May 13, 2020 – 05:15 pm BST

<table>
<thead>
<tr>
<th>PDB ID</th>
<th>6KIZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMDB ID</td>
<td>EMD-0695</td>
</tr>
<tr>
<td>Title</td>
<td>Cryo-EM structure of human MLL1-NCP complex, binding mode2</td>
</tr>
<tr>
<td>Authors</td>
<td>Huang, J.; Xue, H.; Yao, T.</td>
</tr>
<tr>
<td>Deposited on</td>
<td>2019-07-20</td>
</tr>
<tr>
<td>Resolution</td>
<td>4.50 Å (reported)</td>
</tr>
</tbody>
</table>

This is a Full wwPDB EM Map/Model Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp
with specific help available everywhere you see the symbol.

The following versions of software and data (see references) were used in the production of this report:

- EMDB validation analysis : 0.0.0.dev33
- Mogul : 1.8.5 (274361), CSD as541be (2020)
- MolProbity : 4.02b-467
- buster-report : 1.1.7 (2018)
- Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)
- Ideal geometry (proteins) : Engh & Huber (2001)
- Ideal geometry (DNA, RNA) : Parkinson et al. (1996)
- Validation Pipeline (wwPDB-VP) : 2.11
1 Overall quality at a glance

The following experimental techniques were used to determine the structure:

ELECTRON MICROSCOPY

The reported resolution of this entry is 4.50 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Whole archive (#Entries)</th>
<th>EM structures (#Entries)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clashscore</td>
<td>158937</td>
<td>4297</td>
</tr>
<tr>
<td>Ramachandran outliers</td>
<td>154571</td>
<td>4023</td>
</tr>
<tr>
<td>Sidechain outliers</td>
<td>154315</td>
<td>3826</td>
</tr>
</tbody>
</table>

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments on the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%. The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all atom inclusion < 40%). The numeric value is given above the bar.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>135</td>
<td>![Green, 64%, 7%, 28%]</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>135</td>
<td>![Green, 67%, 1%, 28%]</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>102</td>
<td>![Green, 69%, 12%, 20%]</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>102</td>
<td>![Green, 75%, 3%, 24%]</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>129</td>
<td>![Green, 78%, 5%, 17%]</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>129</td>
<td>![Green, 79%, 1%, 19%]</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>122</td>
<td>![Green, 75%, 6%, 23%]</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>122</td>
<td>![Green, 72%, 6%, 22%]</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>I</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>J</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>N</td>
<td>538</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>K</td>
<td>216</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>R</td>
<td>334</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>T</td>
<td>534</td>
<td></td>
</tr>
</tbody>
</table>
2 Entry composition

There are 12 unique types of molecules in this entry. The entry contains 19889 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called Histone H3.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>97</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>802 506 155 138 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>97</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>802 506 155 138 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 2 is a protein called Histone H4.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>B</td>
<td>82</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>657 416 128 112 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>78</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>622 393 120 108 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 3 is a protein called Histone H2A.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>C</td>
<td>107</td>
<td>Total C N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>825 519 163 143</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>105</td>
<td>Total C N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>809 510 158 141</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 4 is a protein called Histone H2B 1.1.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>D</td>
<td>94</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>738 463 134 138 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>95</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>742 466 133 140 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There are 4 discrepancies between the modelled and reference sequences:

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>29</td>
<td>THR</td>
<td>SER</td>
<td>engineered mutation</td>
<td>UNP P02281</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modeled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>117</td>
<td>CYS</td>
<td>LYS</td>
<td>engineered mutation</td>
<td>UNP P02281</td>
</tr>
<tr>
<td>H</td>
<td>29</td>
<td>THR</td>
<td>SER</td>
<td>engineered mutation</td>
<td>UNP P02281</td>
</tr>
<tr>
<td>H</td>
<td>117</td>
<td>CYS</td>
<td>LYS</td>
<td>engineered mutation</td>
<td>UNP P02281</td>
</tr>
</tbody>
</table>

- Molecule 5 is a DNA chain called DNA (145-MER).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>I</td>
<td>145</td>
<td>Total C</td>
<td>2955</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>1403</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O</td>
<td>538</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td>869</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>145</td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 6 is a DNA chain called DNA (145-MER).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>J</td>
<td>145</td>
<td>Total C</td>
<td>2990</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>1415</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O</td>
<td>559</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td>871</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>145</td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 7 is a protein called Retinoblastoma-binding protein 5.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>N</td>
<td>351</td>
<td>Total C</td>
<td>2759</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>1738</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O</td>
<td>477</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>529</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 8 is a protein called Histone-lysine N-methyltransferase 2A.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>K</td>
<td>179</td>
<td>Total C</td>
<td>1436</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>901</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O</td>
<td>268</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>252</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 9 is a protein called WD repeat-containing protein 5.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>R</td>
<td>300</td>
<td>Total C</td>
<td>2326</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>1485</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O</td>
<td>388</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>444</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 10 is a protein called Set1/Ash2 histone methyltransferase complex subunit ASH2.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>T</td>
<td>176</td>
<td>Total C</td>
<td>1399</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>906</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O</td>
<td>234</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>253</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 11 is S-ADENOSYL-L-HOMOCYSTEINE (three-letter code: SAH) (formula:
C_{14}H_{20}N_6O_5S).

