
5	DMS	В	8421	4/4	0.99	0.18	28,38,52,53	0		
3	NA	A	3101	1/1	0.99	0.07	18,18,18,18	0		
3	NA	A	3103	1/1	0.99	0.07	29,29,29,29	0		
5	DMS	D	8401	4/4	0.99	0.07	17,19,21.22	0		
5	DMS	D	8402	4/4	0.99	0.06	17,26,28,29	0		
3	NA	В	3102	1/1	0.99	0.06	16,16,16,16	0		

1 T	$\mathbf{V}\mathbf{V}$
тл	IΛ

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B -factors($Å^2$)	Q<0.9
5	DMS	С	8401	4/4	0.99	0.07	16,18,22,22	0
5	DMS	А	8401	4/4	0.99	0.06	16,19,19,19	0
5	DMS	А	8402	4/4	0.99	0.06	18,23,24,28	0
5	DMS	В	8401	4/4	0.99	0.08	15,16,16,19	0
2	MG	В	3001	1/1	0.99	0.04	18,18,18,18	0
2	MG	В	3002	1/1	0.99	0.06	22,22,22,22	0
5	DMS	D	8411	4/4	0.99	0.06	25,28,37,48	0
5	DMS	D	8412	4/4	0.99	0.06	23,26,32,39	0
3	NA	С	3102	1/1	0.99	0.05	16,16,16,16	0
3	NA	С	3103	1/1	0.99	0.07	30,30,30,30	0
3	NA	С	3104	1/1	0.99	0.05	31,31,31,31	0
3	NA	D	3101	1/1	0.99	0.09	20,20,20,20	0
3	NA	D	3102	1/1	0.99	0.06	16,16,16,16	0
5	DMS	С	8412	4/4	0.99	0.07	24,31,39,43	0
3	NA	В	3101	1/1	1.00	0.05	17,17,17,17	0
3	NA	С	3101	1/1	1.00	0.05	17,17,17,17	0
3	NA	A	3102	1/1	1.00	0.06	16,16,16,16	0
2	MG	С	3002	1/1	1.00	0.05	17,17,17,17	0

Continued from previous page...

6.5 Other polymers (i)

There are no such residues in this entry.

