

Full wwPDB NMR Structure Validation Report (i)

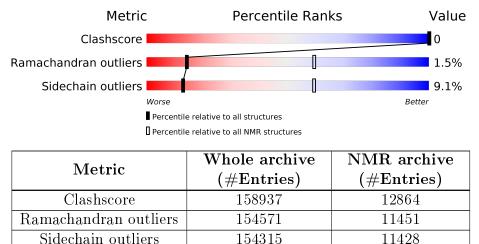
May 28, 2020 – 10:18 pm BST

PDB ID	:	2K1F
Title	:	SUMO-3 from Drosophila melanogaster (dsmt3)
Authors	:	Kumar, D.; Misra, J.R.; Misra, A.K.; Chugh, J.; Sharma, S.; Hosur, R.V.
Deposited on	:	2008-03-03

This is a Full wwPDB NMR Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/NMRValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:


Cyrange	:	Kirchner and Güntert (2011)
$\operatorname{NmrClust}$:	Kelley et al. (1996)
$\operatorname{MolProbity}$:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
RCI	:	v_1n_11_5_13_A (Berjanski et al., 2005)
PANAV	:	Wang et al. (2010)
${ m ShiftChecker}$:	2.11
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.11

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $SOLUTION \ NMR$

The overall completeness of chemical shifts assignment was not calculated.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

The table below summarises the geometric issues observed across the polymeric chains and their fit to the experimental data. The red, orange, yellow and green segments indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria. A cyan segment indicates the fraction of residues that are not part of the well-defined cores, and a grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain		
1	А	88	77%	7%	16%

2 Ensemble composition and analysis (i)

This entry contains 20 models. Model 9 is the overall representative, medoid model (most similar to other models). The authors have identified model 1 as representative, based on the following criterion: *lowest energy*.

The following residues are included in the computation of the global validation metrics.

Well-defined (core) protein residues						
Well-defined core	Residue range (total)	Backbone RMSD (Å)	Medoid model			
1 A:11-A:84 (74)		0.60	9			

Ill-defined regions of proteins are excluded from the global statistics.

Ligands and non-protein polymers are included in the analysis.

The models can be grouped into 2 clusters and 1 single-model cluster was found.

Cluster number	Models
1	$\begin{array}{c}1,\ 2,\ 3,\ 4,\ 6,\ 7,\ 9,\ 10,\ 11,\ 12,\ 13,\ 14,\ 15,\ 17,\ 18,\ 19,\\20\end{array}$
2	5, 8
Single-model clusters	16

3 Entry composition (i)

There is only 1 type of molecule in this entry. The entry contains 1380 atoms, of which 684 are hydrogens and 0 are deuteriums.

• Molecule 1 is a protein called CG4494-PA.

Mol	Chain	Residues	Atoms				Trace		
1 1	0.0	Total	С	Η	Ν	Ο	S	0	
	1 A	A 88	1380	428	684	123	140	5	0

Residue-property plots (i) 4

Average score per residue in the NMR ensemble 4.1

These plots are provided for all protein, RNA and DNA chains in the entry. The first graphic is the same as shown in the summary in section 1 of this report. The second graphic shows the sequence where residues are colour-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outliers are shown as green connectors. Residues which are classified as ill-defined in the NMR ensemble, are shown in cyan with an underline colour-coded according to the previous scheme. Residues which were present in the experimental sample, but not modelled in the final structure are shown in grey.