- Molecule 12 is ZINC ION (three-letter code: ZN) (formula: Zn).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>K</td>
<td>1</td>
<td>Total C N O S</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>26 14 6 5 1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>K</td>
<td>1</td>
<td>Total Zn</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 1</td>
<td></td>
</tr>
</tbody>
</table>
3 Residue-property plots

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Molecule 1: Histone H3
 - Chain A:

- Molecule 1: Histone H3
 - Chain E:

- Molecule 2: Histone H4
 - Chain B:

- Molecule 2: Histone H4
 - Chain F:

- Molecule 3: Histone H2A
 - Chain C:
Chain G:

- Molecule 4: Histone H2B 1.1

Chain D:

- Molecule 4: Histone H2B 1.1

Chain H:

- Molecule 5: DNA (145-MER)

Chain I:

- Molecule 6: DNA (145-MER)

Chain J:

- Molecule 7: Retinoblastoma-binding protein 5

Chain N:
• Molecule 8: Histone-lysine N-methyltransferase 2A

Chain K:

• Molecule 9: WD repeat-containing protein 5

Chain R:

• Molecule 10: Set1/Ash2 histone methyltransferase complex subunit ASH2

Chain T:
4 Experimental information

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM reconstruction method</td>
<td>SINGLE PARTICLE</td>
<td>Depositor</td>
</tr>
<tr>
<td>Imposed symmetry</td>
<td>POINT, C1</td>
<td>Depositor</td>
</tr>
<tr>
<td>Number of particles used</td>
<td>31882</td>
<td>Depositor</td>
</tr>
<tr>
<td>Resolution determination method</td>
<td>FSC 0.143 CUT-OFF</td>
<td>Depositor</td>
</tr>
<tr>
<td>CTF correction method</td>
<td>PHASE FLIPPING ONLY</td>
<td>Depositor</td>
</tr>
<tr>
<td>Microscope</td>
<td>FEI TITAN KRIOS</td>
<td>Depositor</td>
</tr>
<tr>
<td>Voltage (kV)</td>
<td>300</td>
<td>Depositor</td>
</tr>
<tr>
<td>Electron dose (e^-/\AA^2)</td>
<td>45.0</td>
<td>Depositor</td>
</tr>
<tr>
<td>Minimum defocus (nm)</td>
<td>Not provided</td>
<td>Depositor</td>
</tr>
<tr>
<td>Maximum defocus (nm)</td>
<td>Not provided</td>
<td>Depositor</td>
</tr>
<tr>
<td>Magnification</td>
<td>Not provided</td>
<td>Depositor</td>
</tr>
<tr>
<td>Image detector</td>
<td>GATAN K3 (6k x 4k)</td>
<td>Depositor</td>
</tr>
<tr>
<td>Maximum map value</td>
<td>0.100</td>
<td>Depositor</td>
</tr>
<tr>
<td>Minimum map value</td>
<td>-0.060</td>
<td>Depositor</td>
</tr>
<tr>
<td>Average map value</td>
<td>-0.000</td>
<td>Depositor</td>
</tr>
<tr>
<td>Map value standard deviation</td>
<td>0.004</td>
<td>Depositor</td>
</tr>
<tr>
<td>Recommended contour level</td>
<td>0.005</td>
<td>Depositor</td>
</tr>
<tr>
<td>Map size (Å)</td>
<td>297.0, 297.0, 297.0</td>
<td>Depositor</td>
</tr>
<tr>
<td>Map dimensions</td>
<td>270, 270, 270</td>
<td>Depositor</td>
</tr>
<tr>
<td>Map angles (°)</td>
<td>90.0, 90.0, 90.0</td>
<td>Depositor</td>
</tr>
<tr>
<td>Pixel spacing (Å)</td>
<td>1.1, 1.1, 1.1</td>
<td>Depositor</td>
</tr>
</tbody>
</table>
5 Model quality

5.1 Standard geometry

Bond lengths and bond angles in the following residue types are not validated in this section: ZN, SAH

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 5$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RMSZ</td>
<td>#</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>0.44</td>
<td>0/814</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>0.44</td>
<td>0/814</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>0.45</td>
<td>0/664</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>0.45</td>
<td>0/629</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>0.40</td>
<td>0/835</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>0.40</td>
<td>0/819</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>0.43</td>
<td>0/749</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>0.43</td>
<td>0/753</td>
</tr>
<tr>
<td>5</td>
<td>I</td>
<td>0.96</td>
<td>0/3311</td>
</tr>
<tr>
<td>6</td>
<td>J</td>
<td>0.97</td>
<td>0/3357</td>
</tr>
<tr>
<td>7</td>
<td>N</td>
<td>0.30</td>
<td>0/2817</td>
</tr>
<tr>
<td>8</td>
<td>K</td>
<td>0.29</td>
<td>0/1462</td>
</tr>
<tr>
<td>9</td>
<td>R</td>
<td>0.28</td>
<td>0/2382</td>
</tr>
<tr>
<td>10</td>
<td>T</td>
<td>0.29</td>
<td>0/1442</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>0.62</td>
<td>0/20848</td>
</tr>
</tbody>
</table>

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>#Chirality outliers</th>
<th>#Planarity outliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>N</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

There are no bond length outliers.

All (2) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>J</td>
<td>117</td>
<td>DA</td>
<td>O4'-C4'-C3'</td>
<td>-5.65</td>
<td>102.24</td>
<td>104.50</td>
</tr>
<tr>
<td>7</td>
<td>N</td>
<td>323</td>
<td>GLN</td>
<td>C·N·CA</td>
<td>5.21</td>
<td>134.73</td>
<td>121.70</td>
</tr>
</tbody>
</table>
There are no chirality outliers.

All (1) planarity outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>N</td>
<td>194</td>
<td>GLY</td>
<td>Peptide</td>
</tr>
</tbody>
</table>

5.2 Too-close contacts

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>802</td>
<td>0</td>
<td>841</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>802</td>
<td>0</td>
<td>841</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>657</td>
<td>0</td>
<td>706</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>622</td>
<td>0</td>
<td>660</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>825</td>
<td>0</td>
<td>882</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>809</td>
<td>0</td>
<td>864</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>G</td>
<td>738</td>
<td>0</td>
<td>760</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>742</td>
<td>0</td>
<td>765</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>I</td>
<td>2955</td>
<td>0</td>
<td>1627</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>J</td>
<td>2990</td>
<td>0</td>
<td>1628</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>K</td>
<td>2759</td>
<td>0</td>
<td>2707</td>
<td>62</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>L</td>
<td>1143</td>
<td>0</td>
<td>1427</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>2326</td>
<td>0</td>
<td>2309</td>
<td>43</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>N</td>
<td>1399</td>
<td>0</td>
<td>1363</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>O</td>
<td>26</td>
<td>0</td>
<td>19</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>P</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>19889</td>
<td>0</td>
<td>17399</td>
<td>205</td>
<td>0</td>
</tr>
</tbody>
</table>

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 6.

