

Full wwPDB X-ray Structure Validation Report (i)

Aug 6, 2023 – 06:19 AM EDT

PDB ID	:	1K4S
Title	:	HUMAN DNA TOPOISOMERASE I IN COVALENT COMPLEX WITH A
		22 BASE PAIR DNA DUPLEX
Authors	:	Staker, B.L.; Hjerrild, K.; Feese, M.D.; Behnke, C.A.; Burgin Jr., A.B.; Stew-
		art, L.J.
Deposited on	:	2001-10-08
Resolution	:	3.20 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (i)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	NOT EXECUTED
EDS	:	NOT EXECUTED
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.35

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 3.20 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$		
Clashscore	141614	1253 (3.20-3.20)		
Ramachandran outliers	138981	1234 (3.20-3.20)		
Sidechain outliers	138945	1233 (3.20-3.20)		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Note EDS was not executed.

Mol	Chain	Length	Quality of chain						
1	В	10		30%					
2	С	12	8%	33%					
3	D	22	45	%	55%				
4	А	592	24%	47%	10% • 17%				

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
1	5IU	В	9	-	-	Х	-
2	5IU	С	18	-	-	Х	-
2	5IU	С	19	-	-	Х	-
2	5IU	С	20	-	-	Х	-
3	5IU	D	107	-	-	Х	-
3	5IU	D	109	-	-	Х	-
3	5IU	D	110	-	-	Х	-
3	5IU	D	116	-	-	Х	-
3	5IU	D	118	-	-	Х	-
3	5IU	D	119	-	-	Х	-

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 4858 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a DNA chain called 5'-D(*AP*AP*AP*AP*AP*GP*AP*CP*(5IU)P*(5IU))-3'.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace			
1	В	10	Total 203	C 97	I 2	N 42	O 53	Р 9	0	0	0

• Molecule 2 is a DNA chain called 5'-D(*(SPT)P*GP*AP*AP*AP*AP*AP*(5IU)P*(5IU)P*(5IU)P*(5IU)P*(5IU)P*T)-3'.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace			
2	С	12	Total 244	C 116	I 4	N 42	O 70	Р 11	S 1	0	0	0

• Molecule 3 is a DNA chain called 5'-D(*AP*AP*AP*AP*AP*TP*(IDO)UP*(IDO)UP*(IDO)UP*(IDO)UP*(IDO)UP*(IDO)UP*(IDO)UP*(IDO)UP*(IDO)UP*(IDO)UP*(IDO)UP*(IDO)UP*(IDO)UP*T)-3'.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace		
3	D	22	Total 445	C 209	I 9	N 73	O 133	Р 21	0	0	0

• Molecule 4 is a protein called DNA topoisomerase I.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace	
4	А	490	Total 3966	C 2540	N 689	0 715	Р 1	S 21	0	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
A	723	PTR	TYR	modified residue	UNP P11387

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

Note EDS was not executed.

• Molecule 1: 5'-D(*AP*AP*AP*AP*AP*GP*AP*CP*(5IU)P*(5IU))-3'

Chain B:	70%	30%	•
A1 A2 A4 A7 C8 C8 U10 U10			
• Molecule 2: 5'-D	(*(SPT)P*GP*AP*AP*	AP*AP*AP*(5IU)P*(5IU)P	*(5IU)P*(5IU)P*T)-
Chain C: 8%	58%	33%	l
T11 G12 A14 A15 A16 U18 U18 U20 U21 T22			
• Molecule 3: 5'-D(*AP*AP*GP*(IDC	(*AP*AP*AP*AP*AP*T)))UP*CP*(IDO)UP*(IDO	P*(IDO)UP*(IDO)UP*(IDO)))UP*(IDO)UP*(IDO)UP*T)	UP*(IDO)UP*CP*A -3'
Chain D:	45%	55%	-
A101 A102 A103 A104 A104 A105 U107 U107 U108 U110 C111 A112 A113 A114	6115 0117 0117 0119 0119 0120 1122		
• Molecule 4: DNA	topoisomerase I		
Chain A: 24%	47%	10% • 17%	I
LYS LYS LYS PRO LYS LYS LYS ASP LYS LYS LYS LYS VAL PRO GLU	PRD ASP ASP ASP ASP LYS LYS LYS LYS LYS CVS GUU GUU GUU GUU GUU GUU GUU CVS CO CV V205 V205 V205 V205 CV CV CV CV CV CV CV CV CV CV CV CV CV	E207 E208 E208 E208 E209 7211 7211 215 E213 E215 F219 F219 F219 F219 F221 F221 F221 F222 F223 F223 F223	7231 8232 12233 12235 7235
E236 8236 N237 V238 V238 F240 F240 F245 G244 G244 G244 G244 K246 M247 K246 K246 K246 K246 K246	2250 2251 7251 7253 7255 7255 7255 7255 7255 7256 7256 7256	1269 1270 1271 1273 1273 1273 1273 1274 1274 1274 1275 1276 1276 1278 1286 1286 1286 1286 1288 1288 1288 128	1295 1294 1294 1295 1296
N296 L297 S299 K299 C300 D301 P303 P306 P306 P306 P306 P306 P309	K310 4311 1313 1313 1313 1313 1313 1314 1314 1327 1327 1327 1327 1327 1328 1328 1328 1328 1328 1328 1328 1327 1327 1327 1331	L1334 L1335 K1338 K1338 C1335 C1338 C1338 C1338 C1338 C1338 C1338 C1338 C1338 C1347 C1347 C1347 C1347 C1347 C1356	L3605 F361 6362 0365 R364
0365 N366 H366 P368 R370 M370 M372 L373 K376 R376 R376 R376 R376 R376 R376	P379 1382 1383 1384 1384 1384 8385 8387 8386 8386 8386 8386 8388 8388 8389 8400 8400 8401 8402 8403 8403 8403	R405 P406 P406 P406 N408 N408 N408 N412 V413 V414 V412 V413 V413 V414 V412 V413 V413 V414 V413 V414 V412 V413 V413 V414 V412 V413 V413 V414 V415 V425 V425 V425	1427 1428 1429 1429 1430

4 Data and refinement statistics (i)

Xtriage (Phenix) and EDS were not executed - this section is therefore incomplete.

Property	Value	Source	
Space group	P 32	Depositor	
Cell constants	73.23Å 73.23Å 186.63Å	Depositor	
a, b, c, α , β , γ	90.00° 90.00° 120.00°	Depositor	
Resolution (Å)	50.00 - 3.20	Depositor	
% Data completeness	96.8 (50.00-3.20)	Depositor	
(in resolution range)	50.0 (50.00 5.20)	Depositor	
R_{merge}	(Not available)	Depositor	
R _{sym}	0.13	Depositor	
Refinement program	CNX	Depositor	
R, R_{free}	0.217 , 0.222	Depositor	
Estimated twinning fraction	No twinning to report.	Xtriage	
Total number of atoms	4858	wwPDB-VP	
Average B, all atoms $(Å^2)$	41.0	wwPDB-VP	

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: SPT, $5\mathrm{IU},\,\mathrm{PTR}$

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles	
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	В	0.56	0/186	0.90	1/285~(0.4%)
2	С	0.44	0/165	0.69	0/250
3	D	0.54	0/296	0.81	0/447
4	А	0.49	0/4046	0.69	0/5464
All	All	0.49	0/4693	0.71	1/6446~(0.0%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
3	D	0	3

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	В	8	DC	C1'-O4'-C4'	-5.57	104.53	110.10

There are no chirality outliers.

All (3) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
3	D	111	DC	Sidechain
3	D	114	DA	Sidechain
3	D	117	DC	Sidechain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	В	203	0	106	45	0
2	С	244	0	127	28	0
3	D	445	0	228	95	0
4	А	3966	0	3841	434	0
All	All	4858	0	4302	559	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 62.

