

wwPDB X-ray Structure Validation Summary Report (i)

Jun 12, 2024 – 02:50 PM EDT

PDB ID	:	1KF9
Title	:	PHAGE DISPLAY DERIVED VARIANT OF HUMAN GROWTH HOR-
		MONE COMPLEXED WITH TWO COPIES OF THE EXTRACELLULAR
		DOMAIN OF ITS RECEPTOR
Authors	:	Schiffer, C.A.; Ultsch, M.; Walsh, S.; Somers, W.; De Vos, A.M.; Kossiakoff,
		A.A.
Deposited on	:	2001-11-19
Resolution	:	2.60 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (i)) were used in the production of this report:

MolProbity	:	4.02b-467
Xtriage (Phenix)	:	NOT EXECUTED
EDS	:	NOT EXECUTED
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.60 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$\begin{array}{c} \textbf{Whole archive} \\ (\# \textbf{Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
Clashscore	141614	3518 (2.60-2.60)
Ramachandran outliers	138981	3455 (2.60-2.60)
Sidechain outliers	138945	3455(2.60-2.60)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Note EDS was not executed.

Mol	Chain	Length		Quality of chain	n	
1	А	191	33%	38%	11%	• 16%
1	D	191	37%	36%	9%	• 17%
2	В	238	38%	30%	13%	19%
2	С	238	30%	32%	12%	26%
2	Е	238	34%	35%	12%	19%
2	F	238	29%	36%	12%	23%

2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 8678 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called PHAGE DISPLAY DERIVED VARIANT HUMAN GROWTH HORMONE.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	А	160	Total 1284	C 825	N 211	0 242	S 6	0	0	0
1	D	158	Total 1264	C 811	N 208	O 239	S 6	0	0	0

• Molecule 2 is a protein called EXTRACELLULAR DOMAIN HUMAN GROWTH HOR-MONE RECEPTOR (1-238).

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	Trace	
2	В	103	Total C N	O S	0	0	0	
	D	195	1577 1011 258	298 10	0	0	0	
9	С	175	Total C N	O S	0	0	0	
	U	175	1419 916 229	265 9	0	0	0	
0	Г	102	Total C N	O S	0	0	0	
	Ľ	195	1576 1011 258	298 9	0	0	0	
0	F	194	Total C N	O S	0	0	0	
2	Г	184	1484 952 239	284 9	0	0	0	

• Molecule 3 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	11	Total O 11 11	0	0
3	В	13	Total O 13 13	0	0
3	С	28	TotalO2828	0	0
3	D	3	Total O 3 3	0	0
3	Ε	12	TotalO1212	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	F	7	Total O 7 7	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

Note EDS was not executed.

• Molecule 1: PHAGE DISPLAY DERIVED VARIANT HUMAN GROWTH HORMONE

• Molecule 2: EXTRACELLULAR DOMAIN HUMAN GROWTH HORMONE RECEPTOR (1-238)

S345 S345 S345 T349 T349 T349 T349 T349 T349 T355 F3357 F3577 F357

• Molecule 2: EXTRACELLULAR DOMAIN HUMAN GROWTH HORMONE RECEPTOR (1-238)

• Molecule 2: EXTRACELLULAR DOMAIN HUMAN GROWTH HORMONE RECEPTOR (1-238)

Ch	ai	in	E: 34%						35%									12%						19%																													
PHE SER	GLY	SER	GLU AT A	THR	ALA	ALA	ILE	LEU	SER	ARG	ALA	PRO	d'HT	NEK	CT M	GLN	VAT	VSM	PRO	GI.Y	TEU	L'YS	THR	ASN	SER	SER	LYS	GLU	P1233	K1234	F1235	11236	N1237	R1239	S1240	P1241	E1242	R1243	E1244	T1245	F1246	14215	01240 H1249	W1250	T1251	ASP	GLU	VAL	SIH	NI S	THR	LYS	ASN
L1261 G1262	P1263	11264	11265	E1267	Y1268	T1269	R1270	R1271	N1272	T1273	Q1274	E1275		41278 71070	111000	LOCT N	F1282	C1083		V1286	V1287	S1288	A1289	G1290	E1291	N1292	S1293	C1294	Y1295	F1296	N1297	81798	T1201	\$1302 \$1302	I1303	W1304	I1305	P1306		I1309	K1310 11211	11011	S1313	N1314	G1315	G1316	T1317	V1318	D1319	E1320	F1323	<mark>S1324</mark>	V1325
11328	100	11335	A1335		L1341	L1342		S1345	L1346	T1347	G1348	I1349		U1354	111 267	100TM		1361		D1364	11365	01366	K1367		M1370	V1371	L1372		E1375	L1376	Q1377	Y13/8	072/3	L1380 V1381	N1382	E1383	T1384	K1385	W1386	K1387	M1388	A DO TH	T1394	T1395	S1396	-	V1404	D1405	K1406	E1407	R1411	V1412	R1413
4 ιΩ	60 1		n c		2	m		2	m	<u>ი</u>				.																																							

• Molecule 2: EXTRACELLULAR DOMAIN HUMAN GROWTH HORMONE RECEPTOR (1-238)

P1698 T1628 CLY Y1700 Q1632 Q1663 X1703 Q1632 P1633 K1704 Q1633 Q1656 K1703 P1633 Q1656 K1713 M633 Q1656 K1713 M638 Q1657 K1714 M638 Q1676 K1715 M638 Q1676 K1716 M638 Q1676 K1716 M638 Q1766 K1716 M639 Q1671 K1716 M643 Q1671 K1716 M643 Q1671 K1718 M643 Q1671 K1718 M643 Q1671 K1718 M1643 Q1671 K1722 L1647 TRB K1723 M657 Q1656 K1754 M657 Q1656 K1753 M657 Q1666 K1754 M657 Q1656 K1758 M657 Q1656 K1657

4 Data and refinement statistics (i)

Xtriage (Phenix) and EDS were not executed - this section is therefore incomplete.