All (205) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:K:3907:His:H</td>
<td>11:K:4001:Asp:HN61</td>
<td>1.41</td>
<td>0.69</td>
</tr>
<tr>
<td>9:R:115:Asp:HB3</td>
<td>9:R:119:GLY:H</td>
<td>1.59</td>
<td>0.68</td>
</tr>
<tr>
<td>10:T:297:Gln:HE22</td>
<td>10:T:354:Gln:HE22</td>
<td>1.42</td>
<td>0.68</td>
</tr>
<tr>
<td>9:R:111:Leu:HB2</td>
<td>9:R:125:Leu:HB2</td>
<td>1.76</td>
<td>0.67</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:N:12:ASN:HB3</td>
<td>7:N:324:ASN:HD22</td>
<td>1.60</td>
<td>0.66</td>
</tr>
<tr>
<td>9:R:41:LEU:HB2</td>
<td>9:R:327:ILE:HB</td>
<td>1.77</td>
<td>0.66</td>
</tr>
<tr>
<td>8:K:3861:ASN:HD21</td>
<td>8:K:3897:MET:HB2</td>
<td>1.63</td>
<td>0.64</td>
</tr>
<tr>
<td>3:C:15:LYS:HB2</td>
<td>3:C:20:ARG:HH21</td>
<td>1.63</td>
<td>0.62</td>
</tr>
<tr>
<td>1:A:42:ARG:NH2</td>
<td>5:I:144:DC:OP2</td>
<td>2.33</td>
<td>0.61</td>
</tr>
<tr>
<td>7:N:302:ALA:HB3</td>
<td>7:N:311:ALA:HB3</td>
<td>1.82</td>
<td>0.60</td>
</tr>
<tr>
<td>9:R:69:ILE:HB</td>
<td>9:R:83:ILE:HB</td>
<td>1.83</td>
<td>0.59</td>
</tr>
<tr>
<td>7:N:261:GLY:HA3</td>
<td>7:N:305:PRO:HA</td>
<td>1.83</td>
<td>0.59</td>
</tr>
<tr>
<td>7:N:27:ALA:H</td>
<td>7:N:316:GLY:HA2</td>
<td>1.68</td>
<td>0.59</td>
</tr>
<tr>
<td>7:N:32:PHE:HB3</td>
<td>7:N:36:GLY:HA2</td>
<td>1.85</td>
<td>0.59</td>
</tr>
<tr>
<td>8:K:3906:ASN:ND2</td>
<td>8:K:3939:GLU:OE2</td>
<td>2.36</td>
<td>0.59</td>
</tr>
<tr>
<td>5:I:50:DG:N2</td>
<td>6:J:99:DT:O2</td>
<td>2.36</td>
<td>0.59</td>
</tr>
<tr>
<td>7:N:280:GLU:HB2</td>
<td>7:N:284:GLY:H</td>
<td>1.68</td>
<td>0.59</td>
</tr>
<tr>
<td>8:K:3765:ARG:HD3</td>
<td>9:R:305:ILE:HG21</td>
<td>1.84</td>
<td>0.58</td>
</tr>
<tr>
<td>9:R:110:THR:HG22</td>
<td>9:R:126:LYS:HG2</td>
<td>1.84</td>
<td>0.58</td>
</tr>
<tr>
<td>8:K:3849:ILE:HB</td>
<td>8:K:3934:ILE:HB</td>
<td>1.86</td>
<td>0.58</td>
</tr>
<tr>
<td>8:K:3864:ARG:NH1</td>
<td>10:T:354:GLN:O</td>
<td>2.36</td>
<td>0.58</td>
</tr>
<tr>
<td>9:R:113:ILE:HD12</td>
<td>9:R:123:LYS:HB2</td>
<td>1.86</td>
<td>0.58</td>
</tr>
<tr>
<td>8:K:3765:ARG:NH2</td>
<td>9:R:91:SER:O</td>
<td>2.36</td>
<td>0.57</td>
</tr>
<tr>
<td>9:R:283:VAL:HB</td>
<td>9:R:297:LEU:HB2</td>
<td>1.86</td>
<td>0.57</td>
</tr>
<tr>
<td>7:N:30:CYS:HB2</td>
<td>7:N:39:LEU:HD11</td>
<td>1.86</td>
<td>0.56</td>
</tr>
<tr>
<td>9:R:154:ARG:NH1</td>
<td>9:R:166:THR:OG1</td>
<td>2.39</td>
<td>0.56</td>
</tr>
<tr>
<td>8:K:3857:GLU:O</td>
<td>8:K:3900:ASN:ND2</td>
<td>2.38</td>
<td>0.56</td>
</tr>
<tr>
<td>9:R:179:PHE:HB3</td>
<td>9:R:183:GLY:HA2</td>
<td>1.88</td>
<td>0.56</td>
</tr>
<tr>
<td>8:K:3864:ARG:HA</td>
<td>8:K:3891:GLU:HG2</td>
<td>1.87</td>
<td>0.55</td>
</tr>
<tr>
<td>1:E:116:ARG:NH1</td>
<td>1:E:118:THR:O</td>
<td>2.40</td>
<td>0.55</td>
</tr>
<tr>
<td>8:K:3862:VAL:HG22</td>
<td>8:K:3893:VAL:HG22</td>
<td>1.88</td>
<td>0.55</td>
</tr>
<tr>
<td>7:N:70:CYS:SG</td>
<td>7:N:71:SER:N</td>
<td>2.80</td>
<td>0.54</td>
</tr>
<tr>
<td>7:N:94:ASP:HB3</td>
<td>7:N:98:GLY:H</td>
<td>1.71</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Continued from previous page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:R:65:ALA:HA</td>
<td>9:R:90:ILE:E</td>
<td>1.73</td>
<td>0.54</td>
</tr>
<tr>
<td>9:R:278:SER:H</td>
<td>9:R:304:VAL:HB</td>
<td>1.73</td>
<td>0.54</td>
</tr>
<tr>
<td>9:R:52:LYS:HD3</td>
<td>9:R:308:ALA:HB2</td>
<td>1.90</td>
<td>0.54</td>
</tr>
<tr>
<td>8:K:3778:PHE:HB2</td>
<td>8:K:3841:ARG:HH22</td>
<td>1.72</td>
<td>0.53</td>
</tr>
<tr>
<td>9:R:153:VAL:HB</td>
<td>9:R:167:LEU:HB2</td>
<td>1.90</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:106:ASP:OD2</td>
<td>1:A:131:ARG:NH2</td>
<td>2.40</td>
<td>0.53</td>
</tr>
<tr>
<td>1:E:106:ASP:OD2</td>
<td>1:E:131:ARG:NH2</td>
<td>2.40</td>
<td>0.53</td>
</tr>
<tr>
<td>4:D:33:SER:OG</td>
<td>4:D:34:TYR:N</td>
<td>2.41</td>
<td>0.53</td>
</tr>
<tr>
<td>9:R:189:SER:HB3</td>
<td>9:R:220:VAL:HG22</td>
<td>1.91</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:83:ARG:HB2</td>
<td>2:B:80:THR:HG22</td>
<td>1.90</td>
<td>0.53</td>
</tr>
<tr>
<td>8:K:3814:LEU:O</td>
<td>8:K:3819:ARG:NH1</td>
<td>2.42</td>
<td>0.53</td>
</tr>
<tr>
<td>5:I:8:DA:H2"</td>
<td>5:I:9:DT:H5"</td>
<td>1.91</td>
<td>0.53</td>
</tr>
<tr>
<td>11:K:4001:SAH:N</td>
<td>11:K:4001:SAH:SD</td>
<td>2.77</td>
<td>0.52</td>
</tr>
<tr>
<td>9:R:100:ASN:HA</td>
<td>9:R:116:VAL:HB</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>7:N:33:ASN:OD1</td>
<td>7:N:37:THR:N</td>
<td>2.42</td>
<td>0.52</td>
</tr>
<tr>
<td>7:N:259:PHE:HB3</td>
<td>7:N:263:GLY:HA2</td>
<td>1.92</td>
<td>0.52</td>
</tr>
<tr>
<td>2:B:23:ARG:HH21</td>
<td>7:N:193:THR:HB</td>
<td>1.74</td>
<td>0.52</td>
</tr>
<tr>
<td>7:N:313:ILE:HG12</td>
<td>7:N:318:VAL:HG22</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>9:R:138:ASN:ND2</td>
<td>9:R:142:ASN:OD1</td>
<td>2.40</td>
<td>0.52</td>
</tr>
<tr>
<td>8:K:3861:ASN:OD1</td>
<td>8:K:3898:HIS:ND1</td>
<td>2.41</td>
<td>0.51</td>
</tr>
<tr>
<td>7:N:67:HIS:NE2</td>
<td>7:N:87:ASP:OD2</td>
<td>2.43</td>
<td>0.51</td>
</tr>
<tr>
<td>7:N:83:SER:OG</td>
<td>7:N:93:TRP:NE1</td>
<td>2.44</td>
<td>0.51</td>
</tr>
<tr>
<td>10:T:294:ARG:HB2</td>