All (559) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:8:DC:H2"	1:B:9:5IU:I5	1.95	1.35
3:D:115:DG:H2'	3:D:116:5IU:I5	2.10	1.20
3:D:118:5IU:H2"	3:D:119:5IU:H5'	1.21	1.11
3:D:118:5IU:C2'	3:D:119:5IU:H5'	1.88	1.03
3:D:119:5IU:H2'	3:D:120:5IU:I5	2.28	1.03
1:B:8:DC:C2'	1:B:9:5IU:I5	2.77	1.03
2:C:11:SPT:S5'	4:A:723:PTR:HE1	1.99	1.02
1:B:10:5IU:H2'	4:A:722:ASN:HD21	1.26	1.00
4:A:741:GLU:HA	4:A:749:ARG:HH12	1.24	0.99
3:D:115:DG:C2'	3:D:116:5IU:I5	2.81	0.98
4:A:249:LEU:HG	4:A:254:GLU:HG3	1.46	0.96
4:A:756:ILE:HG13	4:A:757:ASP:H	1.30	0.95
4:A:745:ASN:ND2	4:A:748:GLN:H	1.63	0.95
4:A:744:TYR:HA	4:A:748:GLN:HE21	1.32	0.94
3:D:109:5IU:H2"	3:D:110:5IU:C5'	1.97	0.94
2:C:18:5IU:H5"	2:C:18:5IU:H6	1.51	0.93
3:D:107:5IU:I5	4:A:708:ARG:NH2	2.72	0.93
4:A:234:LEU:H	4:A:234:LEU:HD22	1.34	0.91
4:A:239:LYS:H	4:A:304:GLN:NE2	1.68	0.91
1:B:9:5IU:H5"	4:A:439:LYS:NZ	1.85	0.91
4:A:713:GLN:HE22	4:A:714:ILE:HG12	1.35	0.91
4:A:288:ASN:HA	4:A:291:LYS:HE2	1.52	0.90
2:C:20:5IU:H5"	2:C:20:5IU:H6	1.52	0.89

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
3:D:105:DA:H2"	3:D:106:DT:H5"	1.54	0.88
3:D:122:DT:H6	3:D:122:DT:OP2	1.56	0.87
4:A:617:LEU:HD13	4:A:621:ARG:HD3	1.57	0.87
1:B:9:5IU:I5	1:B:9:5IU:OP2	2.63	0.86
1:B:1:DA:H1'	1:B:2:DA:O5'	1.75	0.86
4:A:613:PRO:HA	4:A:616:ILE:HD12	1.57	0.86
3:D:105:DA:H2"	3:D:106:DT:C5'	2.06	0.86
4:A:578:GLN:HE22	4:A:582:GLU:HA	1.41	0.86
3:D:106:DT:H2"	3:D:107:5IU:H5"	1.57	0.85
3:D:114:DA:H4'	4:A:533:ASP:OD1	1.77	0.85
3:D:109:5IU:H2"	3:D:110:5IU:H5'	1.56	0.85
4:A:744:TYR:HA	4:A:748:GLN:NE2	1.91	0.85
2:C:18:5IU:H2'	2:C:19:5IU:I5	2.46	0.84
4:A:746:LYS:HA	4:A:749:ARG:HE	1.43	0.84
4:A:734:LYS:HB2	4:A:761:GLU:HB3	1.60	0.84
4:A:261:ALA:HA	4:A:264:LEU:HD21	1.60	0.83
2:C:21:5IU:H2"	2:C:22:DT:C6	2.14	0.82
3:D:106:DT:H2"	3:D:107:5IU:C5'	2.09	0.82
3:D:109:5IU:C2'	3:D:110:5IU:H5'	2.09	0.82
1:B:5:DA:H1'	1:B:6:DG:H5"	1.62	0.82
3:D:106:DT:H1'	3:D:107:5IU:H5'	1.62	0.81
4:A:745:ASN:HD21	4:A:748:GLN:H	1.27	0.81
4:A:384:ILE:HB	4:A:404:VAL:HG13	1.63	0.80
3:D:115:DG:H2"	3:D:116:5IU:H6	1.62	0.80
3:D:106:DT:H3'	4:A:708:ARG:HE	1.45	0.80
3:D:106:DT:H3'	4:A:708:ARG:NE	1.97	0.79
4:A:595:SER:HB3	4:A:724:LEU:HA	1.65	0.79
3:D:112:DA:H1'	3:D:113:DA:C8	2.17	0.79
4:A:753:ALA:HA	4:A:756:ILE:HD11	1.64	0.78
4:A:434:ARG:HH21	4:A:435:ILE:HB	1.48	0.78
1:B:5:DA:H2"	1:B:6:DG:H5'	1.65	0.78
3:D:108:5IU:H1'	3:D:109:5IU:H5'	1.64	0.78
3:D:116:5IU:H2"	3:D:117:DC:H5'	1.64	0.77
4:A:336:LYS:HE3	4:A:336:LYS:H	1.48	0.77
3:D:105:DA:C2'	3:D:106:DT:H5"	2.13	0.77
4:A:272:GLU:HA	4:A:275:ARG:HE	1.49	0.77
4:A:578:GLN:NE2	4:A:582:GLU:HA	1.99	0.76
4:A:717:GLY:HA3	4:A:721:LEU:HD13	1.67	0.76
4:A:273:ILE:H	4:A:273:ILE:HD12	1.51	0.76
4:A:386:CYS:SG	4:A:387:SER:N	2.60	0.75
4:A:745:ASN:H	4:A:748:GLN:CD	1.90	0.75

	lo uo pugom	Interatomic	nic Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
3:D:114:DA:C2	3:D:115:DG:C4	2.75	0.75	
2:C:20:5IU:H2'	2:C:21:5IU:I5	2.57	0.74	
4:A:574:ASN:HA	4:A:577:LEU:HD12	1.68	0.74	
2:C:11:SPT:S5'	4:A:718:THR:HG23	2.26	0.74	
4:A:375:ARG:NH1	4:A:377:ILE:HA	2.03	0.74	
4:A:448:ARG:HE	4:A:765:PHE:HA	1.53	0.74	
4:A:746:LYS:HE2	4:A:750:GLU:HG2	1.70	0.73	
4:A:429:LEU:HD12	4:A:435:ILE:HG21	1.69	0.72	
4:A:477:VAL:HG21	4:A:554:PHE:CE2	2.25	0.72	
3:D:122:DT:OP2	3:D:122:DT:C6	2.41	0.72	
4:A:746:LYS:HA	4:A:749:ARG:NE	2.04	0.72	
4:A:388:LYS:HG3	4:A:406:HIS:NE2	2.04	0.72	
4:A:719:SER:HA	4:A:723:PTR:HD1	1.72	0.72	
3:D:118:5IU:C3'	3:D:119:5IU:H5'	2.20	0.72	
3:D:109:5IU:H2"	3:D:110:5IU:H5"	1.70	0.72	
4:A:203:TRP:CH2	4:A:208:GLU:HG3	2.25	0.71	
4:A:539:ASN:HD21	4:A:541:VAL:HB	1.55	0.70	
1:B:9:5IU:H5"	4:A:439:LYS:HZ2	1.56	0.70	
3:D:116:5IU:H2'	4:A:491:ASN:HD21	1.55	0.70	
1:B:9:5IU:H5"	4:A:439:LYS:HZ3	1.51	0.70	
3:D:118:5IU:H2"	3:D:119:5IU:C5'	2.12	0.70	
4:A:215:ILE:HD11	4:A:217:TRP:O	1.92	0.70	
4:A:236:GLU:HA	4:A:239:LYS:NZ	2.06	0.70	
4:A:367:HIS:CD2	4:A:369:LYS:H	2.10	0.70	
4:A:467:SER:N	4:A:473:ARG:HE	1.89	0.70	
1:B:5:DA:H2"	1:B:6:DG:C5'	2.22	0.70	
4:A:731:ALA:HB2	4:A:763:TYR:HB3	1.74	0.69	
2:C:21:5IU:H2"	2:C:22:DT:C5	2.27	0.69	
4:A:713:GLN:NE2	4:A:714:ILE:HG12	2.06	0.69	
1:B:8:DC:H4'	4:A:439:LYS:NZ	2.08	0.69	
4:A:324:LYS:HB2	4:A:324:LYS:NZ	2.07	0.69	
3:D:115:DG:OP1	4:A:532:LYS:HA	1.91	0.69	
4:A:593:ASN:HA	4:A:596:ILE:HG22	1.75	0.69	
4:A:263:MET:SD	4:A:362:ARG:NH1	2.66	0.69	
4:A:253:ALA:HB2	4:A:286:MET:HB3	1.75	0.69	
4:A:429:LEU:HD12	4:A:435:ILE:CG2	2.22	0.69	
4:A:241:TYR:HA	4:A:246:VAL:HA	1.75	0.68	
4:A:617:LEU:O	4:A:621:ARG:HG3	1.92	0.68	
4:A:288:ASN:CA	4:A:291:LYS:HE2	2.23	0.68	
4:A:360:LEU:HD23	4:A:373:LEU:HA	1.76	0.68	
4:A:303:THR:O	4:A:307:GLN:HG2	1.94	0.68	