Property	Value	Source			
Space group	P 1 21 1	Depositor			
Cell constants	67.29Å 111.94Å 95.29Å	Depositor			
a, b, c, α , β , γ	90.00° 90.06° 90.00°	Depositor			
Resolution (Å)	20.00 - 2.60	Depositor			
% Data completeness	90.5 (20.00-2.60)	Depositor			
(in resolution range)	50.5 (20.00 2.00)	Depositor			
R_{merge}	0.05	Depositor			
R _{sym}	(Not available)	Depositor			
Refinement program	X-PLOR 3.843	Depositor			
R, R_{free}	0.234 , 0.326	Depositor			
Estimated twinning fraction	No twinning to report.	Xtriage			
Total number of atoms	8678	wwPDB-VP			
Average B, all atoms $(Å^2)$	47.0	wwPDB-VP			

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bo	ond angles						
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5						
1	А	0.67	0/1312	0.84	2/1781~(0.1%)						
1	D	0.71	0/1289	0.84	2/1747~(0.1%)						
2	В	0.70	0/1622	0.87	0/2208						
2	С	0.67	0/1459	0.86	1/1987~(0.1%)						
2	Е	0.69	0/1621	0.86	1/2208~(0.0%)						
2	F	0.65	0/1525	0.84	0/2078						
All	All	0.68	0/8828	0.85	6/12009~(0.0%)						

There are no bond length outliers.

The worst 5 of 6 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	3	THR	N-CA-C	-9.03	86.61	111.00
1	D	1107	ASP	CB-CG-OD1	6.76	124.39	118.30
2	С	668	GLY	N-CA-C	-6.00	98.09	113.10
2	Е	1324	SER	N-CA-C	-5.23	96.87	111.00
1	А	1	PHE	C-N-CD	5.20	139.32	128.40

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1284	0	1257	102	0
1	D	1264	0	1241	88	0

• • • • • •	f = f = f = f = f = f = f = f = f = f =					
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
2	В	1577	0	1506	91	0
2	С	1419	0	1338	99	0
2	Е	1576	0	1508	104	0
2	F	1484	0	1395	115	0
3	А	11	0	0	2	0
3	В	13	0	0	1	0
3	С	28	0	0	2	0
3	D	3	0	0	0	0
3	Е	12	0	0	1	0
3	F	7	0	0	0	0
All	All	8678	0	8245	550	0

Continued from previous page...

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 33.

The worst 5 of 550 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:A:104:GLY:CA	2:C:666:GLN:HB3	1.65	1.26
2:E:1346:LEU:HB2	2:F:1701:SER:HB3	1.24	1.17
1:A:104:GLY:HA2	2:C:666:GLN:HB3	1.25	1.14
2:F:1581:LYS:HZ3	2:F:1581:LYS:HB2	1.08	1.09
1:A:104:GLY:HA3	2:C:666:GLN:HB3	1.41	1.02

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	А	154/191~(81%)	129 (84%)	19~(12%)	6 (4%)	3 4
1	D	150/191 (78%)	129 (86%)	17 (11%)	4 (3%)	5 8

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
2	В	189/238~(79%)	168 (89%)	20 (11%)	1 (0%)	29	52
2	С	167/238~(70%)	144 (86%)	21 (13%)	2(1%)	13	27
2	Ε	189/238~(79%)	171 (90%)	16 (8%)	2(1%)	14	30
2	F	178/238~(75%)	155 (87%)	20 (11%)	3~(2%)	9	18
All	All	1027/1334 (77%)	896 (87%)	113 (11%)	18 (2%)	8	16

Continued from previous page...

 $5~{\rm of}~18$ Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	106	SER
1	А	107	ASP
2	В	274	GLN
1	D	1002	PRO
2	Е	1274	GLN

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	143/175~(82%)	112 (78%)	31 (22%)	1 1
1	D	142/175~(81%)	112 (79%)	30 (21%)	1 2
2	В	177/218 (81%)	130 (73%)	47 (27%)	0 1
2	С	157/218 (72%)	113 (72%)	44 (28%)	0 1
2	Е	177/218 (81%)	134 (76%)	43 (24%)	0 1
2	F	165/218~(76%)	121 (73%)	44 (27%)	0 1
All	All	961/1222 (79%)	722 (75%)	239 (25%)	0 1

5 of 239 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
2	С	713	ARG
2	F	1665	ILE

Continued from previous page...

Mol	Chain	Res	Type
1	D	1106	SER
2	F	1646	LEU
2	F	1728	VAL

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 28 such sidechains are listed below:

Mol	Chain	Res	Type
1	D	1099	ASN
2	F	1716	GLN
2	Е	1272	ASN
2	F	1638	ASN
1	D	1181	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

EDS was not executed - this section is therefore empty.

6.2 Non-standard residues in protein, DNA, RNA chains (i)

EDS was not executed - this section is therefore empty.

6.3 Carbohydrates (i)

EDS was not executed - this section is therefore empty.

6.4 Ligands (i)

EDS was not executed - this section is therefore empty.

6.5 Other polymers (i)

EDS was not executed - this section is therefore empty.