<td>10:T:316:VAL:HG23</td>
<td>1.91</td>
<td>0.51</td>
</tr>
<tr>
<td>7:N:91:SER:HB3</td>
<td>7:N:101:ASP:H</td>
<td>1.76</td>
<td>0.51</td>
</tr>
<tr>
<td>9:R:149:PHE:HA</td>
<td>9:R:173:PRO:HB3</td>
<td>1.92</td>
<td>0.51</td>
</tr>
<tr>
<td>7:N:112:LYS:HB3</td>
<td>7:N:126:CYS:HB2</td>
<td>1.92</td>
<td>0.51</td>
</tr>
<tr>
<td>7:N:76:ARG:NH2</td>
<td>7:N:117:PRO:O</td>
<td>2.42</td>
<td>0.51</td>
</tr>
<tr>
<td>10:T:335:GLU:HB3</td>
<td>10:T:479:THR:HB</td>
<td>1.92</td>
<td>0.51</td>
</tr>
<tr>
<td>1:E:63:ARG:HH21</td>
<td>6:J:60:DA:H5"</td>
<td>1.76</td>
<td>0.51</td>
</tr>
<tr>
<td>10:T:330:GLU:HA</td>
<td>10:T:393:GLY:HA3</td>
<td>1.93</td>
<td>0.51</td>
</tr>
<tr>
<td>9:R:304:VAL:HA</td>
<td>9:R:320:ALA:HA</td>
<td>1.93</td>
<td>0.51</td>
</tr>
<tr>
<td>10:T:332:THR:HB</td>
<td>10:T:481:SER:HB2</td>
<td>1.93</td>
<td>0.51</td>
</tr>
<tr>
<td>10:T:289:LEU:O</td>
<td>10:T:304:ARG:NH2</td>
<td>2.38</td>
<td>0.50</td>
</tr>
<tr>
<td>7:N:50:ILE:HD12</td>
<td>7:N:60:LYS:HB3</td>
<td>1.92</td>
<td>0.50</td>
</tr>
<tr>
<td>9:R:220:VAL:HG12</td>
<td>9:R:231:ALA:HA</td>
<td>1.92</td>
<td>0.50</td>
</tr>
<tr>
<td>7:N:235:ARG:NH1</td>
<td>7:N:236:ASP:OD2</td>
<td>2.44</td>
<td>0.50</td>
</tr>
<tr>
<td>10:T:336:MET:SD</td>
<td>10:T:386:TYR:OH</td>
<td>2.63</td>
<td>0.50</td>
</tr>
<tr>
<td>10:T:447:ILE:HG22</td>
<td>10:T:459:ALA:HB3</td>
<td>1.94</td>
<td>0.50</td>
</tr>
<tr>
<td>10:T:308:VAL:HG22</td>
<td>10:T:479:THR:HA</td>
<td>1.93</td>
<td>0.50</td>
</tr>
<tr>
<td>2:B:39:ARG:NH1</td>
<td>2:B:43:VAL:O</td>
<td>2.45</td>
<td>0.50</td>
</tr>
<tr>
<td>Atom-1</td>
<td>Atom-2</td>
<td>Interatomic distance (Å)</td>
<td>Clash overlap (Å)</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>--------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>7:N:265:TYR:HA</td>
<td>7:N:280:GLU:HA</td>
<td>1.94</td>
<td>0.50</td>
</tr>
<tr>
<td>8:K:3823:LEU:HD13</td>
<td>8:K:3854:MET:HB3</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>10:T:318:ALA:HB3</td>
<td>10:T:470:PRO:HG2</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:76:GLN:HE22</td>
<td>2:B:21:VAL:HG13</td>
<td>1.78</td>
<td>0.49</td>
</tr>
<tr>
<td>2:F:77:LYS:HE3</td>
<td>4:H:89:ARG:HH12</td>
<td>1.77</td>
<td>0.49</td>
</tr>
<tr>
<td>9:R:111:LEU:N</td>
<td>9:R:125:LEU:O</td>
<td>2.44</td>
<td>0.49</td>
</tr>
<tr>
<td>8:K:3816:MET:HG3</td>
<td>8:K:3920:ILE:HD11</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>6:J:94:DG:H2'</td>
<td>6:J:95:DG:C8</td>
<td>2.47</td>
<td>0.49</td>
</tr>
<tr>
<td>7:N:113:VAL:HG12</td>
<td>7:N:125:VAL:HG22</td>
<td>1.93</td>
<td>0.49</td>
</tr>
<tr>
<td>7:N:255:LYS:HB2</td>
<td>7:N:271:ALA:HB2</td>
<td>1.95</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:61:LEU:HD11</td>
<td>2:B:40:ARG:HH21</td>
<td>1.77</td>
<td>0.48</td>
</tr>
<tr>
<td>7:N:88:ASN:HB3</td>
<td>7:N:106:PHE:HD2</td>
<td>1.77</td>
<td>0.48</td>
</tr>
<tr>
<td>9:R:238:LEU:HB2</td>
<td>9:R:252:TYR:HD2</td>
<td>1.78</td>
<td>0.48</td>
</tr>
<tr>
<td>6:J:35:DT:HG2</td>
<td>6:J:36:DG:H8</td>
<td>1.79</td>
<td>0.48</td>
</tr>
<tr>
<td>7:N:260:SER:HB3</td>
<td>7:N:265:TYR:HB2</td>
<td>1.94</td>
<td>0.48</td>
</tr>
<tr>
<td>51:60:DA:N6</td>
<td>6:J:87:DT:O4</td>
<td>2.46</td>
<td>0.48</td>
</tr>
<tr>
<td>9:R:195:CYS:HB2</td>
<td>9:R:209:LEU:HB3</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>3:C:68:ASN:OD1</td>
<td>3:C:71:ARG:NH1</td>
<td>2.46</td>
<td>0.48</td>
</tr>
<tr>
<td>5:I:92:DC:C2</td>
<td>6:J:56:DG:N2</td>
<td>2.81</td>
<td>0.48</td>
</tr>
<tr>
<td>6:J:94:DG:H2'</td>
<td>6:J:95:DG:H8</td>
<td>1.79</td>
<td>0.48</td>
</tr>
<tr>
<td>9:R:155:ILE:HG22</td>
<td>9:R:164:LEU:HD12</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>9:R:88:LEU:HD12</td>
<td>9:R:108:ASP:HA</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>8:K:3863:ILE:HD13</td>
<td>8:K:3871:ARG:HD2</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>7:N:50:ILE:N</td>
<td>7:N:60:LYS:O</td>
<td>2.43</td>
<td>0.47</td>
</tr>
<tr>
<td>2:B:47:SER:OG</td>
<td>2:B:48:GLY:N</td>
<td>2.46</td>
<td>0.47</td>
</tr>
<tr>
<td>7:N:223:ARG:HG2</td>
<td>7:N:244:LYS:HG2</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>7:N:269:GLY:HA2</td>
<td>7:N:276:LEU:HD22</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>9:R:91:SER:OG</td>
<td>9:R:107:ASP:OD1</td>
<td>2.28</td>
<td>0.47</td>
</tr>
<tr>
<td>9:R:90:ILE:HA</td>
<td>9:R:106:SER:HA</td>
<td>1.95</td>
<td>0.47</td>
</tr>
<tr>
<td>10:T:357:LEU:HD12</td>
<td>10:T:363:SER:HB2</td>
<td>1.95</td>
<td>0.47</td>
</tr>
<tr>
<td>7:N:67:HIS:HB2</td>
<td>7:N:85:SER:HB2</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>10:T:298:LEU:HD12</td>
<td>10:T:316:VAL:HB</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>7:N:20:THR:OG1</td>
<td>7:N:318:VAL:O</td>
<td>2.30</td>
<td>0.46</td>
</tr>
<tr>
<td>9:R:103:VAL:HG23</td>
<td>9:R:113:ILE:HG12</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>7:N:340:ASP:O</td>
<td>8:K:3824:LYS:NZ</td>
<td>2.43</td>
<td>0.46</td>
</tr>
<tr>
<td>7:N:34:ARG:NH1</td>
<td>7:N:76:ARG:O</td>
<td>2.47</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Continued on next page...
Atom-1 and Atom-2 Interatomic Distances