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
4:A:716:LEU:HG	4:A:717:GLY:H	1.59	0.68
4:A:509:VAL:HG13	4:A:562:ASP:O	1.95	0.67
4:A:612:ILE:O	4:A:616:ILE:HG13	1.94	0.67
3:D:118:5IU:H2"	3:D:119:5IU:H6	1.76	0.67
1:B:8:DC:H2'	4:A:428:MET:CE	2.24	0.67
4:A:753:ALA:HA	4:A:756:ILE:CD1	2.24	0.67
4:A:481:PHE:HZ	4:A:551:LEU:HD11	1.59	0.67
1:B:10:5IU:H2'	4:A:722:ASN:ND2	2.07	0.67
2:C:14:DA:H2"	2:C:15:DA:OP2	1.95	0.67
4:A:374:LYS:O	4:A:375:ARG:HB2	1.94	0.66
4:A:461:TYR:HD2	4:A:479:LEU:HD23	1.60	0.66
2:C:19:5IU:H1'	2:C:20:5IU:H5'	1.77	0.66
4:A:328:LYS:HG3	4:A:329:GLU:N	2.11	0.66
4:A:240:PHE:HE2	4:A:242:TYR:HB2	1.60	0.66
4:A:440:ASP:O	4:A:443:LYS:HB3	1.95	0.66
4:A:746:LYS:O	4:A:750:GLU:HG3	1.95	0.66
1:B:8:DC:H4'	4:A:439:LYS:HZ1	1.61	0.66
4:A:213:GLU:O	4:A:215:ILE:HG22	1.96	0.66
4:A:745:ASN:HD21	4:A:748:GLN:N	1.94	0.65
4:A:235:PRO:HG2	4:A:238:VAL:HG22	1.77	0.65
3:D:116:5IU:H2"	3:D:117:DC:C5'	2.25	0.65
3:D:101:DA:H1'	3:D:102:DA:H5'	1.79	0.65
4:A:271:LYS:O	4:A:275:ARG:HD3	1.96	0.65
4:A:267:GLU:O	4:A:271:LYS:HG3	1.97	0.65
4:A:287:THR:O	4:A:291:LYS:HG3	1.97	0.64
3:D:119:5IU:C5'	3:D:119:5IU:H6	2.28	0.64
4:A:220:LEU:HA	4:A:342:ILE:O	1.98	0.64
2:C:11:SPT:H2"	2:C:12:DG:C8	2.33	0.63
4:A:240:PHE:CE2	4:A:242:TYR:HB2	2.33	0.63
4:A:374:LYS:HA	4:A:420:ILE:HD11	1.80	0.63
4:A:297:LEU:C	4:A:299:LYS:H	2.02	0.63
4:A:340:PHE:HB2	4:A:347:LYS:NZ	2.14	0.63
4:A:585:THR:O	4:A:588:VAL:HG23	1.99	0.63
4:A:716:LEU:HG	4:A:717:GLY:N	2.14	0.63
4:A:241:TYR:CD2	4:A:244:GLY:HA2	2.32	0.63
3:D:115:DG:H5"	4:A:532:LYS:HG3	1.79	0.62
3:D:115:DG:C5'	4:A:532:LYS:HG3	2.29	0.62
4:A:296:ASN:HD22	4:A:299:LYS:HE2	1.64	0.62
4:A:369:LYS:HD3	4:A:421:GLN:HE22	1.64	0.62
4:A:756:ILE:HG13	4:A:757:ASP:N	2.09	0.62
4:A:306:SER:O	4:A:310:LYS:HG3	1.98	0.62

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
4:A:241:TYR:HD2	4:A:244:GLY:HA2	1.64	0.62
4:A:402:LYS:NZ	4:A:403:GLU:HB2	2.15	0.62
4:A:494:GLU:O	4:A:498:THR:HG22	1.99	0.62
4:A:349:ARG:HB3	4:A:430:ASN:HD22	1.65	0.61
1:B:1:DA:H2"	1:B:2:DA:OP2	1.99	0.61
4:A:310:LYS:O	4:A:313:THR:HB	2.00	0.61
4:A:527:PHE:O	4:A:538:TYR:HA	2.00	0.61
4:A:617:LEU:CD1	4:A:621:ARG:HD3	2.30	0.61
4:A:286:MET:HG3	4:A:291:LYS:HG2	1.83	0.61
4:A:298:SER:O	4:A:299:LYS:HG3	2.00	0.61
3:D:114:DA:C2	3:D:115:DG:C5	2.89	0.60
3:D:118:5IU:H2'	3:D:119:5IU:I5	2.71	0.60
4:A:417:THR:HA	4:A:424:ILE:HA	1.82	0.60
4:A:223:LYS:HD3	4:A:338:TYR:CE1	2.36	0.60
4:A:532:LYS:HG2	4:A:533:ASP:OD1	2.01	0.60
4:A:366:ASN:N	4:A:366:ASN:HD22	1.99	0.59
4:A:415:SER:HB2	4:A:425:LYS:O	2.02	0.59
4:A:477:VAL:O	4:A:480:TYR:HB3	2.01	0.59
1:B:4:DA:C2	1:B:5:DA:C4	2.91	0.59
1:B:5:DA:C1'	1:B:6:DG:H5"	2.33	0.59
4:A:334:LEU:HD12	4:A:338:TYR:HD2	1.67	0.59
4:A:324:LYS:O	4:A:327:ILE:HG12	2.03	0.59
4:A:386:CYS:SG	4:A:390:ALA:HB3	2.42	0.59
4:A:343:MET:O	4:A:345:ASN:N	2.35	0.59
4:A:477:VAL:HG21	4:A:554:PHE:HE2	1.67	0.59
4:A:387:SER:N	4:A:406:HIS:ND1	2.50	0.59
1:B:9:5IU:OP2	1:B:9:5IU:H6	2.02	0.59
4:A:257:ALA:HB2	4:A:282:TRP:HZ2	1.67	0.59
4:A:418:GLU:N	4:A:423:SER:O	2.35	0.59
4:A:461:TYR:CD2	4:A:479:LEU:HD23	2.38	0.58
4:A:234:LEU:N	4:A:234:LEU:HD13	2.18	0.58
4:A:238:VAL:HG11	4:A:308:TYR:CD2	2.38	0.58
4:A:359:GLY:O	4:A:373:LEU:HD12	2.03	0.58
4:A:210:ARG:H	4:A:210:ARG:HD2	1.69	0.58
4:A:252:LYS:O	4:A:256:VAL:HG23	2.03	0.58
4:A:448:ARG:HD2	4:A:765:PHE:CD1	2.38	0.58
1:B:8:DC:H2'	4:A:428:MET:HE3	1.85	0.58
3:D:115:DG:H2"	3:D:116:5IU:I5	2.71	0.58
4:A:367:HIS:HD2	4:A:369:LYS:H	1.49	0.58
2:C:18:5IU:H6	2:C:18:5IU:C5'	2.30	0.58
4:A:593:ASN:HA	4:A:596:ILE:CG2	2.33	0.58