• Molecule 1: CG4494-PA

4.2Scores per residue for each member of the ensemble

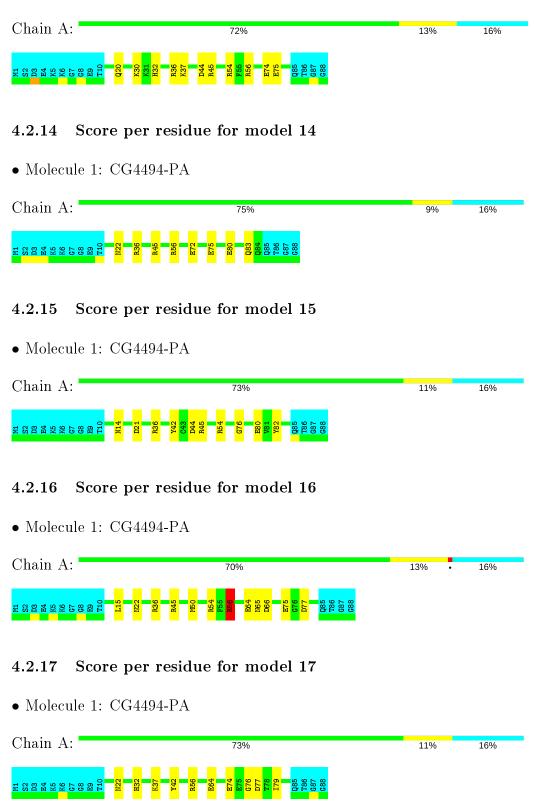
Colouring as in section 4.1 above.

4.2.1Score per residue for model 1

Chain A: 75% 7% ••• 16% 4.2.2Score per residue for model 2 • Molecule 1: CG4494-PA Chain A: 75% 8% 16%

4.2.3 Score per residue for model 3

Chain	A: 75%		8% •	16%
M1 S2 E4 K5	6 7 6 7 6 8 7 110 7 110 7 10 7 8 8 8 7 8 8 8 7 8 8 8 8 8 8 8 8 8 8 8	89		
4.2.4	Score per residue for mod	el 4		
• Mole	cule 1: CG4494-PA			
Chain	A: 69%	119	ó •	16%
M1 S2 D3 E4 K5	K6 67 69 89 89 111 112 111 112 111 112 113 113 113 113	R54 F55 R56 R56 R56 R64 C87 C88 C88 C88 C88 C88 C88 C88 C88 C88		
4.2.5	Score per residue for mod	el 5		
• Mole	cule 1: CG4494-PA			
Chain	A: 70%	109	10 ••	16%
M D K5 K5 K5	R R	D77 182 186 186 186 186 186 188 188		
4.2.6	Score per residue for mod	el 6		
• Mole	cule 1: CG4494-PA			
Chain	A: 74%		10%	16%
M SS 84 99	C C C C C C C C C C C C C C C C C C C	88 8 8 8 8 8 8 9 8 8 8 8 8 8 8 8 8 8 8 8		
4.2.7	Score per residue for mod	el 7		
• Mole	cule 1: CG4494-PA			
Chain	A: 76%		7% •	16%
M1 S2 D3 K5 K5	K6 63 89 89 80 80 80 80 80 80 80 80 80 80 80 80 80	88		



4.2.8 Score per residue for model 8

Chain A:	75%	9%	16%
M1 822 822 823 826 856 866 866 866 866 866 866 866 866 86	R56 864 11285 688 688 688		
4.2.9 Score per resid	lue for model 9 (medoid)		
• Molecule 1: CG4494-P	А		
Chain A:	70%	13% •	16%
M1 82 83 84 84 84 85 86 81 83 83 83 83 83 83 83 83 83 83 83 83 83	M39 M50 F55 F55 F55 F55 F55 F55 F75 G76 G84 F85 G87 G87 G88 F85 G87 G88 F85 G87 G88 F75 G88 F75 G88 F75 G88 F75 G88 F75 G88 F75 G88 F75 G88 F75 G88 F75 G88 F75 F75 F75 F75 F75 F75 F75 F75 F75 F75		
4.2.10 Score per res	idue for model 10		
• Molecule 1: CG4494-P	А		
Chain A:	74%	8% •	16%
표 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	「 2 日 2 日 2 日 2 日 2 日 2 日 2 日 2 日		
4.2.11 Score per res	idue for model 11		
• Molecule 1: CG4494-P	А		
Chain A:	77%	6% •	16%
88 83 85 88 88 88 88 88 88 88	855 856 888 888 888 888 888		
4.2.12 Score per res	idue for model 12		
• Molecule 1: CG4494-P	А		
Chain A:	73%	9% •	16%
Mi 852 853 853 854 856 856 853 853 853 853 853 853 853 853 853 853	R 45 8 15 15 15 15 15 15 15 15 15 15 15 15 15 1		