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic Distance (Å)</th>
<th>Clash Overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5:I:106:DG:H2</td>
<td>5:I:101:DG:C8</td>
<td>2.51</td>
<td>0.46</td>
</tr>
<tr>
<td>7:N:47:ARG:HG2</td>
<td>7:N:63:SER:HA</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>9:R:275:VAL:HG22</td>
<td>9:R:285:ILE:HG12</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>10:T:373:LYS:NZ</td>
<td>10:T:459:ALA:O</td>
<td>2.48</td>
<td>0.46</td>
</tr>
<tr>
<td>9:R:186:ILE:HB</td>
<td>9:R:198:TRP:HB2</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>10:T:397:ASN:HB3</td>
<td>10:T:445:SER:HA</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>5:I:66:DC:H2"</td>
<td>5:I:67:DG:C8</td>
<td>2.51</td>
<td>0.46</td>
</tr>
<tr>
<td>7:N:193:THR:OG1</td>
<td>7:N:223:ARG:NH2</td>
<td>2.49</td>
<td>0.46</td>
</tr>
<tr>
<td>7:N:300:ASP:HB3</td>
<td>7:N:313:ILE:HB</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>3:C:14:ALA:HB1</td>
<td>5:I:31:DT:H4'</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>3:G:42:ARG:HH11</td>
<td>5:I:112:DT:H4'</td>
<td>1.81</td>
<td>0.45</td>
</tr>
<tr>
<td>8:K:3861:ASN:HB3</td>
<td>8:K:3863:ILE:HG23</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>4:H:83:ARG:HH21</td>
<td>6:J:40:DA:H3'</td>
<td>1.81</td>
<td>0.45</td>
</tr>
<tr>
<td>8:K:3861:ASN:N</td>
<td>8:K:3894:ASP:O</td>
<td>2.49</td>
<td>0.45</td>
</tr>
<tr>
<td>7:N:276:LEU:N</td>
<td>7:N:296:LEU:O</td>
<td>2.37</td>
<td>0.45</td>
</tr>
<tr>
<td>6:J:57:DT:H2"</td>
<td>6:J:58:DT:C5</td>
<td>2.51</td>
<td>0.45</td>
</tr>
<tr>
<td>10:T:452:ASN:O</td>
<td>10:T:493:LYS:NZ</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>9:R:45:THR:OG1</td>
<td>9:R:66:ASP:OD2</td>
<td>2.35</td>
<td>0.45</td>
</tr>
<tr>
<td>7:N:278:ILE:HD12</td>
<td>7:N:288:LYS:HB3</td>
<td>1.98</td>
<td>0.44</td>
</tr>
<tr>
<td>10:T:299:LYS:HB2</td>
<td>10:T:308:VAL:HB</td>
<td>1.98</td>
<td>0.44</td>
</tr>
<tr>
<td>2:B:98:TYR:OH</td>
<td>4:H:65:ASP:OD2</td>
<td>2.27</td>
<td>0.44</td>
</tr>
<tr>
<td>9:R:229:ILE:O</td>
<td>9:R:241:TRP:N</td>
<td>2.41</td>
<td>0.44</td>
</tr>
<tr>
<td>9:R:57:GLY:O</td>
<td>9:R:310:HIS:NE2</td>
<td>2.45</td>
<td>0.44</td>
</tr>
<tr>
<td>7:N:123:VAL:O</td>
<td>7:N:135:LEU:N</td>
<td>2.41</td>
<td>0.44</td>
</tr>
<tr>
<td>8:K:3883:TYR:OH</td>
<td>11:K:4001:SAH:SD</td>
<td>2.66</td>
<td>0.44</td>
</tr>
<tr>
<td>5:I:24:DC:H2"</td>
<td>5:I:25:DG:C8</td>
<td>2.53</td>
<td>0.44</td>
</tr>
<tr>
<td>7:N:22:ASP:OD1</td>
<td>7:N:318:VAL:N</td>
<td>2.51</td>
<td>0.44</td>
</tr>
<tr>
<td>7:N:94:ASP:H</td>
<td>7:N:98:GLY:HA2</td>
<td>1.82</td>
<td>0.44</td>
</tr>
<tr>
<td>6:J:82:DG:H2'</td>
<td>6:J:83:DT:C6</td>
<td>2.53</td>
<td>0.44</td>
</tr>
<tr>
<td>8:K:3836:SER:OG</td>
<td>8:K:3906:ASN:ND2</td>
<td>2.51</td>
<td>0.43</td>
</tr>
<tr>
<td>7:N:134:MET:O</td>
<td>7:N:143:VAL:N</td>
<td>2.41</td>
<td>0.43</td>
</tr>
<tr>
<td>8:K:3838:ILE:O</td>
<td>8:K:3958:ASN:ND2</td>
<td>2.51</td>
<td>0.43</td>
</tr>
<tr>
<td>9:R:199:ASP:HB3</td>
<td>9:R:204:GLN:H</td>
<td>1.82</td>
<td>0.43</td>
</tr>
<tr>
<td>6:J:78:DG:H4'</td>
<td>6:J:79:DT:H5'</td>
<td>1.99</td>
<td>0.43</td>
</tr>
<tr>
<td>8:K:3835:ARG:HA</td>
<td>8:K:3841:ARG:HG3</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>7:N:121:ASN:O</td>
<td>7:N:137:LEU:N</td>
<td>2.51</td>
<td>0.43</td>
</tr>
<tr>
<td>10:T:348:GLN:HB2</td>
<td>10:T:362:PHE:HB3</td>
<td>2.00</td>
<td>0.43</td>
</tr>
</tbody>
</table>
There are no symmetry-related clashes.