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:2:DA:H1'	1:B:3:DA:C8	2.39	0.58
4:A:746:LYS:O	4:A:749:ARG:HG2	2.04	0.58
4:A:514:LEU:CD2	4:A:525:VAL:HG22	2.34	0.57
4:A:527:PHE:HE1	4:A:541:VAL:CG1	2.18	0.57
4:A:746:LYS:HE2	4:A:750:GLU:CG	2.35	0.57
4:A:249:LEU:N	4:A:249:LEU:HD23	2.20	0.57
4:A:717:GLY:O	4:A:719:SER:N	2.37	0.57
4:A:719:SER:O	4:A:723:PTR:HB3	2.05	0.57
4:A:581:MET:HB3	4:A:584:LEU:HB2	1.86	0.57
4:A:231:TYR:OH	4:A:254:GLU:HB3	2.05	0.57
4:A:348:GLU:OE1	4:A:433:SER:HA	2.04	0.57
4:A:269:THR:O	4:A:275:ARG:HD2	2.05	0.56
4:A:616:ILE:O	4:A:619:TYR:HB3	2.05	0.56
4:A:353:PHE:CD1	4:A:354:LYS:HG3	2.40	0.56
4:A:234:LEU:HD21	4:A:254:GLU:HG2	1.86	0.56
4:A:287:THR:OG1	4:A:290:GLU:HG3	2.04	0.56
4:A:353:PHE:CE1	4:A:354:LYS:HG3	2.40	0.56
3:D:110:5IU:C4	3:D:111:DC:N4	2.69	0.56
4:A:257:ALA:HB2	4:A:282:TRP:CZ2	2.40	0.56
4:A:388:LYS:HG3	4:A:406:HIS:CD2	2.40	0.56
4:A:465:TRP:CH2	4:A:544:GLU:HG3	2.40	0.56
4:A:242:TYR:HE1	4:A:299:LYS:HB2	1.70	0.56
4:A:369:LYS:HG3	4:A:372:MET:SD	2.46	0.56
4:A:600:GLN:O	4:A:603:LYS:HB3	2.06	0.56
1:B:7:DA:H8	4:A:426:TYR:OH	1.89	0.55
4:A:219:PHE:O	4:A:343:MET:HA	2.06	0.55
4:A:240:PHE:CG	4:A:241:TYR:N	2.72	0.55
4:A:511:HIS:CD2	4:A:529:PHE:HB3	2.41	0.55
4:A:213:GLU:O	4:A:215:ILE:N	2.32	0.55
4:A:234:LEU:HD22	4:A:234:LEU:N	2.13	0.55
4:A:530:LEU:N	4:A:530:LEU:HD12	2.21	0.55
1:B:9:5IU:H2'	1:B:10:5IU:I5	2.77	0.55
3:D:109:5IU:H5"	3:D:109:5IU:H6	1.89	0.55
3:D:116:5IU:H3'	4:A:489:ALA:CB	2.36	0.55
4:A:206:TRP:CZ2	4:A:754:TRP:HA	2.41	0.55
3:D:101:DA:H1'	3:D:102:DA:C5'	2.36	0.55
4:A:254:GLU:O	4:A:258:THR:HG23	2.06	0.55
4:A:256:VAL:HA	4:A:259:PHE:CD2	2.41	0.55
4:A:324:LYS:HB2	4:A:324:LYS:HZ2	1.70	0.55
1:B:8:DC:OP2	4:A:410:VAL:HG12	2.07	0.55
4:A:711:ASN:OD1	4:A:714:ILE:HB	2.07	0.55

	lo uo pugom	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
4:A:618:SER:HA	4:A:621:ARG:NE	2.21	0.54	
1:B:3:DA:H1'	1:B:4:DA:H5'	1.88	0.54	
3:D:102:DA:H1'	3:D:103:DA:O5'	2.07	0.54	
4:A:236:GLU:HA	4:A:239:LYS:HZ3	1.71	0.54	
2:C:18:5IU:H2"	2:C:19:5IU:O5'	2.07	0.54	
4:A:386:CYS:HB3	4:A:406:HIS:CE1	2.41	0.54	
4:A:413:LEU:HD12	4:A:427:ILE:O	2.07	0.54	
4:A:745:ASN:ND2	4:A:748:GLN:N	2.46	0.54	
4:A:231:TYR:CD2	4:A:255:GLU:HB3	2.42	0.54	
4:A:590:ARG:HH22	4:A:632:HIS:CE1	2.26	0.54	
1:B:1:DA:C1'	1:B:2:DA:O5'	2.50	0.54	
2:C:11:SPT:S5'	4:A:718:THR:CG2	2.96	0.54	
4:A:239:LYS:N	4:A:304:GLN:NE2	2.49	0.54	
4:A:266:HIS:ND1	4:A:267:GLU:N	2.56	0.54	
4:A:551:LEU:HA	4:A:554:PHE:CD2	2.43	0.54	
4:A:593:ASN:CA	4:A:596:ILE:HG22	2.38	0.54	
4:A:418:GLU:OE1	4:A:422:GLY:N	2.40	0.54	
3:D:106:DT:H5'	3:D:106:DT:H6	1.73	0.53	
4:A:245:LYS:O	4:A:247:MET:HG3	2.08	0.53	
1:B:7:DA:H8	4:A:426:TYR:HH	1.55	0.53	
4:A:514:LEU:HD22	4:A:525:VAL:HG22	1.90	0.53	
3:D:106:DT:C1'	3:D:107:5IU:H5'	2.36	0.53	
4:A:445:GLU:O	4:A:449:ARG:HG3	2.08	0.53	
3:D:115:DG:C8	3:D:116:5IU:I5	3.32	0.53	
4:A:745:ASN:O	4:A:749:ARG:HB3	2.08	0.53	
4:A:221:GLU:HG3	4:A:390:ALA:HB1	1.91	0.53	
1:B:5:DA:C4	1:B:6:DG:C8	2.97	0.53	
4:A:262:LYS:O	4:A:263:MET:HG3	2.08	0.53	
4:A:578:GLN:HE22	4:A:583:GLY:H	1.57	0.53	
4:A:327:ILE:HA	4:A:330:GLU:CD	2.29	0.53	
4:A:745:ASN:HD22	4:A:748:GLN:CG	2.21	0.53	
4:A:366:ASN:N	4:A:366:ASN:ND2	2.56	0.53	
4:A:551:LEU:HA	4:A:554:PHE:HD2	1.74	0.53	
4:A:625:ALA:O	4:A:628:ILE:HB	2.09	0.53	
4:A:252:LYS:O	4:A:255:GLU:HG2	2.09	0.52	
3:D:115:DG:H2"	3:D:116:5IU:C6	2.37	0.52	
4:A:457:ILE:HA	4:A:460:GLN:OE1	2.10	0.52	
4:A:618:SER:HA	4:A:621:ARG:CZ	2.39	0.52	
4:A:503:GLY:N	4:A:506:SER:OG	2.43	0.52	
4:A:754:TRP:O	4:A:758:MET:HG2	2.09	0.52	
4:A:375:ARG:HH11	4:A:377:ILE:HA	1.74	0.52	

		Interatomic	Clash
Atom-1 Atom-2		distance (\AA)	overlap (Å)
4:A:735:LYS:N	4:A:761:GLU:HB3	2.25	0.52
3:D:109:5IU:H1'	3:D:110:5IU:H5'	1.91	0.52
4:A:256:VAL:HA	4:A:259:PHE:CE2	2.44	0.52
3:D:106:DT:H2'	3:D:107:5IU:I5	2.80	0.52
4:A:383:ILE:HA	4:A:403:GLU:O	2.10	0.52
1:B:8:DC:OP2	4:A:411:THR:HB	2.10	0.52
3:D:118:5IU:H2"	3:D:119:5IU:C6	2.39	0.52
4:A:328:LYS:NZ	4:A:329:GLU:HA	2.25	0.52
1:B:5:DA:C2'	1:B:6:DG:C5'	2.88	0.52
4:A:288:ASN:HA	4:A:291:LYS:CE	2.34	0.52
3:D:105:DA:H1'	3:D:106:DT:H5"	1.91	0.51
4:A:349:ARG:O	4:A:430:ASN:HB2	2.10	0.51
4:A:407:ASP:C	4:A:409:LYS:H	2.14	0.51
4:A:752:PHE:O	4:A:756:ILE:HG12	2.11	0.51
1:B:8:DC:H2"	1:B:9:5IU:OP2	2.11	0.51
3:D:109:5IU:C1'	3:D:110:5IU:H5'	2.40	0.51
4:A:268:TYR:HA	4:A:271:LYS:HD2	1.93	0.51
4:A:435:ILE:HG23	4:A:436:LYS:H	1.76	0.51
4:A:249:LEU:CG	4:A:254:GLU:HG3	2.30	0.51
4:A:745:ASN:ND2	4:A:748:GLN:OE1	2.43	0.50
4:A:258:THR:O	4:A:262:LYS:HG3	2.11	0.50
4:A:741:GLU:HA	4:A:749:ARG:NH1	2.08	0.50
4:A:279:PHE:O	4:A:283:ARG:HG2	2.12	0.50
4:A:340:PHE:HZ	4:A:349:ARG:HH21	1.60	0.50
4:A:530:LEU:HD12	4:A:530:LEU:H	1.76	0.50
4:A:626:VAL:HG11	4:A:724:LEU:HD21	1.92	0.50
4:A:726:PRO:O	4:A:730:VAL:HG23	2.11	0.50
4:A:745:ASN:H	4:A:748:GLN:NE2	2.09	0.50
1:B:5:DA:C2	1:B:6:DG:C4	2.99	0.50
4:A:730:VAL:O	4:A:734:LYS:HG2	2.11	0.50
4:A:599:GLN:HE21	4:A:765:PHE:H	1.58	0.50
1:B:2:DA:H2"	1:B:3:DA:OP2	2.10	0.50
2:C:17:DA:H2"	2:C:18:5IU:H5'	1.93	0.50
2:C:19:5IU:H2"	2:C:20:5IU:C5'	2.42	0.50
4:A:384:ILE:HD13	4:A:414:VAL:CG2	2.42	0.50
4:A:485:LEU:HD11	4:A:541:VAL:HG11	1.94	0.50
4:A:214:GLY:HA3	4:A:409:LYS:HZ1	1.75	0.50
4:A:226:VAL:HB	4:A:354:LYS:HA	1.95	0.49
4:A:461:TYR:CD1	4:A:462:ARG:N	2.80	0.49
4:A:456:LYS:HG3	4:A:460:GLN:OE1	2.12	0.49
3:D:103:DA:H2"	3:D:104:DA:OP2	2.12	0.49