4.2.13 Score per residue for model 13

4.2.18Score per residue for model 18

Chain A:	73%	11%	16%
M1 82 83 84 84 86 88 88 110 110 122 138 122 138 122 138 122 138	M50 M50 M50 M56 R56 R56 R56 R56 R56 C88 C87 C88 C87 C88 C88 C88 C88 C88 C88		
4.2.19 Score per residu	ie for model 19		
• Molecule 1: CG4494-PA			
Chain A:	74%	8% •	16%
M1 82 83 83 84 84 89 89 89 89 89 83 845 845 845 845 845 845	E64 E74 083 085 085 088 088 088		
4.2.20 Score per residu	ie for model 20		
• Molecule 1: CG4494-PA			
Chain A:	72%	11% •	16%
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1993 1995		

5 Refinement protocol and experimental data overview (i)

The models were refined using the following method: torsion angle dynamics, simulated annealing, molecular dynamics.

Of the 20 calculated structures, 20 were deposited, based on the following criterion: *target function*.

The following table shows the software used for structure solution, optimisation and refinement.

Software name	Classification	Version
CYANA	structure solution	2.1
CYANA	refinement	2.1

No chemical shift data was provided. No validations of the models with respect to experimental NMR restraints is performed at this time.

COVALENT-GEOMETRY INFOmissingINFO

5.1 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in each chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes averaged over the ensemble.

Mol	Chain	Non-H	H(model)	H(added)	Clashes
1	А	598	592	592	0±0
All	All	11960	11840	11840	-

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is -.

There are no clashes.

5.2 Torsion angles (i)

5.2.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the backbone conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentil	les
1	А	74/88~(84%)	67 ± 2 (91 $\pm2\%$)	$6\pm2~(8\pm3\%)$	$1\pm1 (1\pm1\%)$	14 59	
All	All	1480/1760~(84%)	1340 (91%)	118 (8%)	22 (1%)	14 59	

All 8 unique Ramachandran outliers are listed below. They are sorted by the frequency of occurrence in the ensemble.

Mol	Chain	Res	Type	Models (Total)
1	А	22	ASN	7
1	А	74	GLU	4
1	А	76	GLY	4
1	А	11	GLU	2
1	А	72	GLU	2
1	А	75	GLU	1
1	А	77	ASP	1
1	А	21	ASP	1

5.2.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the sidechain conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	67/77~(87%)	61 ± 2 (91 $\pm3\%$)	$6{\pm}2~(9{\pm}3\%)$	13 59
All	All	1340/1540~(87%)	1218 (91%)	122~(9%)	13 59

All 36 unique residues with a non-rotameric sidechain are listed below. They are sorted by the frequency of occurrence in the ensemble.

Mol	Chain	Res	Type	Models (Total)
1	А	37	LYS	12
1	А	56	ARG	7
1	А	64	GLU	7
1	А	20	GLN	6
1	А	22	ASN	6
1	А	54	ARG	6
1	А	50	MET	5
1	А	66	ASP	5
1	А	75	GLU	5
1	А	84	GLN	5

Continued on next page...

Mol	tinued from previous page Chain Res Type Models (Total)			
			Type	· · · ·
1	A	80	GLU	4
1	A	67	THR	4
1	А	32	HIS	4
1	А	82	TYR	4
1	А	14	ASN	3
1	А	73	MET	3
1	А	42	TYR	3
1	А	44	ASP	3
1	А	39	MET	3
1	А	83	GLN	3
1	А	21	ASP	2
1	А	15	LEU	2
1	А	28	LYS	2
1	А	77	ASP	2
1	А	12	HIS	2
1	А	26	GLN	2
1	А	40	ASN	2
1	А	36	ARG	2
1	А	49	SER	1
1	А	65	ASN	1
1	А	48	LEU	1
1	А	30	LYS	1
1	А	58	ASP	1
1	А	45	ARG	1
1	А	63	ASN	1
1	А	79	ILE	1

Continued from previous page...

5.2.3 RNA (i)

There are no RNA molecules in this entry.

5.3 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.4 Carbohydrates (i)

There are no carbohydrates in this entry.

5.5 Ligand geometry (i)

There are no ligands in this entry.

5.6 Other polymers (i)

There are no such molecules in this entry.

5.7 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Chemical shift validation (i)

No chemical shift data were provided