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:N:260:SER:N</td>
<td>7:N:265:TYR:O</td>
<td>2.51</td>
<td>0.43</td>
</tr>
<tr>
<td>8:K:3846:LYS:HA</td>
<td>8:K:3936:ARG:HG3</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>7:N:51:TRP:HA</td>
<td>7:N:59:ALA:H</td>
<td>1.83</td>
<td>0.43</td>
</tr>
<tr>
<td>8:K:3810:THR:HB</td>
<td>8:K:3854:MET:H</td>
<td>1.84</td>
<td>0.43</td>
</tr>
<tr>
<td>4:H:48:ASP:OD1</td>
<td>4:H:48:ASP:N</td>
<td>2.50</td>
<td>0.43</td>
</tr>
<tr>
<td>8:K:3909:CYS:H</td>
<td>8:K:3959:CYS:HB2</td>
<td>1.82</td>
<td>0.43</td>
</tr>
<tr>
<td>8:K:3840:GLY:HA3</td>
<td>11:K:4001:SAH:HB2</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>7:N:14:PRO:HB3</td>
<td>7:N:308:PRO:HB2</td>
<td>1.99</td>
<td>0.43</td>
</tr>
<tr>
<td>7:N:15:GLU:H</td>
<td>7:N:323:GLN:HB2</td>
<td>1.83</td>
<td>0.43</td>
</tr>
<tr>
<td>10:T:363:SER:O</td>
<td>10:T:375:HIS:ND1</td>
<td>2.45</td>
<td>0.43</td>
</tr>
<tr>
<td>5:I:82:DC:H2′</td>
<td>51:83:DG:C8</td>
<td>2.53</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:69:ARG:NH1</td>
<td>7:N:196:SER:OG</td>
<td>2.52</td>
<td>0.42</td>
</tr>
<tr>
<td>51:68:DT:H2′</td>
<td>51:69:DA:N7</td>
<td>2.34</td>
<td>0.42</td>
</tr>
<tr>
<td>7:N:133:VAL:HG22</td>
<td>7:N:144:VAL:HG22</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>6:J:9:DT:H2′</td>
<td>6:J:10:DA:C8</td>
<td>2.55</td>
<td>0.42</td>
</tr>
<tr>
<td>9:R:262:ILE:HD11</td>
<td>9:R:279:GLU:HG3</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>2:B:64:ASN:OD1</td>
<td>2:B:67:ARG:NH2</td>
<td>2.52</td>
<td>0.41</td>
</tr>
<tr>
<td>7:N:49:VAL:HG22</td>
<td>7:N:61:ILE:HG23</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>6:J:95:DG:H2′</td>
<td>6:J:96:DT:H1</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>11:K:4001:SAH:H8</td>
<td>11:K:4001:SAH:H2′</td>
<td>1.88</td>
<td>0.41</td>
</tr>
<tr>
<td>8:K:3861:ASN:O</td>
<td>8:K:3894:ASP:N</td>
<td>2.43</td>
<td>0.41</td>
</tr>
<tr>
<td>8:K:3861:ASN:HB2</td>
<td>8:K:3894:ASP:HB3</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>9:R:240:LEU:HD22</td>
<td>9:R:288:LEU:HD11</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>10:T:448:ILE:HG12</td>
<td>10:T:458:VAL:HA</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>7:N:276:LEU:O</td>
<td>7:N:290:LEU:N</td>
<td>2.53</td>
<td>0.41</td>
</tr>
<tr>
<td>10:T:391:VAL:HG21</td>
<td>10:T:489:LYS:HG2</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>7:N:208:ARG:HB2</td>
<td>7:N:262:ASP:HA</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>7:N:377:VAL:HG13</td>
<td>7:N:378:THR:HG23</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>7:N:137:LEU:HD23</td>
<td>7:N:137:LEU:HA</td>
<td>1.95</td>
<td>0.41</td>
</tr>
<tr>
<td>9:R:274:ILE:N</td>
<td>9:R:286:TRP:O</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>9:R:321:LEU:HB3</td>
<td>9:R:322:GLU:H</td>
<td>1.74</td>
<td>0.41</td>
</tr>
<tr>
<td>4:H:77:LEU:HA</td>
<td>4:H:77:LEU:HD23</td>
<td>1.93</td>
<td>0.41</td>
</tr>
<tr>
<td>7:N:88:ASN:ND2</td>
<td>7:N:106:PHE:O</td>
<td>2.53</td>
<td>0.41</td>
</tr>
<tr>
<td>6:J:5:DG:H2″</td>
<td>6:J:6:DA:C8</td>
<td>2.56</td>
<td>0.40</td>
</tr>
</tbody>
</table>
5.3 Torsion angles