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
3:D:119:5IU:H5'	3:D:119:5IU:H6	1.92	0.49
4:A:509:VAL:CG2	4:A:560:PRO:HA	2.43	0.49
1:B:6:DG:H2"	1:B:7:DA:H8	1.76	0.49
4:A:530:LEU:HA	4:A:536:ARG:HA	1.93	0.49
4:A:612:ILE:HB	4:A:613:PRO:HD3	1.94	0.49
4:A:373:LEU:HD12	4:A:374:LYS:N	2.28	0.49
4:A:615:LYS:O	4:A:618:SER:HB2	2.11	0.49
4:A:731:ALA:CB	4:A:763:TYR:HB3	2.42	0.49
4:A:247:MET:SD	4:A:247:MET:O	2.71	0.49
4:A:330:GLU:HG2	4:A:331:ASN:N	2.27	0.49
4:A:558:LYS:NZ	4:A:564:LEU:O	2.46	0.49
3:D:116:5IU:H3'	4:A:489:ALA:HB2	1.94	0.49
4:A:364:ARG:HD3	4:A:533:ASP:HB3	1.95	0.49
4:A:286:MET:HG3	4:A:291:LYS:CG	2.42	0.49
4:A:464:ASP:O	4:A:473:ARG:HD3	2.13	0.48
4:A:518:LEU:HD22	4:A:524:VAL:HG11	1.94	0.48
4:A:568:LEU:HD23	4:A:569:ASN:N	2.28	0.48
4:A:743:ILE:HG22	4:A:744:TYR:CD1	2.48	0.48
3:D:105:DA:C1'	3:D:106:DT:H5"	2.43	0.48
4:A:328:LYS:HZ2	4:A:329:GLU:HA	1.78	0.48
4:A:223:LYS:HD3	4:A:338:TYR:HE1	1.76	0.48
4:A:628:ILE:HG22	4:A:629:LEU:HD23	1.95	0.48
4:A:275:ARG:HH11	4:A:275:ARG:HG2	1.79	0.48
1:B:5:DA:C2'	1:B:6:DG:H5"	2.43	0.48
4:A:341:CYS:SG	4:A:342:ILE:N	2.87	0.48
4:A:731:ALA:O	4:A:761:GLU:HA	2.14	0.48
3:D:113:DA:H3'	4:A:361:PHE:HE2	1.78	0.48
4:A:243:ASP:C	4:A:245:LYS:H	2.17	0.48
4:A:335:LEU:O	4:A:339:GLY:N	2.35	0.48
4:A:566:ASP:OD2	4:A:567:ARG:HG3	2.13	0.48
4:A:327:ILE:HA	4:A:330:GLU:HB3	1.95	0.48
4:A:754:TRP:O	4:A:758:MET:N	2.37	0.48
4:A:754:TRP:H	4:A:756:ILE:HG12	1.79	0.48
1:B:10:5IU:H2"	2:C:11:SPT:H5"	1.95	0.48
4:A:234:LEU:H	4:A:234:LEU:CD2	2.05	0.48
4:A:497:GLU:H	4:A:497:GLU:CD	2.17	0.48
4:A:238:VAL:HG21	4:A:308:TYR:CD2	2.49	0.47
4:A:448:ARG:NH2	4:A:763:TYR:CE1	2.82	0.47
4:A:602:LEU:HD22	4:A:732:TRP:NE1	2.29	0.47
4:A:745:ASN:HD22	4:A:748:GLN:CD	2.17	0.47
4:A:578:GLN:NE2	4:A:583:GLY:H	2.12	0.47

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:C:20:5IU:H6	2:C:20:5IU:C5'	2.35	0.47
3:D:102:DA:H1'	3:D:103:DA:C5'	2.45	0.47
3:D:114:DA:H1'	3:D:115:DG:H5"	1.95	0.47
4:A:482:ILE:HG13	4:A:504:CYS:SG	2.54	0.47
4:A:511:HIS:CD2	4:A:529:PHE:CB	2.98	0.47
4:A:370:MET:O	4:A:370:MET:HG3	2.14	0.47
4:A:598:LEU:HD13	4:A:724:LEU:HD22	1.94	0.47
4:A:602:LEU:HB3	4:A:732:TRP:CD1	2.49	0.47
4:A:719:SER:OG	4:A:720:LYS:N	2.48	0.47
2:C:16:DA:H2"	2:C:17:DA:C8	2.50	0.47
3:D:108:5IU:H2"	3:D:109:5IU:OP2	2.14	0.47
4:A:241:TYR:HB2	4:A:301:ASP:HB3	1.97	0.47
4:A:388:LYS:HG3	4:A:406:HIS:HE2	1.79	0.47
4:A:388:LYS:O	4:A:389:ASP:HB3	2.14	0.47
4:A:551:LEU:HD23	4:A:554:PHE:HD2	1.80	0.47
1:B:6:DG:H2'	4:A:424:ILE:HD12	1.96	0.47
3:D:106:DT:C2'	3:D:107:5IU:H5'	2.45	0.47
3:D:110:5IU:H5"	3:D:110:5IU:H6	1.97	0.47
1:B:8:DC:H42	3:D:115:DG:H1	1.62	0.47
4:A:241:TYR:CB	4:A:301:ASP:HB3	2.45	0.47
3:D:101:DA:C6	3:D:102:DA:C6	3.03	0.47
4:A:293:ILE:HG13	4:A:294:ILE:N	2.30	0.47
4:A:297:LEU:C	4:A:299:LYS:N	2.67	0.47
4:A:341:CYS:HB3	4:A:350:ILE:HD11	1.97	0.47
3:D:107:5IU:OP2	4:A:708:ARG:NH2	2.47	0.46
4:A:360:LEU:HD23	4:A:360:LEU:HA	1.76	0.46
4:A:462:ARG:HA	4:A:465:TRP:CD2	2.50	0.46
4:A:281:ASP:O	4:A:285:GLU:HG2	2.15	0.46
4:A:575:LYS:HD2	4:A:575:LYS:HA	1.65	0.46
4:A:308:TYR:CD1	4:A:308:TYR:C	2.88	0.46
2:C:17:DA:H2"	2:C:18:5IU:C5'	2.46	0.46
3:D:122:DT:OP2	3:D:122:DT:H2'	2.16	0.46
4:A:211:TYR:HD1	4:A:215:ILE:HG23	1.79	0.46
4:A:717:GLY:CA	4:A:721:LEU:HD13	2.43	0.46
4:A:758:MET:O	4:A:758:MET:HG3	2.16	0.46
1:B:7:DA:H3'	4:A:410:VAL:CG1	2.46	0.46
4:A:271:LYS:O	4:A:274:PHE:HB3	2.15	0.46
4:A:494:GLU:O	4:A:496:GLY:N	2.48	0.46
3:D:107:5IU:H5"	3:D:107:5IU:H6	1.97	0.46
4:A:577:LEU:HB3	4:A:584:LEU:HG	1.96	0.46
4:A:304:GLN:O	4:A:307:GLN:HB2	2.16	0.46