5.3.1 Protein backbone

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Favoured</th>
<th>Allowed</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>95/135 (70%)</td>
<td>93 (98%)</td>
<td>2 (2%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>95/135 (70%)</td>
<td>93 (98%)</td>
<td>2 (2%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>80/102 (78%)</td>
<td>76 (95%)</td>
<td>4 (5%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>76/102 (74%)</td>
<td>71 (93%)</td>
<td>5 (7%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>105/129 (81%)</td>
<td>101 (96%)</td>
<td>4 (4%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>103/129 (80%)</td>
<td>100 (97%)</td>
<td>3 (3%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>92/122 (75%)</td>
<td>89 (97%)</td>
<td>3 (3%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>93/122 (76%)</td>
<td>91 (98%)</td>
<td>2 (2%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>7</td>
<td>N</td>
<td>347/538 (64%)</td>
<td>314 (90%)</td>
<td>33 (10%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>8</td>
<td>K</td>
<td>173/216 (80%)</td>
<td>156 (90%)</td>
<td>17 (10%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>9</td>
<td>R</td>
<td>298/334 (89%)</td>
<td>274 (92%)</td>
<td>24 (8%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>10</td>
<td>T</td>
<td>172/534 (32%)</td>
<td>155 (90%)</td>
<td>17 (10%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1729/2598 (67%)</td>
<td>1613 (93%)</td>
<td>116 (7%)</td>
<td>0</td>
<td>100 100</td>
</tr>
</tbody>
</table>

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>85/110 (77%)</td>
<td>85 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>85/110 (77%)</td>
<td>85 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
</tbody>
</table>

Continued on next page...
All (6) residues with a non-rotameric sidechain are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>C</td>
<td>38</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>110</td>
<td>ASN</td>
</tr>
<tr>
<td>7</td>
<td>N</td>
<td>328</td>
<td>ASN</td>
</tr>
<tr>
<td>8</td>
<td>K</td>
<td>384</td>
<td>ARG</td>
</tr>
<tr>
<td>8</td>
<td>K</td>
<td>388</td>
<td>ARG</td>
</tr>
<tr>
<td>10</td>
<td>T</td>
<td>294</td>
<td>ARG</td>
</tr>
</tbody>
</table>

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (14) such sidechains are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>39</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>76</td>
<td>GLN</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>38</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>39</td>
<td>HIS</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>89</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>110</td>
<td>ASN</td>
</tr>
<tr>
<td>7</td>
<td>N</td>
<td>79</td>
<td>HIS</td>
</tr>
<tr>
<td>7</td>
<td>N</td>
<td>324</td>
<td>ASN</td>
</tr>
<tr>
<td>7</td>
<td>N</td>
<td>328</td>
<td>ASN</td>
</tr>
<tr>
<td>8</td>
<td>K</td>
<td>390</td>
<td>ASN</td>
</tr>
<tr>
<td>9</td>
<td>R</td>
<td>136</td>
<td>ASN</td>
</tr>
<tr>
<td>10</td>
<td>T</td>
<td>320</td>
<td>HIS</td>
</tr>
</tbody>
</table>

Continued on next page...
5.3.3 RNA

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates

There are no carbohydrates in this entry.

5.6 Ligand geometry

Of 2 ligands modelled in this entry, 1 is monoatomic - leaving 1 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 2$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Counts</td>
<td>RMSZ</td>
</tr>
<tr>
<td>11</td>
<td>SAH</td>
<td>K</td>
<td>4001</td>
<td>-</td>
<td>21,28,28</td>
<td>1.18</td>
</tr>
</tbody>
</table>

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>SAH</td>
<td>K</td>
<td>4001</td>
<td>-</td>
<td>4/7/31/31</td>
<td>0/3/3/3</td>
<td></td>
</tr>
</tbody>
</table>

All (2) bond length outliers are listed below:
All (3) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>K</td>
<td>4001</td>
<td>SAH</td>
<td>N3-C2-N1</td>
<td>-5.49</td>
<td>120.10</td>
<td>128.68</td>
</tr>
<tr>
<td>11</td>
<td>K</td>
<td>4001</td>
<td>SAH</td>
<td>C5'-SD-CG</td>
<td>-4.27</td>
<td>89.47</td>
<td>102.27</td>
</tr>
<tr>
<td>11</td>
<td>K</td>
<td>4001</td>
<td>SAH</td>
<td>C3'-C2'-C1'</td>
<td>3.13</td>
<td>105.69</td>
<td>100.98</td>
</tr>
</tbody>
</table>

There are no chirality outliers.

All (4) torsion outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>K</td>
<td>4001</td>
<td>SAH</td>
<td>C-CA-CB-CG</td>
</tr>
<tr>
<td>11</td>
<td>K</td>
<td>4001</td>
<td>SAH</td>
<td>O4'-C4'-C5'-SD</td>
</tr>
<tr>
<td>11</td>
<td>K</td>
<td>4001</td>
<td>SAH</td>
<td>C3'-C4'-C5'-SD</td>
</tr>
<tr>
<td>11</td>
<td>K</td>
<td>4001</td>
<td>SAH</td>
<td>N-CA-CB-CG</td>
</tr>
</tbody>
</table>

There are no ring outliers.

1 monomer is involved in 5 short contacts:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>K</td>
<td>4001</td>
<td>SAH</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less than 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.
5.7 Other polymers

There are no such residues in this entry.

5.8 Polymer linkage issues

There are no chain breaks in this entry.
6 Map visualisation

This section contains visualisations of the EMDB entry EMD-0695. These are intended to permit visual inspection of the internal detail of the map and identification of artifacts.

6.1 Orthogonal projections

The images above show the map projected in three orthogonal projections, in greyscale.

6.2 Central slices

The images above show central slices of the map in three orthogonal directions, in greyscale.
6.3 Largest variance slices

The images above show the highest variance slices of the map in three orthogonal directions, in greyscale.

6.4 Orthogonal surface views

The images above show the 3D surface view of the map at the recommended contour level 0.005. This in conjunction with the slice images can indicate whether an appropriate contour level has been selected.

6.5 Mask visualisation

This section was not generated. No masks were provided.
7 Map analysis

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.
7.2 Volume estimate

The volume at the recommended contour level is 375 nm3; this corresponds to an approximate mass of 339 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.
7.3 Rotationally averaged power spectrum

![Rotational averaged power spectrum graph](image)

- Rotationally averaged power spectrum
- Reported resolution: 4.50 Å
- Corresponding to spatial frequency: 0.222 Å⁻¹
8 Fourier-Shell correlation

This section was not generated. No FSC curve or half maps provided.
9 Map-model fit

This section contains information regarding the fit between EMDB map EMD-0695 and PDB model 6KIZ. Per-residue inclusion information can be found in section 3 on page 7.

9.1 Map-model overlay

The images above show the 3D surface view of the map at the recommended contour level 0.005 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.
9.2 Atom inclusion

At the recommended contour level, 96% of all backbone atoms, 94% of all non-hydrogen atoms, are inside the map.