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
4:A:716:LEU:CG	4:A:717:GLY:H	2.24	0.46
2:C:20:5IU:O2	3:D:103:DA:H2	1.99	0.46
3:D:115:DG:H8	3:D:115:DG:H5'	1.81	0.46
4:A:296:ASN:OD1	4:A:298:SER:HB3	2.15	0.46
4:A:474:GLN:NE2	4:A:565:PHE:HA	2.30	0.46
4:A:734:LYS:CB	4:A:761:GLU:HB3	2.40	0.45
4:A:283:ARG:O	4:A:286:MET:HG2	2.17	0.45
4:A:482:ILE:O	4:A:486:ALA:HA	2.17	0.45
4:A:517:GLU:O	4:A:518:LEU:HB2	2.16	0.45
2:C:20:5IU:H2"	2:C:21:5IU:O5'	2.15	0.45
4:A:222:HIS:HE1	4:A:384:ILE:HG23	1.80	0.45
4:A:593:ASN:H	4:A:593:ASN:ND2	2.14	0.45
4:A:382:ILE:O	4:A:402:LYS:HB3	2.16	0.45
4:A:479:LEU:HD11	4:A:589:PHE:CE1	2.52	0.45
4:A:296:ASN:HD22	4:A:299:LYS:HG3	1.81	0.45
4:A:335:LEU:HD23	4:A:353:PHE:HZ	1.81	0.45
4:A:223:LYS:HB3	4:A:338:TYR:CE1	2.52	0.45
4:A:402:LYS:HE2	4:A:402:LYS:O	2.17	0.45
4:A:320:SER:O	4:A:324:LYS:HG3	2.17	0.45
3:D:113:DA:H3'	4:A:361:PHE:CE2	2.51	0.45
3:D:116:5IU:H6	4:A:491:ASN:ND2	2.32	0.45
4:A:556:GLU:HG3	4:A:557:ASN:OD1	2.17	0.45
4:A:630:CYS:C	4:A:632:HIS:H	2.20	0.44
4:A:418:GLU:OE1	4:A:421:GLN:N	2.50	0.44
4:A:480:TYR:O	4:A:483:ASP:HB3	2.17	0.44
4:A:619:TYR:CE1	4:A:729:THR:HG23	2.53	0.44
4:A:481:PHE:CZ	4:A:551:LEU:HD11	2.47	0.44
4:A:236:GLU:HA	4:A:239:LYS:HZ1	1.82	0.44
4:A:274:PHE:C	4:A:274:PHE:CD2	2.91	0.44
4:A:492:GLU:OE1	4:A:569:ASN:HB2	2.18	0.44
4:A:599:GLN:NE2	4:A:765:PHE:N	2.65	0.44
4:A:599:GLN:NE2	4:A:765:PHE:H	2.16	0.44
2:C:17:DA:C2'	2:C:18:5IU:H5'	2.47	0.44
3:D:117:DC:H2"	3:D:118:5IU:OP2	2.17	0.44
4:A:296:ASN:ND2	4:A:299:LYS:HE2	2.33	0.44
4:A:379:PRO:O	4:A:401:TRP:HA	2.18	0.44
4:A:482:ILE:HA	4:A:487:LEU:H	1.83	0.44
3:D:107:5IU:OP2	4:A:708:ARG:NE	2.50	0.44
4:A:273:ILE:HD12	4:A:273:ILE:N	2.28	0.44
4:A:434:ARG:HE	4:A:435:ILE:N	2.15	0.44
4:A:527:PHE:CE1	4:A:541:VAL:CG1	2.98	0.44

	Interatomic Clash					
Atom-1	Atom-2	distance (Å)	overlap (Å)			
4:A:561:GLU:CD	4:A:561:GLU:H	2.19	0.44			
3:D:107:5IU:I5	4:A:708:ARG:CZ	3.34	0.44			
3:D:113:DA:H2"	3:D:114:DA:H8	1.82	0.44			
4:A:244:GLY:O	4:A:246:VAL:N	2.50	0.44			
4:A:296:ASN:ND2	4:A:299:LYS:HG3	2.33	0.44			
4:A:303:THR:O	4:A:306:SER:HB3	2.17	0.44			
4:A:438:GLU:HG3	4:A:441:TRP:CE3	2.53	0.44			
4:A:569:ASN:OD1	4:A:571:GLY:N	2.51	0.44			
3:D:111:DC:C2	3:D:112:DA:C5	3.06	0.44			
3:D:101:DA:C6	3:D:102:DA:C5	3.06	0.43			
3:D:102:DA:H2"	3:D:103:DA:OP2	2.18	0.43			
4:A:204:LYS:O	4:A:207:GLU:N	2.51	0.43			
4:A:760:ASP:C	4:A:762:ASP:N	2.71	0.43			
4:A:477:VAL:HG21	4:A:554:PHE:CZ	2.53	0.43			
4:A:714:ILE:HD13	4:A:714:ILE:HA	1.89	0.43			
1:B:8:DC:H2'	4:A:428:MET:HE1	1.98	0.43			
2:C:19:5IU:C1'	2:C:20:5IU:H5'	2.47	0.43			
3:D:108:5IU:I5	4:A:716:LEU:HD13	2.88	0.43			
4:A:598:LEU:CD2	4:A:728:ILE:HG21	2.49	0.43			
4:A:729:THR:O	4:A:732:TRP:HB3	2.17	0.43			
4:A:741:GLU:CA	4:A:749:ARG:HH12	2.12	0.43			
4:A:761:GLU:CD	4:A:761:GLU:N	2.71	0.43			
4:A:204:LYS:HA	4:A:206:TRP:CZ3	2.53	0.43			
4:A:219:PHE:CZ	4:A:221:GLU:HB2	2.53	0.43			
4:A:335:LEU:HB2	4:A:336:LYS:CE	2.49	0.43			
4:A:338:TYR:O	4:A:353:PHE:CD2	2.72	0.43			
4:A:339:GLY:HA2	4:A:353:PHE:HD2	1.83	0.43			
4:A:576:HIS:CE1	4:A:580:LEU:HD11	2.53	0.43			
4:A:603:LYS:NZ	4:A:603:LYS:HA	2.33	0.43			
4:A:402:LYS:HZ3	4:A:403:GLU:HB2	1.83	0.43			
1:B:8:DC:P	4:A:410:VAL:HG12	2.59	0.43			
3:D:101:DA:N6	3:D:102:DA:C6	2.87	0.43			
3:D:121:5IU:H2"	3:D:122:DT:OP2	2.18	0.43			
4:A:760:ASP:O	4:A:762:ASP:N	2.50	0.43			
3:D:106:DT:C2'	3:D:107:5IU:C5'	2.87	0.43			
4:A:260:PHE:HD1	4:A:278:PHE:CD1	2.37	0.43			
4:A:241:TYR:HD2	4:A:244:GLY:CA	2.31	0.43			
4:A:312:GLN:O	4:A:315:ALA:HB3	2.18	0.43			
4:A:419:ASN:ND2	4:A:420:ILE:HD13	2.33	0.43			
4:A:612:ILE:O	4:A:615:LYS:HB2	2.18	0.43			
4:A:206:TRP:C	4:A:208:GLU:H	2.21	0.43			

Interatomic Clash				
Atom-1	Atom-2	distance (Å)	overlap (Å)	
4:A:329:GLU:H	4:A:329:GLU:HG3	1.59	0.43	
4:A:456:LYS:HA	4:A:459:ASN:ND2	2.34	0.43	
4:A:515:HIS:CG	4:A:518:LEU:HD13	2.53	0.43	
4:A:511:HIS:HD2	4:A:529:PHE:HB3	1.82	0.42	
4:A:735:LYS:CB	4:A:761:GLU:HB2	2.49	0.42	
4:A:308:TYR:O	4:A:311:ALA:HB3	2.19	0.42	
4:A:402:LYS:HE2	4:A:402:LYS:C	2.39	0.42	
4:A:608:PRO:HA	4:A:736:TRP:CZ3	2.54	0.42	
4:A:754:TRP:CG	4:A:755:ALA:N	2.86	0.42	
1:B:5:DA:H1'	1:B:6:DG:C5'	2.41	0.42	
4:A:334:LEU:O	4:A:338:TYR:HB2	2.19	0.42	
4:A:375:ARG:HD3	4:A:376:ARG:N	2.34	0.42	
4:A:448:ARG:NH1	4:A:727:ARG:HH12	2.17	0.42	
4:A:615:LYS:NZ	4:A:736:TRP:HB3	2.35	0.42	
4:A:509:VAL:HG22	4:A:560:PRO:O	2.19	0.42	
4:A:449:ARG:NH1	4:A:449:ARG:CB	2.83	0.42	
4:A:595:SER:HB3	4:A:725:ASP:H	1.85	0.42	
3:D:107:5IU:H1'	3:D:108:5IU:H5"	2.02	0.42	
3:D:119:5IU:H6	3:D:119:5IU:H5"	2.00	0.42	
4:A:209:GLU:CD	4:A:210:ARG:HD2	2.40	0.42	
4:A:288:ASN:O	4:A:291:LYS:HB2	2.20	0.42	
4:A:439:LYS:O	4:A:443:LYS:N	2.52	0.42	
4:A:461:TYR:HA	4:A:464:ASP:HB2	2.00	0.42	
2:C:18:5IU:H2"	2:C:19:5IU:H6	2.01	0.42	
4:A:294:ILE:C	4:A:296:ASN:H	2.23	0.42	
4:A:512:ILE:HD11	4:A:564:LEU:HD13	2.01	0.42	
4:A:528:ASP:O	4:A:529:PHE:HB3	2.20	0.42	
4:A:236:GLU:O	4:A:239:LYS:HG2	2.20	0.42	
4:A:277:ASN:HB3	4:A:372:MET:N	2.35	0.42	
4:A:362:ARG:H	4:A:362:ARG:HG2	1.68	0.42	
2:C:14:DA:C2	2:C:15:DA:C5	3.08	0.42	
4:A:250:SER:N	4:A:290:GLU:OE2	2.50	0.42	
4:A:549:LYS:O	4:A:552:GLN:HB3	2.20	0.42	
4:A:601:GLN:C	4:A:603:LYS:H	2.22	0.42	
2:C:19:5IU:C2'	2:C:20:5IU:H5'	2.50	0.42	
4:A:345:ASN:HB3	4:A:346:HIS:CD2	2.55	0.42	
4:A:375:ARG:HD3	4:A:376:ARG:C	2.40	0.42	
4:A:413:LEU:HD12	4:A:413:LEU:H	1.85	0.41	
4:A:746:LYS:O	4:A:750:GLU:N	2.49	0.41	
4:A:761:GLU:CD	4:A:761:GLU:H	2.23	0.41	
1:B:1:DA:C8	1:B:1:DA:O5'	2.69	0.41	

Interatomic Clash				
Atom-1	Atom-2	distance (Å)	overlap (Å)	
4:A:448:ARG:HD2	4:A:765:PHE:HD1	1.82	0.41	
2:C:20:5IU:H2"	2:C:21:5IU:H6	2.03	0.41	
3:D:102:DA:H1'	3:D:103:DA:H5'	2.01	0.41	
4:A:211:TYR:OH	4:A:217:TRP:HA	2.20	0.41	
3:D:116:5IU:C6	4:A:491:ASN:ND2	2.83	0.41	
4:A:514:LEU:HD23	4:A:525:VAL:HA	2.03	0.41	
1:B:6:DG:C2	1:B:7:DA:C5	3.08	0.41	
3:D:115:DG:OP2	4:A:493:LYS:NZ	2.48	0.41	
4:A:223:LYS:HE3	4:A:223:LYS:O	2.20	0.41	
4:A:240:PHE:CD2	4:A:241:TYR:N	2.83	0.41	
4:A:268:TYR:O	4:A:271:LYS:HB2	2.20	0.41	
4:A:293:ILE:CD1	4:A:294:ILE:HG12	2.50	0.41	
4:A:481:PHE:O	4:A:485:LEU:N	2.53	0.41	
4:A:282:TRP:O	4:A:285:GLU:N	2.52	0.41	
4:A:335:LEU:HB2	4:A:336:LYS:HE3	2.02	0.41	
4:A:449:ARG:NH1	4:A:449:ARG:HB2	2.36	0.41	
4:A:577:LEU:HD13	4:A:585:THR:HA	2.03	0.41	
3:D:115:DG:C4	3:D:116:5IU:C5	3.03	0.41	
4:A:441:TRP:HD1	4:A:754:TRP:CZ3	2.39	0.41	
4:A:544:GLU:H	4:A:544:GLU:HG2	1.58	0.41	
4:A:589:PHE:O	4:A:592:TYR:HB3	2.20	0.41	
1:B:5:DA:N3	1:B:6:DG:C8	2.89	0.41	
4:A:231:TYR:CZ	4:A:233:PRO:HA	2.56	0.41	
4:A:496:GLY:H	4:A:498:THR:HG22	1.84	0.41	
3:D:119:5IU:H2"	3:D:120:5IU:O5'	2.20	0.41	
4:A:336:LYS:HE3	4:A:336:LYS:N	2.24	0.41	
4:A:367:HIS:O	4:A:370:MET:HG2	2.21	0.41	
4:A:470:MET:O	4:A:473:ARG:HB2	2.21	0.41	
4:A:745:ASN:O	4:A:748:GLN:HG2	2.21	0.41	
4:A:474:GLN:HB3	4:A:568:LEU:HD12	2.02	0.41	
3:D:103:DA:C2	3:D:104:DA:C4	3.09	0.40	
3:D:106:DT:H2"	4:A:708:ARG:HH21	1.86	0.40	
4:A:602:LEU:HD22	4:A:732:TRP:CE2	2.56	0.40	
3:D:115:DG:C2'	3:D:116:5IU:H6	2.44	0.40	
4:A:229:PRO:HA	4:A:230:PRO:HD2	1.76	0.40	
4:A:449:ARG:HB3	4:A:449:ARG:HH11	1.86	0.40	
4:A:530:LEU:HB3	4:A:534:SER:HA	2.03	0.40	
4:A:473:ARG:O	4:A:477:VAL:HG23	2.21	0.40	
4:A:746:LYS:CA	4:A:749:ARG:HE	2.24	0.40	
3:D:115:DG:C2'	3:D:116:5IU:C6	3.00	0.40	
3:D:119:5IU:C2'	3:D:120:5IU:I5	3.20	0.40	

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
4:A:725:ASP:HA	4:A:726:PRO:HD2	1.93	0.40
4:A:448:ARG:HG3	4:A:765:PHE:O	2.21	0.40
4:A:565:PHE:HB3	4:A:568:LEU:HD13	2.04	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
4	А	485/592~(82%)	367 (76%)	81 (17%)	37 (8%)	1 7

All (37) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
4	А	344	ASP
4	А	387	SER
4	А	388	LYS
4	А	389	ASP
4	А	495	GLU
4	А	716	LEU
4	А	718	THR
4	А	245	LYS
4	А	318	GLN
4	А	345	ASN
4	А	374	LYS
4	А	375	ARG
4	А	397	PRO
4	А	500	ASP
4	А	722	ASN
4	А	754	TRP
4	А	756	ILE
4	А	761	GLU

Continuea from previous page					
\mathbf{Mol}	Chain	Res	Type		
4	А	213	GLU		
4	А	279	PHE		
4	А	299	LYS		
4	А	412	TRP		
4	А	592	TYR		
4	А	605	LEU		
4	А	610	GLU		
4	А	209	GLU		
4	А	214	GLY		
4	А	241	TYR		
4	А	518	LEU		
4	А	594	ALA		
4	А	420	ILE		
4	А	278	PHE		
4	А	246	VAL		
4	А	739	PRO		
4	А	294	ILE		
4	А	496	GLY		
4	А	588	VAL		

5.3.2Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
4	А	408/535~(76%)	356~(87%)	52~(13%)	4 20

All (52) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
4	А	210	ARG
4	А	211	TYR
4	А	213	GLU
4	А	223	LYS
4	А	234	LEU
4	А	239	LYS
4	А	241	TYR

Mol	Chain	Res	Type
4	А	249	LEU
4	А	260	PHE
4	А	268	TYR
4	А	273	ILE
4	А	275	ARG
4	А	277	ASN
4	А	279	PHE
4	А	288	ASN
4	А	293	ILE
4	А	308	TYR
4	А	312	GLN
4	А	327	ILE
4	А	328	LYS
4	А	329	GLU
4	А	330	GLU
4	А	336	LYS
4	А	362	ARG
4	А	397	PRO
4	А	400	LYS
4	А	402	LYS
4	А	410	VAL
4	А	413	LEU
4	А	417	THR
4	А	418	GLU
4	А	442	GLN
4	А	446	THR
4	А	450	LEU
4	А	461	TYR
4	A	464	ASP
4	А	492	GLU
4	А	510	GLU
4	А	518	LEU
4	А	521	GLN
4	A	544	GLU
4	А	570	THR
4	A	599	GLN
4	Α	603	LYS
4	А	624	ARG
4	А	629	LEU
4	А	632	HIS
4	А	708	ARG
4	А	709	GLU

Continued from previous page...

Mol	Chain	Res	Type
4	А	713	GLN
4	А	745	ASN
4	А	761	GLU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (21) such sidechains are listed below:

Mol	Chain	Res	Type
4	А	292	ASN
4	А	296	ASN
4	А	304	GLN
4	А	312	GLN
4	А	331	ASN
4	А	366	ASN
4	А	367	HIS
4	А	385	ASN
4	А	419	ASN
4	А	421	GLN
4	А	459	ASN
4	А	474	GLN
4	А	491	ASN
4	А	511	HIS
4	А	539	ASN
4	А	593	ASN
4	А	599	GLN
4	А	632	HIS
4	А	722	ASN
4	А	745	ASN
4	А	748	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

17 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond

Mol	Type	Chain	Dog	Link	Bo	ond leng	ths	В	ond ang	les
	туре	Unam	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
2	SPT	С	11	3,2	18,18,22	0.37	0	26, 26, 33	0.46	0
3	5IU	D	119	1,3	18,21,22	1.03	1(5%)	$26,\!30,\!33$	0.45	0
3	5IU	D	109	2,3	18,21,22	0.84	1 (5%)	26,30,33	0.40	0
3	5IU	D	116	1,3	18,21,22	1.11	2 (11%)	26,30,33	0.42	0
2	5IU	С	20	3,2	18,21,22	1.21	1 (5%)	26,30,33	0.62	0
2	5IU	С	21	3,2	18,21,22	0.85	1 (5%)	26,30,33	0.38	0
4	PTR	А	723	4,1	15, 16, 17	0.80	0	19,22,24	0.84	1 (5%)
3	5IU	D	107	2,3	18,21,22	0.80	1 (5%)	26,30,33	0.39	0
3	5IU	D	118	1,3	18,21,22	0.95	1 (5%)	26,30,33	0.42	0
3	5IU	D	121	1,3	18,21,22	0.82	1 (5%)	26,30,33	0.41	0
3	5IU	D	110	2,3	18,21,22	0.82	1 (5%)	26,30,33	0.38	0
2	5IU	С	19	3,2	18,21,22	0.77	1 (5%)	26,30,33	0.31	0
1	5IU	В	9	3,1	18,21,22	1.00	1 (5%)	26,30,33	0.37	0
2	5IU	С	18	3,2	18,21,22	0.77	1 (5%)	26,30,33	0.50	0
3	5IU	D	108	2,3	18,21,22	0.83	1 (5%)	26,30,33	0.41	0
3	5IU	D	120	1,3	18,21,22	0.68	1 (5%)	26,30,33	0.42	0
1	5IU	В	10	3,4,1	18,20,22	1.01	1 (5%)	23,28,33	0.93	1 (4%)

length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	SPT	С	11	3,2	-	2/6/18/22	0/2/2/2
3	5IU	D	119	1,3	-	3/7/21/22	0/2/2/2
3	5IU	D	109	2,3	-	1/7/21/22	0/2/2/2
3	5IU	D	116	1,3	-	0/7/21/22	0/2/2/2
2	5IU	С	20	3,2	-	1/7/21/22	0/2/2/2
2	5IU	С	21	3,2	-	0/7/21/22	0/2/2/2
4	PTR	А	723	4,1	-	2/10/11/13	0/1/1/1
3	5IU	D	107	2,3	-	1/7/21/22	0/2/2/2
3	5IU	D	118	1,3	-	0/7/21/22	0/2/2/2
3	5IU	D	121	1,3	-	0/7/21/22	0/2/2/2

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	5IU	D	110	2,3	-	1/7/21/22	0/2/2/2
2	5IU	С	19	3,2	-	0/7/21/22	0/2/2/2
1	5IU	В	9	3,1	-	0/7/21/22	0/2/2/2
2	$5\mathrm{IU}$	С	18	3,2	-	2/7/21/22	0/2/2/2
3	5IU	D	108	2,3	-	0/7/21/22	0/2/2/2
3	5IU	D	120	1,3	-	0/7/21/22	0/2/2/2
1	5IU	В	10	3,4,1	-	0/7/18/22	0/2/2/2

All (16) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	С	20	5IU	C5-I5	-4.05	1.96	2.08
3	D	116	5IU	C5-I5	-3.39	1.98	2.08
3	D	119	5IU	C5-I5	-3.38	1.98	2.08
1	В	10	5IU	C5-I5	-3.29	1.98	2.08
1	В	9	5IU	C5-I5	-3.19	1.98	2.08
3	D	118	5IU	C5-I5	-3.15	1.98	2.08
2	С	21	5IU	C5-I5	-3.03	1.99	2.08
3	D	108	5IU	C5-I5	-2.98	1.99	2.08
3	D	109	5IU	C5-I5	-2.88	1.99	2.08
2	С	18	5IU	C5-I5	-2.79	1.99	2.08
3	D	110	5IU	C5-I5	-2.76	2.00	2.08
2	С	19	5IU	C5-I5	-2.74	2.00	2.08
3	D	121	5IU	C5-I5	-2.67	2.00	2.08
3	D	107	5IU	C5-I5	-2.47	2.00	2.08
3	D	116	5IU	C4-C5	-2.31	1.40	1.45
3	D	120	5IU	C5-I5	-2.25	2.01	2.08

All (2) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
1	В	10	5IU	C2'-C1'-N1	3.37	118.79	112.40
4	А	723	PTR	O2P-P-O1P	2.02	118.58	110.68

There are no chirality outliers.

All (13) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
2	С	11	SPT	O4'-C4'-C5'-S5'
2	С	11	SPT	C3'-C4'-C5'-S5'
3	D	119	5IU	O4'-C4'-C5'-O5'

Mol	Chain	Res	Type	Atoms
4	А	723	PTR	C-CA-CB-CG
3	D	119	5IU	C3'-C4'-C5'-O5'
3	D	119	5IU	C4'-C5'-O5'-P
4	А	723	PTR	N-CA-CB-CG
3	D	109	5IU	O4'-C4'-C5'-O5'
2	С	18	5IU	C4'-C5'-O5'-P
2	С	20	5IU	O4'-C4'-C5'-O5'
2	С	18	5IU	O4'-C4'-C5'-O5'
3	D	107	5IU	O4'-C4'-C5'-O5'
3	D	110	5IU	O4'-C4'-C5'-O5'

There are no ring outliers.

17 monomers are involved in 94 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	С	11	SPT	5	0
3	D	119	5IU	13	0
3	D	109	5IU	9	0
3	D	116	5IU	16	0
2	С	20	5IU	10	0
2	С	21	5IU	5	0
4	А	723	PTR	3	0
3	D	107	5IU	13	0
3	D	118	5IU	8	0
3	D	121	5IU	1	0
3	D	110	5IU	8	0
2	С	19	5IU	7	0
1	В	9	5IU	9	0
2	C	18	5IU	8	0
3	D	108	5IU	4	0
3	D	120	5IU	3	0
1	В	10	5IU	4	0

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

EDS was not executed - this section is therefore empty.

6.2 Non-standard residues in protein, DNA, RNA chains (i)

EDS was not executed - this section is therefore empty.

6.3 Carbohydrates (i)

EDS was not executed - this section is therefore empty.

6.4 Ligands (i)

EDS was not executed - this section is therefore empty.

6.5 Other polymers (i)

EDS was not executed - this section is therefore empty.

